Бог и Мультивселенная. Расширенное понятие космоса

Стенджер Виктор

На наших глазах фантастика становится реальностью. Новейшие исследования позволяют предположить, что наблюдаемая часть Вселенной — лишь крошечный участок несравненно более обширной и грандиозной Мультивселенной. В этой книге увлекательно и доступно рассказано о формировании современной картины мира, о том, как решительно и болезненно она пересматривалась с развитием науки, о том, какие невероятные горизонты открываются перед космологией, стоит только выйти из плоскости, заданной теорией Большого взрыва и традиционной астрофизикой.

Последняя работа Виктора Стенджера, в которой он фактически подводит итоги своей научной деятельности и жизни, убедительно доказывает, что Мультивселенная могла возникнуть естественным путем, без вмешательства каких-либо высших сил.

 

Благодарности

Автор глубоко признателен всем тем, кто высказал свои замечания и пожелания по поводу этой книги. Особенно стоит выделить Боба Занелли, Дона Макги и Брента Микера за многократную внимательную вычитку множество критических замечаний и рекомендации по изменению формулировок. Эти и другие участники дискуссионной группы Google Atvoid («Атомы и пустота») поддерживали меня и при написании предыдущих книг и многочисленных эссе. В эту группу входят также Грег Барт, Лоуренс Кроуэлл, Анна О'Рейли, Керр Регьер, Кристофер Сэведж, Брайан Стилсон, Пит Стюарт, Фил Трифт, Джим Уиман и Роан Винар. Я также благодарен писателю Киму Кларку, физику Танеру Эдису и математику Джеймсу Линдсею за их комментарии.

Кроме того, я хочу сказать спасибо некоторым профессиональным астрономам, физикам и космологам за их неоценимые комментарии. В особенности я благодарен астроному Джею Пасачоффу за скрупулезную вычитку текста и множество правок. Кроме того, по рекомендациям Шона Кэрролла, Алана Гута, Лоуренса Краусса, Андрея Линде, Роберта Немироффа, Брента Талли и Алекса Виленкина были внесены изменения в отдельные разделы книги, связанные с их областями компетенции.

И наконец, мне вновь очень помогли в работе над книгой Джонатан Куртц, Стивен Л. Митчелл и другие талантливые и преданные делу сотрудники издательства «Прометеус Букс».

 

Введение

В июле 2012 года, вскоре после того как я отправил издателю первый черновик книги под названием «Бог и атом: от Демокрита до бозона Хштса», в Женеве, в Европейском центре ядерных исследований (ЦЕРН), прошла новостная конференция, вскоре попавшая на первые полосы газет по всему миру. На этой конференции было объявлено, что результаты двух независимых экспериментов, каждый из которых стоил порядка миллиарда долларов и объединял работу тысяч ученых из десятков стран, с высокой степенью эмпирической значимости подтвердили существование элементарной частицы под названием «бозон Хиггса».

Бозон Хиггса был теоретически предсказан 48 годами ранее как частица, благодаря которой другие элементарные частицы могут приобретать массу. Это открытие укрепило позиции стандартной модели элементарных частиц, разработанной в 70-х годах XX века. С тех пор стандартная модель успешно используется для описания базовых элементов субатомной материи и сил, благодаря которым эти элементы взаимодействуют, формируя материальный мир. До сих пор стандартную модель не удавалось экспериментально опровергнуть.

К счастью, мне удалось включить подробное описание открытия бозона Хиггса в свою книгу «Бог и атом», опубликованную в 2013 году.

А в марте 2014 года, когда я отправил издателю черновик книги «Бог и Мультивселенная», история повторилась. На этот раз внимание мировой общественности привлекла новостная конференция в Гарварде, также попавшая во все газетные заголовки. Международная группа исследователей, работающая на Южном полюсе, сообщила, что им с высокой степенью достоверности удалось обнаружить второй тип поляризации реликтового излучения, названный В-модой. В-мода была расценена как сигнал от гравитационных волн, порожденных квантовыми флуктуациями пространства-времени, возникшими при появлении Вселенной 13,8 млрд. лет назад.

В большинстве репортажей, опубликованных в СМИ, не упомянули о том, что это предварительные результаты, что другие версии происхождения излучения еще не были исключены и что все еще ожидается независимое подтверждение этих результатов. Однако, если подтверждение будет получено, последствия окажутся колоссальными.

Существование В-моды поляризации на ранней стадии становления Вселенной впервые было предсказано в 1980 году в так называемой инфляционной модели Вселенной. Согласно этой модели практически сразу после появления Вселенная экспоненциально расширилась на много порядков. Модель помогла разрешить ряд важных проблем космологии и выдержала несколько серьезных проверок, которые вполне могли бы ее опровергнуть.

Если инфляционная модель верна, из нее строго следует, что наша Вселенная не одинока, а существует множество других вселенных, составляющих так называемую Мультивселенную, не имеющую границ ни во времени, ни в пространстве. У нее не было начала, не было момента сотворения. Она существовала и будет существовать всегда.

В этот раз мне опять-таки удалось включить это открытие в свою книгу, реликтовое излучение (РИ) будет рассмотрено в ней детально. Мы увидим, как точные измерения характеристик РИ из космоса и с поверхности Земли, выполненные при помощи сверхсовременной техники, помогли нам глубоко проникнуть в историю развития нашей Вселенной от самого ее рождения до наших дней.

Цель, которую я преследую в этой книге, — показать, как на протяжении тысячелетий, с тех пор как люди впервые взглянули на небо и задались вопросом, что же там находится, формировались нынешние представления об окружающей нас огромной Вселенной и о реальной возможности существования множества вселенных. Мы рассмотрим, как у наших предков зародилась идея о божественном сотворении, призванная объяснить явления, причинами которых, как оказалось впоследствии, были сугубо естественные процессы.

Это длинная история, и читателю следует запастись терпением, чтобы последовательно, шаг за шагом проследить, как менялось человеческое представление о космосе: от плоской земной тверди, лежащей между водой и небесами, до сотен миллиардов галактик, каждая из которых состоит из сотен миллиардов звезд и бесчисленных планет, потенциально пригодных для жизни, а затем и до вечной безграничной Мультивселенной.

 

Предисловие

В своей книге «Бог и атом», вышедшей в 2013 году, я проследил историю развития возникшей в древности мысли о том, что в мире нет ничего, кроме атомов и пустоты, в нем нет места богам, духам и другим сверхъестественным существам. Эта история начинается 2,5 тыс. лет назад с идей греческих философов Левкиппа (V век до н.э.) и Демокрита (около 460–370 годов до н.э.) и заканчивается открытием бозона Хиггса в 2012 году, которое по счастливой случайности совпало с финальным этапом работы над книгой. Открытие бозона Хиггса окончательно подтвердило стандартную модель элементарных частиц, принятую в 70-х годах XX века и с тех пор ни разу не вступавшую в противоречие с какими-либо данными.

Но сказать, что в этой истории поставлена точка, нельзя. С двукратным увеличением мощности Большого адронного коллайдера мы можем ожидать перехода на следующий уровень познания сущности материи — того, что, возможно, стоит за стандартной моделью.

В этой книге я буду двигаться от частного к общему, исследуя, как сильно преобразились человеческие взгляды на мир за последние 10 000 лет — от примитивных представлений о плоской земле, лежащей между небесным царством и подземным миром, до теперешней величественной картины с сотнями миллиардов звезд и галактик в ночном небе Мы рассмотрим, как союз космологии и физики элементарных частиц породил представления о безграничной и вечной Мультивселенной, в которой наша Вселенная — лишь одна из бесчисленного множества других.

Разумеется, существование других Вселенных за пределами нашей не было подтверждено экспериментально — во всяком случае, пока. Вскоре мы увидим, что подтверждение гипотезы Мультивселенной не выходит за рамки потенциально возможного.

Учитывая то доверие, которым сегодня пользуется в научной среде гипотеза Мультивселенной, философы и теологи не могут просто отмахнуться от выводов, которые влечет за собой эта идея. Представители большинства религиозных течений столкнутся с серьезными трудностями, если попытаются примирить свою веру в Бога-творца с вечной, никем не созданной Мультивселенной.

Даже без учета гипотезы Мультивселенной в нашей родной видимой Вселенной существуют квадриллионы планет, потенциально пригодных для жизни. Как теистам удастся согласовать этот факт с верой в то, что люди — особое Божье творение?

Как станет ясно из первых глав этой книги, древнегреческие астрономы на основании наблюдений пришли к выводу (за одним или двумя исключениями), что Солнце, Луна, планеты и звезды вращаются вокруг сферической Земли. Во II веке н.э. александрийский астроном Клавдий Птолемей на основании выдающихся для своего времени математических расчетов разработал комплексную геоцентрическую модель Солнечной системы. Благодаря его модели стало возможно делать точные предсказания движения планет, орбиты которых, как люди заметили еще в древности, не являются идеальными кругами.

Эта модель просуществовала до XVI века, когда польский астроном и каноник Николай Коперник (1473–1543) предположил, что Земля — всего лишь одна из планет, вращающихся вокруг Солнца. Эта идея была впервые выдвинута Аристархом Самосским в III веке до н.э. (около 310–230 годов дон. э.) и нашла окончательное подтверждение в XVII веке благодаря флорентийскому физику Галилео Галилею (1564–1642) и изобретенному им телескопу. Мы подробно рассмотрим все эти события и увидим, что их истинное значение не совсем таково, как принято считать.

Галилей также создал новую науку — механику материальной точки, которая в полной мере развилась спустя поколение в Англии благодаря, возможно, величайшему ученому-аналитику всех времен Исааку Ньютону (1642–1727).

Секрет успеха новой науки заключался в том, что решающее слово в вопросах, касающихся материального мира, больше не принадлежало священным авторитетам, на смену им пришло наблюдение. Это справедливо, во всяком случае для ученых, не связанных церковными догмами. Эту доктрину, называемую эмпирическим подходом, впервые предложил Фрэнсис Бэкон (1561–1626). Позже ее развил Джон Локк (1632–1704), и она стала основополагающим принципом работы организации, которая определяла стандарты на протяжении всей последующей научной эпохи, — Лондонского королевского общества по развитию знаний о природе. Его учреждение было утверждено хартией английского короля Карла II в 1662 году, вскоре после того, как он вернулся на трон.

В эпоху научной революции телескопы стали мощнее, и наконец люди осознали, что Солнце — всего лишь одна из звезд галактики Млечный Путь. Благодаря огромным зеркальным телескопам, изобретенным еще Ньютоном, а теперь повсеместно установленным на горных вершинах, XX век шагнул далеко вперед в изучении космоса. Наша родная галактика, Млечный Путь, оказалась всего лишь одной из множества других галактик видимой Вселенной, которых насчитывается, как мы теперь знаем, порядка сотен миллиардов, и каждая из них состоит примерно из 100 млрд. звезд.

Не меньшим потрясением стало открытие того, что Вселенная расширяется и большинство галактик в ней удаляются друг от друга со скоростью, нарастающей по мере увеличения расстояния между ними. Это натолкнуло ученых на мысль, что Вселенная представляет собой отголосок так называемого Большого взрыва, произошедшего, по нынешней оценке, 13,8 млрд. лет назад.

Оценки астрономов относительно размеров видимой Вселенной увеличились с 1000 световых лет в 1900 году до 46,5 млрд. световых лет в 2000 году. Любой сигнал, движущийся со скоростью света, полученный с этого расстояния, происходит от Большого взрыва. Сигнал, пришедший с меньшего расстояния, может иметь другой, более поздний источник. Сигнал, идущий с большего расстояния, не достиг бы нас за время существования Вселенной. Такой сигнал выходит за пределы космологического горизонта. Но, обратите внимание, это не значит, что дальше этой точки нет ничего.

К концу XX столетия космологи накопили убедительные доказательства того, что в первую крохотную долю секунды своего существования Вселенная скачкообразно расширилась на много порядков. А значит, размеры Вселенной, образовавшейся вследствие этого первоначального взрыва, значительно, возможно на сотни порядков, превышают размеры части, ограниченной нашим горизонтом.

Уже этого достаточно, чтобы у читателя закружилась голова. Но не забывайте, появились веские основания считать, что вся наша бескрайняя Вселенная — всего лишь одна из несчетного числа других, часть Мультивселенной, простирающейся бесконечно в пространстве и времени, как в прошлом, так и в будущем. Если она существует, то у нее нет ни начала, ни конца.

Эти выводы не умозрительны, они основаны на огромном числе наблюдений, которые ведутся с горных высот, из космоса и из-под земли. Этих наблюдений становится все больше, точность их возрастает. Раньше основным источником информации о космосе были фотоны — электромагнитные частицы, испускаемые астрономическими объектами. Мы можем наблюдать их не только в той части спектра, которую способны воспринимать наши глаза, но и в диапазоне на 20 и более порядков шире видимой части электромагнитного спектра.

Теперь же к астрономии фотонов добавилась новая, молодая и развивающаяся дисциплина — нейтринная астрономия, способная показать Вселенную под другим углом. Нейтрино почти не взаимодействуют с материей и способны проходить сквозь нее совершенно бесследно. Похоже, что благодаря этим частицам мы сможем узнать много нового о космических явлениях и процессах, которые нельзя исследовать с помощью фотонов.

Каждый из этих методов наблюдения по-своему способствовал усовершенствованию наших знаний о Вселенной, однако наибольшую роль сыграли, пожалуй, измерения анизотропии РИ, сохранившегося после Большого взрыва. Благодаря им были получены данные о волнах звукового диапазона, порожденных квантовыми флуктуациями на самом раннем этапе развития Вселенной, которые в конечном итоге привели к появлению сложной структуры материи, впоследствии сформировавшей современные галактики. Большой взрыв и вправду был громким. Данные РИ, образно говоря, отражают основной тон и обертоны, возникшие при игре на грубо сделанном инструменте в зале с плохой акустикой, тем не менее они позволили космологам не только определить характеристики этого инструмента, но и выяснить кое-что о планировке самого зала.

Эти и другие наблюдения показали, что светящееся вещество — звезды и облака горячего газа, которые мы наблюдаем в небе невооруженным глазом и с помощью телескопа, — составляет всего 0,5% от общей массы Вселенной. Еще 4,5% приходится на долю несветящегося вещества: планет и потухших звезд, которые также состоят из хорошо знакомых нам атомов. Еще 26% вещества имеет в своей основе нечто отличное от атомов и составляющих их элементарных частиц. Это до сих пор не найденное вещество получило название «темная материя». Оставшиеся 69% представлены загадочной темной энергией, под действием которой Вселенная расширяется все быстрее, и этот процесс будет продолжаться бесконечно, разрежая ее все сильнее.

В современном мире термином «атом» традиционно обозначают элементы периодической таблицы Менделеева. Однако, если использовать это слово применительно к основному «неделимому» веществу Вселенной, чем бы оно ни было, вспомнив значение, которое ему придавали древние греки, мы вернемся к определению, которым они описывали материальный мир: «Всё есть атомы и пустота». Пустота, в свою очередь, — это пространство между атомами.

Заметьте, что темная энергия полностью материальна, на нее действуют гравитация и инерция, что характеризует ее как материю. Энергия — это одно из свойств материи, а не что-то отдельное от нее.

Но эта книга — больше чем просто история космологии, рассказанная специалистом по физике элементарных частиц. С древних времен, созерцая окружающий мир, люди искали объяснение увиденному. До недавних пор им катастрофически не хватало инструментов, как материальных, так и интеллектуальных, чтобы создать достоверную картину мира, свободную от мистики и суеверий. Не будучи в состоянии увидеть настоящие силы, вызывающие многие явления, они придумали мифы, объясняющие эти явления с точки зрения знакомых, но более могущественных сил, чем те, которые они видели или, как в случае с ветром, чувствовали.

Что касается космоса, то небо представлялось им небесным сводом, а резкий контраст между точными движениями небесных тел и непредсказуемым поведением Земли наводил на мысль о том, что ими управляют боги или даже что они сами являются богами. Большую часть истории человечества астрономия и астрология были связаны. При этом астрономия предоставляла точный часовой механизм, позволявший эффективно предсказывать события, подобные разливу Нила. Астрология же давала бессмысленные предсказания, например в какой день лучше начать войну.

Благодаря Копернику, Галилею и Ньютону у нас появилась менее антропоцентрическая модель мира. Но на протяжении веков, вплоть до недавнего времени, большинство ученых все же считали, что за любым явлением должен стоять Божий промысел.

В этой книге будут описаны события, которые привели к значительным успехам современной космологии и появлению современной картины Вселенной, включающей также изумительную возможность существования множества других вселенных. Подавляющее большинство людей не осознает истинной ценности этих открытий. Надеюсь, мне удастся сделать их хоть немного более простыми для понимания.

Мы увидим, что при описании Вселенной, доступной нашим органам чувств и наблюдательным приборам, можно обойтись без каких бы то ни было сверхъестественных сил. Это утверждение оспаривают люди, заявляющие, что не могут понять, как настолько сложные структуры, которые мы видим повсюду вокруг себя на Земле и в космосе, могли появиться без вмешательства сверхъестественной Божественной силы. Из этого они делают вывод, что Бог-создатель обязан существовать.

Как мы увидим в этой книге на множестве примеров, этот аргумент к сложности представляет собой не более чем доказательство, основанное на пробелах в научных и естественных данных, менее вежливо его еще называют «аргументом к невежеству». То, что отдельный автор не может понять, как тот или иной феномен объясняется с научной точки зрения, не означает, что единственно возможное объяснение — сверхъестественное.

Наука ищет естественные объяснения всех явлений, поскольку эти объяснения зачастую оказываются полезными для всего человечества. Что бы делали современные подростки без смартфонов, в основе работы которых лежит теория электромагнетизма? В самом деле, представьте себе мир без электричества. В общем-то его и представлять не нужно — взгляните на историю.

У науки есть и еще одно применение, вероятно даже более важное, чем ее прикладная функция. Чем больше у нее появляется возможностей продемонстрировать несостоятельность мистического мировосприятия — неотъемлемой части любой религии, тем меньше людей будут полагаться на этот бесполезный и опасный жизненный ориентир. От преодоления мистического восприятия действительности зависит выживание человечества в будущем.

Современные представления о материальном мире хорошо описываются стандартной моделью элементарных частиц и множеством космологических моделей. Разумеется, отнюдь не каждый феномен имеет доказанное объяснение в рамках этой концепции. Мы познали далеко не все, да и никогда всего не познаем. Будьте уверены, все то множество информации, которое вы найдете в этой книге, в конце концов тоже устареет. Все, что нам остается, — это разрабатывать правдоподобные модели на основании результатов наблюдений, имеющихся на сегодняшний день. Поскольку эти естественные модели более экономны, что значит основаны на меньшем количестве предположений, чем их сверхъестественные альтернативы, они достаточно жизнеспособны для того, чтобы опровергнуть любые заявления о том, что наука якобы подтверждает существование каких бы то ни было богов или духов.

В этой книге основной упор будет сделан на науку, причем больше на экспериментальную и эмпирическую часть, нежели на теорию. До ухода на пенсию я работал профессором университета, на протяжении 40 лет учил студентов и проводил исследования в области физики элементарных частиц и астрофизики. Этим я отличаюсь от большинства профессиональных физиков и космологов, авторов научно-популярных книг, в которых основной упор делается на теорию. Многие из этих книг очень хороши, и я часто ссылаюсь на них. Однако обычно стараюсь избегать многочисленных теоретических спекуляций, которые можно встретить в их книгах, и без того занимательных, и строго придерживаться объективных данных.

Разумеется, мне не удастся совсем избежать теоретической интерпретации, так как между экспериментальной и теоретической наукой существует тесная связь. Но в случаях, когда все же приходится это делать, я стараюсь выбирать самые простые модели, согласующиеся со всеми имеющимися результатами наблюдений, и выдвигать как можно меньше гипотез, в которых нет объективной нужды. В частности, я не трачу время на теории, содержащие проблемы логического или математического характера, которые вынуждают их сторонников выпускать одну за другой работы, в которых они пытаются эти проблемы решить. Это их дело, не мое. Если какое-то из уравнений стремится к бесконечности, значит, оно ошибочно, поскольку, как мы с вами увидим, в эмпирическом мире места бесконечности нет. Сюда же относится так называемая сингулярность, которую столь многие все еще считают ответственной за появление нашей Вселенной на свет.

Понятен восторг математиков и физиков-теоретиков, вызываемый математическими чудесами и тем, как неожиданно, а иногда даже вопреки всякому здравому смыслу им находится удачное практическое применение. Из-за этого они (за некоторыми заслуживающими внимания исключениями, о которых я упомяну) начинают рассматривать уравнения и другие объекты математики как элементы реальности. Они придерживаются идеи, впервые высказанной Платоном (438–427 годы до н. а), согласно которой все то, что мы видим, — это всего лишь тени или отражения истинной реальности, которая существует в мире идей.

Я с этим не согласен. Подход, которого я строго придерживаюсь, заключается в том, что только путем наблюдений мы можем получить информацию об окружающем мире. Модели, которые мы строим на основании этих наблюдений, — это просто попытки рационально осмыслить наблюдения и найти им практическое применение. Модели могут включать в себя математические абстракции, но было бы ошибкой полагать, что эти абстракции имеют хоть какое-то отношение к объективной реальности, лежащей за явлениями, которые мы можем познать с помощью чувств или приборов. Разумеется, хорошая модель должна иметь связь с реальностью. Но у нас нет возможности узнать, какова эта связь. Более того, принятые модели постоянно заменяются новыми, более совершенными. Как же тогда они могут представлять абсолютную реальность?

Нам следует четко разграничивать объекты в рамках моделей и их измеряемые показатели, чего многие ученые, к сожалению, не делают. Сюда входят основные понятия: пространство, время, масса и энергия. В научной практике их измеряют операционально, то есть посредством тщательно установленных воспроизводимых измерений. Таким образом, время — это то, что показывают часы. Температура — то, что показывает термометр. Все эти понятия придумали люди, чтобы количественно измерить результаты наблюдений. Внеземной разум, возможно, придумал бы другие определения. Но и наши, и их понятия вряд ли будут в точности соответствовать элементам реальности.

Не считая божественного откровения, научных данных в поддержку которого не имеется, я не знаю метода, которым можно определить, что на самом деле реально. Все, что нам остается, — это совершенствовать технику наблюдений и описывать их с помощью все более точных моделей.

Хотя физические модели и созданы человеческим разумом, они не субъективны. Если они не согласуются с данными объективных наблюдений, их списывают со счетов. В этом отношении физические модели не являются порождением общества, как пытались утверждать сторонники ныне забытой философии социального конструкционизма. Мои слова часто искажают, не приводя прямой цитаты, а говоря, будто бы я утверждал, что «между реальностью и моделью отсутствует связь». Позвольте мне, насколько возможно, прояснить этот момент. Если модель согласуется с объективными данными, то она имеет некоторое отношение к реальности. Просто мы не в состоянии выяснить, соответствуют ли элементы этой модели каким-либо существующим элементам реальности.

Многие аргументы в поддержку существования мира, недоступного чувственному восприятию, приводимые как богословами, так и учеными-теоретиками, основаны на представлении о том, что можно познавать реальность с помощью чистого разума, в отрыве от каких-либо эмпирических данных. Деятельность разума часто ассоциируется с дедуктивной логикой, однако она включает и другие методы, например индукцию. Но путем дедукции невозможно познать ничего из того, что не отражено в исходных условиях. В лучшем случае она позволяет проверить, согласуется ли высказывание с предпосылками.

Что касается других форм чистого разума, то на протяжении столетий ни один доказуемый факт не был установлен с помощью работы одного только разума или же мистического опыта. Этого достаточно, чтобы исключить его из игры наряду с божественным откровением, равным ему по продуктивности.

В этой книге я затрону сферы компетенции множества специалистов, куда лучше меня разбирающихся в своих предметах. Среди них история, философия, теология, теоретическая физика, астрономия и космология. Эти специалисты по своему обыкновению наверняка будут жаловаться на то, что реальные факты намного сложнее, и скажут, что я слишком упрощаю. Разумеется, никто не может быть экспертом во всем. В то же время я полагаю, что все эти предметы окажутся более простыми или как минимум менее загадочными, чем заявляют специалисты, если мы ограничимся лишь их эмпирическими проявлениями. То, что сегодняшние теоретики называют глубокими проблемами, как правило, имеет больше отношения к их собственным теориям, нежели к наблюдаемым фактам. Квантовая механика — показательный пример теории, которая согласуется со всеми экспериментами в течение уже почти столетия, но люди все еще спорят о том, «что это значит», так и не приблизившись к консенсусу.

Позвольте также сказать пару слов о техническом уровне этой книги. Первые главы не вызовут затруднений у рядового читателя, но, когда мы начнем погружаться в современную физику и космологию, мне, безусловно, придется использовать некоторые сложные термины, которые я постараюсь пояснять сразу по ходу повествования и которые к тому же легко можно найти в Интернете. Однако тем, у кого проблемы с математикой, не следует выходить из себя. Если я привожу уравнение, то это будет не более чем формула, которую можно записать и словами. Но зачем писать «энергия равна массе, умноженной на скорость света в квадрате», если Е = mc 2 значит то же самое, а выглядит намного компактнее? Также стоит ли писать «сто тысяч миллионов миллионов», как издатели заставили сделать Стивена Хокинга, чтобы увеличить уровень продаж, если можно просто написать 1017?

И хотя более сложной математики в книге не будет, в ней встретится множество графиков, необходимых для понимания количественных результатов. Я подозреваю, что у читателя, взявшего в руки эту книгу, не возникнет проблем с пониманием этих иллюстраций, равно как и с числом 1017.

Меня часто обвиняют в том, что мои идеи, равно как и идеи других ученых, настолько же догматичны, как и постулаты людей религиозных. Позвольте заявить в ответ: если в будущем появятся экспериментальные данные, опровергающие какой-либо результат или вывод, приведенный в этой книге, я буду несказанно рад внести любые необходимые правки.

 

Глава 1.

ОТ МИФА К НАУКЕ

 

Слово

Наскальная живопись эпохи верхнего палеолита свидетельствует о том, что уже 40 тыс. лет назад люди мыслили абстрактно и проявляли творческие способности, перенося образы животных на каменные стены пещер. В неолитическую эпоху по всей Европе появляются огромные каменные сооружения — мегалиты. Самый известный из них, Стоунхендж, возвели около 2300 года до н. э. Это сооружение использовали для похорон царственных особ и определения траектории движения Солнца, а в дни солнцестояний языческие паломники съезжались туда на праздник. Все это говорит о том, что люди начали совершенно по-новому относиться к окружающему их миру и с тех самых пор это отношение выделяет Homo sapiens среди всех других видов.

Еще раньше, около 3500 года до н. а, в Месопотамии изобрели первую письменность — клинопись. Выдавленные в глине клинообразные знаки стали первым надежным средством хранения и передачи информации, не опирающимся на человеческую память. Нанося на глиняные таблички первые клинописные символы, шумеры вряд ли могли представить, что создают первую главу дневника человечества. Но именно это они и делали. История эта началась примерно 6 тыс. лет назад, вот почему некоторые люди все еще цепляются за идею, что возраст планеты Земля составляет всего 6 тыс. лет, несмотря на убедительные научные данные, подтверждающие, что ей 4,5 млрд. лет, а Вселенной — все 13,8 млрд.

Миру, который мы знаем, на самом деле 6 тыс. лет. Наша история началась тогда, когда мы стали ее записывать, то есть в 3000–4000 годах до н.э. Все, что происходило ранее, мы называем доисторическим периодом. В некотором смысле это пролог истории, ведь мы не знаем имен людей эпохи неолита. Они говорят с нами только посредством своих рисунков, строений и артефактов. Люди начали использовать слова на заре бронзового века. Именно с этого момента перед нами предстают отдельные личности и начинается наша история: «В начале было Слово».

С развитием цивилизации и появлением письма появляются первые зафиксированные свидетельства того, что люди бронзового века мыслили мифологически (от греч. muthos — «история»). Мифы — это священные истории, которые служили людям для объяснения явлений окружающего их мира. Слова, которыми они описывали эти мифы, имели силу, придающую им магические свойства. В письменную эпоху космологические представления стали более упорядоченными, чем в доисторический период с его анимистическими попытками описания мира, однако в их основе все еще лежало сверхъестественное.

Космологические мифы древних египтян тесно переплетались с религией, а небесные тела ассоциировались у них с богами. Истории о сотворении мира, детали которых варьируются от города к городу, встречаются во множестве расшифрованных текстов и росписей на стенах гробниц. Кратко отметим их общие элементы.

В большинстве египетских космогонических мифов мир возникает из первозданного океана под названием Нун, что, очевидно, намекает на реку Нил, игравшую в жизни египтян центральную роль. Среди вод поднимается холм в форме пирамиды. Из этого холма появляется бог солнца Ра (в некоторых версиях Хепри) — бог, создавший самого себя, затем других богов и, наконец, людей.

Поскольку считалось, что жрецы обязаны предвидеть появление богов на небосклоне и, что еще важнее, предсказывать разливы Нила, они на основании астрономических наблюдений разработали календарь, состоящий из 365 дней. Таким образом древние астрономы сделали первый шаг навстречу прикладной науке.

Наука имеет два основных аспекта. В наше время каждому из них соответствует отдельная группа специалистов. Во-первых, это наблюдатели или экспериментаторы, занимающиеся сбором данных, во-вторых, теоретики, разрабатывающие модели (как правило, математические), с помощью которых описываются данные наблюдений. В то время как в наблюдательной части древняя астрономия достигла значительных успехов, теоретическое обоснование все еще во многом базировалось на магии и мифах.

Возьмем для примера египетскую теорию сотворения мира. Согласно самому распространенному египетскому мифу о творении, богиня неба Нут один раз в год дает жизнь богу солнца Ра. Таким образом, в мифе отражается представление о вечной и самозарождающейся Вселенной.

Мир у египтян состоит из плоской прямоугольной Земли, в центре которой течет Нил. На юге, в небе, покоящемся на вершинах гор, есть еще одна река, по которой бог солнца ежедневно совершает прогулку. Само небо представляет собой крышу, поддерживаемую четырьмя колоннами, которые соответствуют сторонам света. Звезды подвешены под небесами на прочных канатах, однако никакого очевидного объяснения их движений не дается.

Представления о космосе и месте человека в нем у цивилизаций Месопотамии и Ханаана были очень похожими. Земля у них представляет собой диск, на края которого опирается твердый небесный свод. Ниже нее находятся воды первозданной бездны. Стоит отметить роль, которую в мифе играет вода. Важность воды в данном случае неудивительна, так как эти цивилизации возникли в междуречье рек Тигр и Евфрат.

Вавилоняне добились заметных успехов в астрономии, а их записи, восходящие к IX веку до н.э., представляют собой старейшие из существующих научных документов. Вавилонские астрономы открыли период изменения максимального склонения Луны, составляющий 18,6 года. Они впервые задокументировали наблюдение кометы Галлея в 164 году до н.э., благодаря чему Эдмунд Галлей и другие астрономы спустя столетия смогли точно рассчитать ее орбиту. Кроме того, они создали первые в мире астрономические ежегодники, в которых фиксировали движение Солнца, Луны и планет. Хотя разработанные в Вавилоне методы изначально предназначались для создания астрологических прогнозов, они также позволяли точно предсказывать движения планет и затмения.

Удивительно то, что вполне научный подход к астрономии не привел вавилонян к научной космологии. Их космологическая модель осталась сугубо мифологической. Тем не менее позднее греки использовали достижения вавилонских астрономов для создания первой в мире космологии, которую суверенностью можно назвать естественно-научной в противовес магическим и мифологическим моделям.

Подобно египетской, космология Месопотамии была неотъемлемой частью религиозных верований и космогонии, мифа о сотворении мира. Этот миф изложен в поэме, известной как «Энумаэлиш», датируемой концом II тысячелетия до н.э. В ней описывается битва богов, в которой Мардук (или Ашшур) побеждает богиню океана Тиамат и разрывает ее тело на две половины, одна из которых становится небом, а вторая — землей. Затем он создает Солнце, Луну, звезды, планеты и непогоду. Из крови мужа богини Тиамат — Кингу он создает людей, чтобы они служили богам.

Христианство, крупнейшая мировая религия современности, возникло 2000 лет назад на основе более древних верований небольшого пустынного племени, обитавшего в Ханаане и зовущегося евреями. Как показано на рис. 1.1, в представлении евреев Вселенная делилась на небесный свод, землю, море и подземный мир. Земля представляла собой более или менее плоский диск, плавающий в воде и накрытый куполом небесного свода, опирающегося на кромку моря. Под ней находились воды первозданной бездны. Бог восседал на вершине «пирамиды» из нескольких небес, расположенных над небесным сводом.

Разумеется, современные христиане, даже те из них, кто настаивает на непогрешимости Священного Писания, знают, что Вселенная представляет собой нечто большее, чем то, что изображено на этом рисунке. Более того, в современном мире предпочитают считать, что Бог находится либо везде, как в пространстве, так и во времени, либо за пределами и того и другого (в зависимости от богословской трактовки), а не в каком-то определенном месте. Тем не менее следует помнить, что христианство строилось на предрассудках весьма примитивных людей, для которых модель, изображенная на рис. 1.1, представляла точнейшие из доступных в те времена сведений о мире, основанных на наблюдениях за небом, морем и землей. Им легко было представлять Бога в образе великого царя, который следит за всем происходящим на Земле и заботится о том, чтобы все события подчинялись его замыслу.

Рис. 1.1. Вселенная в представлении древних евреев. Изображение © Michael Paukner 

На самом деле в еврейской Библии описываются две противоречивые версии сотворения мира. К примеру, в первой части Книги Бытия говорится о том, что растения были созданы раньше животных, а животные — раньше Адама и Евы. Согласно второй части Книги Бытия вначале был сотворен Адам, затем растения, затем животные, а потом уже Ева. Первая часть была написана в VI веке до н. а, во время вавилонского пленения евреев, и она, очевидно, восходит к древней вавилонской поэме «Энумаэлиш». Миф о сотворении, изложенный во второй части Книги Бытия, пришел из Ханаана несколькими столетиями ранее.

Известный нам библейский миф о сотворении, основанный на первой части Книги Бытия, не требует особой доработки. Бог создал Землю за шесть дней, а на седьмой отдыхал. В первый день он создал небо и землю. Но вокруг была темнота, и Он (пользуясь силой Слова) сказал: «Да будет Свет». На второй день Он создал твердь посреди воды и отделил воду, которая под твердью» от воды, которая над твердью, назвав последнюю небом. На третий день Бог создал сушу посреди вод под твердью и назвал ее землей, а эти воды — морями. Затем Он приказал земле «произрастить траву, сеющую семя» и «дерево плодовитое, приносящее по роду своему плод».

На четвертый день Бог создал на тверди небесной солнце, луну и звезды. На пятый день Он приказал воде произвести рыб и птиц и благословил их, сказав: «Плодитесь и размножайтесь». На шестой день Бог приказал земле произвести «скотов, гадов и зверей земных». Наконец, Бог сотворил человека по Своему образу и подобию и дал ему власть над всей землей и над всеми живыми существами. Затем Он увидел, что это хорошо, и взял выходной, чтобы отдохнуть после трудов.

В Книге Бытия, разумеется, содержится также история о том, как Бог изгнал первых людей из райского сада за то, что они съели плод с дерева познания добра и зла. В христианстве это назвали первородным грехом,' за который и умер Иисус Христос.

С конца XIX века большинство ученых считают, что Моисей не писал Книгу Бытия, как утверждает традиция. Вероятнее всего, она возникла во время вавилонского пленения евреев. Эти выводы основаны главным образом на открытии в 1872 году вавилонской глиняной клинописной таблички, в которой описывается история потопа, очень похожая на библейскую. Некоторые ученые даже высказали предположение, что еврейская Библия и собственно иудаизм напрямую восходят к мифологии Месопотамии, однако до какой степени, все еще неясно.

 

Творение ex nihilo

Известные современные апологеты христианства, такие как Уильям Лэйн Крейг и Динеш Д'Суза, настаивают на том, что в Книге Бытия записана единственная древняя история сотворения мира, которая согласуется с данными современной космологии и описывает трансцендентное божество, сотворившее Вселенную из ничего, — так называемая доктрина творения ex nihilo. Однако следует отметить, что в Книге Бытия ничего не говорится о создании мира из ничего, эта доктрина появилась значительно позже.

Первые слова Библии звучат так: «В начале Бог сотворил небо и землю». Но, как отмечает исследователь Библии Тим Каллахан, это не единственный возможный перевод с иврита. Слово bara можно перевести не только как «создал», но и как «выбрал», «разделил» и др. в зависимости от контекста. Переводы с иврита вообще очень сильно зависят от контекста.

Исследователь Ветхого Завета Эллен ван Вольде говорит, что в контексте Книги Бытия первое предложение следует переводить так: «Вначале Бог отделил небо от земли». Это лучше согласуется со всеми «отделениями», описанными дальше: света от тьмы, воды над твердью от вод под твердью, а также суши от воды. Более того, такая трактовка значительно ближе к вавилонскому мифу о сотворении, на котором, очевидно, базируется еврейский миф. В упомянутой ранее поэме «Энумаэлиш» Мардук разрывает тело Тиамат на части, ставшие небом и землей.

Но даже если верна трактовка с сотворением мира «из ничего», эта идея встречается не только в Библии. Каллахан обращает внимание на то, что Тиамат до своей гибели от руки Мардука правила бесформенной беспорядочной пустотой. Как мы вскоре увидим, бесформенный хаос близок к «ничто», как ничто другое. Ни то ни другое не содержит информации, не имеет структуры, на основании которых можно было бы дать ему какое-то определение, отличное от «ничего».

Ныне покойный хранитель отдела египетских и ассирийских древностей Британского музея сэр Уоллис Бадж приводил ряд высказываний (которые он почему-то предпочитал называть эпитетами), собранных немецким египтологом XIX века Генрихом Бругшем (1827–1894) при расшифровке иероглифов. Вот пример такого эпитета:

«Бог изначален, и Он существовал сначала, существовал издревле, когда ничего другого не было. Он существовал, когда ничего другого не существовало, и то, что есть, Он сотворил после Своего появления…

Бог — Вечен; Он вечен и бесконечен; и пребудет вовеки; Он существовал неисчислимые века и будет пребывать вовеки…

Бог сотворил Вселенную и все сущее в ней; Он — творец всего сущего в мире, того, что было, того, что есть, и того, что будет. Он — Творец мира, и Он — Тот, кто придал ему форму руками Своими прежде, чем было какое-либо начало» {13} .

Бадж говорил, что эпитеты, которыми наделяют богов в текстах всех периодов, «явно показывают, что идеи и верования египтян, касающиеся Бога, были почти идентичны еврейским и мусульманским представлениям более позднего времени».

Однако конкретных цитат он не приводит. Любопытно, найдется ли хоть пара-тройка защитников религии, которые захотят продолжить мысль и показать, что верования иудеев, христиан и мусульман универсальны. Как ни странно, такие заявления противоречат мнению упомянутых ранее апологетов, стремящихся убедить нас в уникальности и оригинальности христианского мифа о сотворении.

В переводе «Папируса Неси Амсу» (музейный номер 10188), выполненном Баджем, бог Неб-ер-чер называет себя Аусаресом (Осирисом) и говорит: «Я проявился из первобытной материи, которая развивала множество развитии от начала времен». Это воспринимается скорее как сотворение из уже существующего вещества. Стоит отметить, бог делает это с помощью одного лишь слова: «Я произнес имя свое, как слово силы, своими устами, — и я сразу развил себя». И снова мы видим, какое огромное значение древние придавали силе слов.

Перейдем к Индии. Дэвид Лееминг в своей книге «Космогонические мифы народов мира» (Creation Mythsof the World) приводит следующую цитату из индуистского трактата «Ригведа», написанного не позднее 1000 года до н.э.:

«Вначале не было не-сущего, и не было сущего. Не было ни воздуха, ни небосвода за его пределами. Что же тогда было? Кто или что наблюдало за этим? Что же было, если “не было ни смерти, ни бессмертия тогда. Не было ни признака дня (или) ночи”? Все, что мы можем сказать, это что было “Нечто Одно, дышащее по своему закону, заключенное в пустоту порожденное силой жара, на которое нашло желание и оно стало первым семенем мысли”» {16} .

Так или иначе, согласно Леемингу, мифы о сотворении мира ex nihil о распространены не менее, чем мифы, в которых мир создается из первородного водного хаоса. Кроме того, как я еще не раз замечу, полный хаос невозможно отличить от «ничего».

 

В других культурах

В этой книге я не ставлю своей целью дать полный обзор многочисленных космологии и космогонических мифов, изобилующих в устной и письменной традиции древних цивилизаций. Несмотря на существенные различия в деталях, большинство мифов о творении, как уже было сказано, создавались в попытке объяснить происхождение мира в доступной для людей форме, с антропоморфными богами, создающими порядок из хаоса или из ничего (ex nihilo).

Разумеется, в Древних Индии и Китае тоже была своя развитая мифологическая традиция. Мне не удастся отдать ей должное, не выходя далеко за рамки повествования. В любом случае это лишь косвенно касается моей темы, то есть истории развития научной космологии вплоть до наших дней и ее столкновения с религиями в прошлом и настоящем. Современная наука зародилась именно в Европе, она уходит корнями в великие речные цивилизации Греции и Ближнего Востока, также ставшие колыбелью множества религий и сопутствующих им столкновений.

Тем не менее стоит упомянуть, что в представлении индусов мир переживает бесконечный круговорот рождений и смертей. Концепция циклической Вселенной, существенно отличающаяся от представлений иудеев, христиан и мусульман о Вселенной, созданной Творцом и имеющей границы во времени, в наши дни снова актуализируется в некоторых научных космологических моделях.

Что касается астрономии, в древнеиндийском астрономическом трактате «Сурья-сиддханта», написанном неизвестным автором около 400 года до н.э., приводится средняя продолжительность сидерического года, которая всего на 1,4 секунды больше современного значения. Более 1000 лет никому не удавалось рассчитать его точнее.

Представления большинства древних цивилизаций о космосе очень похожи. Вероятно, все дело в том, что в них отражалось то, что люди видели вокруг себя: в центре — плоская земля, окруженная водой, небесные тела, кружащие вверху, и темный, зловещий подземный мир, напоминающий о смерти.

Древние астрономы проделали серьезную работу по наблюдению и вычислению движения Солнца, Луны и звезд. Это позволило им разработать календари, по которым можно было предсказывать наступление времен года и периодические события, подобные ежегодному разливу Нила. В самом деле, движения небесных тел выглядели настолько предсказуемыми в сравнении с событиями на земле: бурями, землетрясениями и наводнениями (кроме разлива Нила), что небеса считались вотчиной богов, контролирующих жизнь людей и всего окружающего мира. Поэтому астрономы не только предсказывали времена года, но и выступали в роли астрологов, с которыми люди советовались, принимая практически любые решения.

В VI веке до н.э. в городах греческой области Иония, располагавшейся на западном побережье Малой Азии, появляется группа мыслителей, ставящих под сомнение главенствующую роль богов и сверхъестественных сил в процессах, происходящих в мире. Вместе с представителями еще нескольких философских школ, возникших в греческих колониях на территории современной Италии, их называют досократиками, хотя последние из них жили во времена Сократа (около 469–399 годов до н.э.). Это название придумали в XIX веке, чтобы разграничить данную группу философов и Сократа, которого больше волновали проблемы человечества, в то время как досократики, во всяком случае представители ионийской школы, сосредоточились на космологии и физике, где участие человека было минимальным.

Не следует забывать, что до нас дошло очень мало работ досократиков и основным источником наших знаний о них являются произведения Аристотеля (384–322 годы до н.э.). Он разделял не все их взгляды, а с некоторыми был категорически не согласен. Аристотель называл ионийцев физиками (греч. physikoi) и физиологами (греч. physiologoi) из-за их сосредоточенности на «физисе» — природе. Сегодня мы также называем их физиками. Как мы увидим, в отличие от ионийцев, италийские досократики были преимущественно мистиками, поэтому их действительно не следовало бы объединять в одну группу.,

Ионийцы первые сформулировали идею космоса, то есть упорядоченного мира, противопоставляемого хаосу, непредсказуемому и коварному миру божественного вмешательства, описанному в эпических поэмах Гомера (около 800–700 годов до н.э.) и Гесиода (около 750–650 годов до н.э.).

Фалес

Фалеса Милетского (около 645–546 годов до н.э.) принято считать первым физиком. Он искал естественные, немифологические объяснения явлений. К примеру, объяснял землетрясения тем, что землю качает на волнах океана, в котором она плавает. Фалес известен тем, что, по всей видимости, предсказал затмение Солнца, которое, по подсчетам современных астрономов, наблюдалось в Малой Азии 28 мая 585 года до н.э. (по новому календарю). Однако большинство современных ученых сомневаются в правдивости этой истории.

Наиболее значимый вклад Фалеса в науку заключался в предположении, что все вещество состоит из отдельных элементарных частиц, а именно воды. Хотя он заблуждался (небезосновательно) насчет неделимости воды, предположение Фалеса стало первой зафиксированной в истории попыткой объяснить природу материи, не прибегая к помощи невидимых духов.

Фалес и позднейшие представители ионийской школы придерживались взгляда на мир, который теперь называют материальным монизмом. Согласно ему все на свете есть материя и ничего больше.

Анаксимандр

Анаксимандр (около 610–546 годов до н.э.) — второй представитель ионийской школы. Он предположил, что Вселенная беспредельна и не имеет начала во времени. Более того, это беспредельное, которому он дал название «апейрон», и есть источник всего на свете:

«Беспредельное есть начало сущего. Ибо из него все рождается и в него все разрешается. Вот почему возникает и разрешается обратно в то, из чего возникает, бесконечное число миров».

Несмотря на бесконечное число миров, Земля все еще находится в центре мира. Модель космоса по Анаксимандру показана на рис. 1.2.

Рис. 1.2. Космология Анаксимандра. Иллюстрация из книги Мэри Экворт Орр «Данте и ранние астрономы»

Анаксимен

Анаксимен (585–528 годы до н.э.) был учеником или, во всяком случае, младшим «коллегой» Анаксимандра. Он полагал, что все в мире состоит из воздуха, который в древние времена считался «дыханием жизни». В космологии Анаксимена Земля состоит из сжатого или уплотненного воздуха и покоится на воздушной подушке. Небеса подобны шапке, свалянной из воздуха, а небесные тела крепятся к ее поверхности, которая вращается вокруг «головы». Интересно, что Солнце в этом случае не вращается вокруг Земли, как в большинстве геоцентрических моделей, а прячется по ночам за горы. (В главе 13 мы увидим, как эта теория опровергается ночной фотографией Солнца с использованием нейтрино, проходящих сквозь толщу Земли.)

Атомисты

Основателями атомизма были Левкипп и Демокрит. В моей предыдущей книге «Бог и атом» я рассказал, как их теория о том, что все на свете состоит из элементарных частиц материи, нашла триумфальное подтверждение в современной физике.

Как пишет Мэри Орр, Левкипп и Демокрит вместе с пифагорейцами, о которых речь пойдет дальше, совершили огромный прорыв в космологии, когда осознали, что небо представляет собой не полушарие, оканчивающееся на горизонте, но сферу, окружающую Землю. Схема, изображенная на рис. 1.3, по мнению Орр, принадлежит Демокриту. На похожей схеме, приписываемой Левкиппу, Земля занимает все нижнее полушарие, которое в версии Демокрита занято воздухом.

Рис. 1.3. Космология Демокрита. Космологическая модель Левкиппа выглядит так же, за исключением того, что Земля у него занимает и нижнее полушарие, которое здесь заполнено воздухом. Иллюстрация из книги Мэри Экворт Орр «Данте и ранние астрономы» 

Эпикур (341–270 годы до н.э.) основал крупную философскую школу, в которой объединил атомизм с космологией Левкиппа и Демокрита. Три с половиной столетия спустя римский поэт Тит Лукреций Кар (около 99–55 годов до н.э.) обессмертил учение Эпикура и ранних атомистов в своей эпической поэме «О природе вещей» (Dererumnatura). Вот космология атомистов в его представлении:

Видим мы, прежде всего, что повсюду, во всех направленьях С той и с другой стороны, и вверху и внизу у вселенной Нет предела, как я доказал, как сама очевидность Громко гласит и как ясно из самой природы пространства. А потому уж никак невозможно считать вероятным, Чтоб, когда всюду кругом бесконечно пространство зияет И когда всячески тут семена в этой бездне несутся В неисчислимом числе, гонимые вечным движеньем, Чтобы лишь наша земля создалась и одно наше небо, И чтобы столько материи тел оставалось без дела, Если к тому ж этот мир природою создан и если Сами собою вещей семена в столкновеньях случайных, Всячески втуне, вотще, понапрасну сходятся друг с другом, Слились затем наконец в сочетанья такие, что сразу Всяких великих вещей постоянно рождают зачатки: Моря, земли, и небес, и племени тварей живущих. Так что ты должен признать и за гранями этого мира Существованье других скоплений материи, сходных С этим, какое эфир заключает в объятиях жадных {25} .

Вкратце: Вселенная атомистов, подобно Вселенной Анаксимандра, беспредельна, вечна, никем не создана и состоит из множества миров. Более того, согласно атомизму, Вселенная по большей части образовалась по воле слепого случая. Атомисты (которые, как мы помним, первыми высказали предположение о существовании атомов) и здесь угадали — намного раньше, чем кто бы то ни было еще.

Некоторые историки сомневаются, что Вселенная атомистов была вечной. Хоть и очевидно, что структуры, состоящие из атомов, разрушаются, сами атомы вечны. Как поясняет Лукреций:

Если ж начальные плотны тела, если нет пустоты в них, Как я учил, то должны они вечными быть непременно. Если же, кроме того, не была бы материя вечной, То совершенно в ничто обратились давно бы все вещи, Из ничего бы тогда возрождалось и все, что мы видим. Но, раз уж я доказал, что ничто созидаться не может Из ничего и все то, что родилось, в ничто обращаться, Первоначалам должно быть присуще бессмертное тело, Чтобы все вещи могли при кончине на них разлагаться И не иссяк бы запас вещества для вещей возрожденья. Первоначала вещей, таким образом, просты и плотны, Иначе ведь не могли бы они, сохраняясь веками, От бесконечных времен и досель восстанавливать вещи {27} .

Пифагор и Филолай

Пифагор (около 570–495 годов до н.э.) — вероятно, самый известный из досократиков. При этом его учение настолько не похоже на ионийскую школу, что объединять их в одну группу — довольно нелепо со стороны историков. Пифагор был основателем религиозно-политического сообщества в городе Кротоне на острове Сицилия, где получил широкую известность как мистик, чудотворец, а также создатель и пропагандист учения о бессмертной душе, способной переселяться в тела животных. Стоит отметить, что учение о бессмертной душе, столь популярное в наши дни, не было так уж широко распространено в Древней Греции и Италии.

Современный образ Пифагора — знатока математики и геометрии — заслуживает меньшего доверия. Ни Платон, ни Аристотель не приписывают ему создание знаменитой теоремы Пифагора.

Согласно историку Джону Норту Пифагор учил, что Вселенная возникла, когда небеса вдохнули «беспредельное» и породили числа. Орр пишет, что схема, представленная на рис. 1.4, отражает «наиболее раннюю форму» Вселенной пифагорейцев, хотя нет свидетельств того, что Пифагор сам придерживался таких взглядов. Не исключено, что это первая космологическая модель, представляющая Землю в форме шара. Область, называемая «Космос», включает пять планет, Солнце и Луну. В «Олимпе» находятся звезды. «Уран» означает неба Вокруг всего этого расположены божественные огни, а еще дальше — апейрон, беспредельное пространство, благодаря которому существует мир.

Рис. 1.4. Ранний пифагорейский космос. Иллюстрация из книги Мэри Экворт Орр «Данте и ранние астрономы» 

Филолай (около 470–385 годов до н.э.), последователь пифагорейской школы, кардинально изменил эту модель (рис. 1.5). Филолай предположил, что Земля находится не в центре Вселенной. Впрочем, как и Солнце. Земля, Солнце и семь планет, видимых невооруженным глазом, вращаются вокруг Центрального огня. Звезды неподвижны и находятся на очень большом расстоянии. Земля оборачивается вокруг Центрального огня за 24 часа, Солнце — за год. Кроме того, существует Противоземля, планета под названием Антихтон, которая также делает полный оборот за 24 часа, но всегда находится с противоположной стороны от Центрального огня. По неясной причине, связанной то ли с Антихтоном, то ли с Центральным огнем, обитаема только та сторона Земли, которая обращена в противоположную от них сторону.

Пожалуй, можно без преувеличения сказать, что, несмотря на выдающиеся успехи в математике, пифагорейцы по сравнению с ионийцами не были настоящими учеными. Их идеи основывались скорее на мистических доводах, нежели на наблюдениях. Пять планет, видимых невооруженным глазом, плюс Солнце и Луна составляли семь — священное число, равняющееся количеству нот в музыкальной гамме, придуманной пифагорейцами. С учетом Земли и Центрального огня получалось уже девять, так что Филолай добавил Антихтон, чтобы сумма равнялась 10 — еще одному священному числу (вероятно, это было связано с количеством пальцев на руках или ногах). Согласно Орр, пифагорейцы считали Центральный огонь «смотровой башней Зевса», «сердцем Вселенной», содержащим наичистейший элемент — огонь.

Рис. 1.5. Система Филолая. Земля, Солнце и Противоземля — Антихтон вращаются вокруг Центрального огня. Люди живут только на той стороне Земли, которая повернута в противоположную сторону от Центрального огня и Антихтона, поэтому их невозможно увидеть. На верхней схеме изображена ночь на Земле, а на нижней — день. На рисунке этого не видно, но орбита Луны находится внутри орбиты Солнца, а орбиты планет — снаружи. Иллюстрация из книги Мэри Экворт Орр «Данте и ранние астрономы»

Удивительно, что при всей увлеченности числами пифагорейцам так и не пришло в голову провести количественные измерения свойств небесных тел, что быстро опровергло бы космологию Филолая. Но в любом случае это была смелая догадка и первая негеоцентрическая космология из доподлинно известных. Как пишет Орр:

«Пифагорейцы проявили смелость, вытолкнув неподвижную Землю из центра и позволив ей вращаться в глубинах космоса. Они понимали, как никто другой до этого, какой огромной она должна быть. Теперь Греция с ее окрестностями, со Средиземным и прочими морями, уже не составляли всю Землю, но были всего лишь частью огромного шара.

Эта концепция Вселенной, однако, сильно отличается от гомеровской. Маленький плоский диск превратился в шар, быстро летящий сквозь пространство. Кристальный купол, бережно прикрывавший ее, подобно стеклянному колпаку над каким-нибудь нежным растением, поднялся и открыл взору огромную сферу, бесконечно далекую и усеянную гигантскими звездами. Человек же превратился в крохотное создание на поверхности огромной Земли, а его мир стал всего лишь одним из множества. Но, хотя он и унижен своей незначительностью, разве не возвышает его грандиозность открывшейся перспективы?» {32} .

Эмпедокл

Эмпедокл (490–430 годы до н.э.) был гражданином сицилийского города Агригентума, но его учение ближе к ионической школе физиков, нежели к пифагорейской мистике. Эмпедокл первым предположил, что материя состоит из четырех элементов: земли, воды, воздуха и огня. Поскольку Аристотель принял эту идею, на протяжении тысячелетий она оставалась стандартной моделью, пока в конце XIX века ее не заменили химические элементы периодической таблицы Менделеева, в свою очередь сменившиеся в XX веке кварками, лептонами и бозонами стандартной модели элементарных частиц.

В космологии Эмпедокла встречаются удачные случайные догадки: например, что Луна светит отраженным от Солнца светом и что солнечные затмения вызваны Луной, заслоняющей Солнце.

Еще более непостижимое предположение Эмпедокла заключалось в том, что элементами управляют две противоборствующие силы, названные им любовью и враждой (или, возможно, притяжением и отторжением), между которыми идет постоянная борьба с повторяющимися циклами господства то одной, то другой силы. Эмпедокл, как мы видим, серьезно подозревал, что материя имеет множество различных основных форм. Кроме того, он считал, что поведение материи контролируется неосязаемыми, но реально существующими природными силами, также имеющими много различных форм. Этот философский прорыв заложил основы для всех дальнейших исследований материи и не теряет актуальности в наши дни.

Платон

Со временем ионийские и италийские досократики уступили место афинским сократикам. Все, что мы знаем о Сократе, главным образом изложено в работах Платона (429–347 годы до н.э.), из которых также можно понять, что Платон не был ученым-исследователем, так как считал, что реальность можно познать одним только чистым разумом, без помощи чувств.

Согласно Платону, Сократ пытался сместить предметную область философии с физики и космологии на социальные вопросы, в частности этику и политику. Но полной победы он не одержал. Греческие философы в Афинах и в других местах продолжали размышлять о Вселенной, хотя большинство и не горели желанием принять натуралистические взгляды ионийской школы, в особенности теорию атомистов.

В диалоге Платона под названием «Тимей» одноименный персонаж представлен астрономом и исследователем Вселенной. Он описывает сотворение мира из хаоса, «в котором нет порядка, и нет материи, которую можно было бы отличить по названию, но все смешано и все пребывает в нестройном и беспорядочном движении». Хорошая догадка в отличие от всех остальных. Небесные тела, согласно «Тимею», — разумные божественные создания. Они представляют собой идеальные огненные сферы. Земля также имеет форму шара и находится в центре Вселенной.

В «Тимее» Платон однозначно отвергает идею множественных вселенных: «…творящий не сотворил ни двух, ни бесчисленного множества космосов: лишь одно это единородное небо, возникши, пребывает и будет пребывать».

Платон определенно не был материальным монистом, то есть не считал, что в мире существует только материя и ничего больше. Он утверждал, что все, что люди видят и ощущают, — это всего лишь тени истинной, более совершенной реальности. Платон учил, что божественный мастер, зовущийся Демиургом, создал космос согласно своему священному плану. Реальность разделена на два мира: совершенный мир форм или идей и материальный мир, в котором существуют искаженные отражения этих форм или идей.

Однако сотворение мира в представлении Платона расходится с идеей о создании Вселенной ex nihilo, так как Демиург использовал уже существующие материалы.

К примеру, небесные тела представляют собой идеальные сферы, вращающиеся вокруг Солнца по идеально круговым орбитам. То, что планеты будто бы блуждают по небу (слово «планета» на древнегреческом означает «блуждающая звезда»), он объяснял искажением зрительного восприятия, подобным тому, которое возникает в линзе.

Поскольку от Платона и Аристотеля до нас дошло намного больше работ, чем от их предшественников или ближайших последователей, на протяжении многих веков их влияние на человеческое мышление было наиболее значимым среди всех античных мыслителей. Разумеется, я не хочу преуменьшить их огромный вклад в науку, однако авторитет Платона и Аристотеля, зачастую неоспоримый, не всегда шел на пользу прогрессу.

Вклад Платона в историю, возможно, состоит в том, что он вернул в картину мира божественное начало, отвергнутое представителями ионийской школы. Здесь мы видим не только Демиурга, сотворившего Вселенную, планеты и звезды также стали пристанищами небесных божеств. Как пишет историк Дэвид Линдберг: «Платон вернул богов, чтобы объяснить именно те свойства космоса, которые, по мнению философов-физиков, как раз и опровергали их присутствие».

Аристотель

В отличие от своего наставника Платона Аристотель был настоящим ученым: проводил наблюдения и ставил эксперименты, хотя все еще доверял своему разуму больше, чем полученным данным. Только с началом деятельности Галилея эмпирический метод познания возобладал над теоретическим и наблюдение стало окончательным мерилом истины. Именно с этого момента — не случайно, а вполне закономерно — наука начала свое великое восхождение на вершину, на которой она пребывает сейчас вместе с прочими достижениями человеческого прогресса.

Аристотель, как и большинство других постпифагорейцев, считал, что Земля находится в центре космоса. Он говорил, что Вселенная обязана иметь форму шара, поскольку шар представляет собой идеальное геометрическое тело. С точки зрения Аристотеля, у Вселенной не было начала и не будет конца (учение, оставленное христианами без внимания). Причина этого — в том, что боги бессмертны, а поскольку они живут в самой верхней части Вселенной, то и Вселенная тоже должна быть бессмертна.

Как уже было сказано, Аристотель принял модель Эмпедокла, согласно которой земля, вода, воздух и огонь являются основными элементами, из которых состоит вся материя. Впоследствии эту модель приняли в качестве стандартной, и она продержалась в этой роли до эпохи расцвета современных химии и физики. Аристотель добавил к ней пятый элемент, квинтэссенцию, которую также называли эфиром, небесным веществом.

Аристотель утверждал, что существует три формы природных движений, иллюстрируя это на примере движений пяти элементов:

♦ земля и вода движутся по прямой линии к центру Земли;

♦ воздух и огонь движутся по прямой линии от центра;

♦ небесные тела движутся по окружностям вокруг центра.

Последнее позволяло ответить на древний вопрос о том, почему небесные тела не падают на Землю.

Космология Аристотеля представлена на рис. 1.6. Он шагнул далеко вперед, предположив, что планеты и звезды — реально существующие физические тела, хотя все еще представлял их идеальными сферами. Это утверждение противоречило платоновскому изображению небесных тел в виде богов. Более того, Аристотель был не согласен с заявлением Платона о том, что у Вселенной был творец. Он считал ее вечной, но не бесконечной.

Рис. 1.6. Космология Аристотеля. Изображение предоставлено NASA/StarChild 

Обратите внимание на сферу перводвигателя на рисунке. Физика Аристотеля подразумевала, что у любого движения должна быть причина и первоначальная причина, «перводвигатель», является «конечной причиной всех причин». Эту сущность средневековые христианские богословы, в особенности Фома Аквинский, считали Богом-создателем. Однако в физике Аристотеля перводвигатель представлял собой не создателя, но сверхъестественное нечто, находящееся на самой окраине Вселенной и являющееся источником всех движений всех небесных тел.

Аристотель был не согласен с атомистами. Они представляли воду, воздух и огонь не первоэлементами, а субстанциями, состоящими из атомов — истинно элементарных частиц. Аристотель утверждал, будто ему удалось доказать невозможность существования «пустоты» атомистов, в то время как ключевой принцип атомизма заключался в том, что все есть атомы и пустота. Атомисты соглашались с тем, что Вселенная вечна, но не считали, что она конечна. Они также полагали, что существует множество миров.

В дохристианских Греции и Риме учение Аристотеля в области физики и космологии принималось не повсеместно. Не только атомисты во главе с Эпикуром, но также стоики во главе с Зеноном из Китиона (около 334–262 годов до н. а) считали, что Вселенная как вечна, так и бесконечна.

Тем не менее христианские богословы во множестве областей стали опираться на авторитет Аристотеля, в особенности на его идею о первопричине. В результате великие европейские университеты, основанные католической церковью в Средние века, настолько глубоко закостенели в так называемой аристотелевской схоластике, что научная революция, отвергающая значительную часть аристотелевской науки, в особенности физику, произошла вне стен этих учреждений.

Аристарх

Аристарх Самосский (около 310–230 годов до н.э.) — первый известный науке астроном, поместивший Солнце в центр Вселенной.

По некоторым данным вавилонский астроном Селевк (около 190 года до н.э.) сделал то же самое несколько позже. Кроме того, Аристарх расположил планеты в правильном порядке по их удаленности от Солнца. Хотя его геометрические доказательства верны, из-за ошибочных данных рассчитанные им расстояния получились намного меньше реальных. Однако Аристарх признал, что звезды должны находиться очень далеко от Земли, поскольку понял, что измерить звездный параллакс не представляется возможным.

Гиппарх

Гиппарх (около 190–120 годов до н.э.) родился в Вифинии, в городе Никея, но большую часть жизни провел на острове Родос. Он разработал первые точные модели движения Солнца и Луны на основании записей на вавилонских глиняных табличках. Гиппарх также открыл предварение равноденствий, рассчитал длину года с точностью до 6,5 минуты, составил первый известный звездный каталог и внес весомый вклад в развитие ранней тригонометрии. Фактически его можно считать первым ученым, применившим к геометрическим моделям числовые данные, полученные путем наблюдений. Гиппарх заложил основы для последующих работ Птолемея, написанных спустя три столетия, и был признан «величайшим астрономом античности».

Птолемей

Клавдий Птолемей (около 168–90 годов до н.э.) жил в Александрии, где у него был доступ к огромному количеству работ греческих и римских авторов, собранных в Александрийской библиотеке, величайшем книгохранилище Древнего мира. В 48 году до н.э. Юлий Цезарь (около 100–44 годов до н.э.) поджег корабли, стоявшие в гавани Александрии, и при этом нечаянно сжег огромное количество книг, хранившихся в районе доков. Однако два других городских собрания книг сохранились. Большая часть из них была уничтожена во время христианских восстаний в 390 году н.э., однако Александрия все еще оставалась центром греческой науки.

У Птолемея был доступ также к превосходным астрономическим приборам, которыми была оснащена обсерватория при библиотеке. При таких возможностях ему удалось объединить данные астрономических наблюдений, собранные за несколько столетий, включая работы Гиппарха, со своими собственными наблюдениями в систему, которая математически описывала движения всех небесных тел, доступных наблюдению в те дни. Он изложил свою систему в 13 книгах, первоначально получивших название «Математическое построение по астрономии», которое затем сменилось на «Великое построение» (Magiste Syntaxis). Позже арабы дали ей название «Альмагест» («Великое построение», или просто «Великое»), под которым она известна с тех пор. «Альмагест» оставался ведущей работой по астрономии до выхода в 1543 году трактата Николая Коперника «О вращении небесных сфер» (De revolutionibus orbium celestium).

Подобно большинству своих предшественников, Птолемей поддерживает геоцентрическую модель Вселенной, хотя Земля у него слегка смещена от центра. Вот как он описывает свои физические постулаты:

«…Небо имеет сферическую форму и движется подобно сфере, затем что Земля имеет также вид сферы, если ее рассматривать по всей совокупности ее частей. По своему положению она расположена в середине неба, являясь как бы его центром. По величине же и расстоянию относительно сферы неподвижных звезд она является как бы точкой и не имеет никакого движения, изменяющего места» {42} .

Чтобы сохранить в своей системе центральное положение Земли и при этом точно описать движения планет, орбиты которых далеки от круговых, Птолемей разработал невероятно сложную модель, которая в упрощенном виде изображена на рис. 1.7.

Рис. 1.7. Модель Солнечной системы, предложенная Птолемеем. Планеты движутся по поверхности концентрических сфер по круговым орбитам. Сферы же вращаются вокруг точки, расположенной на некотором расстоянии от центра Земли, также по окружностям. Пространство этих сфер заполнено не пустотой, а квинтэссенцией, или эфиром (по Аристотелю). Авторская иллюстрация 

В системе Птолемея планеты движутся по окружностям, называемым эпициклами, центры которых, в свою очередь, движутся по кругу вокруг центральной точки, называемой эквантом, находящейся не на Земле. В ряде случаев центры эпициклов движутся по другим траекториям — деферентам.

«Альмагест» в первую очередь узкоспециальный труд, позволявший профессиональным астрономам предсказывать движения планет. Космология Птолемея изложена в другой работе, названной «Планетные гипотезы», которая известна преимущественно благодаря арабским переводам. В основном она не отличается от космологии Аристотеля. Планета Земля состоит из четырех элементов: воды, воздуха, огня и земли. Она не вращается вокруг своей оси. Небеса представляют собой десять концентрических сфер, состоящих из прозрачного пятого элемента — квинтэссенции, или эфира, предложенных Аристотелем, и вращаются по окружностям вокруг Земли. Между сферами нет пространства, нет пустоты, так как Аристотель настаивал, что пустота не может существовать. Они заполнены квинтэссенцией.

В порядке увеличения расстояния от Земли располагаются сферы, содержащие: 1 — Луну, 2 — Меркурий, 3 — Венеру, 4 — Солнце, 5 — Марс, 6 — Юпитер, 7 — Сатурн и 8–10 — «неподвижные звезды» в том смысле, что они не движутся друг относительно друга по мере того, как вращаются их сферы. Разумеется, период вращения во всех случаях составляет 24 часа. Расстояния до объектов в модели Птолемея не указаны.

Птолемей насчитал 1022 звезды в 48 созвездиях и перечислил 15 наиболее ярких звезд. Помимо движения Солнца, Луны и планет, его система позволяла предсказывать время восхода и захода звезд.

Птолемеевская система — последнее крупное достижение греческой астрономии. Так как в Римской империи латынь вытеснила греческий язык, немногие могли прочесть книги Птолемея. Сами римляне не внесли значительного вклада в развитие астрономии, однако в целом оценили ее практическую значимость для измерения времени. К временам Юлия Цезаря календарь окончательно утратил актуальность, и император пригласил александрийского астронома Созигена (I век до н.э.), чтобы тот разработал новый. Так называемый юлианский календарь, созданный Созигеном, используется и в наши дни с небольшими поправками, внесенными спустя несколько веков. Заметьте, однако, что его принцип был заимствован из греческой астрономии.

 

Глава 2.

ВПЕРЕД К НОВОМУ КОСМОСУ 

 

Космология в христианском мире

Отдельные идеологи раннего христианства категорически не одобряли представления древнегреческих ученых о мире. Тертуллиан (около 160–225 годов) вопрошал: «Что Афины — Иерусалиму?» Влиятельный епископ Лактанций (около 240–320 годов), советник императора Константина (272–337), отвергал как ересь учение о сферической форме Земли, равно как и нелепые представления о том, что у людей на обратной стороне Земли «ступни выше головы», а «дожди, снег, град идут снизу вверх».

Однако некоторые отцы церкви, в частности Климент Александрийский (около 150–215 годов), Ориген (около 184–253 годов) и Амвросий (около 340–397 годов), похоже, поддерживали идею о шарообразности Земли.

Великий богослов Августин Блаженный (354–430) уважал науку, видя в ней средство познания Божественного творения, хотя все же настаивал на том, что доводы разума и Божественное откровение в познании должны преобладать над наблюдением. Галилей во многом соглашался с философией Августина. Он упоминает утверждение Августина о том, что Святой Дух, стоящий за откровением, «не желает, чтобы люди изучали вещи, которые не приведут никого к спасению». На основании этого он утверждал, что его собственная гелиоцентрическая система мира, основанная на модели Коперника, не противоречит учению церкви тех времен. Но в итоге потерпел неудачу.

Многие древнегреческие и древнеримские научные знания подвергались гонениям со стороны ранней христианской церкви. Тем не менее к началу VII века в Европе вновь появилась научная литература, хотя в основном это были работы римских авторов, к тому же довольно примитивные. Александрия все еще остается оплотом греческой науки, несмотря на уничтожение библиотеки христианскими фанатиками в 390 году. Александриец Иоанн Филопон (490–570) стремился привести натурфилософию Аристотеля в соответствие с монотеизмом. Он оспаривал теорию Аристотеля о нематериальной природе света, считая, что лучи света вызваны солнечным огнем. Кроме того, он настаивал на существовании пустоты.

Космологические воззрения Филопона представлены в трактате «О вечности мира, против Аристотеля», в котором он отвергает представление о вечной Вселенной, очевидным образом противоречащее христианскому учению. Один из его аргументов заключается в том, что если Вселенная простирается бесконечно во времени, то должна существовать бесконечная цепь причин, которая приводит ее к настоящему. Иными словами, если бы Вселенная была вечна, она никогда бы не пришла к своему настоящему состоянию. Однако Филопон предполагал, что вечная Вселенная все же имеет начало, но возникла она бесконечно давно. Как мы увидим в следующих главах, этот аргумент все еще используется современными богословами. Пока просто отметим, что это не так. Вселенная вовсе не обязательно должна иметь начало. Любой отрезок времени, от настоящего до любого момента в прошлом: год назад, 1000 лет назад, 10 млрд. лет назад, все равно конечен.

К XII веку древнегреческие знания вновь начинают понемногу проникать в Европу. Некоторые тексты переводят на латынь непосредственно с греческого, однако большая часть приходит из арабских книг и комментариев (см. следующий раздел). Герард Кремонский (1114–1187) перевел с арабского на латынь «Начала» Евклида, работы Аристотеля по натурфилософии и «Альмагест» Птолемея. К середине XIII века в университетах, основанных церковью, космология Аристотеля и Птолемея становится общепринятой парадигмой.

Однако, как уже было сказано, христианские ученые внесли существенные изменения в аристотелевскую картину космоса. Мир у них больше не вечен, он имеет конец и начало. Бог создал мир некоторое конечное число лет назад, и он просуществует еще какой-то конечный отрезок времени, пока Христос не вернется, чтобы установить на земле Царство Божие. Уже в конце II века н.э. Феофил Антиохийский (около 180 года) рассчитал, что мир возник в 5529 году до н.э. С тех пор и до наших дней люди, отвергающие научные оценки возраста Вселенной, свидетельствующие, что она значительно древнее, опираются на Библию, согласно которой он составляет около 6000 лет.

Еще до широкого распространения идей Аристотеля европейские ученые начали воспринимать природу как отдельную сущность со своими законами, которые, разумеется, определены Богом, но при этом подчиняются принципу причинности. А поскольку Аристотель не приводит естественной теории сотворения мира, эта задача легла на самих ученых.

В 20-х годах XIII века первый канцлер Оксфордского университета Роберт Гроссетест предложил естественное объяснение происхождению Вселенной, для которого не требовались чудеса или другие вмешательства, после того как Бог положил ей начало. Его модель в общих чертах напоминает современные представления о раннем этапе существования инфляционной Вселенной. Вот как описывает модель Гроссетеста историк Хельге Краг:

«Он говорил, что Вселенная изначально была создана Богом в форме световой точки, которая стала мгновенно распространяться, превращаясь в сферу и создавая тем самым пространственные измерения. Затем из света, который эта сфера излучает вовнутрь себя, появились небесные сферы, описанные в космологии Аристотеля» {52} .

Некоторые поправки в модель Аристотеля были внесены из богословских соображений. За пределами сферы неподвижных звезд появились дополнительные сферы, кроме того, бы добавлен «эмпирей» — обитель ангелов.

Весьма сложная с математической точки зрения система Птолемея также постепенно была принята средневековыми учеными и использовалась для астрономических предсказаний. При этом мало кто из астрономов того времени находил удовольствие в философских размышлениях о природе космоса. Система Птолемея была для них не более чем моделью. В то же время натурфилософы видели в астрономии нечто большее, чем построение моделей, считая, что она позволяет людям лучше познать окружающую реальность.

 

Космология в Арабском халифате

Средневековая философия не ограничивается христианским миром. В Арабской империи, переживавшей в те времена свой золотой век, также было много ученых. Они не только перевели на арабский язык множество древнегреческих и древнеримских работ, но и существенно дополнили античные идеи. Важно отметить, что среди ученых Арабского халифата было множество иудеев и других представителей прочих религий и национальностей, которые благополучно жили и процветали в средневековом арабоговорящем мире, совсем не похожем на известный нам.

Выдающийся физик англо-иракского происхождения Джим аль-Халили рассказывает историю арабской науки в своей прекрасной книге «Дом мудрости: как арабская наука спасла древние знания и подарила нам Ренессанс». Ученые из исламских стран, подобно христианским, прониклись большим уважением к учению Аристотеля, однако и у них возникла потребность откорректировать те его аспекты, которые противоречили их религии.

В вопросах космологии им опять же требовалось доказать, что Вселенная не может быть вечной, ведь в Коране, как и в Библии, однозначно упоминается сотворение мира. Первым исламским философом аль-Халили называет Якуба ибн Исхака аль-Кинди (около 800–873 годов). Аль-Кинди воспринял доводы ранее упомянутого Филопона, утверждавшего, что если Вселенная вечна, то для того, чтобы она достигла настоящего, понадобилось бы бесконечное число лет. Ранее я уже объяснил, почему несостоятелен этот аргумент, который можно услышать и в наши дни.

Большинство средневековых арабских ученых, подобно христианским, придерживались геоцентрической модели Солнечной системы, однако багдадский астроном Абу Сайд Ахмед ибн Мухаммад ибн Абдал-Ажалил ал-Сиджизи (около 950–1020 годов) предлагал гелиоцентрическую модель. Несколько ранее персидский астроном Абу Машар аль-Балхи (также известный как Альбумазар) (около 787–886 годов) предложил уникальную систему, в которой все планеты, кроме Земли, вращаются вокруг Солнца, в то время как само Солнце вращается вокруг Земли, расположенной в центре Вселенной.

В период упадка, который наступил после вторжения монголов в XIII веке, появляется одна выдающаяся личность, чье влияние на Коперника и последовавшую астрономическую революцию трудно переоценить.

Насир ад-Дин ат-Туси (1201–1274) былученым из Персии (Северного Ирана). Когда около 1220 года монголы начали опустошать города этого региона, убивая сотни тысяч людей, ат-Туси присоединился к тайной религиозной секте, называемой Хашашин. Члены этой секты поселились в горной крепости Аламут и периодически спускались оттуда и организовывали набеги и убийства, в том числе заказные. В истории они остались под именем ассасинов. В самом деле, слово «ассасин» происходит от слова Хашашин, равно каки слово «гашиш», изначально называвшее просто сухую траву, а теперь ставшее названием сорта конопли.

Почти 30 лет ат-Туси проводил исследования в Аламуте. Он построил там обсерваторию, в которую стекались ученые из разных уголков мира, чтобы работать вместе с ним. Когда в 1256 году монголы под руководством внука Чингисхана по имени Хулагу атаковали горную крепость и уничтожили секту, ат-Туси каким-то образом удалось выжить. Ат-Туси убедил Хулагу, что хану необходимо иметь ученого советника. Затем он построил еще одну обсерваторию в городе Мераге, на востоке от Тегерана. Вскоре она стала величайшим мировым астрономическим центром. Ученые приезжали из самого Китая, чтобы участвовать в исследованиях, проводимых ат-Туси.

Ат-Туси дополнил и усовершенствовал работы математиков прежних времен (в том числе Омара Хайяма) по тригонометрии и теории чисел, а также возглавил процесс временного возрождения арабской науки после уничтожения монголами библиотек в Багдаде и других городах Арабского халифата.

Многие историки считают «Памятку по науке астрономии» ат-Туси (1261) важнейшей средневековой работой, посвященной астрономии. Что особенно важно, она, вероятно, повлияла на Коперника. Ат-Туси усовершенствовал модель Птолемея, используя геометрическое построение, известное теперь как пара Туси (или лемма Туси). Оно представляет собой круг, катящийся изнутри по окружности вдвое большего диаметра. Практически такая же схема встречается в трактате Коперника «О вращении небесных тел», опубликованном в 1543 году.

Хотя ни ат-Туси, ни другие мерагинские астрономы не выдвигали идею гелиоцентрической системы, Коперник, вероятно, использовал их математические методы для разработки этой модели.

 

Николай Коперник и гелиоцентрическая модель Вселенной

Как известно из главы 1, в III веке до н.э. Аристарх Самосский разработал гелиоцентрическую Солнечную систему, в которой расположил все известные в то время планеты в правильном порядке по степени их удаленности от Солнца. Однако эта модель встретила настолько резкие философские и теологические возражения, в особенности со стороны имевшего огромный авторитет Аристотеля, а позднее — католической церкви, что в течение двух тысячелетий на нее практически не обращали внимания.

Когда в XV столетии над Темными веками забрезжил рассвет, европейские ученые начали переосмысливать строение мироздания. Николай Кузанский (1401–1464) — немецкий ученый и кардинал Римской католической церкви, известный своими достижениями в философии, теологии, церковной политике и астрономии, считал вполне возможным, что Земля не висит без движения в центре Вселенной, а также что небесные тела не представляют собой идеальные сферы и их орбиты — не правильные окружности. Однако в основе суждений Кузанского стояли теологические доводы, а не наблюдения. Он полагал, что Бог находится везде и нигде — одновременно и в центре Вселенной, и на ее периферии. Тем не менее работы Николая Кузанского подготовили почву для явления, которое позже назовут коперниковской революцией.

Революция эта началась благодаря человеку по имени Николай Коперник (1473–1543). По неясным причинам подробности его жизни слабо освещены в литературе, авторы чаще уделяют внимание Галилео Галилею и его конфликту с церковью. Я постараюсь в некоторой мере исправить положение, а в качестве подспорья использую недавно вышедшую биографию Коперника, написанную Давой Собел. В своей замечательной книге, озаглавленной «Более совершенные небеса», Собел рассказывает о том, как Копернику удавалось совмещать важную церковную должность с занятиями медициной и при этом находить время на то, чтобы вдумчиво вглядываться в небо.

Николай Коперник родился в польском городе Торуне. Его воспитанием занимался дядя, Лукаш Ватценроде, каноник католической церкви, позднее ставший епископом Вармии. В 1491 году Коперник поступил в Ягеллонский университет в Кракове, где изучал логику, поэтику, риторику, натурфилософию, а также математическую астрономию, к которой проявлял наибольший интерес. «Что же может быть прекраснее небесного свода, содержащего все прекрасное», — восторгался он.

В 1496 году по настоянию дяди Коперник отправился в Италию изучать каноническое право в Болонском университете. В следующем же году благодаря дяде он стал каноником Вармии, а в 1500 году посетил Рим, где прочитал несколько лекций по математике.

В 1501 году, после краткосрочного визита на родину, Коперник снова едет в Италию, чтобы изучать медицину в Падуанском университете. Там ему преподают технику кровопускания, учение об «испорченных жидкостях» и другие медицинские премудрости тех времен. Кроме того, он учился применять астрологию в целях диагностики и лечения, хотя вряд ли когда-либо воспринимал ее всерьез.

В 1503 году Коперник получает степень доктора канонического права в университете Феррары, после чего возвращается в Польшу и становится «врачом-целителем» при епископе и канониках Вармии. Вдобавок он бесплатно занимается лечением крестьян.

В 1510 году Коперник поселился в Фромборке (Фрауенбурге), небольшом городке на северо-востоке Польши, входившем в епархию Вармии. Он приступает к исследованиям в области астрономии, одновременно выполняя множество церковных обязанностей. Тем не менее сан священника Коперник так и не принял.

Собел рассказывает, что к 1510 году Коперник, «опираясь на интуицию и математику… пришел к выводу о центральном месте Солнца во Вселенной. Для этого не требовалось каких-либо астрономических наблюдений». Будет ошибкой, хоть и не прямой, допускать, что эта идея возникла в результате работы чистого разума. В конце концов, Коперник наблюдал за небесами и был знаком с движением планет.

По всей видимости, Николай Коперник ничего не знал о модели, предложенной Аристархом Самосским. Он кратко, не приводя доказательств, изложил свои основные идеи в 40-страничном труде, озаглавленном Commentariolis (у Собел — «Малый комментарий»). Коперник отправил его своим друзьям, которые сделали с него копии и разослали их дальше. В этом труде Коперник однозначно определяет свою позицию в отношении гелиоцентризма:

«Все сферы окружают Солнце, как будто оно находится в середине, а потому центр Вселенной близок к Солнцу. Все видимые нами движения Солнца производятся не им, а Землей и нашей сферой, вместе с которой мы вращаемся вокруг Солнца, как и всякая другая планета» {62} . 

Неоднозначность пришла позже.

В 1511 году капитул назначил Коперника своим канцлером, возложив на него ответственность за всю свою громоздкую финансовую отчетность. Кроме того, под его управление перешло 150 тыс. акров церковной земли, и Копернику пришлось заниматься сугубо мирскими делами — любые сделки между крестьянами, работавшими на этой земле, могли осуществляться только после его утверждения.

Несмотря на эти сложные обязанности, Копернику удалось провести ряд наблюдений, которые позволили ему определить продолжительность года с точностью до секунды — намного точнее, чем любые часы того времени.

В 1512 году Коперника, уже ставшего известным астрономом, пригласили в Рим, чтобы он помог осуществить реформу календаря. Юлианский календарь к тому времени окончательно разошелся с реальностью. В особенности церковь беспокоило значительное смещение праздника Пасхи, все сильнее удалявшегося от дня, установленного Первым Никейским собором в 325 году (первое воскресенье после первого полнолуния, которое наступает вслед за весенним равноденствием). В 1582 году церковь приняла новый, григорианский календарь, который все еще используется в наши дни, хотя записи предложенных Коперником правок не сохранились. Создатели григорианского календаря усовершенствовали старый юлианский календарь, которым пользовались еще со времен Юлия Цезаря. В новом календаре на 400 лет приходилось 97 високосных годов, а не 100, как в юлианском. При этом три года из четырех, открывающих новые века второго тысячелетия, стали невисокосными (1700, 1800, 1900 годы).

Коперника также волновало обесценивание валюты: в 1517 году он опубликовал трактат Meditata, в котором изложил свои соображения о том, как решить проблему денег путем правильной чеканки монет. Любопытно, что Исаак Ньютон в поздние годы своей жизни служил смотрителем Королевского монетного двора в Англии.

В 1517 году Мартин Лютер (1483–1546) написал свои знаменитые 95 тезисов и начал тем самым протестантскую реформацию. Одним из его первых последователей стал бывший католический священник Андреас Осиандер (1498–1552), позднее сыгравший значительную роль в публикации великой работы Коперника. Однако сам Коперник ни разу не дал повода усомниться в своей преданности католической церкви.

В книгу Собел включена очаровательная пьеса в двух актах, в которой описывается визит 25-летнего немца Георга Иоахима Ретика (1514–1574) к 65-летнему Копернику в 1539 году. Ретик был лютеранином, а также профессором математики и поэтики в университете Виттенберга, где жил и работал Лютер. В те времена въезд в Польшу лютеранам был запрещен, однако Ретику каким-то образом удалось проникнуть туда.

Хотя Лютер отвергал астрологию как «творение дьявола», Ретик верил, что в ней можно найти сведения о глубочайшей сущности космоса, и поэтому искал астрономические знания, которые должны были приблизить открытие этих сведений. Он составил множество собственных гороскопов и был уверен, что его жизнь будет недолгой, а потому ему нужно было действовать быстро, чтобы успеть достичь хоть чего-то. Он дожил до 60 лет — почтенного для тех времен возраста.

Будучи в Нюрнберге, Ретик впервые услышал о польском канонике, который описывал движения небесных тел, поместив в центре их орбит Солнце. Он отправился на север Польши, чтобы узнать об этом больше.

Действие пьесы Собел охватывает период с мая 1539 года, когда Ретик появляется на пороге дома Коперника, а затем постепенно становится его ассистентом, помогая ему издать трактат «О вращении небесных сфер» (De revolutionibus orbium celestium), вплоть до смерти Коперника 24 мая 1543 года.

Коперникне горел желанием публиковать свои находки, однако Ретик настоял на этом. Равно как и Тидеман Гизе (1480–1550), епископ Кульмский, с которым Коперник поддерживал дружеские отношения. Он был рад узнать, что Ретик знаком с Иоганном Петреусом (1497–1550), уважаемым печатником научных текстов из Нюрнберга.

Во второй половине 1539 года Ретик написал краткое изложение модели Коперника в форме письма другому своему наставнику, Иоганну Шёнеру (1477–1547). Он назвал его «Первое сообщение» (Narratio Prima) и опубликовал у Петреуса в следующем году.

Вскоре после этого на сцене появляется Андреас Осиандер. Как упоминалось ранее, Осиандер был одним из первых последователей Лютера, а также теологом и математиком-любителем. Кроме того, он дружил с Петреусом, который, возможно, попросил у него совета о том, как лучше опубликовать книгу Коперника. Осиандер написал Копернику, предложив ему добавить предисловие с пояснением, что математические гипотезы — это «не догматы, а основания для вычислений; так что, даже если они неверны, это неважно, коль скоро они точно воспроизводят явления движений». Ретику он дал похожий совет, написав, что «перипатетики и теологи охотно успокоятся, если услышат, что […] настоящие гипотезы выдвигаются не потому, что они в самом деле верны».

В сентябре 1541 года Ретик покинул Фромборк с рукописью в руках. В октябре он вернулся в университет Виттенберга, где стал деканом факультета искусств. Отнюдь не все принимали его с распростертыми объятиями. По слухам, Лютер однажды за обедом сделал следующее замечание: «Что поделаешь, теперь всякий, кто хочет считаться умным, не должен соглашаться с чем-либо, что считают верным другие. Он должен все делать на свой манер. [Включая Лютера?] Именно так поступает тот парень, что решил перевернуть всю астрономию. Даже в этих вещах, что сейчас ставятся с ног на голову, я верю в Священное Писание, ибо Иисус Навин приказал остановиться Солнцу, а не Земле».

Ретик и Гизе предпринимали героические попытки примирить модель Коперника с Книгой Иисуса Навина (ИсНав 10:12–13). Таким же образом они пытались справиться с псалмом 93, в котором говорится о том, что основание Земли всегда неподвижно, и другими библейскими противоречиями. Ретик написал трактат, в котором пытался примирить идеи Коперника со Священным Писанием, однако он так и не был опубликован.

Б мае 1542 года Ретик наконец приехал в Нюрнберг и привез с собой большую часть рукописи. Он передал ее Петреусу, который незамедлительно запустил ее в печать. Ретик занимался вычиткой печатных страниц сразу после их выхода из-под станка. Однако в октябре, когда работа была закончена только наполовину, он покинул Нюрнберг, чтобы занять место профессора высшей математики в университете Лейпцига.

С этого момента и до конца корректурой занимался Осиандер. В ноябре 1542 года у 69-летнего Коперника случился инсульт, и он больше не мог следить за тем, как идет подготовка книги. Через полгода, 24 мая 1543 года, его друг Ежи Доннер вложил в руки парализованному последние страницы книги, только что привезенные из Нюрнберга, а в следующее мгновение увидел, что жизнь покинула его. Работа Николая Коперника была завершена.

Католическая церковь в те времена не считала трактат «О вращении небесных сфер» еретическим. Коперник посвятил его папе Павлу III. Во-первых, работа была узкоспециализированной, так что только человек с глубокими познаниями в математике мог разобраться в ней. Во-вторых, ее не требовалось понимать буквально. Осиандер включил в книгу анонимное предисловие, в котором модель Коперника представлялась просто инструментом для астрономических вычислений, не имеющим никакой философской или богословской подоплеки: 

«…Некоторые ученые, без сомнения, были уязвлены до глубины души и считают, что свободные искусства, сложившиеся давно и имеющие прочное основание, не должны приводиться в беспорядок. Но если эти люди изучат вопрос внимательно, то обнаружат, что автор этого труда не сделал ничего предосудительного. Ведь слагать историю движений небесных тел посредством тщательного и умелого исследования есть прямая обязанность астронома. Затем он должен понять и описать причины этих движений или гипотезы о них. […] Автор этой книги блестяще справился с обеими обязанностями, ведь эти гипотезы не обязаны быть верными или даже вероятными. […] Философ, возможно, будет скорее искать подобие истины. Но никто из них не может понять и сказать что-либо наверняка, если только им не будет Божественного откровения. […] Что касается гипотез, то пусть никто не ждет от астрономии ничего определенного, ведь если он примет за истину идеи, задуманные для другой цели, то закончит чтение этого труда большим глупцом, чем был вначале».

Модель Коперника изображена на рис. 2.1.

Рис. 2.1. Модель Солнечной системы, предложенная Коперником. Система, которую позже защищал Галилео Галилей (1564–1652), в целом выглядит так же, однако он добавил орбиты четырех спутников Юпитера, которые ему удалось разглядеть в свой новый телескоп. Изображение предоставлено Обсерваторией Земли НАСА (NASA's Earth Observatory), это упрощенная версия иллюстрации к книге Николая Коперника «О вращении небесных сфер» 

На самом деле книга «О вращении небесных сфер» состоит из шести томов. В ней изложена единая система, в которой планеты расположены в правильном порядке расстояний от Солнца, а их периоды обращения вокруг него, как оказалось, были рассчитаны с поразительной точностью. Однако в модели Коперника орбиты все еще круговые, поэтому ему не удалось обойтись без эпициклов. Как следствие, оригинальная модель была сложнее представленной на рис. 2.1, но тем не менее проще Птолемеевой.

 

Первая реакция

Хотя церковь тотчас не отвергла модель Коперника, как раз в этот период стали набирать силу течения, которые в конечном счете привели к осуждению этой модели в религиозных кругах. В эпоху Реформации между протестантами и католической церковью возник глубокий раскол по вопросам источника религиозного авторитета. Несмотря на то что церковь почитала Библию, последняя не обладала высшим авторитетом в богословских вопросах. Таким авторитетом обладал исключительно папа, так как считалось, что непрерывная цепочка пап восходит к святому Петру, которому Иисус Христос поручил власть над всеми земными делами. Реформатская церковь искала замену авторитету пап, и единственной достойной альтернативой была Библия. Причем это означало, что ее нужно воспринимать буквально, как слово, исходящее от Бога.

Даже в наши дни непогрешимость Библии остается основной догмой многих протестантских сект. Это приводит их последователей к отрицанию таких научных открытий, как эволюция или возраст Земли, в то время как у католиков проблем с этим практически не возникает. Папы считают большинство научных открытий приемлемыми, до тех пор пока те не отрицают Божественное творение и нематериальную природу души. (Остается спорным вопрос о том, верят ли католическая церковь и умеренные христиане в биологическую эволюцию в научном понимании, то есть как проходившую без контроля со стороны Бога.)

Мартин Лютер и другие реформаторы, проповедовавшие, что в Библии заложена буквальная истина, не принимали картину мира Коперника, так как она противоречила Священному Писанию. Однако следует заметить, что Лютер умер всего через три года после публикации трактата «О вращении небесных сфер», задолго до серьезного научного обоснования изложенной там модели. Тем не менее в следующем столетии под натиском реформации римская католическая церковь, движимая иезуитами, признала необходимость занять более консервативную позицию по многим вопросам. Это означало в том числе и отторжение идей Коперника и математического метода вычисления бесконечно малых величин, который в конечном счете привел к появлению математического анализа.

Еще одним крайне неудобным диссидентом для христианской церкви был итальянский монах-доминиканец Джордано Бруно (1548–1600), унять которого ей удалось только с помощью костра. Бруно исповедовал довольно много различных ересей, чем заслужил свою участь, однако именно его космологические представления имеют отношение к нашей истории. Вероятно, он воспринял и распространил некоторые идеи упомянутого ранее Николая Кузанского. Бруно предположил, что Солнце — всего лишь одна звезда во Вселенной, состоящей из бесконечного числа миров и не имеющей центра. Более того, в этих мирах обитают другие разумные существа.

Следующее по времени событие, относящееся к нашей истории, произошло в 1572 году, когда датский астроном Тихо Браге (1546–1601) увидел в небе яркую быстро исчезнувшую вспышку — взрыв сверхновой. Это стало первым свидетельством того, что в небесах тоже происходят непредсказуемые изменения вопреки традиционным представлениям об их совершенстве и неизменности. Английский астроном Томас Диггес (1546–1595) безуспешно пытался измерить параллакс сверхновой Браге и сделал вывод, что она должна находиться за пределами орбиты Луны.

Диггес в 1576 году опубликовал первый англоязычный комментарий к модели Коперника. Он внес существенное изменение в космологическую картину, отказавшись от представления об ограниченной сфере неподвижных звезд, окружающей Солнечную систему, в пользу бесконечного космического пространства с множеством звезд. Отсутствие наблюдаемого параллакса убедило его в том, что они находятся на огромном расстоянии от Земли, как и предполагал Коперник.

Браге соглашался с тем, что модель Коперника «очень тонко устраняет те места, которые являются излишними и несоответственными системе Птолемея», однако он возразил, что «тело Земли велико, медлительно и непригодно для движения, на него не может повлиять движение (особенно три движения), не более, чем могут быть смещены светила мирового эфира».

Итак, Браге опубликовал модель, уже предложенную предшественниками. Неподвижная Земля расположена в центре, Луна и Солнце вращаются вокруг нее, в то время как остальные планеты вращаются вокруг Солнца. И в самом деле, результаты наблюдений тех времен лучше укладывались в эту модель, нежели в систему Коперника. К тому же она не противоречила учению церкви, что на некоторое время сделало ее весьма популярной.

 

Кеплер и законы движения планет

На теоретическом уровне модель Коперника проще модели Птолемея, особенно в том, что касается отображения движения планет, но в качестве вычислительного инструмента она изначально не была лучше, поскольку входные данные для нее содержали ошибки. Ситуация изменилась с появлением данных наблюдений Браге и Иоганна Кеплера (1571–1630), которые были значительно точнее. Более того, Кеплер сделал большой шаг вперед, предложив три закона движения планет, которые с большой точностью описывали эти новые данные.

Законы движения планет Кеплера.

1. Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

2. Отрезок прямой, соединяющий Солнце и планету, отсекает равные площади за равные промежутки времени.

3. Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит.

 

Направляя телескоп в небеса

История Галилея известна всем, но ее часто понимают неправильно. В моих предыдущих книгах, в особенности в «Боге и атоме», я отдал должное его огромному вкладу в физику. Здесь же хочу заострить внимание на его работе в области астрономии. В отличие от Осиандера, Галилей не удовлетворился признанием гелиоцентрической модели в качестве просто полезного инструмента для предсказания небесных явлений. Он настаивал, что наш мир устроен именно так. Кеплер был того же мнения.

В 1608 году голландский мастер по изготовлению очков Ханс Липпергей (или Липперсгей) (1570–1619) изобрел зеркальный телескоп. Первые модели давали увеличение всего в несколько раз, но Галилей усовершенствовал конструкцию. Он направил в небо новый мощный прибор, увеличивающий изображение в 30 раз.

Свои первые наблюдения Галилей описал в работе, вышедшей в 1610 году под названием «Звездный вестник» (Sidereus nuncius). Он сообщил о горах и кратерах, которые увидел на поверхности Луны. Он увидел в десять раз больше звезд, чем доступно невооруженному глазу, а также размытые туманности, которые счел подобными Млечному Пути скоплениями звезд, расположенными слишком далеко, чтобы рассмотреть их по отдельности.

На рис. 2.2 приведены иллюстрации из «Звездного вестника» — зарисовки лунной поверхности, выполненные Галилеем. Эти находки, а также обнаруженные позже пятна на Солнце стали прямым, полученным в ходе опыта опровержением распространенного убеждения в том, что небесные тела представляют собой идеальные сферы, как учил Аристотель.

Рис. 2.2. Зарисовки лунной поверхности, выполненные Галилеем. Впервые опубликованы в 1610 году, источник: Галилео Галилей, «Звездный вестник» (Альберт ван Хельден, Chicago: University of Chicago Press, 1989) 

В 1610 году Галилей сделал еще одно важное открытие. Оказалось, что Венера имеет фазы, подобные лунным, зависящие от изменения степени ее освещенности Солнцем, в результате вращения вокруг него внутри земной орбиты. Это наблюдение никак не укладывалось в птолемеевскую систему, хотя и не исключало других вариантов геоцентрической системы, к примеру модель Тихо Браге.

Но самой сенсационной серией наблюдений Галилея стала та, во время которой он увидел четыре спутника Юпитера. С 7 января по 1 марта 1610 года, когда позволяла погода, он зарисовывал расположение четырех объектов, обращающихся вокруг Юпитера. В «Звездном вестнике» можно увидеть около 64 таких наброска, в цитируемом издании они располагаются на страницах 65–83. Пример такой серии набросков изображен на рис. 2.3.

Рис. 2.3. Пример набросков Галилея, изображающих положение спутников Юпитера. Сомнения развеялись окончательно: эти небесные тела определенно были лунами, вращающимися вокруг Юпитера, а не Земли. Но и в этом случае можно было представить геоцентрическую модель, подобную предложенной Браге, в которой не всякое небесное тело вращается вокруг Земли. Впервые опубликованы в 1610 году, источник: Галилео Галилей, «Звездный вестник» (Альберт ван Хельден, Chicago: University of Chicago Press, 1989) 

Стоит отметить, что Галилей сделал ряд утверждений, не подкрепленных данными наблюдений, в частности, что приливы и отливы вызваны движением Земли вокруг Солнца и являются его свидетельством. В этом случае великий наблюдатель упустил из виду, что такая модель предсказывает только один прилив и отлив в сутки, в то время как они происходят дважды. Ранее Кеплер уже дал правильное объяснение возникновению приливов и отливов: они вызваны притяжением Луны.

В 1616 году католическая церковь запретила Галилею утверждать, что Земля движется, а Солнце висит неподвижно в центре Вселенной, так как это противоречило ряду библейских цитат, в которых говорилось, что Земля «не подвигнется» и «не поколеблется» (Пс. 93:1, 96:10, 104:5, 1-Пар. 16:30). Более того, католическая церковь признавала незыблемый авторитет аристотелевской физики, включавшей, в частности, идею абсолютного движения. Заметьте, это очень хорошо согласовывалось с доктриной абсолютной истинности церковного учения. Однако на тот момент Галилею еще не запретили заниматься его работой и он ее продолжил.

Итак, Галилей все так же наблюдал за небом в телескоп. Некоторое время спустя он навлек на себя большие неприятности. В 1632 году Галилей опубликовал «Диалог о двух главнейших системах мира, Птолемеевой и Коперниковой», в котором настойчиво защищал последнюю. Персонаж «Диалога» по имени Симплиций (Простак), представляющий сторону Аристотеля, приводит аргументы, которые ранее высказывал сам папа римский, что вызвало недовольство папы Урбана VIII, в прошлом друга и сторонника Галилея. Галилей предстал перед судом инквизиции за ослушание. Его заставили на коленях отречься от своих взглядов и приговорили к пожизненному, но довольно комфортному домашнему заключению.

Когда знаменитый французский философ Рене Декарт (1596–1650) узнал об участи Галилея, он отказался публиковать свою работу «Мир» (Le Mond), основанную на теории Коперника. Он писал своему другу: «Однако я ни за что не хочу издавать сочинение, в котором церкви могло бы не понравиться хотя бы малейшее слово. Поэтому я лучше скрою его, чем решусь выпускать в искаженном виде».

Хотя Галилею формально запретили писать что-либо из области физики и астрономии, он продолжил свою работу в области физики и заложил тем самым основы ньютоновской механики, появившейся поколение спустя. Ньютон родился в 1642-м, в год смерти Галилея.

 

Принцип относительности Галилея

Одно из важнейших открытий Галилея редко упоминается вне стен классов физики, а если и упоминается, то часто трактуется превратно. Тем не менее в этом открытии Галилей существенно отступил от господствовавших в его время взглядов, основанных на Священном Писании и трудах Аристотеля.

Здравый смысл подсказывает большинству людей, что мы можем отличить, когда движемся, а когда пребываем в состоянии покоя. Очевидно, что существует два различных состояния движения. Итак, однажды у Галилея спросили: если Земля движется, а мы находимся на Земле, то почему же мы не замечаем этого? Это был хороший вопрос.

Здравый смысл и тщательно проведенное научное наблюдение — это не одно и то же. Здравый смысл подсказывает нам, что Земля плоская. Галилей был одним из множества ученых в истории, показавших, что не всегда можно полагаться на здравый смысл. Результаты наблюдений, которые он проводил со всей тщательностью, убедили Галилея в том, что Земля вращается вокруг Солнца. Но ему также нужно было объяснить, почему мы не ощущаем этого движения. Объяснение, которое он предложил, известно нам теперь как принцип относительности Галилея. Позвольте изложить его в современной, операциональной формулировке. 

Принцип относительности Галилея

В пределах закрытой системы невозможно экспериментально измерить скорость этой системы. 

Скорость тела — это производная от перемещения тела в пространстве по времени. Она представляет собой вектор в трехмерном пространстве, абсолютное значение которого называется алгебраической скоростью, а направление соответствует направлению движения тела. Это одна из характеристик движения. Еще одна его характеристика — ускорение, представляющее собой производную скорости по времени.

Если мы находимся в закрытой комнате на Земле, мы не ощущаем ее движения. Чтобы определить скорость Земли, мы должны посмотреть на нее со стороны и провести ряд астрономических измерений. Вспомним, что Коперник на основании своих наблюдений достоверно измерил радиусы орбит планет. Согласно самым точным современным данным, Земля находится на расстоянии 150 млн. км от Солнца, а значит, за год она проходит расстояние 942 млн. км. Следовательно, Земля вращается вокруг Солнца со скоростью 30 км/с.

Из принципа относительности следует, что скорость объекта не является абсолютной величиной. Скорость можно измерить только относительно других объектов. Скорость Земли относительно Солнца составляет 30 км/с. Скорость Земли относительно меня, сидящего за столом, равна нулю.

Именно здесь начинается противоречие между церковью и Аристотелем, с одной стороны, и Галилеем — с другой. Согласно Аристотелю, движение абсолютно. Тело, находящееся в покое, находится в покое абсолютно. Движущееся тело также движется абсолютно. Священное Писание, в свою очередь, однозначно утверждает, что Земля неподвижна — даже относительно.

Приписываемые Галилею слова «И все-таки она вертится» («Eppur si muove») не в полной мере описывают его открытие, как мы теперь его понимаем. Согласно принципу относительности, Земля движется в одной системе координат и находится в состоянии покоя в других. Движение относительно. И это была поистине новая и революционная идея.

Однако Галилей не подтвердил ее опытным путем. Только в XVIII веке (относительное) движение Земли вокруг Солнца было подтверждено наблюдением звездной аберрации, проведенным Джеймсом Брэдли (1693–1762). Звездная аберрация — это кажущееся смещение звезд и других астрономических объектов вследствие относительного движения наблюдателя, находящегося на Земле.

Как мы увидим в дальнейшем, когда в начале XX века появились данные, противоречащие принципу относительности Галилея, Альберт Эйнштейн (1879–1955) спас его, создав специальную теорию относительности, которая коренным образом изменила наши представления о пространстве, времени и движении.

 

Механическая вселенная

Представления Галилея и Ньютона о космосе были очень похожи на представления Демокрита и других древних атомистов. Вселенная состоит из частичек, или материальных точек, перемещающихся в пустом пространстве, сталкивающихся и иным образом взаимодействующих между собой за счет гравитации — силы, действующей на расстоянии. Материальную точку можно считать телом, которое наблюдатель воспринимает как бесконечно малый объект. Так воспринимается очень маленькое тело, настолько крошечное, что его структуру нельзя рассмотреть как невооруженным глазом, так и с помощью увеличительных приборов любой мощности, доступных наблюдателю. Но точно также может восприниматься, к примеру, квазар — огромное, размером с галактику, тело, расположенное так далеко, что в самом мощном телескопе оно будет выглядеть как микроскопическая частица.

Законы механики Ньютона проще всего выразить на примере материальных точек. Вместо того чтобы приводить здесь оригинальные формулировки, я предпочту рассмотреть их в современном контексте.

Материальная точка массой т и скоростью v имеет импульс, представленный вектором, абсолютное значение которого р = mv, а направление соответствует направлению вектора скорости. (Как теперь известно, формула абсолютного значения импульса намного сложнее, однако это важно только для скоростей, близких к скорости света, и в нашем случае нет нужды это учитывать.) Ньютон определял р как количество движения.

Основной принцип ньютоновской механики заключается в следующем. 

Второй закон механики Ньютона

Равнодействующая всех сил, приложенных к материальной точке, прямо пропорциональна производной изменения импульса материальной точки по времени. 

Если на материальную точку не действует сила, импульс останется неизменным. Этот закон называется законом сохранения импульса. Он применим не только к материальной точке, но и к любой системе материальных точек, если равнодействующая приложенных к ней сил равна нулю.

Первый закон Ньютона — это просто особый случай, когда сила равна нулю, а значит, импульс неизменен. Если масса тела постоянна, его скорость также будет постоянной.

Третий закон Ньютона гласит: «Действию всегда есть равное и противоположное противодействие». И это опять-таки просто еще один способ сказать, что импульс остается неизменным.

Интересно, что закон сохранения энергии, прямо вытекающий из законов движения Ньютона, был сформулирован только в XIX веке.

Если масса тела постоянна, второй закон Ньютона можно записать следующим образом: F = mа, где F — равнодействующая сил, приложенных к телу, m — масса, а — ускорение, или производная скорости по времени. Это уравнение позволяет предсказать, как далеко переместится тело под воздействием силы за данный промежуток времени.

Если сила непостоянна, можно разделить движение на бесконечно малые промежутки и с помощью методов математического анализа (дифференциального и интегрального исчисления), изобретенного Ньютоном и Готфридом Вильгельмом Лейбницем (1646–1716), сложить эти интервалы, чтобы получить их результирующий эффект. Математический анализ можно использовать также для расчета движения крупных тел, разделяя их на бесконечно малые части и рассматривая эти части как материальные точки. Это не обязательно должны быть элементарные частицы. Это верно для твердых тел, жидкостей и газов. Проще простого, если понять, как это работает.

Закон всемирного тяготения Ньютона гласит, что сила гравитационного притяжения F между двумя материальными точками массой m 1 и m 2 , разделенными расстоянием г, пропорциональна произведению этих масс и обратно пропорциональна квадрату расстояния между ними. Количественное значение гравитационной постоянной G, называемой также постоянной Ньютона, самому Ньютону было неизвестно. Впервые его измерил в лабораторных условиях британский физик и химик Генри Кавендиш (1731–1810) в 1798 году.

С помощью математического анализа Ньютон доказал, что сферические тела можно рассматривать как материальные точки той же массы, расположенные в центре этих сфер. Таким образом, планеты можно описать как материальные точки, движущиеся в пустом пространстве.

Законы механики и закон всемирного тяготения Ньютона окончательно подтвердили обоснованность гелиоцентрической модели Солнечной системы. Как упоминалось ранее, Кеплер выдвинул идею о том, что орбиты планет имеют форму эллипсов, а не окружностей. Ньютон смог доказать это математически. Когда он представил доказательство астроному Эдмунду Галлею (1658–1742), тот убедил Ньютона опубликовать (за счет Галлея) трактат, который теперь считается величайшей научной работой в истории: «Математические начала натуральной философии» (Philosophiae naturalis principia mathematica). В этой работе (обычно называемой просто «Начала») представлены три закона механики и закон всемирного тяготения, которые легли в основу закона движения планет Кеплера. Сегодня это простая задача для физика-первокурсника.

На основании законов Ньютона Галлей рассчитал, что комета, появившаяся в 1682 году, — это та же самая комета, которую астрономы наблюдали еще в 240 году до н.э. и которая делает оборот вокруг Солнца по сильно вытянутой орбите за 75–76 земны хлет. Галлей предсказал, что она вернется в 1758 году. Подтверждение этого предсказания, случившееся после смерти Ньютона и самого Галлея, возможно, стало самым важным событием в истории науки. Благодаря ему авторитет новой науки укрепился в равной мере в умах ученых и обывателей.

Оптика

В наши дни во всех областях физики работа, как правило, распределяется между наблюдателями/экспериментаторами, которые создают приборы и собирают данные, и теоретиками, которые разрабатывают математические модели для описания этих данных и пытаются строить прогнозы на основании этих моделей. Как видите, в прежние времена все было не так. Галилей был наблюдателем, экспериментатором и теоретиком. Ньютон был великим теоретиком и экспериментатором. Если «Начала» Ньютона представляли собой шедевр теоретической науки, то «Оптика», опубликованная в 1704 году, стала шедевром в экспериментальной области.

В «Оптике» Ньютон представил результаты своих лабораторных экспериментов со светом и основанные на них выводы о его природе. Разумеется, свет — основной источник нашей информации о мире, а до XX века только благодаря ему люди могли узнать что-то о Вселенной за пределами Земли. Нельзя услышать или потрогать звезды, нельзя почувствовать их запах. Положим, мы чувствуем тепло от Солнца, но это все. (Кроме того, как станет ясно в дальнейшем, мы можем услышать Большой взрыв.)

Вновь Ньютон опроверг ошибочное представление Аристотеля, тысячелетиями господствовавшее в сознании европейцев. В своем сочинении «О душе» (De anima) Аристотель представил нематериальную теорию восприятия, основанную на учении Платона об идеях. Согласно Аристотелю, когда вы смотрите на объект, ваш глаз каким-то образом становится идеей этого объекта. Не стоит тратить время, пытаясь найти в этом утверждении хоть какой-то смысл.

Атомисты же были ближе к современному пониманию механизмов восприятия. Демокрит полагал, что зрительное восприятие обусловлено столкновением атомов глаза с атомами, испускаемыми объектом. Сегодня мы знаем, что эти «испускаемые атомы» представляют собой частицы, называемые фотонами.

Важнейшее достижение Ньютона, описанное в «Оптике», заключается в демонстрации того факта, что белый свет содержит в себе все цвета радуги. Ньютон понял, что цвет не является неотъемлемой характеристикой объекта, но зависит от того, как объект испускает или отражает различные цвета. Многие из воспринимаемых нами цветов, к примеру коричневый, отсутствуют в световом спектре и появляются в результате смешения цветов из разных его частей.

В «Оптике» Ньютон выдвинул несколько гипотез касательно природы света, которые он не мог подтвердить эмпирически, в частности то, что свет состоит из частиц (корпускул). Ранее он изложил эту идею перед Королевским обществом, где она встретила противодействие со стороны Роберта Гука (1635–1703), куратора экспериментов и выдающегося физика. Гук лелеял собственную теорию, заключавшуюся в том, что свет — это волна. Кроме того, он и ранее сталкивался с Ньютоном по другим вопросам. Из-за этих ожесточенных разногласий Ньютон отложил публикацию «Оптики» до смерти Гука.

Ньютон и Бог

Декарт предложил альтернативу атомарной модели, в которой Вселенная представлена континуумом материи, взвихряющейся вокруг Солнца. Гравитация каким-то образом возникала из этого водоворота движения, однако, несмотря на выдающийся математический талант, Декарт не разработал количественной модели этого процесса.

Однако Декарт совершил важнейший философский прорыв, предположив, что Бог создал Вселенную подобной идеально работающему часовому механизму, не требующему дальнейшего вмешательства. Таким образом, оставаясь преданным христианином, Декарт первым представил альтернативу Богу иудеев, христиан и мусульман, названную деизмом.

В эпоху Просвещения (XVIII век) «Вселенную как часовой механизм» стали ассоциировать с ньютоновской физикой материальной точки. Также эта идея легла в основу представлений о деистическом боге, который создал Вселенную, а затем оставил ее работать по законам, которые он установил при ее творении. Так как бог совершенен, его законы также должны быть совершенны, следовательно, ему нет нужды вмешиваться и вносить какие-либо изменения. Концепция деистического бога определенно противоречит христианским верованиям, хотя не похоже, чтобы у Декарта были какие-то проблемы из-за его оригинального предложения.

Хотя концепция Вселенной как часового механизма была, пожалуй, основным мотивирующим фактором деизма, сам Ньютон не исповедовал деистические взгляды и придерживался христианских представлений о Боге, который время от времени вмешивается в дела Вселенной, поддерживая правильный порядок вещей.

Ньютон был неортодоксальным христианином, отрицающим Троицу. Но все же он был глубоко верующим человеком, причем верил не только в христианского Бога, но и в оккультизм. Он посвятил алхимии и трактовке Библии больше времени и сил, чем своим работам по физике. В его физике Бог занимает важное место. В отличие от Галилея, считавшего себя верующим, но разделявшего религию и науку, Ньютон обратился к Богу за объяснениями явлений, которые он не мог объяснить самостоятельно. Возможно, он первым использовал аргумент, который мы теперь называем богом белых пятен или аргументом к невежеству. Не находя естественного объяснения явлению, вы делаете вывод, что за него ответственен Бог.

Закон всемирного тяготения Ньютона учитывает только силы притяжения, следовательно, звезды, которые, как тогда считалось, полностью неподвижны, должны сжиматься вследствие взаимного притяжения. Ньютон заключил, что Бог расположил их таким образом, чтобы их силы притяжения уравновешивались.

В 1718 году Галлей открыл, что три яркие звезды изменили свое положение относительно зафиксированного древними наблюдателями. Таким образом, стало понятно, что звезды подвижны, и это стало еще одним ударом по библейской космологии.

Постоянство планетарных движений Ньютон также объяснял вмешательством Бога. Он осознавал, что, исходя из законов Кеплера, планеты движутся независимо друг от друга, хотя на самом деле их силы притяжения также должны действовать друг на друга. Ньютон заключил, что орбиты планет сохраняют свое постоянство не по воле случая. Из этого он сделал вывод, что Бог должен время от времени вмешиваться в ход вещей и поддерживать порядок.

Лейбниц, главный соперник Ньютона, презрительно комментировал так:

«Г-н Ньютон и его сторонники, кроме того, еще придерживаются довольно странного мнения о действии Бога. По их мнению, Бог от времени до времени должен заводить свои часы, иначе они перестали бы действовать. У него не было достаточно предусмотрительности, чтобы придать им беспрерывное движение» {72} .

Ньютон и Лейбниц спорили также о приоритете в изобретении методов математического анализа, которые они разработали независимо друг от друга. В современном математическом анализе мы все еще используем придуманную Лейбницем систему обозначений, оказавшуюся более удачной.

 

Глава 3.

ЗА ПРЕДЕЛАМИ МИРА, ДОСТУПНОГО НЕВООРУЖЕННОМУ ГЛАЗУ

 

Астрономия XVIII века

Хотя Ньютон не проводил значимых астрономических наблюдений, в 1668 году он сконструировал первый телескоп-рефлектор (зеркальный телескоп). В телескопе-рефлекторе, в отличие от телескопа-рефрактора, увеличение достигается с помощью вогнутого зеркала, а не линзы. Это позволяет избавиться от хроматической аберрации, возникающей в линзе из-за зависимости показателя преломления от длины волны (цвета излучения). Телескоп-рефлектор — основной тип астрономического оптического телескопа, используемый сегодня в космосе и на Земле, хотя на возвышенностях их начали устанавливать только в конце XIX века.

С появлением телескопа астрономия вышла за пределы пространства, доступного невооруженному человеческому глазу, и людям стала открываться картина космоса, которую до того невозможно было представить. В 1655 году нидерландский физик и астроном Христиан Гюйгенс (1629–1695) построил телескоп-рефрактор с 50-кратным увеличением и открыл Титан, спутник Сатурна — самый крупный спутник Солнечной системы. Наблюдая за Сатурном, он сделал вывод, что эту планету окружает сплошное кольцо. Позднее Гюйгенсу удалось рассмотреть отдельные звезды в туманности Ориона и наблюдать прохождение Меркурия по солнечному диску.

Гюйгенс был также одним из величайших физиков всех времен. Он изобрел маятниковые часы и двигатель внутреннего сгорания, вывел формулу центробежной силы и написал книгу по теории вероятностей.

Среди множества его достижений — вышедшее в 1678 году количественное описание волновой теории света, предложенной Робертом Гуком в 1672 году. Корпускулярная теория Ньютона появилась позже. Гюйгенс продемонстрировал эффект огибания волнами препятствий (дифракции). Корпускулярная теория света Ньютона, казалось, была опровергнута в 1800 году, когда Томас Юнг (1772–1829) доказал, что свет проявляет волновые свойства — интерференцию и дифракцию. Как мы вскоре увидим, в XX веке стало ясно, что свет состоит из частиц, называемых фотонами, а световые волны соотносятся не с отдельными фотонами, а со статистическим поведением световых лучей, состоящих из множества фотонов.

 

Космос Канта

В 1755 году молодой приват-доцент Кёнигсбергского университета по имени Иммануил Кант (1724–1804) издал книгу о строении Вселенной под названием «Всеобщая естественная история и теория неба» (Allgemeine Naturgeschichte und Theorie des Himmels). В отличие от Ньютона и подобно Лейбницу, Кант не видел потребности в Божественных чудесах для объяснения Вселенной. Он писал:

«Мироустройство, которое не может удержаться без чуда, не отличается постоянством, а ведь постоянство — признак Божественного выбора» {74} .

Вселенная Канта начинается из созданного Богом хаоса частиц, находящихся в бесконечной пустоте. Частицы притягиваются друг к другу гравитационными силами и формируют сгустки материи, которые превращаются в упорядоченные структуры, подобные Солнечной системе. Млечный Путь представляет собой скопление звезд в форме диска. Наблюдаемые туманности — это не отдельные звезды, а скопления, подобные Млечному Пути, вечно дрейфующие в бесконечном пространстве.

Эта книга была неизвестна широким кругам до 1854 года, когда немецкий физик Герман фон Гельмгольц (1821–1894) упомянул ее в своей лекции. Кант все же больше известен благодаря своей философии, однако в области астрофизики он также не ударил в грязь лицом.

 

Небеса Гершеля

Фредерик Уильям Гершель (1738–1822) был, возможно, самым продуктивным астрономом XVIII века. Во второй половине столетия Гершель построил несколько зеркальных телескопов и сделал ряд важных открытий. Он помог установить, что Уран, ранее считавшийся звездой, на самом деле является планетой. Он открыл два спутника Сатурна и два спутника Урана. Он определил, что галактика Млечный Путь имеет форму диска. Гершель наблюдал двойные и множественные звезды. Он обнаружил, что Солнце испускает инфракрасное излучение. Среди прочего он также доказал при помощи микроскопа, что кораллы — это животные, а не растения.

В период между 1782 и 1802 годом Гершель проводил систематическое исследование незвездных объектов, то есть расплывчатых образований, называемых туманностями. Он составил каталог, включающий более 1000 туманностей, классифицировав их в зависимости от яркости, формы, размеров и других характеристик.

Начиная с 1785 года Гершель пишет серию работ под общим названием «Строение небес» (The Construction of the Heavens), в которой выдвигает предположение, что туманности находятся на очень большом расстоянии от Земли. Поскольку скорость света имеет предел, астроном, наблюдающий за туманностями, должен был бы заметить их перемещение в небе. Однако этого движения не видно, следовательно, туманности находятся очень далеко от нас.

В 2009 году Европейское космическое агентство запустило космическую обсерваторию «Гершель» — огромный инфракрасный телескоп, проработавший до 2013 года.

 

Парадокс Ольберса

Галлей, Кеплер, а также швейцарский астроном Жан Филипп де Шезо (1718–1751) осознавали проблему, вытекающую из высказанной Николаем Кузанским и Томасом Диггесом идеи о бесконечном числе звезд во Вселенной. После того как немецкий астроном Генрих Вильгельм Маттеус Ольберс (1758–1840) сформулировал эту проблему, она стала известна как парадокс Ольберса: если Вселенная вечна и бесконечна, то ночное небо должно быть не темным, а ярким от света всех наполняющих ее звезд.

Чтобы понять, почему должно быть так, представьте себе сферическую оболочку определенной толщины, расположенную на некотором расстоянии от Земли. Объем этой оболочки будет равен ее толщине, умноженной на площадь ее поверхности, 4πr2. Если мы предположим, что пространство этой оболочки равномерно заполнено звездами, то ее яркость будет пропорциональна ее объему. Однако интенсивность света (мощность источника на единицу площади), достигающего Земли, снижается по формуле 1/r2. Таким образом, если средняя яркость звезды не зависит от ее удаленности от Земли, каждая последующая оболочка той же толщины будет давать такую же яркость и наблюдаемый с Земли свет будет исходить от совокупности всех звезд во Вселенной. В бесконечной Вселенной этот свет будет ярче солнечного — более того, его интенсивность будет бесконечна. Очевидно, это совсем не похоже на то, что мы видим вокруг.

Есть несколько возможных объяснений того, почему небо ночью темное. Эдгар Аллан По (1809–1849) в своем эссе 1848 года под названием «Эврика» предположил, что свет от наиболее удаленных звезд просто еще не достиг Земли. То есть возраст Вселенной конечен и мы можем увидеть свет только тех звезд, от которых он успел дойти за срок ее существования.

Это так, но еще одна причина, которую мы обсудим позднее, заключается в том, что Вселенная расширяется. Энергия света, идущего с большого расстояния, снижается из-за красного смещения в сторону длинноволнового низкоэнергетического излучения.

 

Достаточное основание

В 1710 году Лейбниц написал книгу под названием «Опыт теодицеи о благости Бога, свободе человека и происхождении зла». Термин «теодицея» («богооправдание») стал ассоциироваться с все еще безуспешными попытками оправдать бесспорное зло и страдания, присутствующие в этом мире, который, предположительно, полностью контролируется всеблагим, всемогущим и всезнающим Богом. Лейбниц предположил, что Бог создал «лучший из возможных миров». Зло, существующее в мире, — всего лишь составляющая часть этого оптимального варианта Вселенной, то есть без него мир был бы еще хуже.

Кроме того, Лейбниц в качестве доказательства существования Бога предложил закон достаточного основания, известный также как космологический аргумент. Суть этого аргумента заключается в том, что ни одно явление не может оказаться истинным без полного объяснения этого явления, без достаточного основания. Поскольку Вселенная не содержит в себе собственного объяснения, Бог должен существовать как достаточное основание для существования Вселенной.

Есть достаточные основания считать, что этот аргумент несостоятелен. Ранее я уже акцентировал на этом внимание. Как и все аргументы, построенные на чистой логике, без эмпирического обоснования, он не несет в себе ничего, что не заложено в его исходные условия. В данном случае это значит, что Бог должен существовать просто потому, что он должен существовать.

 

Центр Вселенной

На протяжении нашего исторического обзора мы видели, что в течение долгого времени существовал конфликт относительно того, где может располагаться центр Вселенной. Большинству людей легко было представлять в центре себя. Любому виду живых организмов свойственно концентрироваться на себе, причем речь не обязательно идет об отдельных организмах, но зачастую о том, что Ричард Докинз назвал эгоистичными генами. Вид, которому в какой-то степени не свойственен эгоизм, нежизнеспособен.

Кроме того, у нас есть хороший эмпирический аргумент в пользу того, чтобы считать себя центром космоса. Когда мы смотрим в небо, кажется, будто все вращается вокруг нас. Планеты порой разворачиваются и уходят в другую сторону, однако вскоре возвращаются и вновь вращаются вокруг Земли.

Пусть мы и знаем теперь, что гелиоцентрическая система представляет собой простейшую модель для наглядной демонстрации движения планет, как часто в нашей повседневной жизни нам приходится беспокоиться о том, где планета будет завтра, или через месяц, или где она была 28 марта 585 года до н.э.? На самом деле геоцентрическая система идеально подходит для большинства наших целей. Было бы глупо рассчитывать маршрут полета авиалайнера, следующего из Токио в Лондон, в гелиоцентрической системе координат. А при желании мы все еще можем использовать геоцентрическую систему для предсказания движения планет.

Конечно, теперь мы знаем, что Солнце — не центр Вселенной, как это представлялось во времена разработки Коперником модели Солнечной системы, состоящей из семи планет и окруженной сферой неподвижных звезд. С появлением более мощных телескопов астрономы обнаружили, что наше Солнце — всего лишь еще одна звезда. Как я уже упоминал, античные атомисты предположили, что космос простирается безгранично во времени и пространстве и в нем нет такого места, которое можно было бы обозначить как центр Вселенной. Так же как нет и такого момента, который можно считать моментом начала (или конца) Вселенной. Как мы вскоре увидим, именно на этой космологической модели сходятся во мнениях большинство современных ученых. Но я еще раз подчеркну, что это модель, придуманная человеческим разумом.

 

Глава 4.

ПРОБЛЕСКИ НЕВООБРАЗИМОГО 

 

Прогресс небесной механики

Появление телескопов и ньютоновской механики позволило человечеству краем глаза взглянуть на Вселенную, которую до того нельзя было и вообразить, а затем описать увиденное с математической точностью. Законы движения планет Кеплера, которые Ньютон математически обосновал, исходя из сформулированных им законов механики и всемирного тяготения, качественно превосходили все предыдущие попытки описания закономерностей планетарных движений. Но все же они не были идеальны, поскольку учитывали только гравитационные взаимодействия планет с Солнцем. Взаимодействия планет друг с другом и иными космическими объектами — кометами, астероидами и спутниками — не принимались во внимание.

К счастью, такая приближенная модель хорошо подходит для описания нашей Солнечной системы, ведь, как говорилось в предыдущей главе, сила притяжения между двумя телами прямо пропорциональна произведению их масс, а масса Солнца во много раз превышает массу любой планеты. Более того, сила притяжения уменьшается по формуле 1/r2, а планеты находятся на очень больших расстояниях друг от друга.

Тем не менее масса планет нашей Солнечной системы достаточно велика и они находятся достаточно близко друг к Другу для того, чтобы их взаимодействие искажало форму орбит, делая их не совсем эллиптическими. Однако эти отклонения орбит от формы, предписанной законами Кеплера, очень малы. Нам удалось обнаружить их только с появлением новых, более совершенных телескопов — еще один пример того, как развитие новых технологий стимулирует научный прогресс.

Эти эффекты достаточно малы для того, чтобы рассматривать их как возмущения в кеплеровских орбитах двух тел. В 1747 году швейцарский математик Леонард Эйлер (1707–1783) удостоился премии Парижской академии наук за разработку аналитического метода расчета движения Юпитера и Сатурна. Эйлер заложил основы теории возмущений, которая до сих пор используется в физике в качестве основного метода решения задач, не имеющих точного решения, путем последовательных приближений. Но область применения этого метода не ограничивается небесной механикой. К примеру, весьма успешная теория квантовой электродинамики, разработанная физиками в конце 40-х годов XX века, основана на расчете серии последовательных приближений с увеличивающейся точностью.

Можно представить, что существуют звездные системы, в которых взаимодействие планет нельзя свести к небольшим возмущениям. В этом случае расчеты движения планет методом возмущений будут настолько неточными, что утратят всякий смысл. В таких системах точный ответ будет иметь только задача двух тел. Астрономам, живущим в таких звездных системах, пришлось бы пользоваться численными методами для расчета орбит, однако с компьютерами хотя бы уровня наших им бы это удалось.

Хотя расчеты Эйлера увенчались успехом лишь отчасти, он заложил основы математических методов, разработанных французским математиком, астрономом и физиком Пьером Симоном Лапласом (1749–1827), которые тот изложил в своем пятитомнике под названием «Небесная механика», издававшемся с 1799 по 1805 год.

Над уравнениями небесной механики работал еще один великий французский математик, астроном и физик, Жозеф Луи Лагранж (1736–1813), при рождении получивший имя Джузеппе Луиджи Лагранджиа (его родители были итальянцами и жили в итальянском городе Турине). В своем трактате «Аналитическая механика» (Mecanique analytique), впервые опубликованном в 1788 году, он поставил ньютоновскую механику на прочный математический фундамент. Уравнения Аагранжа все еще используются студентами для решения задач классической ньютоновской механики наиболее общим способом, независимо от выбранной системы координат. Более того, множество современных физических моделей, включая модели релятивистской теории квантового поля, начинаются с записи математической функции, называемой лагранжианом.

Вспомним, Ньютон признавал, что его математический вывод законов Кеплера предполагает взаимодействие только двух тел, благодаря чему задача становится разрешимой. Располагая в те времена весьма ограниченными данными, Ньютон заключил, что из-за множества случайных взаимодействий между планетами Солнечная система не может сохранять свое стабильное и предсказуемое состояние под воздействием одних лишь гравитационных сил. Из этого Ньютон сделал вывод, что Бог должен время от времени вмешиваться и подправлять движения небесных тел.

Столетие спустя Лаплас и Лагранж независимо друг от друга рассчитали долгосрочные отклонения большой полуоси планет вследствие эффекта возмущений со стороны других планет. Их расчеты показали, что в первом порядке планетарных масс возмущения сводятся к нулю. Позднее французские математики Симеон Дени Пуассон (1781–1840) и Анри Пуанкаре (1854–1912) доказали, что то же самое происходит во втором порядке масс, но не в третьем. Коротко говоря, Солнечная система довольно стабильна, но эта стабильность все же не абсолютна.

Лаплас смог объяснить данные всех наблюдений Птолемея с точностью до угловой минуты, включая движения Юпитера и Сатурна, которые не вписывались в предыдущие расчеты. Таким образом, Лаплас доказал, что одних законов Ньютона вполне достаточно для того, чтобы объяснить движение планет на протяжении всей предшествующей истории. Это привело его к радикальной идее, которую Ньютон отвергал: для понимания материальной Вселенной не требуется ничего, кроме физики.

Как и в случае с Лагранжем, фамилия Лапласа часто звучит на занятиях по физике, математике и техническим дисциплинам, где студенты используют лапласиан для решения задач по математическому анализу. Фамилии Пуассон и Пуанкаре также регулярно упоминаются на этих уроках.

Однако студентам-физикам редко рассказывают (по крайней мере, на занятиях по физике) о встрече Лапласа с Наполеоном Бонапартом, случившейся примерно в 1802 году. Преподаватели физики в своих лекциях вообще редко уделяют внимание чему-то, что не поддается расчетам. Вот одна из версий этого диалога. Неизвестно, было ли все так на самом деле, не исключено даже, что вся эта история вымышлена.

На приеме у Наполеона Лаплас представил ему копию своей «Небесной механики». Кто-то сообщил Наполеону, что в этой книге не упоминается Бог. Наполеон принял ее, но высказал замечание: «Мсье Лаплас, говорят, что в этой огромной книге об устройстве Вселенной вы ни разу не упомянули ее Творца». На что Лаплас ответил: «Je n'avais pas besoin de cette hypothèse-là» («У меня не было нужды в этой гипотезе»). Изумленный Наполеон передал эту реплику Лагранжу, который воскликнул: «Ah! c'est une belle hypothèse; ça explique beaucoup de choses» («О, это прекрасная гипотеза: она многое объясняет!»).

Ни в одном своем тексте Лаплас не отрицает существование Бога, и вполне возможно, что он был деистом. Как мы выяснили в предыдущей главе, деизм, в отличие от теизма, предполагает, что бог запустил механизм Вселенной и оставил ее работать согласно инструкциям, зашифрованным в созданных им естественных законах. Если приведенная выше реплика действительно прозвучала, это может означать, что Лаплас просто не видел потребности в гипотезах, выходящих за рамки законов механики и всемирного тяготения, для описания движения небесных тел.

В вышедшей в 1796 году книге «Изложение системы мира» (Exposition du système du monde) Лаплас цитирует Ньютона: «Это удивительное размещение Солнца, планет и комет может быть только творением разумного и всемогущего существа». Лаплас комментирует позицию Ньютона с точки зрения деизма: «В конце своей “Оптики” он [Ньютон] повторяет эту же мысль, в которой он еще больше утвердился бы, если бы знал то, что мы показали, а именно, что расположение планет и спутников как раз таково, чтобы обеспечивать их устойчивость».

Лаплас соглашался с критикой Лейбница в адрес Ньютона: «Это значит иметь очень узкое представление о мудрости и всемогуществе Бога. Эта машина Бога, по их мнению, так несовершенна, что от времени до времени посредством чрезвычайного вмешательства он должен чистить ее и даже исправлять, как часовщик свою работу». Вскоре мы увидим, что эту ошибку совершают люди и теперь, утверждая, что Вселенная, созданная Богом, настолько несовершенна, что ему пришлось вмешаться и подстроить ее механизм таким образом, чтобы на Земле смогла развиться жизнь. Лаплас и Лейбниц возразили бы: «Бог слишком умен для этого». Я же скажу иначе: Вселенная слишком умна для этого.

 

Демон Лапласа

Какими бы ни были религиозные взгляды Лапласа, он разработал принцип, получивший известность как часовой механизм Вселенной или мировая машина Ньютона. Согласно этому принципу, Вселенная представляет собой гигантскую машину или механизм, работающий по законам физики, таким образом, все, что происходит, предопределено событиями, случившимися в прошлом.

Вот как Лаплас выразил эту мысль в своем «Опыте философии теории вероятностей»:

«Мы должны рассматривать настоящее состояние Вселенной как следствие ее предыдущего состояния и причину последующего. Ум, которому были бы известны для какого-либо данного момента все силы, одушевляющие природу, и относительное положение всех ее составных частей, если бы вдобавок он оказался достаточно обширным, чтобы подчинить эти данные анализу, обнял бы в одной формуле движения величайших тел Вселенной наравне с движениями легчайших атомов: не осталось бы ничего, что было бы для него недостоверно, и будущее так же, как и прошедшее, предстало бы перед его взором» {83} .

Этот ум обычно называют демоном Лапласа, хотя сам он этот термин не использовал. Лаплас называл его просто умом и не ассоциировал с каким-либо божеством. Теория часового механизма Вселенной вполне сочетается с представлениями о деистическом боге, однако Бог иудеев, христиан и мусульман в нее определенно не вписывается. Равно как и любое другое божество, подобное тому, в которое верил Ньютон: не только сотворившее Вселенную, но и играющее значительную роль в ее жизни, регулярно вмешиваясь в ее работу и влияя на ход событий.

Деизм получил широкое распространение в XVIII веке, в эпоху Просвещения, когда наука и рациональное мышление в познании стали преобладать над богословием и божественным откровением. Деисты разделяли приведенное ранее мнение Лейбница и Лапласа, которые считали нелогичным то, что совершенному богу может понадобиться вмешиваться в дела мира после его сотворения, чтобы исправить возникшие неполадки.

Многие выдающиеся личности того времени либо открыто называли себя деистами, либо считались деистами на основании взглядов, которые они высказывали в своих работах. Среди европейцев к таковым относятся Адам Смит (1723–1790), Фридрих Великий (1712–1786), Джеймс Уатт (1736–1819) и Вольтер (1694–1778). В Америке деистами были Бенджамин Франклин (1706–1790), Томас Пейн (1737–1809) и по меньшей мере четыре первых президента: Джордж Вашингтон (1732–1799), Джон Адаме (1735–1826), Томас Джефферсон (1743–1826) и Джеймс Мэдисон (1751–1836).

Тем не менее вследствие множества причин, практически не имеющих отношения к демону Лапласа, в XIX веке Просвещение с его версией деизма сошло на нет. Средний человек не находил в безликом деистическом боге необходимого религиозного утешения. В Европе и Америке распространилось христианское движение за религиозное возрождение, ставившее на место разума чувства и привлекавшее в равной мере богатых и бедных. Одновременно с этим интеллектуальный и литературный мир начал сопротивляться научной рационализации, сместив акцент на интуицию и эмоции, — это движение стало известно как романтизм.

В отличие от американской революции Великая французская революция, также уходящая корнями в Просвещение, стала настоящей катастрофой. К тому же стоит добавить, что с приходом промышленной революции благосостояние высшего и среднего классов существенно повысилось. А они, в свою очередь, ввергли низшие классы в отчаянное положение, вынуждая их работать долгими часами и за гроши на «темных сатанинских мельницах», как поэт Уильям Блейк (1757–1827) окрестил фабрики и шахты. Крестьяне, работавшие от рассвета до заката на полях землевладельцев, хотя бы дышали свежим воздухом, ели более свежую еду и пили чистую воду.

 

Астрономия XIX века

В XIX веке благодаря прогрессу как в области математических расчетов, так и в инженерном деле астрономия значительно шагнула вперед. Далее я кратко опишу некоторые из важнейших ее достижений.

Начнем со второй половины XVIII века, чтобы дополнить рассказ о вкладе Лапласа в космологию. В упомянутой ранее работе «Изложение системы мира» Лаплас представил модель формирования Солнечной системы, которая объясняла ряд фактов, ранее озадачивавших астрономов. В частности, проблему того, почему все планеты вращаются вокруг Солнца в одном и том же направлении и примерно в одной плоскости. Шведский философ Эммануил Сведенборг (1688–1772) предложил ту же модель еще в 1734 году, а Иммануил Кант доработал идею Сведенборга в 1755 году. Лаплас же дал ей математическое обоснование. Эта модель, названная небулярной гипотезой, предполагает, что Солнечная система образовалась из вращающегося сферического облака раскаленного газа. По мере остывания это облако уменьшалось в объеме и от его наружного края стали последовательно отделяться кольца. Эти кольца остывали и сжимались, образуя планеты, а центральное ядро превратилось в Солнце.

В XIX веке большинство ученых принимало модель Лапласа, однако в XX веке от нее отказались, так как в ее рамках нельзя было объяснить тот факт, что 99% вращательного момента Солнечной системы приходится на планеты. Тем не менее идея о вращающемся газовом шаре по существу верна. Современные астрономы наблюдают вокруг молодых звезд и протозвезд (объектов, из которых формируются звезды) диски из рассеянной материи. Считается, что планеты формируются в этих дисках в результате уплотнения материи в сгустки под воздействием гравитационных сил. Однако эта теория не объясняет образования газовых гигантов, таких как Юпитер и Сатурн.

В 1801 году французский астроном и популяризатор науки Жозеф Жером Лефрансуа де Лаланд (1732–1807) издал каталог, содержащий более 47 тыс. звезд. К тому времени он уже был знаменитостью, и, возможно, настал подходящий момент, чтобы передохнуть от потока научных подробностей и поговорить о его личности, поскольку это был довольно интересный человек. Вот описание его внешности:

«Он был очень уродлив и гордился этим. Голова в форме баклажана и всклокоченная копна волос, следовавшая за ним подобно хвосту кометы, делали его любимцем портретистов и карикатуристов. Он утверждал, что его рост составляет пять футов, однако при всей точности, с которой он вычислял космические расстояния, его оценка собственного роста на Земле, похоже, была преувеличена. Он любил женщин, в особенности женщин яркого ума, поддерживая их на словах и на деле» {84} .

Лаланд также опубликовал «Словарь атеистов», в котором писал: «Дело ученых — распространять свет науки, чтобы однажды они смогли обуздать этих чудовищных правителей, поливающих землю кровью, иными словами, поджигателей войны. А поскольку религия породила столь многих из них, нам стоит надеяться, что и ей тоже придет конец». Забавно его замечание, что он стал атеистом в отместку Богу за то, что тот сделал его таким уродцем.

Вначале Наполеон разрешил Лаланду включить в словарь статью о себе. Но затем император осознал, что нуждается в поддержке церкви, и попытался натравить на астронома цензуру в лице Института Франции. Однако Лаланд отказался прекратить бравировать своими атеистическими взглядами. Даже в период диктатуры Франция могла гордиться высокой степенью интеллектуальной свободы.

Но вернемся к науке. В 1802 году английский физик и химик Уильям Волластон (1766–1828) наблюдал темные линии в солнечном спектре. Они получили название линий Фраунгофера в честь немецкого физика Йозефа фон Фраунгофера (1787–1826), который исследовал их в 1814 году. Спустя почти полвека немецкий физик Густав Кирхгоф (1824–1887) и немецкий химик Роберт Бунзен (1811–1899) провели параллель между линиями Фраунгофера и светлыми линиями, наблюдаемыми в эмиссионных спектрах различных элементов при их нагревании.

Так появился метод спектрального анализа, в дальнейшем превратившийся в важнейший инструмент, с помощью которого астрономы научились определять химический состав звезд и межзвездной среды. Гелий, второй элемент таблицы Менделеева, был назван так потому, что, прежде чем он был найден на Земле, его впервые обнаружили по линиям поглощения в солнечном спектре.

Механизм возникновения линейчатых спектров был открыт только в 1913 году, когда Нильс Бор рассчитал спектр атома водорода, воспользовавшись новой квантовой теорией (см. главу 5). На самом деле линейчатые спектры были масштабной аномалией, необъяснимой в рамках волновой теории света, что в итоге привело к развитию квантовой механики.

Между тем с началом спектрального анализа звезд универсальный характер законов физики подтвердился. Ньютон совершил первый огромный шаг в этом направлении, когда вывел свой закон всемирного тяготения. Прежде считалось, что на Земле действует один свод законов, а в небесах — совершенно другой. Однако Ньютон предположил, что яблоко падает с дерева, а Луна вращается вокруг Земли под воздействием одной и той же силы. Когда ученые обнаружили, что спектральные линии звезд аналогичны спектральным линиям горячих газов, получаемым в лабораториях на Земле, это стало подтверждением универсальности законов физики. На протяжении всей Вселенной физика неизменна.

Функции Бесселя хорошо знакомы студентам, изучающим физику, математику и технические дисциплины. Хотя это понятие впервые ввел физик Даниил Бернулли (1700–1782), названы они были в честь астронома Фридриха Вильгельма Бесселя (1784–1846). По образованию Бессель был бухгалтером и работал в судоходной компании. Интерес к навигации привел Бесселя в астрономию, ив 1810 году в возрасте 25 лет он стал директором Кёнигсбергской обсерватории в Пруссии.

Бессель первым использовал параллакс для измерения расстояния до звезды. В 1838 году он сообщил, что 61-я Лебедя расположена на расстоянии 10,4 светового года от Земли (1 световой год равен 9,46∙1012 км). По современной оценке это расстояние составляет 11,4 светового года. Позже в том же году Фридрих Вильгельм фон Струве (1793–1864) и Томас Хендерсон измерили соответственно параллакс Беги (расстояние 25 световых лет) и Альфы Центавра (расстояние 4,4 светового года).

На рис. 4.1 показано, как применять параллакс. Наблюдения звезды проводят дважды с перерывом шесть месяцев. Расстояние до звезды рассчитывается (с малоугловым приближением, которое обеспечивает достаточную точность вычислений) по формуле d = 2r/B, где r — радиус земной орбиты, в — разность между двумя углами обзора в радианах.

Рис. 4.1. Как использовать параллакс для измерения расстояния от Земли до звезды или другого астрономического объекта. Звезда А в определенный момент находится в точке В, а 6 месяцев спустя — в точке С. Если радиус земной орбиты равен r (расстояние до Солнца), а измеряемый параллакс равен θ, то расстояние от Земли до звезды d = 2r/ θ. Угол θ в реальности намного меньше изображенного здесь, поэтому для расчетов можно использовать малоугловое приближение. Авторская иллюстрация 

Таким образом люди начали вычислять огромные расстояния, разделяющие Землю и звезды. Ближайшая к нам множественная звездная система — Альфа Центавра. Разумеется, не считая Солнца, которое находится на расстоянии 147 млн. км, или 1,55∙10-5 светового года (8,17 световой минуты) от Земли. Во времена, когда это расстояние было измерено впервые, наиболее удаленной от Солнца планетой считался Уран. Хотя Уран наблюдали еще в далекой древности, из-за того что он очень тусклый, его не считали планетой до 1781 года, когда Гершель убедительно это доказал. Расстояние от Урана до Солнца в наиболее удаленной точке орбиты равно 3 млрд. км, или 0,000317 светового года (2,78 светового часа).

Поговорим о следующей планете — Нептуне. Галилей наблюдал Нептун дважды, в 1612 и 1613 годах, однако считал его неподвижной звездой, хотя, согласно последним данным, не исключено, что он замечал движение звезд. В начале XIX века французский астроном Алекс Бувард (1766–1843) измерил отклонения орбиты Урана от траектории, описанной в таблицах, впоследствии ставших стандартными. Он предположил, что отклонение орбиты вызвано влиянием восьмой планеты Солнечной системы, находящейся дальше Урана. Британский астроном Джон Куч Адамс (1819–1892), используя различные источники данных, представил несколько оценок вероятного местоположения новой планеты.

Независимо от него аналогичные расчеты проводил французский математик Урбен Жан Жозеф Леверье (1811–1877), который представил Французской академии окончательные результаты 31 августа 1846 года. Два дня спустя Адамс отправил результаты своих расчетов в Гринвичскую королевскую обсерваторию. Леверье же отправил свой прогноз в Берлинскую обсерваторию 18 сентября. Именно там 23 сентября 1846 года с отклонением 1° от положения, рассчитанного Леверье, была обнаружена планета. Позже ее отождествили с Нептуном. Астрономы Гринвичской обсерватории чересчур замешкались, и Адамс остался ни с чем. Он любезно признал первенство Леверье в открытии новой планеты.

Нептун в наиболее удаленной точке своей орбиты находится на расстоянии 4,5 млрд. км (0,000476 светового года, или 4,17 светового часа) от Солнца.

Следующий серьезный успех астрономии XIX века связан с именем английского астронома Уильяма Хаггинса (1824–1910), проводившего масштабные исследования спектров звезд с целью определения их химического состава. Он доказал, что звезды состоят из тех же химических элементов, которые встречаются на Земле. Он также обнаружил углеводороды в составе комет. Но главное, в 1868 году Хаггинс стал первым, кто измерил лучевую скорость звезды (проекцию вектора скорости на луч зрения, то есть на прямую линию, соединяющую звезду с наблюдателем), предположив, что наблюдаемое смещение спектральных линий происходит из-за эффекта Доплера.

В 1842 году Кристиан Андреас Доплер (1803–1853) доказал, что длина волны изменяется при перемещении источника излучения относительно наблюдателя (приближении к нему или отдалении от него). Таким образом, если звезда удаляется от нас, видимый свет от нее будет сдвигаться в красную (длинноволновую) сторону спектра, а если приближается — в синюю (коротковолновую). На основе числового значения изменения частоты астроном может рассчитать лучевую скорость. К примеру, красное смещение определяется по формуле z = 1 + Δλ/λ, где Δλ/λ — относительное изменение длины волны. Тогда лучевая скорость будет равна v = zc, где с — скорость света, для v << с. Точная формула, применимая для всех скоростей, намного сложнее и выводится из специальной теории относительности.

Как мы увидим в дальнейшем, открытие сдвига спектральных линий астрономических объектов имело серьезные последствия в XX веке, когда ученые обнаружили, что большинство галактик удаляются от нас, а степень их красного смещения указывает на расстояние до них. В результате удалось определить, что наша Вселенная во много раз больше, чем то расстояние до звезд в пару-тройку световых лет, которое удалось измерить с помощью звездного параллакса.

А пока астрономы XIX века осознавали размеры Вселенной, их современники-физики обдумывали проблемы возраста Солнца и Земли. В 1863 году британский физик Уильям Томсон, лорд Кельвин (1824–1907), оценил возраст Земли, исходя из предположения, что она изначально находилась в расплавленном состоянии, постепенно затвердев по мере остывания. В результате у него получился срок 20 млн. лет. В 1856 году немецкий физик Герман фон Гельмгольц, сформулировавший закон сохранения энергии, занялся анализом возраста Солнца и предположил, что оно черпает энергию из гравитационного сжатия. Таким образом, энергия излучаемого света высвобождается при снижении потенциальной энергии Солнца. Пользуясь подходом Гельмгольца, в 1862 году Кельвин сделал вывод, что Солнце не может быть старше 20 млн. лет. Это были очень приблизительные подсчеты, и тот факт, что Кельвин получил один и тот же результат, используя два разных метода, говорит о том, что он наверняка в чем-то сжульничал. Однако метод расчета возраста Солнца заслуживал большего доверия.

Так или иначе, обе эти оценки представляли большую проблему для теории эволюции путем естественного отбора, выдвинутой совместно Чарльзом Дарвином (1809–1882) и Альфредом Расселом Уоллесом (1823–1913) в 1858 году. Временные масштабы эволюции составляют не менее 100 млн. лет. Это несоответствие беспокоило и самого Дарвина, который считал его самой серьезной угрозой своей теории.

Со своей стороны, геологи поддерживали эволюционную гипотезу, оценивая возраст Земли примерно в 2 млрд. лет. Эти разногласия были разрешены только в начале XX века с открытием реакции термоядерного синтеза, благодаря которой Солнце будет светить еще 5 млрд. лет или даже больше. Возраст Земли в настоящее время определен довольно точно с помощью метода радиоизотопного датирования, он составляет 4,54 млрд. лет с возможной погрешностью 1%.

Тем временем наблюдательная астрономия продолжала развиваться. В 1888 году американский астроном Джеймс Килер (1857–1900) использовал гигантский 36-дюймовый телескоп-рефрактор (телескоп на основе линзы), установленный в Ликской обсерватории на горе Гамильтон, штат Калифорния, для наблюдения промежутков между кольцами Сатурна.

На меньшем склоне Килер установил 36-дюймовый телескоп-рефлектор. В то время ньютоновские зеркальные телескопы только начали появляться в горных обсерваториях. Следствием этого стал значительный рост возможностей, в особенности в области спектроскопии, которая с устранением сферической аберрации, характерной для телескопов на основе линзы, шагнула далеко вперед.

Однако Килеру недолго довелось поработать с этим инструментом. Из-за разногласий со строгим директором Ликской обсерватории, выпускником Военной академии США, в 1891 году Килер перевелся в обсерваторию «Аллегени». Там, несмотря на менее качественное оборудование и затянутое заводским дымом небо Питтсбурга, ему удалось совершить важное открытие, которое принесло ученому международную известность. Килер при помощи спектрального анализа подтвердил теорию Джеймса Клерка Максвелла (1831–1879) о том, что кольца Сатурна состоят из мелких объектов, вращающихся вокруг планеты с разной угловой скоростью.

В 1898 году Килер вернулся в Ликскую обсерваторию, чтобы занять место предыдущего непопулярного директора. Там он отремонтировал еще один 36-дюймовый телескоп, так называемый телескоп Кросли, подарок британского политика Эдварда Кросли, считавшийся рухлядью. Однако Килеру удалось его наладить. Когда телескоп пришел в рабочее состояние, Килер стал делать с его помощью прекрасные снимки спиральных туманностей. Это стало ключом еще к одной двери в изучении космоса. Но Килер, к сожалению, не смог войти в эту дверь, поскольку умер в 1900 году, незадолго до своего 43-летия.

 

Глава 5.

ТЕПЛОТА, СВЕТ И АТОМЫ 

 

Термодинамика

Двумя важнейшими открытиями физики XIX века, практическую и космологическую значимость которых трудно переоценить, стали термодинамика и электромагнетизм. С наступлением промышленной революции появилась потребность в детальном изучении механизма работы тепловых двигателей и возникла новая наука термодинамика, описывающая результаты исследования тепловых явлений. Основанная исключительно на наблюдениях макроскопических механических систем, в которых происходит теплообмен и обмен работой, термодинамика эволюционировала в весьма сложную техническую науку, изучающую измеримые величины, такие как температура, давление и плотность.

Два основных постулата термодинамики — это ее первый и второй законы (или начала).

ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ

Изменение внутренней энергии системы равно разности теплоты этой системы и выполненной ею работы.

Первое начало термодинамики следует из закона сохранения энергии, который вывели в согласовании с принципами этой науки. Теплота рассматривалась как форма энергии, в то время как работу еще раньше определили как полезное приложение силы. Если вы прикладываете к телу силу, чтобы увеличить его скорость, работа, совершенная над телом, равняется увеличению его кинетической энергии (энергии движения). Бели на тело действует сила трения, замедляющая его движение, потеря кинетической энергии проявляется в теплоте трения.

ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ

Энтропия замкнутой системы с течением времени должна либо оставаться неизменной, либо нарастать.

Второй закон изначально был сформулирован в контексте функционирования двигателей и холодильников, чтобы объяснить тот факт, что эффективность их работы не может быть абсолютной, несмотря на то что абсолютная эффективность не противоречит закону сохранения энергии. Иными словами, двигатель не может превратить 100% сообщаемой ему тепловой энергии в работу. В противном случае можно было бы построить вечный двигатель, получающий всю необходимую энергию из внешней среды. Аналогично холодильник или кондиционер не могут изменить температуру, не совершая работы. Иначе их не требовалось бы подключать к электрической розетке. В1865 году Рудольф Клаузиус (1822–1888) заново сформулировал эти законы в контексте абстрактной величины, называемой энтропией, которая является показателем неупорядоченности системы.

Влияние термодинамики на представления людей XIX века о мире было огромным, особенно того, что касается ее связи с богословскими вопросами. Многие философы и богословы тех времен обратились к первому и второму началам термодинамики, чтобы найти в них подтверждение гипотезы конечной, сотворенной Вселенной. К первому закону обращались, чтобы доказать, что внутренняя энергия Вселенной, состоящая из потенциальной энергии гравитационного притяжения и кинетической энергии (энергии движения), должна иметь источник, находящийся за пределами Вселенной.

На основании второго закона термодинамики доказывали, что Вселенная не может быть вечной, она должна иметь начало и, более того, в итоге должна умереть. Это явление получило название тепловой смерти Вселенной — состояния, при котором движение полностью прекратится и температура Вселенной снизится до минимально возможного уровня, то есть абсолютного нуля.

Термодинамический аргумент в пользу божественного творения, высказанный многими авторами, заключается в следующем: во-первых, если бы Вселенная существовала вечно, ее тепловая смерть, то есть состояние полной неупорядоченности, максимальной энтропии, уже наступило бы. Во-вторых, уровень энтропии Вселенной в прошлом был ниже и в какой-то момент должен был быть минимальным (нулевым), это и был момент рождения Вселенной. Это, утверждали они, свидетельствует не только о том, что Вселенная имела начало, но и о том, что она была сотворена сверхъестественным образом. Этот вывод следует из того факта, что Вселенная в то время находилась в состоянии полного беспорядка, хаоса, значит, существующий порядок должен был прийти извне.

Герман фон Гельмгольц, написавший в 1847 году исчерпывающий трактат о законе сохранения энергии, объяснил, каким, на его взгляд, будет конец Вселенной, в лекции, прочитанной им в Кенигсберге в 1854 году:

«Если физические процессы во Вселенной будут дальше неизменно идти своим чередом, вся сила [под силой подразумевается энергия] в конечном итоге обратится в форму тепла, а все тепло придет в состояние равновесия. Тогда исчезнет возможность всяких дальнейших изменений и наступит полная остановка всех естественных процессов… Иными словами, с этого момента Вселенная будет обречена пребывать в состоянии вечного покоя» {89} .

В 1868 году Клаузиус дал определение тепловой смерти Вселенной с точки зрения энтропии: «Энтропия Вселенной стремится к максимуму», и в момент, когда его достигнет, «Вселенная застынет и умрет» {90} .

Но не все были в этом убеждены. Выдающийся британский физик лорд Кельвин (Уильям Томсон) соглашался с гипотезой тепловой смерти. В 1862 году он написал: «Результатом всего этого [того, что он называл законом рассеяния энергии] неизбежно было бы состояние всеобщего покоя и смерти». Однако далее он подвергает сомнению этот вывод, говоря, что «наука побуждает нас скорее допускать бесконечное развитие через бесконечное пространство действия, ведущего к превращению потенциальной энергии в осязаемое движение, а оттуда в тепло, чем смотреть на природу как на один конечный механизм, бегущий, как часы, и останавливающийся навсегда». Другими словами, закон рассеяния энергии не выполняется в условиях бесконечного пространства. Но у Кельвина не было убедительного аргумента в пользу бесконечности последнего.

Другие ученые, в частности шотландский инженер и физик Уильям Ранкин (1820–1872), один из основателей термодинамики (абсолютная температурная шкала, имеющая ту же цену деления, что и шкала Фаренгейта, называется шкалой Ранкина), искали способы избежать тепловой смерти Вселенной. Ранкин предполагал, что «лучистая теплота» может иметь свойства, позволяющие ей повторно фокусироваться, вместо того чтобы рассеиваться.

Что касается происхождения Вселенной, тогда считалось, что существует закон сохранения массы, следовательно, вещество, составляющее Вселенную, должно было откуда-то взяться. Джеймс Клерк Максвелл, великий ученый, создавший единую теорию электричества и магнетизма, о котором мы еще поговорим позже и который к тому же был христианином-евангелистом, в 1873 году высказал в своей речи общепринятое мнение по этому вопросу:

«Наука недостаточно компетентна, чтобы рассуждать о сотворении из ничего как таковом. Мы достигли крайнего предела своих мыслительных способностей, когда признали, что, поскольку материя не может быть вечной и самодостаточной, у нее должен был быть творец» {93} .

По сути, научное знание XIX века, казалось, настаивало на том, что Вселенная была создана сверхъестественным образом некоторое время назад и в любом случае встретит свой конец спустя какое-то количество лет, когда все процессы в мире остановятся. Тому были довольно веские причины, основанные на самых прогрессивных научных достижениях тех лет. Но, как мы увидим в дальнейшем, ни одна из этих причин не выдерживает проверки современными научными данными.

Тем временем многие физики и научные философы, в частности Эрнст Мах (1838–1916), поддержали доктрину позитивизма, подразумевающую, что любые явления, не поддающиеся непосредственному наблюдению, относятся не к физике, а к метафизике и не поддаются эмпирическому исследованию. В лекции, прочитанной в 1872 году, Мах утверждал, что с позиции науки нельзя делать осмысленных заявлений о Вселенной в целом. Такие понятия, как энергия Вселенной или энтропия Вселенной, не имеют смысла, поскольку эти величины не поддаются измерению.

Иными словами, в отношении космологических последствий термодинамики соглашение достигнуто не было. Большинство астрономов вообще не обратили внимания на этот спор. Французский философ и историк Пьер Дюгем (1861–1916) выдвинул интересное предположение, впоследствии оказавшееся верным: даже если второй закон термодинамики требует, чтобы энтропия нарастала со временем, это не означает, что у этого процесса должен быть верхний или нижний предел.

 

Электромагнетизм

Второе важнейшее достижение физики XIX века заключалось в том, что электричество и магнетизм стали считаться базовыми силами природы наряду с уже известной гравитацией. Снова перед нами предстает совместная работа теоретиков и экспериментаторов, в этом случае увенчавшаяся системой уравнений, созданной шотландским физиком Джеймсом Клерком Максвеллом в 1865 году. В уравнениях Максвелла объединился ряд принципов, открытых другими учеными:

♦ закон электромагнитной индукции, который открыл опытным путем Майкл Фарадей (1791–1867). Он продемонстрировал, как магнитное поле, изменяющееся во времени, порождает электрическое поле;

♦ закон Ампера, который экспериментально открыл Андре Мари Ампер (1775–1836). Этот закон описывает, как магнитное поле порождается электрическим током. Электрический ток представляет собой просто движущийся заряд;

♦ закон Гаусса — теорема, предложенная Иоганном Карлом Фридрихом Гауссом (1777–1855). Этот закон показывает, как электрическое поле, образованное на замкнутой поверхности, зависит от электрического заряда, находящегося внутри этой поверхности. Заметьте, что если сила электрического взаимодействия вызвана статическим зарядом, а сила магнитного взаимодействия — движущимся зарядом, то с точки зрения принципа относительности Галилея они должны быть равны. Локализация каждого из них зависит от системы отсчета наблюдателя. Это принципиально важный момент, редко упоминающийся в учебниках и на занятиях по физике.

С точки зрения физики поле — это математический объект, имеющий значение в каждой точке пространства. Если это значение может быть выражено одним числом, как в случае плотности или давления жидкостей, газов и твердых тел, то такое поле называется скалярным. Оно может быть выражено также системой чисел. Ньютоновское гравитационное поле, электрическое и магнитное поля — векторные, требующие трех чисел для определения каждой точки в пространстве: одно выражает абсолютное значение величины, а два других — направление распространения поля. Гравитационное поле в общей теории относительности Эйнштейна — это тензорное поле, определяющееся десятью независимыми числами.

Ранее Фарадей и Ампер продемонстрировали, что электричество и магнетизм представляют собой одно и то же явление, объединив тем самым две силы, до того рассматривавшиеся по отдельности. Уравнения Максвелла систематизировали эти новые данные. Теория Максвелла содержит полное описание классического электромагнитного поля. Уравнения Максвелла применимы для любых вариантов распространения электрических зарядов и токов в любой среде. С их помощью можно рассчитать электрическое и магнитное поля в любой точке пространства или материальной среды. Добавив всего одно уравнение, предложенное Хендриком Лоренцем (1853–1928), можно определить силу электрического или магнитного взаимодействия заряженных частиц в любой точке электрического поля и с помощью ньютоновской механики предсказать местоположение и скорость этой частицы в любой момент в будущем (или в прошлом, если уж на то пошло). Вот еще один довод в пользу концепции ньютоновской мировой машины.

Как бы это ни впечатляло, еще более ошеломляющим следствием из уравнений Максвелла стало то, что, согласно основанным на них прогнозам, электромагнитное поле может присутствовать в пустом пространстве в отсутствие каких-либо электрических зарядов и токов. Более того, это поле будет распространяться в пространстве подобно волне, со скоростью, точно равной скорости света в вакууме. Это значение не было заложено в модель, его вывели математическим путем. Так ученые сделали вывод, что свет представляет собой электромагнитное излучение, подтвердив тем самым его волновую природу.

Еще одно следствие теории Максвелла заключалось в том, что границы электромагнитного спектра до неизвестной степени шире его видимой части, которая охватывает излучение с длиной волны от 430 нм (фиолетовый свет) до 700 нм (красный свет) как в коротко-, так и в длинноволновую сторону. Ниже фиолетовой части спектра находится ультрафиолетовое излучение, а выше красной — инфракрасное. Перед ультрафиолетовым излучением расположено рентгеновское, а до него — гамма-излучение. За инфракрасным излучением в спектре располагаются радиоволны. В 1887 году немецкий физик Генрих Герц (1857–1894) отправил электромагнитный сигнал с длиной волны 8 м, которая в 1 млрд. раз длиннее волн видимого спектра, и определил, что это излучение также движется со скоростью света.

Современная астрономия имеет дело с электромагнитным диапазоном от гамма-лучей с длиной волны всего лишь 10-18 м (мне доводилось участвовать в наблюдении гамма-излучения) до радиоволн с длиной волны несколько километров.

Длина световой волны обычно обозначается греческой буквой λ. Эта величина представляет собой расстояние между двумя соседними гребнями волны. Частота волны f — это скорость, с которой гребни волны проходят через заданную точку. Для световых волн fλ = c, где c — это скорость распространения света в вакууме. Это выражение справедливо для волн вообще, в таком случае с обозначает скорость распространения волны.

 

Атомы и статистическая механика

XIX век ознаменовался не только развитием термодинамики и электромагнетизма, но и внедрением атомной теории для объяснения свойств вещества, заключенного в объеме. Начиная с работ Джона Дальтона (1766–1844) на заре XIX века, химики разрабатывали атомную теорию строения вещества, вершиной которой стало появление периодической таблицы химических элементов, предложенной российским химиком Дмитрием Менделеевым (1834–1907). Однако у химиков не было эмпирических оснований отождествлять открытые ими атомы с атомами древних греков, положенными, как говорится в главе 2, в основу ньютоновской механики. Единственной общей чертой химических атомов и частиц древних атомистов была их неделимость (греч. atomos). Их назвали элементами, поскольку химики не могли разделить их на более простые составляющие.

Тем временем физики оставались приверженцами своей теории частиц. Австрийский физик Людвиг Больцман (1844–1906) наряду с Максвеллом и американским физиком Джозайей Уиллардом Гиббсом (1839–1903) разработали теорию статистической механики, основанную на представлении о том, что вещество состоит из частиц. Все законы термодинамики основаны на предположении, что макроскопическое тело состоит из огромного количества мельчайших частиц, движущихся преимущественно случайным образом, сталкивающихся друг с другом и со стенками окружающего их сосуда согласно законам ньютоновской механики.

Законы термодинамики, таким образом, считаются производными — не фундаментальными принципами природы, но законами, вытекающими из фундаментальных принципов. В самом деле, любые законы, регулирующие работу системы, состоящей из множества частиц, к примеру из области гидродинамики, физики конденсированного состояния, химии, биологии, нейробиологии и даже общественных наук, могут рассматриваться как производные. Даже гравитацию сейчас предлагают рассматривать скорее как производное явление, нежели как фундаментальную силу (см. главу 15).

В рамках статистической механики не делалось попыток описать движение отдельных частиц. Это было бы невозможно. Вместо этого она предсказывала поведение системы частиц в среднем, используя для этого статистические методы. Таким образом, давление на стенку сосуда отождествлялось со средним значением силы, приложенной на единицу площади частицами, сталкивающимися с этой стенкой за единицу времени. Абсолютная температура (в Кельвинах) была определена как средняя кинетическая энергия частиц в равновесной системе.

Статистическая механика отождествляла химические элементы с физическими частицами-атомами. Химические соединения, состоящие из элементов, определялись как молекулы, которые формируются вследствие соединения атомов.

Несмотря на свой успех, атомная теория строения вещества все же подвергалась нападкам со стороны множества влиятельных химиков и философов, в частности Эрнста Маха. Как упоминалось ранее, Мах был позитивистом и считал, что предметом научного исследования могут быть только объекты, доступные чувственному познанию. Он настаивал на том, что не верит в атомы, поскольку не в состоянии их увидеть. Мах придерживался этой позиции до самой смерти в 1916 году, хотя к этому моменту уже имелись неоспоримые косвенные доказательства существования атомов. В наши дни атомы можно увидеть своими глазами с помощью сканирующего туннельного микроскопа.

Дальнейшие доказательства атомарной природы вещества были найдены в серии лабораторных наблюдений, кульминацией которых стал эксперимент 1896 года, поставленный британским физиком Дж. Дж. Томсоном (1856–1940) и его коллегами. Этот эксперимент подтвердил, что лучи, испускаемые катодом в вакуумной трубке, состоят из заряженных частиц намного меньшей массы, чем ион водорода — самый легкий объект из известных на тот момент. Эти частицы были названы электронами, и вскоре выяснилось, что они являются носителями электрического тока. Поскольку они двигались в направлении, противоположном направлению тока, условно названного положительным, заряд электронов был определен как отрицательный. Сегодня электрон все еще считается одной из фундаментальных частиц вещества.

 

Нарушая второй закон

Вернемся ко второму закону термодинамики. В 1872 году Больцман вывел так называемую Н-теорему, в которой доказал, что большое скопление хаотически движущихся частиц будет стремиться к состоянию равновесия, в котором некоторая величина Н, обратно пропорциональная энтропии, достигает минимума. Таким образом, Больцман фактически доказал, что второй закон термодинамики выводится из законов статистической механики частиц.

Коллега и хороший друг Больцмана Йозеф Лошмидт (1821–1895) усмотрел в этом парадокс, который получил название проблемы необратимости: если множество молекул хаотически движутся, теоретически они могут случайно прийти в состояние меньшей энтропии, даже будучи частью замкнутой системы.

В 1890 году Анри Пуанкаре опубликовал теорему возвращения, которая утверждает, что динамическая система спустя достаточное количество времени возвращается в исходное состояние. Это напрямую противоречило теореме Больцмана и потому как будто опровергало второе начало термодинамики.

В 1867 году Максвелл высказал сходные опасения относительно второго закона в своем знаменитом мысленном эксперименте, в котором воображаемая сущность, названная другими демоном Максвелла, перенаправляет частицы таким образом, чтобы добиться снижения энтропии.

Но ни в демонах, ни в ангелах потребности нет. Как в конечном итоге понял Больцман, его Н-теорема, а следовательно, и второй закон представляют собой вероятностные утверждения, а не незыблемые принципы. В среднем закрытая система, состоящая из множества хаотически движущихся частиц, будет стремиться к состоянию максимальной энтропии, как доказал Больцман, однако статистические колебания могут случайно привести систему в состояние меньшей энтропии. На самом деле в системе, состоящей из небольшого числа частиц, такое будет происходить довольно часто.

В повседневной жизни мы регулярно сталкиваемся с явлениями, которые называют необратимыми. Проколите шину — и воздух из нее выйдет наружу. Вам не приходилось наблюдать, чтобы сдутая покрышка через прокол вновь наполнялась воздухом из окружающей среды. Осколки разбитого стакана не склеиваются обратно. Мертвые не возвращаются к жизни.

Однако посмотрите на эти процессы с точки зрения элементарных частиц. Молекулы воздуха, окружающего сдутую шину, движутся случайным образом. Предположим, что большое их число совершенно случайно направится в дыру в покрышке. В таком случае шина могла бы надуться снова!

Мы не наблюдаем этого не потому, что это невозможно, но потому, что крайне маловероятно, чтобы молекулы воздуха, триллионы за триллионами, направились в нужном направлении, чтобы заново накачать покрышку.

Но, предположим, у нас есть закрытый сосуд, внутри которого всего три частицы. Вне этого сосуда находится среда, состоящая из множества частиц того же типа. Откройте его, и три частицы вылетят наружу. Пока мы держим его открытым, вероятность того, что эти три частицы вернутся обратно в сосуд, очень велика.

Другими словами, второй закон термодинамики не незыблем. Он представляет собой просто вероятностное утверждение.

Больцман распространил эту догадку на космологию, предположив, что, если Вселенная имеет достаточные масштабы, колебания энтропии могут привести к появлению изолированных областей, отклоняющихся от равновесного состояния и порождающих другие миры, подобные нашему, с уровнем энтропии, достаточно низким для того, чтобы поддерживать и развивать имеющийся порядок. Таким образом, из Вселенной, подвергшейся тепловой смерти, предсказанной вторым законом, может возродиться живая Вселенная. А если может одна, то может и любое другое количество. Он не назвал это Мультивселенной, но вполне мог бы использовать это слово.

 

Стрела времени

Больцману принадлежит еще одна мудрая догадка: второй закон термодинамики — это даже не закон! Это произвольная формулировка. Принцип, с которым мы имеем дело, состоит не в том, что средняя энтропия замкнутой системы должна нарастать со временем или в лучшем случае оставаться неизменной. Он заключается в следующем: время по определению движется в том направлении, в котором нарастает энтропия замкнутой системы, а именно нашей Вселенной. Артур Эддингтон (1882–1944) позже назвал это стрелой времени.

Как мы уже убедились, причина того, что мы не наблюдаем обратного хода определенных процессов, заключается в том, что это крайне маловероятно, а не в том, что это невозможно. Разложение и смерть, которые мы ежедневно наблюдаем вокруг, как будто подтверждают второй закон, однако это происходит, потому что мы, как и мир вокруг нас, состоим из огромного числа частиц, движущихся преимущественно случайным образом. Но когда вы имеете дело с небольшим количеством частиц, как в случае химических, ядерных реакций, а также реакций элементарных частиц, события могут развиваться в обоих временных направлениях.

 

Конец классической физики

Физику конца XIX века обычно называют классической. К этому времени физикам удалось разработать почти полную, но все же не исчерпывающую теорию материального мира. Вещество, составляющее этот мир, состоит из элементарных частиц, называемых атомами, причем каждый из 90 с небольшим сортов атомов соответствует одному из элементов периодической системы Менделеева. Эти частицы взаимодействуют друг с другом посредством двух фундаментальных сил: гравитации и электромагнетизма, с исчерпывающей точностью математически описанных ньютоновским законом всемирного тяготения и уравнениями Максвелла соответственно. Таким образом, движение каждой частицы во Вселенной полностью определяется этими законами независимо от скорости и положения частицы в пространстве в данный момент времени.

Согласно данным небесной механики и спектрального анализа звезд, эти атомы и теоретические основы их поведения одинаковы во всей Вселенной.

 

Аномалии

Но все же в физике еще оставалось несколько нерешенных проблем. Уравнения Максвелла предсказали существование электромагнитных волн, движущихся в пространстве со скоростью света. Видимый свет определили как один из вариантов этого электромагнитного излучения, ограниченный узким диапазоном длины волны, что убедительно подтверждало волновую теорию Гюйгенса (см. главу 3). Вдобавок за пределами этого диапазона обнаружились волны, также распространяющиеся со скоростью света. Тем не менее волновая теория света не могла объяснить три наблюдаемых свойства света:

♦ линейчатые спектры;

♦ чернотельное излучение;

♦ фотоэффект.

Линейчатые спектры мы уже обсуждали — это очень тонкие темные линии, наблюдаемые при прохождении света сквозь вещество, и светлые линии, наблюдаемые при испускании света горячими телами. В рамках волновой теории понять природу этого явления нельзя.

Чернотельным излучением называются электромагнитные волны, излучаемые обычными предметами. Черное тело имеет сглаженный спектр, пик которого зависит от температуры этого тела. Пик спектра очень горячего Солнца приходится на центральную часть видимого диапазона, на желтый свет. Сторонники мнения, что физические параметры были настроены в точности таким образом, чтобы на Земле смогли развиться люди, попытаются убедить нас, что спектр солнечного света был создан именно с таким пиком, чтобы соответствовать диапазону, к которому наиболее чувствительны наши глаза, созданные по Божьему подобию. Куда более вероятно, что наши глаза развивали чувствительность именно в диапазоне, окружающем этот пик, потому мы и зовем его видимым. Излучение, испускаемое более холодными объектами, такими как вы или я, находится в инфракрасном диапазоне с длиной волны большей, чем у красного света. Щитомордники другие гремучие змеи эволюционировали таким образом, чтобы видеть инфракрасное излучение — это помогает им ловить теплокровную добычу в темноте, так что для них инфракрасный свет является видимым. Если эти объекты не отражают свет, они кажутся нам черными, именно поэтому мы называем их черными телами.

В 1905 году лорд Рэлей (Джон Стретт, 1842–1919) и Джеймс Джинс (1877–1946), используя классическую волновую теорию, определили спектр излучения абсолютно черного тела. Расчеты основывались на предположении, что излучение порождается колебаниями заряженных частиц внутри тела. Чем короче длина волны, тем большее количество электромагнитных волн может поместиться внутри тела. Рэлей и Джинс определили, что график спектральной плотности черного тела резко сужается в четвертом порядке длины волны.

Однако модель Рэлея — Джинса имела серьезный недостаток. В соответствии с ней с уменьшением длины волны график спектральной плотности будет расширяться до неопределенных пределов. Это следствие получило название ультрафиолетовой катастрофы. На самом деле кривая спектральной плотности любого черного тела резко спадает с обеих сторон.

Третье наблюдаемое явление, необъяснимое в рамках волновой теории, имеет отношение к ультрафиолетовому излучению. Физики, в частности Герц, открыли множество явлений, при которых ультрафиолетовый свет, направленный на различные металлы, порождает электрический ток. Живительным было то, что существует пороговое значение длины волны, соответствующее виду металла, выше которого электрический ток не возникает. Волновая теория света не объясняла природу этого явления.

Но это были еще не все проблемы, связанные с волновой теорией света. Если свет — электромагнитная волна, то в какой среде распространяются эти волны? Общепринятое предположение заключалось в том, что электромагнитные волны представляют собой вибрации в невидимом, не создающем трения веществе, которое беспрепятственно наполняет всю Вселенную. Это вещество отождествляли с аристотелевской квинтэссенцией, эфиром. Но, как отметил сам Максвелл, ничто в его теории электромагнетизма не подтверждает существования эфира. В отличие от математического описания звуковых волн, которое начинается с предположения о существовании эластической среды, прогнозы Максвелла касательно электромагнитных волн существования такой среды не предполагали. Она просто не вписывается в его уравнения для электромагнитного поля.

Начиная с 1887 года американские физики Альберт Майкельсон (1852–1931) и Эдвард Морли (1863–1923) проводили серию экспериментов, в которой пытались выявить присутствие эфира путем измерений ожидаемых различий в скорости света двух перпендикулярно направленных лучей, которые, согласно принципу относительности Галилея, предположительно, должны были с разной скоростью проноситься Землей сквозь эфир. Если Земля движется вперед относительно эфира со скоростью v, скорость света должна равняться v + с, если назад, то v — с. И эти ученые, и их последователи, проводя все более точные эксперименты, так и не увидели ожидаемого изменения скорости света. Вместо этого у них все время получалась одно и то же значение — c.

Итак, хотя к началу XX века физика достигла невообразимых высот, оставались некоторые проблемы, которые впоследствии привели к ее дальнейшим невероятным достижениям и покорению новых рубежей.

 

Глава 6.

ВТОРАЯ ФИЗИЧЕСКАЯ РЕВОЛЮЦИЯ 

 

Всему найдено объяснение? Не совсем

Из главы 5 мы узнали, что к концу XIX века физика была близка к тому, чтобы найти объяснение всем явлениям и процессам материального мира. Считалось, что Вселенная состоит из частиц, движущихся в пространстве и сталкивающихся между собой согласно законам механики, тяготения и электромагнетизма.

Часто упоминают фразу, якобы произнесенную выдающимся физиком лордом Кельвином (Уильямом Томсоном) в выступлении перед Британской ассоциацией содействия развитию науки в 1900 году: «Ничего нового в физике открыть невозможно. Остается только проводить все более точные измерения». Однако данных, подтверждающих, что он действительно сделал такое заявление, нет. Хотя Кельвин, возможно, и не говорил ничего подобного, эта фраза отражает общепринятую точку зрения тех времен. В любом случае фактически это не было правдой. Как мы уже знаем, в 1900 году оставалось несколько наблюдаемых явлений, которые невозможно было объяснить с точки зрения волновой теории света.

Как стало ясно из главы 5, представления древних атомистов о мире, состоящем из элементарных частиц, движущихся в абсолютной пустоте, противоречили физической картине, сложившейся в XIX веке. В представлении ученых, мир был заполнен сплошным однородным невидимым веществом, эфиром, в котором двигались частицы.

Световые волны считались эффектом от вибраций эфира, подобно тому как звуковые волны возникают вследствие вибрации воздушной или водной среды. Тот факт, что воздух и вода не являются сплошными и однородными средами, а состоят из крошечных атомов, не представлял проблемы, так как уравнения звуковых волн можно вывести из законов ньютоновской механики материальной точки, применив их к дискретной среде. Майкл Фарадей, как и Ньютон до него, допускал, что эфир тоже может состоять из частиц. Более того, вспомним, что Джеймс Клерк Максвелл не предполагал наличия эфира, делая вывод о существовании электромагнитных волн, и что никому так и не удалось получить данные, подтверждающие присутствие эфира во Вселенной. Эфир никак не проявлял себя ни теоретически, ни в ходе экспериментов.

Что касается остальных разделов физики, та успешность, с которой ньютоновские законы механики и всемирного тяготения описывали движение, будь то движение планет или падающих яблок, свидетельствовала об универсальном характере этих законов. А наблюдение в свете звезд тех же спектральных линий, которые можно увидеть в лабораториях на Земле, доказывало, что в основе их появления лежат одни и те же вселенские законы.

При этом, поскольку свет является электромагнитной волной, можно сделать вывод, что и уравнения Максвелла универсальны. Однако из этих уравнений нельзя вывести механизм возникновения наблюдаемых узколинейчатых спектров. А в довершение всего в рамках волновой теории света нельзя объяснить спектр черного тела и фотоэффект.

Что касается корпускулярной природы атомов, мы выяснили, что многие ученые продолжали сомневаться в ней из-за косвенного характера лежащих в ее основе данных.

В следующих разделах я кратко обобщу революционные физические открытия, совершенные за период с 1900 года до конца Второй мировой войны — 1945 года, делая особый упор на их космологической значимости. Более детальные объяснения можно найти в моей книге «Бог и атом».

 

Специальная теория относительности

В 1905 году Альберт Эйнштейн опубликовал свою специальную теорию относительности, и это спровоцировало коренной переворот в наших представлениях о пространстве, времени и материи. Альберту Майкельсону и Эдварду Морли не удалось эмпирически подтвердить ожидаемые различия в скорости света, связанные с движением Земли сквозь гипотетический эфир. Хотя Эйнштейн и не упомянул их результаты в своей работе, вероятно, он был осведомлен о них. Однако, вместо того чтобы сослаться на какие-либо результаты наблюдений, Эйнштейн выдвинул сугубо теоретический постулат, хотя стоит помнить, что его теория в конечном итоге основывалась на наблюдаемых явлениях, в частности на электричестве и магнетизме.

Электромагнитные волны, математическое описание которых выводилось из уравнений Максвелла, распространяются в вакууме с точной скоростью с, определенно нарушая тем самым принцип относительности Галилея, который, как мы узнали из главы 2, утверждает, что все скорости относительны. Таким образом, скорость источника света, движущегося относительно наблюдателя, должна была бы увеличивать или уменьшать скорость света, давая результат, отличный от с. Однако это не допускалось уравнениями Максвелла, а эксперименты Майкельсона и Морли этого не подтвердили.

 

Относительность времени и пространства

Но Эйнштейн не был готов поставить крест на принципе относительности. Итак, он задался вопросом: каковы будут последствия того, что принцип относительности действует, а скорость света в вакууме всегда равна c? На основе двух этих аксиом Эйнштейн доказал среди прочего, что временные и пространственные промежутки между двумя событиями не постоянны. То есть два наблюдателя, системы отсчета которых движутся друг относительно друга, получат при измерениях разные значения времени и расстояния.

Другими словами, время и пространство не абсолютны, хотя именно это подсказывает нам здравый смысл. С точки зрения наблюдателя, часы, движущиеся относительно него, замедляют свой ход (замедление времени), а любой объект, движущийся относительно наблюдателя, сожмется в направлении своего движения (сжатие Лоренца — Фицджеральда). Это не значит, что они действительно делают это. Часы не замедляют свой ход, а объекты не сжимаются для наблюдателя, находящегося на них. Только внешним наблюдателям из других систем отсчета кажется, будто происходят такие странные вещи.

Среди революционных открытий Эйнштейна разрушение привычных представлений о времени было, пожалуй, наиболее принципиальным. Ничто не кажется столь универсальным, столь абсолютным, как время. Тем не менее специальная теория относительности подвергла сомнению ряд наших глубочайших интуитивных ощущений, связанных со временем. Не существует такого временного момента, который можно было бы определить как настоящее. Не существует прошлого или будущего, общего для всех точек пространства. Два события, разделенные расстоянием, нельзя рассматривать как объективно одновременные во всех системах отсчета.

Замедление времени имеет значение только для часов, движущихся со скоростями, близкими к скорости света, или для проведения высокоточных: измерений с помощью атомных часов. Поэтому в повседневной жизни эти эффекты никто не замечает. Однако теория Эйнштейна подтверждается множеством экспериментов, проведенных за минувшее столетие. В этих экспериментах применялись высокоэнергетические частицы, движущиеся с субсветовыми скоростями, а также проводились измерения при небольших скоростях с помощью атомных часов. Сегодня любой человек со смартфоном или системой спутниковой навигации GPS в автомобиле полагается на теорию Эйнштейна, которая, как мы вскоре увидим, должна учитывать также общую теорию относительности.

В обычной жизни нам нет нужды беспокоиться об относительности времени, поэтому важно не делать глобальных философских или метафизических умозаключений, исходя из ограниченного объема данных, которые человек получает из повседневной реальности.

Философы и богословы не раз вводили понятие метафизического времени, куда больше похожего на то, что мы ощущаем в привычной жизни, однако эти версии не имеют никакого отношения к научным наблюдениям, равно как и не имеют рациональной основы за пределами области спекулятивного богословия. Научные модели в равной степени предполагают, что время по определению — это то, что измеряют часы, и оно относительно.

 

Определение времени и пространства

До недавних пор ход времени отмечали хорошо знакомые закономерности, такие как день, ночь и фазы Луны или, с большей точностью, видимые движения определенных звезд. Древние вавилоняне определили, что секунда составляет 1/86400 суток. При составлении современных календарей мы все еще опираемся на астрономическое время и используем григорианский календарь, введенный в 1582 году, длительность года в котором составляет 365,2425 дня (см. главу 2). С развитием науки длительность секунды несколько раз пересчитывали, чтобы сделать эту единицу измерения более пригодной для лабораторных расчетов.

Последнее изменение было внесено в 1967 году, когда международным соглашением секунда была определена как время, равное 9 192 631 770 периодам излучения, возникающего при энергетическом переходе между двумя уровнями сверхтонкой структуры основного состояния атома цезия-133. Следуя традициям предков, минута все также равна 60 секундам, час — 60 минутам, а день состоит из 24 часов. Сутки, как и в Древней Вавилонии, составляют 86 400 секунд. Наши календари нужно периодически корректировать, чтобы поддерживать их соответствие временам года, поскольку между атомным временем и движением астрономических тел нет полной синхронизации.

Заметьте, не стоит считать, что время, измеряемое атомными часами, — это своего рода «правильное» время. Оно не менее условно, чем астрономическое время, время, отсчитываемое маятником или, к примеру, ударами моего сердца. Однако атомное время использовать удобнее, чем время, отсчитываемое сердечными сокращениями, — модели, использующие атомное время, намного проще и не требуют постоянных поправок на суточную активность человека. А если серьезно, использование атомного времени позволяет избежать необходимых поправок к астрономическому времени, имеющему небольшие перебои.

В доэнштейновские времена было принято считать, что пространство и время — это два независимых свойства Вселенной. До 1983 года 1 метр, стандартная единица измерения длины, считался равным длине платинового бруска, хранящегося в Париже в определенных строго соблюдающихся условиях. С помощью математика Германа Минковского (1864–1909) Эйнштейн разработал специальную теорию относительности в условиях четырехмерного пространства-времени, в котором время — дополнительное четвертое измерение. К 1983 году теория относительности получила настолько прочные эмпирические основания, что длину метра также пересмотрели и уточнили: теперь она, как и время, стала зависеть от того, что показывают часы. В настоящее время 1 м определяют как расстояние между двумя точками в пространстве, которое свет в вакууме преодолевает за 1/299792458 с.

Из этого следует, что скорость света в вакууме с = 299792458 м/с по определению. Многие физики и большинство ученых из других сфер науки, похоже, все еще считают, что значение c непостоянно и может изменяться в зависимости от времени или точки пространства. Это невозможно, потому что с по определению имеет точное значение.

 

Относительность энергии и импульса

Эйнштейн обнаружил, что энергия и импульс также относительны. Однако масса постоянна, то есть ее значение одинаково во всех системах отсчета. В системах единиц измерения, где скорость света равна единице (с = 1), мы получаем простые отношения массы, энергии и импульса, которые определяют инерционные свойства тела и показывают, как они связаны между собой. Масса тела m, имеющего энергию Е и импульсу, вычисляется по формуле m 2 = Е 2 - p 2 . Если тело покоится, p = 0, а энергия покоя тела равна просто его массе m. В виде формулы Е = mс 2 этот вывод известен лучше.

Другое известное следствие из специальной теории относительности заключается в том, что тело, имеющее массу, не может разогнаться до скорости света или большей. Это значит, что существует известный предел скорости, равный с. Тут мне придется развеять еще одно распространенное заблуждение. Специальная теория относительности не запрещает частицам двигаться со скоростью, превышающей скорость света, если они движутся с такой скоростью всегда. Эти частицы называются тахионами. Но пока это только гипотеза. Ни одной такой частицы обнаружить еще не удалось.

Специальная теория относительности требует иного набора уравнений для расчета большинства величин, имеющих отношение к движению частиц, если скорости частиц приближаются к скорости света. Однако все остальное свидетельствует о том, что на скоростях существенно ниже скорости света эти формулы сводятся к знакомым формулам Ньютона.

Своей специальной теорией относительности Эйнштейн исключил эфир из материальной картины мира и вернул космосу демокритовскую пустоту, устранив эмпирическое несоответствие, описанное Майкельсоном и Морли, и теоретическую проблему, связанную с уравнениями электромагнетизма Максвелла. Они полностью согласуются с принципом относительности. Скорости все также относительны — все, кроме скорости света. Она же, как мы только что доказали, представляет собой произвольное число, которое просто определяет, какие единицы измерения пространства и времени вы хотите использовать. В этой книге я преимущественно пользуюсь значением с = 1 световой год в год.

 

Общая теория относительности

В ноябре 1907 года Эйнштейн сидел в своем кресле в патентном бюро города Берна, когда, как он позже описывал:

«…Мне в голову пришла мысль: “В свободном падении человек не ощущает своего веса!” Я был поражен. Эта простая мысль произвела на меня огромное впечатление. Развив ее, я пришел к теории тяготения» {99} .

Эйнштейновская теория гравитации была опубликована только в 1916 году в форме общей теории относительности. Специальная теория относительности применима только для систем отсчета, движущихся с постоянной скоростью. Эйнштейну удалось добавить ускорение в новую гравитационную теорию, в рамках которой можно было спрогнозировать слабые эффекты, не поддающиеся объяснению в рамках теории Ньютона.

Позвольте мне изложить суть догадки Эйнштейна следующим образом. Наблюдатель, находящийся в закрытой капсуле в свободном падении, не сможет отличить это состояние от состояния, в котором он в той же самой капсуле находится в космосе, вдали от каких-либо планет и звезд. Более того, если этой космической капсуле придать, скажем, с помощью ракетного двигателя такое же ускорение, какое получает падающий на землю объект, к примеру яблоко, упавшее на Ньютона, то он не сможет отличить это состояние от обычного состояния покоя на Земле. То есть ускорение и гравитация ощущаются одинаково.

Наблюдатель в капсуле мог бы провести точные измерения траекторий падающих тел, которые будут сходиться к центру Земли в случае, если капсула находится на ее поверхности. Но, если капсула получает ускорение в космосе, эти линии будут параллельными. Итак, две эти ситуации формально могут считаться одинаковыми только на бесконечно малом участке пространства. Этот принцип называется принципом локальности.

В гравитационной модели, разработанной Эйнштейном, сила тяготения практически устранена. Тело, на которое не действуют никакие силы, следует геодезической траектории через неевклидово пространство-время подобно самолету, описывающему большую окружность от одной точки на поверхности Земли до другой, чтобы минимизировать пройденный путь. Земля вращается вокруг Солнца по эллипсу, потому что такова форма геодезической траектории вокруг объекта с большой массой.

Эйнштейн придумал формулу, которая позволила ему рассчитать модель пространства-времени и внутреннюю геометрию поверхности, исходя из распределения вещества в пространстве:

кривая пространства-времени = плотность вещества.

Эйнштейна беспокоило то, что сила всемирного тяготения, имеющая исключительно притягивающий характер, должна привести Вселенную к коллапсу. В те времена все думали, что Вселенная окружена неподвижной твердью, как сказано в Библии. Поэтому Эйнштейн добавил в свое уравнение гравитационного поля еще одно понятие — космологическую постоянную (КП), обозначив ее символом Λ:

кривая пространства-времени + Λ = плотность вещества.

Итак, КП является еще одним компонентом пространственно-временной кривой, который может иметь положительное или отрицательное значение. Если Λ положительна, результатом будет гравитационное отталкивание, которое, как считал Эйнштейн, стабилизирует Вселенную.

Заметьте, что космологическую постоянную вполне можно записать в правой части уравнения как часть плотности вещества:

кривая пространства-времени = плотность вещества — Λ.

Но это все то же уравнение, и формулировка не меняет его смысла. Вот пример того, почему было бы ошибкой пытаться приписывать математическим моделям метафизическую сущность. Космологическая постоянная действительно часть пространственно-временной кривой или действительно часть материи? Это не имеет значения. Это всего лишь человеческая выдумка, оба варианта дают одинаковый эмпирический результат.

Общая теория относительности прогнозировала ряд явлений, которые нельзя было объяснить в рамках ньютоновской теории всемирного тяготения. Одно из них наблюдалось к тому моменту уже в течение некоторого времени и было еще одной эмпирической аномалией, которую физика XIX века была бессильна объяснить. В 1859 году Урбен Леверье, упомянутый в главе 4 как первооткрыватель Нептуна, на основании готовых записей наблюдений определил, что скорость смещения перигелия Меркурия расходится со скоростью, рассчитанной на основании теории Ньютона, на 38 угловых секунд за 100 лет, а пересчитанное позднее, это значение составило 43 угловые секунды. В ноябре 1915 года Эйнштейн пересчитал его на основании своей новой общей теории и получил верное число. Он был так взбудоражен этим результатом, что, по его словам, у него «сердце затрепетало».

Эйнштейн также определил, что световые лучи отклоняются под воздействием Солнца. Эта идея была не нова, она восходит еще к Ньютону. В одном из примечаний к «Оптике» издания 1704 года Ньютон предположил, что частицы в его корпускулярной теории света будут испытывать воздействие гравитации, как всякое другое вещество. В 1801 году немецкий астроном и физик Иоганн Георг фон Зольднер (1776–1833) на основе ньютоновской физики рассчитал, что отклонение луча, состоящего из корпускул, скользящего по поверхности Солнца, составит 0,9 угловой секунды. Однако в те времена измерить такое крошечное отклонение было технически невозможно, и, как мы уже знаем, в начале XIX века от корпускулярной теории света Ньютона отказались в пользу волновой теории.

Результат Эйнштейна в два раза превышал значение, рассчитанное Зольднером, что не согласовывалось с ньютоновской теорией всемирного тяготения. Двадцать девятого мая 1919 года две британские экспедиции сфотографировали область солнечного диска во время солнечного затмения и сравнили фотографии со снимками, сделанными с той же точки в июле. Знаменитый британский астроном Артур Эддингтон отправился во главе экспедиции на остров Принсипи у побережья Африки и заявил, что ему удалось подтвердить результаты расчетов Эйнштейна. Независимая экспедиция, работавшая в бразильском городе Собрале, сообщила о результатах, более близких к значению, рассчитанному Зольднером. Однако астрономическое сообщество стало на сторону Эддингтона, поскольку, по их мнению, телескопы собралской экспедиции имели изъяны, а также, возможно, из-за несколько большего уважения к авторитету Эддингтона.

Заявление Эддингтона, сделанное в 1919 году, попало на первые полосы всех газет и более, чем что-либо другое, поспособствовало превращению Эйнштейна в легенду XX века. Он стал единственным ученым в мире, удостоенным чести торжественного проезда по улицам Манхэттена во время своего визита туда в 1921 году.

Результаты измерений Эддингтона также были поставлены под сомнение, однако расчеты Эйнштейна с тех пор подтверждались немалое число раз. Один из самых популярных вариантов научного круиза в наши дни — отправиться наблюдать полное солнечное затмение, которое зачастую происходит над открытым океаном. Астроному обычно не составляет труда присоединиться к такому круизу, все расходы компенсируются, ему нужно только прочитать несколько лекций и сделать ряд наблюдений, наслаждаясь при этом всеми удобствами.

Позвольте мне немного пофантазировать на тему «а что, если бы?». Предположим, что гравитационное отклонение света можно было наблюдать в 1804 году. Тогда волновая теория света была бы опровергнута, поскольку она не позволяет рассчитать этот эффект, в то время как даже ньютоновская корпускулярная теория позволяет получить значение с небольшой погрешностью, что весьма неплохо для такого слабого эффекта. Тогда отклонение лучей света под воздействием гравитации в совокупности с линейчатыми спектрами, чернотельным излучением и фотоэффектом убедительно опровергли бы волновую теорию электромагнитного излучения.

Эйнштейн также предсказал, что часы в гравитационном поле будут идти медленнее для наблюдателя, находящегося вне этого поля. Этот эффект называется гравитационным замедлением времени и напрямую вытекает из общей теории относительности. Его существование также подтверждено убедительными данными. Если GPS в вашем автомобиле не корректируется с учетом гравитационного замедления времени, он порой будет приводить вас не туда, куда нужно.

Гравитационное замедление времени также подразумевает, что частота света (или любой другой электромагнитной волны) будет снижаться по мере удаления от тела с большой массой. С точки зрения закона сохранения энергии кинетическая энергия фотона равна ħf, где f — это частота соответствующей электромагнитной волны, a ħ — постоянная Планка, к которой мы вернемся позднее. По мере того как фотон удаляется от тела, он приобретает потенциальную энергию, теряя кинетическую, вследствие чего и уменьшается частота излучения.

Со времен первоначальных расчетов Эйнштейна, то есть почти за 100 лет, общая теория относительности множество раз подвергалась все более изощренным проверкам. В настоящее время она соотносится со всеми результатами наблюдений, в которых фигурирует гравитация.

 

Черные дыры

Еще в XVIII веке Джон Мичелл (1724–1793) и Пьер Симон Лаплас заметили, что гравитационное поле тела может быть настолько сильным, что свет не сможет вырваться из него. В 1916 году Карл Шварцшильд доказал, исходя из общей теории относительности, что тело массой М и радиусом менее R = 2GM/c 2 не даст свету покинуть свое гравитационное поле. Для объекта массой, равной массе Солнца, радиус Шварцшильда равен примерно 3 км. В 1967 году физик Джон Уилер окрестил эти объекты черными дырами. Как мы вскоре увидим, есть множество доказательств существования черных дыр, и такие сверхмассивные объекты находятся в центре большинства, если не всех крупных галактик, включая Млечный Путь.

В 1974 году Стивен Хокинг доказал, что черные дыры на самом деле излучают фотоны, поэтому они нестабильны и в конечном итоге разрушаются. Однако срок жизни черной дыры астрономических размеров очень велик. Черная дыра массой, равной массе Солнца, просуществует 1063 лет. В то же время микроскопические черные дыры живут очень недолго, но, хотя поиски их предполагаемого излучения продолжаются, обнаружить его пока не удалось.

 

Теорема Нётер

Двадцать третьего марта 1882 года в баварском городе Эрлангене родилась девочка по имени Эмми Нётер. Ее отец был математиком, она же оказалась математическим гением и внесла важнейший вклад в развитие физики XX века. Влияние ее работ по достоинству оценили только в наши дни. Если бы больше людей понимали математику и физику, Нётер считалась бы одной из важнейших персон XX века.

В 1915 году Нётер опубликовала теорему, которая коренным образом изменила философское понимание природы физических законов. Пока я не узнал о ней, то думал, как до сих пор думает большинство ученых, что законы физики представляют собой ограничители возможностей поведения материи, каким-то образом встроенные в структуру Вселенной. Хотя Нётер и не формулировала эту мысль таким образом, результаты ее работы свидетельствуют, что дело обстоит иначе.

Нётер доказала, что для каждой непрерывной пространственно-временной симметрии существует свой закон сохранения.

Фундаментальные законы физики представлены тремя законами сохранения: законом сохранения энергии, законом сохранения линейного импульса и законом сохранения момента импульса. Нётер доказала, что закон сохранения энергии следует из трансляционной симметрии времени, закон сохранения линейного импульса — из трансляционной симметрии пространства, а закон сохранения момента импульса — из вращательной симметрии пространства.

На практике это означает, что, если физик создает модель, не зависящую от времени, то есть такую, которая будет одинаково работать сегодня, вчера или 13 млрд. лет спустя/назад, эта модель автоматически включает в себя закон сохранения энергии. Физик никак не может повлиять на это. Если он попытается включить в эту модель нарушение закона сохранения энергии, в ней появится логическое противоречие.

Если другой физик создаст модель, не зависящую от конкретной точки пространства, которая будет одинаково работать в Оксфорде, Тимбукту, на Плутоне или в галактике MACS0647-JD, расположенной на расстоянии 13,3 млрд. световых лет от нас, эта модель автоматически будет заключать в себе закон сохранения линейного импульса. Физик вновь-таки бессилен повлиять на это. Если он попытается включить в эту модель нарушение закона сохранения линейного импульса, в ней появится логическое противоречие.

Аналогично любая модель, спроектированная таким образом, чтобы работать с произвольной ориентацией в системе координат, то есть «верх» которой может находиться в Исландии или на Тасмании, обязательно заключает в себе закон сохранения момента импульса.

Поскольку эти три принципа формируют основу классической механики, можно сказать, что это не законы, управляющие поведением материи. Скорее это следующие из принципов симметрии человеческие изобретения, управляющие поведением физиков и давящие на них, когда им вдруг вздумается объективно описать окружающий мир. Нет причин думать, что законы физики — продукт деятельности некоего законодателя, находящегося за пределами физического мира.

В одной из следующих глав я расскажу о принципе, называемом калибровочной инвариантностью, которым можно обобщить теорему Нётер и из которого выводится большинство основных физических законов. Кпримеру, закон сохранения электрического заряда и уравнения Максвелла являются следствием калибровочной симметрии электромагнетизма. Обсуждение философских последствий этой идеи отложим до той же главы.

 

Квантовая механика

XX век начался 1900 годом, в котором Макс Планк предложил модель, количественно описывающую спектр излучения черного тела. На рис. 6.1 изображен ее частный случай, описывающий излучение Солнца (я знаю, что Солнце желтое, тем не менее оно является черным телом по определению, так как не отражает свет). Эта модель основывалась на гипотезе, что свет не непрерывен, но состоит из порций энергии, которые Планк назвал квантами. Эти кванты несут в себе количество энергии, пропорциональное частоте излучения f. Коэффициент ħ, теперь называемый постоянной Планка, ученый вычислил, согласовав его значение со спектральными данными. Вспомните, что частота света относится к длине его волны λ как λ = с/f, где с — это скорость света.

Закон сохранения энергии позволяет избежать ультрафиолетовой катастрофы классической волновой теории, о которой шла речь в главе 5. Коротковолновая часть спектра соответствует высокоэнергетическим квантам, и, поскольку у энергии тела есть предел, график спектральной плотности должен сужаться в области коротковолнового излучения. Кроме того, длина волны в области спектрального пика уменьшается при снижении температуры, поскольку, согласно статистической механике, о которой говорилось в главе 5, температура является мерой средней кинетической энергии тела. То есть чем горячее тело, тем меньше будет длина волны в области спектрального пика, а частота, в свою очередь, выше.

В том же самом удивительном 1905 году, когда Эйнштейн представил свою теорию относительности, он также развил идею Планка, предположив, что свет состоит из частиц, позднее названных фотонами, энергия которых пропорциональна частоте соответствующей электромагнитной волны. Это значит, что, если f — это частота волны, энергия каждого фотона этой волны Е = ħf, где ħ — постоянная Планка. На основании этого предположения Эйнштейну удалось объяснить явление фотоэффекта. Электрический ток возникает, когда фотоны выбивают электроны из металла. Для этого им требуется минимальная энергия, вот почему существует пороговое минимальное значение частоты, при котором образуется электрический ток. В 1914 году американский физик Роберт Милликен экспериментально подтвердил предположение Эйнштейна.

Рис. 6.1. Спектр интенсивности сферического черного тела с абсолютной температурой поверхности T = 5000 К как функция длины волны. Здесь изображена ультрафиолетовая катастрофа, предсказанная законом Рэлея — Джинса в рамках классической волновой теории, описанная в главе 5. Расчеты Планка соотносятся с экспериментальными данными. Шкала длин волн дана в микронах, или в миллионных долях метра, а шкала спектральной плотности — в киловаттах на квадратный метр на нанометр. Авторская иллюстрация 

Эйнштейн доказал, что свет представляет собой не вибрации эфира или какой-то иной среды, но поток частиц, в точности как утверждал Ньютон в своей корпускулярной теории света. Но если свет состоит из частиц, то откуда берутся эффекты, подобные волновым, наблюдаемые в экспериментах интерференции и дифракции света?

Французский физик аристократического происхождения Луи де Бройль в 1924 году дал ответ на этот вопрос в своей докторской диссертации: все частицы имеют волновые свойства. Де Бройль заметил, что фотон с импульсом p имеет пропорциональную длину волны λ = ħ/p. Он предположил, что это отношение верно для всех частиц, в частности для электронов. Эта величина была названа длиной волны де Бройля.

Гипотеза де Бройля подтвердилась в 1927 году, когда американские физики Клинтон Дэвиссон и Лестер Джермер наблюдали дифракцию пучка электронов, направленного на кристалл никеля.

Итак, не только фотоны, но и электроны, и вообще все частицы имеют волновые свойства. Это явление получило название корпускулярно-волнового дуализма. Однако здесь мы сталкиваемся еще с одним физическим эффектом, который большинство людей, включая физиков, понимают превратно. Часто можно услышать: «Объект является частицей или волной в зависимости от того, что вы измеряете». Это не так. Никому еще не удалось выявить волновые свойства у отдельно взятой частицы. Эффекты интерференции и дифракции наблюдаются только в потоках частиц, и ничего, кроме частиц, вы в них не обнаружите, даже если попытаетесь измерить длину волны этого излучения. Статистическое поведение этих групп частиц математически описывается уравнениями, которые иногда, но не всегда напоминают волновые.

Если вы проводите эксперимент по обнаружению интерференции или дифракции, в котором наблюдаете отдельные фотоны, то не заметите эти эффекты, пока не наберется большого числа наблюдений. К примеру, вы проводите двухщелевой эксперимент по определению интерференции в потоке фотонов, пропускающем один фотон в день.

Через год вы заметите, что начала формироваться интерференционная картина. Обратите внимание: не стоит говорить, что фотоны интерферируют друг с другом, как часто описывают этот эффект.

Если вы возразите мне, назвав один фотон в день лучом, то где вы проведете границу, у которой внезапно появляется этот луч? А один в час? Один в секунду? Один в наносекунду?

Позвольте мне прояснить этот момент. Будет неправильно говорить: «Этот фотон имеет частоту f» или «Этот электрон имеет длину волны λ». Правильные формулировки звучат так: «Этот фотон является частью группы фотонов, которые статистически можно описать как волну с частотой f» и «Этот электрон является частью группы электронов, которые статистически можно описать как волну с длиной волны λ».

В 1926 году австрийский физик Эрвин Шрёдингер разработал математическую теорию, названную волновой механикой, в которой он связал частицы с комплексным числом, называемым волновой функцией [9]Комплексное число c представляет собой набор из двух реальных чисел a и b в форме с = а + ib, где i = √-1, то есть i 2 = -1.
. В том же году немецкий физик Макс Борн предложил интерпретацию, ставшую теперь общепринятой, согласно которой квадрат модуля волновой функции определяет вероятность обнаружения частицы в определенной точке пространства в пределах заданного объема и в определенный момент времени. Квантовая механика не позволяет предсказать поведение отдельной частицы в согласовании с приведенной ранее интерпретацией корпускулярно-волнового дуализма.

Чуть раньше, в 1925 году, немецкий физик Вернер Гейзенберг заложил основы науки, позже названной квантовой механикой, которая не работает с волнами, используя вместо этого матричную алгебру. Вначале шли споры о том, чья формулировка лучше. Шрёдингер доказал, что они математически эквивалентны. Формулировки Гейзенберга и Шрёдингера применяются только к нерелятивистским частицам, то есть тем, которые движутся на скоростях, значительно меньших, чем скорость света. Это значит, что с их помощью можно описать медленные электроны, но не фотоны.

В 1927 году британский физик Поль Дирак, чей гений сопоставим с эйнштейновским, сформулировал квантовую теорию фотонов. В следующем году он разработал релятивистскую теорию электронов, которая предсказывала существование антиматерии. В 1932 году американский физик Карл Андерсон сообщил, что ему удалось обнаружить в космическом излучении частицы, которые выглядели как электроны, но отклонялись в противоположном направлении в магнитном поле, а значит, имели положительный электрический заряд. Андерсон связал эти частицы с антиматерией Дирака и назвал антиэлектроны позитронами.

В 1930 году Дирак опубликовал основополагающую работу по квантовой механике — «Принципы квантовой механики» В этой книге, выдержавшей с тех пор множество редакций и изданий, он избавился от понятия волновой функции, заменив волновую механику и матричную алгебру более мощным инструментом — линейной векторной алгеброй. Хотя большинство химиков и те из физиков, которые имеют дело с низкоэнергетическими процессами, могут обойтись менее замысловатой волновой механикой Шрёдингера, квантовая механика Дирака необходима для понимания поведения элементарных частиц и высокоэнергетических процессов вообще.

В то время как специальную теорию относительности благополучно привели в согласие с квантовой механикой, об общей теории относительности сказать того же нельзя. В частности — и это самое важное для нашей космологической истории — общая теория относительности неприменима к первым моментам существования нашей Вселенной, когда квантовые эффекты преобладали. Как мы вскоре увидим, это не удержало религиозных апологетов от использования аргументов общей теории относительности для доказательства божественного сотворения Вселенной.

 

Шкала Планка

Теперь мне хотелось бы рассказать об идее, важность которой будет все нарастать по мере нашего дальнейшего углубления в космологию. Как я уже подчеркивал, всякая физическая величина, имеющая непосредственное отношение к экспериментальному наблюдению, с практической точки зрения определяется тем, как ее измеряют с помощью точно подобранного измерительного оборудования. Мы увидели, что как пространственный, так и временной интервалы зависят от того, что измеряют часы, при этом расстояние между двумя точками зависит от времени, за которое свет проходит между этими точками в вакууме.

Можно доказать, что наименьший временной промежуток, поддающийся измерению, планковское время, равен 5,391∙10-44 с, а кратчайшее расстояние, которое можно измерить, — планковская длина равна 1,616∙10-35м.

Еще одна достойная упоминания величина называется планковскои массой, и она равна 2,177∙10-8 кг. Радиус Шварцшильда для сферы планковскои массы равен двум планковским длинам, из чего следует, что такая сфера будет черной дырой (см. ранее раздел о черных дырах). Планковская энергия определяется как энергия покоя тела планковскои массы и равна 1,221∙1028 эВ (электрон-вольт). Электрон-вольт представляет собой количество энергии, полученной электроном при прохождении через разность потенциалов 1 В. В этой книге вы еще не раз встретите эту единицу измерения.

 

Атомы и ядра

В поэме «О природе вещей», упомянутой в главе 1, Лукреций описывает беспорядочное движение пылинок в солнечных лучах и утверждает, что оно вызвано столкновением атомов с пылинками. В 1857 году шотландский ботаник Роберт Броун (1773–1858) наблюдал беспорядочные перемещения частичек пыльцы в воде, в дальнейшем этот эффект получил название броуновского движения. В своей третьей работе, написанной в 1905 году, Эйнштейн вывел уравнения, из которых следовало, что на основе зубчатости траектории броуновских частиц можно доказать существование атомов и определить их размеры. В 1909 году французский физик Жан Батист Перрен использовал теорию Эйнштейна и ряд других методов, чтобы определить значение числа Авогадро, важной химической постоянной, которую для наших целей можно считать просто равной количеству атомов в одном грамме газообразного водорода. В настоящее время число Авогадро равно 6,022∙1023, из чего следует, что масса атома водорода равна 1,66∙10-24 г. Хотя данное значение и было получено косвенно, с этого момента только самые неисправимые упрямцы, такие как Эрнст Мах, продолжали отрицать, что материя состоит из огромного количества крохотных частиц.

В 1896 году французский физик Анри Беккерель (1852–1908) открыл ранее неизвестное излучение с высокой проникающей способностью, испускаемое атомом урана. В дальнейших лабораторных экспериментах Беккереля, Эрнеста Резерфорда, а также Пьера и Марии Кюри было найдено три типа такого излучения: α-, β- и γ-лучи, испускаемые различными химическими элементами.

В 1909 году Ганс Гейгер и Эрнст Марсден провели эксперимент, в котором бомбардировали тонкую золотую пластинку α-частицами газа радона. Этот эксперимент показал, что при рассеянии в пластинке α-лучи отклоняются под неожиданно большим углом. В 1911 году на основании этих наблюдений Резерфорд сделал вывод, что атом, сам по себе крошечный, состоит из еще более мелких частиц, намного меньших, чем он сам, заключающих в себе большую часть его массы. В этой модели электроны вращаются вокруг ядра атома по орбиталям, подобным орбитам планет.

В 1913 году датский физик Нильс Бор предположил, что электроны в атомах могут существовать только на определенных орбиталях. Каждая орбиталь соответствует отдельному энергетическому уровню, при этом в основном состоянии атома энергия минимальна. Если электрон в атоме переходит с более высокого энергетического уровня на более низкий, атом испускает фотон, энергия которого в точности равна разности между двумя энергетическими уровнями, что проявляется в виде тонкой полоски в эмиссионном спектре. Бору удалось рассчитать наблюдаемый эмиссионный спектр атома водорода. Спектр поглощения наблюдается только у тех фотонов, энергия которых равна разнице между двумя энергетическими уровнями. Итак, последняя проблема физики XIX века, которую нельзя было постичь в рамках волновой теории, была решена — узколинейчатым спектрам атомов нашли объяснение.

Теория Бора была еще очень неотшлифованной, но в значительной мере согласовывалась с экспериментальными данными. В рамках квантовой механики как в варианте Гейзенберга, так и в версии Шрёдингера электронная формула атома водорода получалась такой же, что и в расчетах Бора; предположительно ее можно было применить и для других атомов. Релятивистская квантовая теория Дирака работала еще лучше, позволяя рассчитать небольшое расщепление спектральных линий, называемое сверхтонкой структурой, которое обнаружили благодаря совершенствованию спектроскопического оборудования.

Из теории Дирака также следовало, что электрон имеет полуцелый спин (спином называется собственный момент импульса частицы). Это понятие было предложено австрийским физиком Вольфгангом Паули. В 1925 году Паули изложил закон, известный теперь как принцип запрета Паули: две и более одинаковые частицы с полуцелым спином не могут одновременно находиться в одном квантовом состоянии. Появление этого принципа позволило объяснить закономерности периодической таблицы химических элементов.

Хотя мы все еще называем химические элементы атомами, они больше не могут считаться неделимыми, если вместо низкоэнергетических химических реакций рассматривать высокоэнергетические ядерные реакции. Химические атомы — это не точечные частицы, но сложные структуры, состоящие из более простых объектов — ядер и электронов. Более того, в ходе ядерных реакций они могут превращаться друг в друга, воплощая тем самым мечту древних алхимиков.

Б 30-х годах XX века выяснилось, что ядра также состоят из более простых частиц, протонов и нейтронов, при этом нейтроны слегка тяжелее протонов и электрически нейтральны, хотя и представляют собой миниатюрные магниты, подобно протонам и электронам. Протон имеет положительный заряд. Водород — простейший элемент, состоящий из одного протона и одного электрона. Добавьте к ядру водорода нейтрон и получите тяжелый водород, или дейтерий. Добавьте еще один нейтрон и получите тритий. Добавьте к тритию еще один протон и получите гелий.

Каждый элемент периодической таблицы Менделеева определяется атомным числом Z, равным количеству протонов в ядре. Ему же равно количество электронов в электрически нейтральном атоме. Атомы с числом электронов меньше или больше числа протонов — это электрически заряженные ионы.

Изменение числа нейтронов в ядре не меняет положение атома в периодической таблице, но создает его изотоп, химические свойства которого в целом не очень отличаются от свойств исходного изотопа, но ядерные свойства могут быть совершенно иными. Стандартная формула изотопа выглядит как X A , где X — химический символ, который соответствует атомному числу Z. Число A обычно называют атомной массой, но его более точное название — нуклонное число, то есть число протонов и нейтронов в ядре (термином «нуклоны» обозначаются как протоны, так и нейтроны).

Известно три типа радиоактивного излучения: α-лучи представляют собой поток ядер гелия, β-лучи — поток электронов или позитронов, γ-лучи — поток высокоэнергетических фотонов.

В 1932 году английский физик Джеймс Чедвик подтвердил существование нейтронов. Итак, на тот момент состав Вселенной сводился всего к четырем элементарным частицам: электронам, протонам и нейтронам, составляющим атомы, и фотонам, структурным единицам света.

Однако, как мы уже выяснили, в том же году Андерсон подтвердил предсказанное Дираком существование антиэлектрона, или позитрона. Из этого следовало, что существует целый отдельный мир, состоящий из вещества, называемого антиматерией. К примеру, атом антиводорода состоит из антипротона и позитрона. Однако существование антипротонов, антинейтронов и антиводорода экспериментально было подтверждено только в 50-х годах XX века.

В 1936 году Андерсон и его ассистент Сет Неддермейер обнаружили в космическом излучении еще одну частицу, похожую на электрон, но тяжелее его. Сейчас эта частица называется мюоном. По сути, она представляет собой более тяжелый электрон. Мюон стал первым из вереницы новых частиц, открытых в 50-х и 60-х годах XX века.

Протоны в ядре плотно прилежат друг к другу, хотя их положительные заряды отталкиваются с большой силой. Что же тогда удерживает вместе компоненты атомного ядра? Поскольку нейтрон не имеет заряда, а только очень слабое магнитное поле и поскольку сила тяготения намного слабее силы электрического взаимодействия частиц такой маленькой массы, ядро должна удерживать какая-то другая сила. Эту силу называют сильным ядерным взаимодействием, поскольку ее должно хватить на то, чтобы преодолеть электромагнитное отталкивание положительно заряженных протонов в ядре. В то время как электромагнитная сила действует на огромных расстояниях (до нас доходит свет от галактик, расположенных в миллиардах световы хлет от Земли), сильное ядерное взаимодействие работает только для частиц, расположенных в нескольких фемтометрах (10-15 м) друг от друга.

Более того, позднее ученые выяснили, что сила, ответственная за радиоактивный распад ядра, при котором испускаются β-лучи (поток электронов), — это отдельная сила, действующая на еще меньшем расстоянии и называемая слабым ядерным взаимодействием. Кроме того, выяснилось, что именно слабое ядерное взаимодействие является основным источником энергии Солнца и других звезд.

В 1930 году Паули предположил, что «потерянная» энергия при β-распаде уносится нейтральной частицей с крошечной массой, которую итальянский физик Энрико Ферми окрестил нейтрино. Существование нейтрино подтвердилось только в 1956 году.

Я не буду вдаваться в подробности хорошо известной истории развития ядерной энергетики до начала Второй мировой войны и ее использования для создания невероятно мощных бомб, а также нового, способного вызвать проблемы источника энергии, который тем не менее в конечном итоге может оказаться единственным реальным способом удовлетворения мировых энергетических потребностей.

Итак, в 1945 году ученым были известны протон и нейтрон, составляющие атомное ядро, электрон, вместе с ними образующий атом, и фотон — носитель света. А кроме того, позитрон, мюон и гипотетическое нейтрино. Были известны четыре фундаментальных взаимодействия этих частиц:

♦ гравитационное;

♦ электромагнитное;

♦ сильное ядерное взаимодействие;

♦ слабое ядерное взаимодействие.

Также имелись релятивистские квантовые теории для фотонов и электронов, но все они учитывали только электромагнитное взаимодействие. Дирак и другие ученые разработали релятивистскую квантовую теорию поля, которая давала результаты только в приближении первого порядка, в дальнейших приближениях приводя к бесконечности в ответе. Ферми заложил основы теории слабого ядерного взаимодействия, а японский физик Хидэки Юкава разработал начальную, не очень удачную теорию сильного взаимодействия. Таким образом, в физике оставалось еще много нерешенных проблем.

По окончании войны эстафету приняло новое поколение физиков, которые подняли науку на новый уровень, используя результаты работы исследователей начала века. Научная картина 1999 года, в отличие от таковой в 1899 году, объясняла все, что было известно на тот момент о строении вещества.

Однако прежде, чем мы перейдем к этой истории, давайте снова обратимся к космологии. Дальнейшее совершенствование телескопов в первой половине XX века в сочетании с прогрессом физики в этот период продвинуло наши представления о Вселенной далеко вперед: от нашей собственной галактики, Млечного Пути, к новой картине Вселенной, продолжающей расширяться после первоначального взрыва, названного Большим, о чем мы и поговорим в следующей главе.

 

Глава 7.

ОСТРОВНЫЕ ВСЕЛЕННЫЕ

 

Шкала расстояний по цефеидам

К концу XIX века астрономы начали осознавать, что Вселенная простирается далеко за пределы Солнечной системы. Планеты находятся на огромных расстояниях от Земли, но звезды расположены намного дальше. Однако астрономы не представляли, насколько на самом деле велики расстояния до звезд. Измерительное оборудование тех времен позволяло при помощи параллакса вычислять расстояния не более нескольких десятков световых лет.

Несмотря на произведенную Коперником революцию, астрономы все еще представляли Землю находящейся недалеко от центра Вселенной. Виной тому не только традиционный человеческий эгоизм. При подсчете звезд астрономы обнаружили, что их количество сокращается во всех направлениях довольно равномерно, так что было похоже, что мы и правда близки к центру мира. Они не знали о существовании межзвездного газа, равномерно во всех направлениях задерживающего свет от расположенных за ним объектов, что создает видимость изотропности пространства.

В 1908 году в небольшой группе девушек-вычислителей, помогавших Чарлзу Пикерингу в обсерватории Гарвардского колледжа, работала сотрудница по имени Генриетта Ливитт. Пикеринг понимал, что для выполнения кропотливой работы, связанной с методичным просмотром огромного количества фотопластинок со снимками с телескопов обсерваторий Гарварда, профессиональные астрономы не нужны. И действительно, молодые женщины, которым можно было платить намного меньше, хорошо справлялись с анализом изображений на пластинках, регистрируя блеск, спектральный класс и точное положение звезд и других астрономических объектов. Естественно, в силу своей «деликатной природы» непосредственных наблюдений женщины не проводили.

Пикеринг поручил Ливитт просматривать фотоснимки переменных звезд, называемых так потому, что их яркость периодически изменяется. У Гарварда была обсерватория в Перу, и Ливитт просматривала полученные оттуда фотоснимки с образцами звезд Малого Магелланова Облака (ММО), которые, наряду со звездами Большого Магелланова Облака (БМО), можно наблюдать только в Южном полушарии.

Сравнивая фотопластинки с изображениями 16 звезд-гигантов, называемых цефеидами (или переменными звездами), Ливитт сделала открытие, значимость которого впоследствии оказалась огромной. Она заметила, что длительность периода изменения блеска, то есть времени, которое проходит между пиками светимости, прямо пропорциональна светимости звезды. Поскольку эти звезды находятся примерно на одинаковом расстоянии от Земли, она рассудила, что наблюдаемая светимость цефеид ММО должна напрямую зависеть от их истинной светимости. Ливитт обнаружила связь между периодом и пиковой светимостью, благодаря чему стало возможно измерять расстояния, значительно большие, чем те, которые можно измерить, используя параллакс.

Ливитт пришлось отложить свою работу из-за хронической болезни. Однако к 1912 году ее коллекция пополнилась еще девятью цефеидами из ММО, и она опубликовала статью на три страницы в № 173 Циркуляра Гарвардской обсерватории. В статье содержался график, на котором в логарифмическом масштабе отображалась связь между периодом и яркостью цефеид. Этот график стал известен как зависимость «период — светимость» {105} .

 

Вдали от центра

В 1908 году Джордж Эллери Хейл установил в калифорнийской обсерватории «Маунт-Вилсон» самый мощный телескоп тех времен — 60-дюймовый рефлектор, направленный в кристально чистое ночное небо над Лос-Анджелесом. В 1912 году новым сотрудником обсерватории стал Харлоу Шепли. Родом из сельской местности штата Миссури, он в прошлом работал криминальным репортером, но впоследствии окончил Принстонский университет, получив докторскую степень по астрономии. Шепли интересовали шаровые скопления — сферические звездные системы, содержащие сотни, а иногда и тысячи звезд.

Ему (или его жене Марте, астроному-любителю) удалось обнаружить в этих скоплениях множество тусклых голубых гигантов. Сравнивая их наблюдаемую светимость со светимостью звезд того же типа, находящихся недалеко от Солнца, он определил, что они расположены на расстоянии не менее 50 тыс. световых лет от нас — на два порядка дальше, чем наиболее удаленные звезды, расстояние до которых было рассчитано с помощью параллакса.

К сожалению, в шаровых скоплениях либо совсем не было цефеид, либо их было очень мало. Более того, Шепли обнаружил, что периоды некоторых цефеид намного короче, чем периоды цефеид из ММО, о которых писала Ливитт. Из-за этого Шепли вначале колебался, стоит ли применять открытую Ливитт зависимость «период — светимость» к цефеидам с более короткими периодами. Однако он был ученым не робкого десятка и все же рискнул. Он измерил расстояния до цефеид, которые обнаружил на фотографиях своих шаровых скоплений, применив выявленную Ливитт зависимость «период — светимость».

Это делается так: вначале измеряется период цефеиды. Из зависимости «период — светимость» выводится истинная светимость звезды. Звезда излучает свет в направлении поверхности воображаемой сферы с увеличивающимся радиусом г, при этом количество энергии на единицу площади снижается с увеличением площади сферы по формуле 1/r2 согласно закону сохранения энергии. Таким образом, сравнивая измеренное значение светимости с наблюдаемым, можно определить расстояние до звезды.

Расстояния до скоплений, в которых не было цефеид или они были слишком тусклыми, чтобы измерить их светимость, Шепли оценивал, используя в качестве ориентира наиболее яркие звезды. Если нельзя было различить отдельные звезды в скоплении, он измерял расстояние, исходя из размеров скоплений.

Используя эти методы, Шепли определил, что Млечный Путь имеет форму эллипса и простирается примерно на 300 тыс. световых лет в ширину. Он сделал вывод, что это, должно быть, и есть вся Вселенная. Все его воображение не смогло помочь ему представить Вселенную больше этих размеров.

Шепли обратил внимание на то, что центр распределения шаровых скоплений находится не в районе Земли. Центр оказался ближе к созвездию Стрельца. (Он был не первым, кому это пришло в голову.) По оценкам Шепли, Солнце располагалось на расстоянии 65 тыс. световых лет от центра Галактики.

На самом деле Шепли несколько переоценил эти расстояния. Согласно последним данным, диаметр Млечного Пути составляет 100–120 тыс. световых лет, а наше Солнце лежит в 27 тыс. световых лет от центра Галактики.

 

Астрономия высоких скоростей

Персиваль Лоуэлл был выходцем из знатной массачусетской семьи колонистов, высадившихся в Бостоне в 1639 году. Он всю жизнь увлекался Марсом и построил в Аризоне обсерваторию, чтобы проверить возможность существования на Красной планете искусственных водных путей, или каналов, построенных древней марсианской цивилизацией. В 1877 году итальянский астроном Джованни Скиапарелли (1835–1910) сообщил о темных полосах на поверхности Марса, которые он назвал каналами (имея в виду природные, а не искусственные каналы). В отличие от большинства астрономов, Лоуэлл отнесся к этому сообщению серьезно и написал на эту тему три книги, популяризовавшие идею о жизни на Марсе. Обсерваторию построили на Марсианском холме высотой 7250 футов, что было на 3 тыс. футов (1000 м) выше горы Гамильтон и на 1,5 тыс. футов (500 м) — горы Вилсон.

Лоуэлл приобрел спектроскоп, который был несколько совершеннее модели, используемой в Ликской обсерватории. Однако у него на вооружении был всего лишь 24-дюймовый телескоп-рефрактор — не самое подходящее приспособление для исследования спектров.

В 1909 году Лоуэлл нанял молодого Весто Слайфера, недавнего выпускника университета штата Индиана. Слайфер проработал в обсерватории до самого ухода на пенсию в 1954 году, в течение 38 лет занимая должность ее директора.

Благодаря настойчивости и мастерству Слайфера ненадежное оборудование стало работать намного лучше. Слайфер делал преимущественно то, что просил Лоуэлл, то есть занимался в основном планетарной астрономией. Однако в 1909 году Лоуэлл поручил Слайферу составить спектрограмму объекта, который он называл белой туманностью, подразумевая спиральную туманность. У Слайфера нашлось на это время только в 1912 году, и он начал делать серию снимков галактики Андромеды, крупнейшей спиральной туманности, видимой в небе, используя четыре разные фотопластинки. В январе 1913 года он получил следующие результаты: спектр Андромеды характеризуется фиолетовым смещением, то есть смещением в сторону коротких волн. Предполагая, что в основе этого эффекта лежит доплеровское смещение, Слайфер рассчитал, что Андромеда приближается к нам со скоростью, а точнее, лучевой скоростью 300 км/с. Он был близок к истине — современные астрономы оценивают эту скорость в 301 км/с.

В те времена это была наибольшая скорость, измеренная в природе. Лучевая скорость Андромеды в 10 раз выше скорости вращения Земли вокруг Солнца, равной 30 км/с, примерно такая же скорость характерна для звезд галактики Млечный Путь.

Результаты Слайфера были экстраординарными, и другие астрономы, в особенности из конкурирующей Ликской обсерватории, расположенной по соседству, отнеслись к ним весьма скептически. Не утратив решимости, Слайфер продолжил измерения, ставшие намного более сложными, когда он перешел к туманностям меньшего размера. Он обнаружил, что для спектра галактики М87 (по каталогу Мессье) характерно красное смещение, указывающее на то, что эта галактика удаляется от Земли с лучевой скоростью 1000 км/с — в три раза быстрее М31, галактики Андромеды, которая продолжает приближаться к нам и однажды сольется с Млечным Путем. Клету 1914 года Слайфер измерил скорости 14 спиральных туманностей и обнаружил, что большая их часть удаляется от нас. В августе он представил доклад об этом на собрании Американского астрономического общества в Северо-Западном университете. Среди слушателей был высокий молодой человек приятной наружности, совсем недавно принятый в ряды общества, его звали Эдвин Хаббл (1889–1953).

В своем докладе Слайфер сообщил, что спиральные туманности движутся со средней скоростью, в 25 раз превышающей среднюю скорость звезды в нашей Галактике. Коллеги из Ликской обсерватории аплодировали стоя и поздравляли его. Однако данных, подтверждающих, что спиральные туманности представляют собой отдельные «островные вселенные», все еще было недостаточно. Нужно было найти способ измерить расстояние до них.

Как известно из главы 4, в современной астрономии выделяют величину z, называемую красным смещением, которое определяется как отношение сдвига наблюдаемой длины волны спектральной линии к длине волны того же излучения, определенной экспериментально. Если это число отрицательное, речь идет о фиолетовом смещении. По формуле эффекта Доплера z = v/c, где v — скорость удаления. Эта зависимость действует только для v << с; в случае релятивистских скоростей требуется более сложная формула.

 

Спор о природе спиральных туманностей

Как мы узнали из главы 4, в конце XIX века Джеймс Килер с помощью телескопа Кросли, установленного на горе Гамильтон, сделал восхитительные снимки сотен спиральных туманностей. Девять лет спустя после смерти Килера, наступившей в 1900 году, Гебер Кёртис (1872–1942) продолжил его работу с телескопом Кросли. К 1913 году у него накопилось две сотни снимков спиральных туманностей.

19 июля 1917 года Джордж Ричи (1864–1945), наблюдая небо в 60-дюймовый зеркальный телескоп обсерватории «Маунт-Вилсон», расположенной в 480 км от горы Гамильтон, сфотографировал на большой выдержке спиральную туманность NGC 6946 (аббревиатура NGC означает «новый общий каталог» — New General Catalogue, составленный в 1888 году). Сравнивая этот снимок с тремя более ранними, Ричи увидел у его края яркую точку. Он заключил, что это должна быть новая звезда, одна из тех точек света, которые порой вспыхивают на небе, а затем быстро исчезают.

Кёртис отметил это явление в трех различных туманностях. Просматривая фотопластинки, он обнаружил, что в спиральной туманности NGC 4321 новые звезды появлялись в 1901 и 1914 годах. Ему показалось странным, что в спиральной туманности возникает так много новых звезд.

Более того, Кёртис заметил, что в некоторых туманностях иногда, хоть и довольно редко, появляются относительно яркие вспышки. К примеру, такая вспышка наблюдалась в 1885 году в Андромеде, а в 1895 — в созвездии Кентавра. Кёртис отнес эти вспышки к отдельному классу, теперь их называют сверхновыми звездами.

Другие астрономы были заинтригованы и начали искать нечто подобное на своих фотопластинках. Продолжая собственные исследования, Кёртис обнаружил, что большинство новых звезд в спиральных туманностях напоминали новые в других местах, но были менее яркими. Пытаясь найти объяснение их тусклости, он заключил, что они должны находиться на расстоянии в миллионы световых лет от Земли.

Кёртис был сторонником мнения, что спиральные туманности представляют собой «островные вселенные» — звездные галактики, расположенные на огромном расстоянии от Млечного Пути. Но большинство астрономов продолжали скептически относиться к этой версии. Тем временем началась Первая мировая война и большинство астрономов, включая Кёртиса (но не Шепли), ушли на фронт.

После войны дебаты о природе спиральных туманностей продолжились. Харлоу Шепли строго придерживался мнения, что они находятся в пределах нашей Галактики. Серьезную поддержку в этом ему оказывал астроном голландского происхождения Адриан ван Маанен, работавший в обсерватории «Маунт-Вилсон». Маанен, имевший репутацию педантичного исследователя, утверждал, что измерил периоды вращения спиральных галактик и из этих данных следует, что если они представляют собой отдельные галактики, подобные Млечному Пути, то их спиральные рукава движутся быстрее скорости света. Предположительно, его результаты подтвердили другие исследователи из обсерватории «Маунт-Вилсон», обсерватории Лоуэлла, а также из России и Нидерландов.

26 апреля 1920 года Шепли и Кёртис вступили в так называемый большой спор, состоявшийся на вечерней Открытой встрече во время трехдневного собрания Национальной академии наук США в городе Вашингтоне. Днем ранее в газете «Вашингтон пост» было написано: «Доктор Харлоу Шепли из солнечной обсерватории “Маунт-Вилсон” представит данные, которые, по-видимому, свидетельствуют о том, что размеры [Млечного Пути] могут быть намного больше, чем считается… Доктор Гебер Д. Кёртис изЛикской обсерватории будет защищать старую (курсив мой. — В. С.) теорию, согласно которой существует, возможно, огромное число вселенных, подобных нашей, в каждой из которых может насчитываться до трех миллиардов звезд».

Если судить по тексту газетной статьи, что вообще-то всегда рискованно, общепринятое мнение в то время, похоже, склонялось к тому, что «старая» идея о существовании других галактик за пределами нашей вытесняется новыми открытиями Шепли.

На самом деле это был не совсем спор. Скорее это были две последовательные лекции, которые выступающие не адресовали друг другу и которые не предполагали обмена контраргументами по окончании.

Шепли большую часть дебатов посвятил своей оценке размеров нашей Галактики, согласно которой она в 10 раз больше, чем считалось в то время. Он обращался в первую очередь к публике и приводил мало научных подробностей. Лекция Кёртиса была более специализированной, он сосредоточился на спиральных туманностях, делая особенный акцент на том, что новая Андромеда была слишком яркой, чтобы находиться в нашей Галактике, и что спиральные туманности движутся с очень большой скоростью.

Кёртис также поставил под сомнение оценку размеров Млечного Пути, данную Шепли, утверждая, что он в 10 раз меньше. Он ошибся в меньшую сторону в три раза, в то время как Шепли ошибся в три раза в большую сторону, так что здесь они квиты.

Кёртису пришлось признать, что, если спиральные туманности — это отдельные галактики и, предположительно, имеют тот же порядок величин, что и Млечный Путь, они должны находиться на расстоянии не менее 300 тыс. световых лет от нас.

Конспекта самих дебатов не сохранилось. Однако лекторы, как настоящие ученые, согласились написать статьи в Бюллетень Национального совета по научным исследованиям в поддержку своих точек зрения. Эти статьи вышли через год, в них по сравнению с устными докладами были внесены существенные правки.

Общество начало обращать внимание на их работы. 31 мая 1921 года на первой полосе «Нью-Йорк тайме» сообщалось, будто Шепли доказал, что «маленькая светящаяся точка, вокруг которой вращается крохотная тень, называемая Землей, находится на расстоянии 60 000 световых лет от центра Вселенной». В том же году Шепли сменил Пикеринга на должности директора Гарвардской обсерватории. В статье приводились его слова: «Лично мне приятно видеть, как люди теряются в этой физической пустоте, человеку полезно осознавать, насколько ничтожно его существование в масштабах Вселенной».

В 1925 году Шведская королевская академия наук связалась с Гарвардской обсерваторией, чтобы узнать о возможности присуждения Нобелевской премии по физике Генриетте Ливитт. Они не знали, что она умерла от рака желудка четырьмя годами ранее, 21 декабря 1921 года, в возрасте 53 лет. Посмертно премия не присуждается.

 

Реальность, созданная Хабблом

Одиннадцатого сентября 1919 года благодаря неустанным усилиям Джорджа Эллери Хейла на горе Вилсон заработал 100-дюймовый телескоп-рефлектор. Неделю спустя в обсерватории появился новый сотрудник, Эдвин Хаббл, во время Первой мировой войны служивший капитаном, но не участвовавший в боях. В 1923 году он занимался исследованием туманностей при помощи обоих телескопов, имеющихся в его распоряжении (60- и 100-дюймового), и обратил особое внимание на NGC 6822, туманность в созвездии Скорпиона, которая напоминает Большое Магелланово Облако.

Хаббл обнаружил в NGC 6822 пять переменных звезд и попросил Шепли из Гарварда проверить этот объект на пластинках из своей коллекции. Исходя из наблюдаемой светимости ярчайших звезд NGC 6822, Шепли определил, что она находится примерно в 1 млн. световых лет от нас. Он признал, что это «вероятно, находится за пределами Галактики», однако эта туманность не была спиральной, так что Шепли продолжал настаивать на том, что спиральные туманности «не состоят из звезд и по размеру не соответствуют галактикам».

Хаббл обнаружил в NGC 6822 одиннадцать цефеид и с их помощью определил, что расстояние до этой галактики — 700 тыс. световых лет. Однако величайшее открытие, принесшее ему мировую славу, он сделал в начале 1924 года, когда обнаружил цефеиду в галактике Андромеды и определил, что она находится на расстоянии 900 тыс. световых лет от нас. Хаббл написал Шепли письмо, а тот, получив его, сказал коллеге: «Вот письмо, разрушившее мою Вселенную».

На самом деле в 1922 году эстонский астроном Эрнст Эпик опубликовал более точное значение расстояния до Андромеды, полученное новым методом: он использовал вращательную скорость галактики, которая зависит от ее массы, и предположил, что светимость галактики пропорциональна ее массе. Его оценка составила 1,5 млн. световых лет, в то время как Хаббл получил результат 900 тыс. световых лет. Это было несколько ближе к современному значению, равному 2,5 млн. световых лет.

Однако Шепли какое-то время играл роль адвоката дьявола, причем такая позиция идеально подходила главному эксперту, поддерживающему противоположную теорию. Когда совершаются новые научные открытия, для людей, работающих на передовой науки, они не всегда очевидны, и Хаббл вел себя таким же образом, проявляя большую осторожность и консерватизм.

Тем временем Хаббл женился на дочери богатого банкира из Лос-Анджелеса, и молодая пара отправилась в трехмесячное свадебное путешествие, включающее тур по Европе.

По возвращении Хаббл занялся исследованием других туманностей, в частности прекрасной спиральной туманности М33 в созвездии Треугольника, расположенной плашмя по отношению к наблюдателю. В ней он обнаружил 22 цефеиды, благодаря которым установил, что эта туманность находится на расстоянии не менее 1 млн. световых лет от нас. Измерение периодов всех этих переменных звезд во времена, когда не было не то что компьютеров, но даже обычных карманных калькуляторов, было утомительно и сложно. Кроме того, Хаббла беспокоили результаты измерений спиральных туманностей, полученные его старшим коллегой ван Мааненом в обсерватории «Маунт-Вилсон». Если бы они были верны, спиральные туманности не могли бы находиться за пределами нашей Галактики. Поэтому Хаббл не очень стремился оглашать свои результаты публично или высказывать сомнения касательно выводов ван Маанена.

Однако результаты Хаббла скоро стали известны всему миру благодаря развитой системе связи между астрономами, уже тогда весьма эффективной (сегодня они могут обмениваться сообщениями мгновенно). Даже в «Нью-Йорк таймс» что-то прослышали, и 23 ноября 1924 года она вышла с заголовком: «Доктор Хаббелл [sic] подтверждает — существуют “островные вселенные”, подобные нашей».

Несмотря на сомнения Хаббла, астрономическое сообщество серьезно отнеслось к полученным им результатам, поскольку они основывались на методе, имевшем к тому моменту серьезный базис, — на шкале расстояний по цефеидам. Ошибку ван Маанена в конце концов установили, в его методах расчета были найдены изъяны. Хаббл получил премию 1000 долларов от Американского общества содействия развитию науки, разделив ее с паразитологом Сэмюэлом Кливлендом, который обнаружил простейших в пищеварительном тракте термитов. Хаббл опубликовал свои результаты в 1925 году в «Публикациях Американского астрономического общества».

Шепли сожалел о своем уходе в Гарвард. Он считал, что мог бы сделать то же открытие, что и Хаббл, если бы только остался в обсерватории «Маунт-Вилсон». Но в конце концов он великодушно заметил, что Хаббл заслужил свою славу и был «великолепным исследователем, лучшим, чем я».

Хаббл, однако же, считал результаты ван Маанена пятном на своем великом открытии и испытывал к нему все нарастающую личную неприязнь, поскольку они продолжали работать в одной обсерватории. Ван Маанен ограничился тем, что неохотно признал существование некоторых ошибок в расчетах, и пообещал довести работу до конца. Но так этого и не сделал.

 

Глава 8.

ДИНАМИЧЕСКИЙ КОСМОС

 

Релятивистская космология

Даже если бы достижения Эдвина Хаббла ограничивались убедительным доказательством того, что Вселенная простирается далеко за пределы Млечного Пути и что помимо нашей Галактики существует множество других, он вошел бы в историю. Но ему удалось обессмертить свое имя еще раз, когда он доказал, что большинство галактик удаляются от Земли со скоростями, возрастающими в линейной зависимости от расстояния до них (по крайней мере, именно об этом свидетельствовали новейшие данные тех времен).

Еще в 1912 году Весто Слайфер на основании смещения спектральных линий сделал вывод о том, что спиральные туманности удаляются от нас или, как Андромеда, приближаются к нам с невероятно огромными скоростями. Хотя этот факт и не доказывал непосредственно, что они лежат за пределами нашей Галактики, он стал одним из первых свидетельств того, что Вселенная не ограничивается Млечным Путем.

Именно в этот период истории теория и эксперимент начали объединяться, хотя немногие теоретики имели представление об экспериментальных данных и мало кто из экспериментаторов что-то смыслил в теории. Как мы узнали из главы 6, Эйнштейн добавил в свое гравитационное уравнение новую величину — космологическую постоянную, чтобы ввести понятие гравитационного отталкивания. Он понимал, что оно необходимо для стабилизации Вселенной, ведь в противном случае звезды сталкивались бы друг с другом.

В 1917 году Эйнштейну удалось найти решение своего уравнения, согласно которому Вселенная представляет собой ограниченную в пространстве (замкнутую) статичную четырехмерную гиперсферу (рис. 8.1). Такую модель иногда называют цилиндрической Вселенной, поскольку, если убрать одно из пространственных измерений, такая Вселенная в каждой заданной точке пространства будет представлять собой круг, а с учетом оси времени — пространственно-временной цилиндр.

Стоит отметить, что, хотя модель Эйнштейна формально и была статичной, она была нестабильной, подобно камню на вершине горы. Мельчайшее изменение одного из параметров модели, к примеру космологической постоянной или плотности вещества, приведет к тому, что Вселенная будет расширяться бесконечно или же, наоборот, резко схлопнется.

В том же 1917 году нидерландский астроном Биллем де Ситтер (1872–1934) доказал, что существует еще одно статическое космологическое решение уравнения Эйнштейна, при котором во Вселенной нет материи, но есть только энергия, заключенная в космологической постоянной. Эта модель изображена на рис. 8.2. В решении Эйнштейна гравитационное притяжение массы во Вселенной полностью уравновешивается отталкиванием, заключенным в космологической постоянной. В модели де Ситтера нет ни вещества, ни излучения — только космологическая постоянная, заданная ею положительная пространственная кривая и гравитационное отталкивание, под воздействием которого Вселенная экспоненциально расширяется.

Рис. 8.1. Статическая Вселенная Эйнштейна. Четырехмерная гиперсфера, изображенная в трехмерной системе координат (убрано одно из пространственных измерений), из-за чего она принимает вид цилиндра. У нее нет ни начала, ни конца. Авторская иллюстрация

Разумеется, можно возразить, что расширяющаяся Вселенная никак не может быть статической. Мир де Ситтера называют статическим, потому что он расширяется и всегда будет расширяться равномерно экспоненциально. В этой модели плотность энергии постоянна, поскольку Вселенная расширяется и общая внутренняя энергия со временем увеличивается. Закон сохранения энергии при этом не нарушается, поскольку внутреннее давление, соответствующее космологической постоянной, отрицательно. Если рассматривать эту модель Вселенной как термодинамическую систему, она работает сама на себя.

Рис. 8.2. Вселенная де Ситтера, одно из пространственных измерений убрано. Представляет собой экспоненциально расширяющуюся сферу, не содержащую материи. Космологическая постоянная имеет положительное значение, равное постоянной плотности энергии. Авторская иллюстрация

График, изображенный на рис. 8.2, показывает, что Вселенная де Ситтера не имеет ни начала, ни конца. Линия под верхушкой конуса соответствует бесконечно сужающемуся диаметру конуса, если двигаться в отрицательную сторону по оси времени. Однако, как мы вскоре увидим, позднее было доказано, что инфляционное расширение Вселенной должно было иметь начальную точку, хотя этому моменту мог предшествовать процесс сжатия.

Эйнштейн был недоволен решением де Ситтера. Кроме того, Вселенная не пуста. Де Ситтер предполагал, что его решение, возможно, хорошо работает в некотором приближении в случае, если плотность вещества мала. Как мы вскоре узнаем, он был недалек от истины. Судя по данным измерений плотности энергии и массы, наша Вселенная всего на 26% состоит из вещества и пренебрежимо малого количества излучения. (В главе 10 мы выясним, где и каким образом ученые проводят границу между веществом и излучением.)

 

Вселенная Фридмана

В 1922 году российский физик и математик Александр Фридман доказал, что пространство и время могут заключать в себе не только статическое, но и динамическое многообразие. Я не буду приводить здесь его оригинальную формулировку, а вместо этого изложу современную общепринятую трактовку идеи Фридмана.

В 1929 году американский физик Говард Робертсон написал ключевую работу по этой теме — «Основы релятивистской космологии», где ввел понятие метрики Робертсона — Уокера, также полученной Артуром Уокером в 1935 году, которая определяет все возможные линейные элементы четырехмерного пространства-времени для однородной изотропной Вселенной. Он доказал, что решения Эйнштейна и де Ситтера — единственно возможные статические решения и что уравнения Фридмана работают для всех динамических моделей.

Из гравитационного уравнения Эйнштейна Фридман вывел два новых уравнения, описывающих, как Вселенная может развиваться с течением времени. При условии однородности и изотропности Вселенной уравнения Фридмана позволяют рассчитать зависимость от времени величины a(t), называемой в метрике Робертсона — Уокера масштабным фактором, который описывает расширение или сжатие пространства.

Идею Фридмана зачастую наглядно объясняют на примере надувающегося воздушного шара. Нарисуйте две точки на поверхности частично надутого шарика. Если надуть его сильнее, точки отодвинутся друг от друга, если сдуть — сблизятся. В модели Фридмана двухмерная поверхность трехмерного шарика аналогична трехмерному пространству в четырехмерном пространстве-времени Минковского.

Фридман обнаружил три основных возможных сценария космической эволюции, зависящих от значения коэффициента кривизны k, определяющего общую геометрию трехмерного пространства. Если k = 0, пространство плоское, то есть в нем действует евклидова геометрия. Если k = +1, Вселенная замкнута и представляет собой неевклидово пространство с положительной кривизной, подобное поверхности трехмерной сферы. Если k = -1, Вселенная представляет собой открытый трехмерный гиперболоид, кривизна пространства имеет отрицательное значение и пространство напоминает по форме седло. Любой из этих вариантов можно рассмотреть с точки зрения суммы внутренних углов треугольника: 180° для k = 0, больше чем 180° для k = +1, меньше чем 180° для k = -1.

Частные решения уравнений Фридмана зависят от природы вещества во Вселенной, а также значений k и космологической постоянной L.

Эйнштейн не приветствовал появление модели Фридмана. Он считал, что нашел в его работе математическую ошибку. Правда позднее признал, что с математической точки зрения работа корректна, однако «не имеет физического смысла». К сожалению, Фридман не смог продолжить свою работу, поскольку умер в 1925 году в возрасте всего лишь 37 лет. В одной недавней статье говорится, что его вклад в космологию не до конца понят и часто подается превратно. Возможно, Фридман умер, так и не успев осознать его, поскольку он не связывал свои расчеты с астрономическими наблюдениями.

 

Вселенная Леметра

Практически единственным ученым тех лет, которому, похоже, удалось уловить зарождающуюся связь между математической космологией и примечательными данными наблюдений, появившимися в одно и то же время, был бельгийский священник-иезуит и физик Жорж Леметр. В 1927 году Леметр опубликовал статью на французском языке под названием «Однородная Вселенная постоянной массы и возрастающего радиуса, объясняющая радиальные скорости внегалактических туманностей» (Un Univers homogene de masse constante et de rayon croissant rendant compte de la vitesse radiale des nebuleuses extra-galactiques). В этой статье он доказал, что из уравнения Эйнштейна следует расширение Вселенной и это объясняет красное смещение галактик. Леметр не цитировал Фридмана и не упоминал другие космологические решения, поскольку его интересовало только описание явлений, наблюдаемых в то время. Формулировка Леметра теперь известна как решение Фридмана — Леметра.

Однако работа Леметра, написанная на французском и опубликованная в малоизвестном журнале, который мало кто читал, несколько лет ожидала своего признания. Сам Леметр не занимался ее продвижением, хотя и послал копию Эддингтону, который ничего не ответил.

Только спустя 6 месяцев после выхода статьи Леметру удалось встретиться с Эйнштейном в брюссельском парке. Эйнштейн приехал на один из исторических Сольвеевских конгрессов, регулярно проходивших в Брюсселе. Пятый конгресс, прошедший в 1927 году, стал легендой, его посетили все сколько-нибудь значимые физики тех времен (Эйнштейн, Бор, Планк, Шрёдингер, Гейзенберг, Борн, Паули, Дирак, Лоренц, Перрен, де Бройль, Резерфорд, Джинс, Пуанкаре, Бриллюэн и др.), и именно там начался великий спор о квантовой механике между Эйнштейном и Бором, продлившийся годы. Семнадцать участников конференции из 29 стали лауреатами Нобелевской премии (астрономы в конгрессе не участвовали).

Итак, Леметр, также бывший в списке приглашенных, встретив Эйнштейна в парке, коротко изложил ему свою модель, на что тот ответил: «Ваши расчеты верны, но вы отвратительно понимаете физику».

 

Закон Хаббла

Тем временем Хаббл и его талантливый и педантичный ассистент Милтон Хьюмасон (1891–1972) продолжали усердно трудиться. Ни тот ни другой особенно не разбирались в общей теории относительности. В чем они знали толк, так это в наблюдениях за небом. Хьюмасон на тот момент имел восемь классов образования (в итоге он стал доктором наук) и учился проводить астрономические наблюдения после того, как пригонял в обсерваторию обозы снабжения, запряженные мулами. По поручению Хаббла Хьюмасон проводил долгие скучные ночи возле 100-дюймового телескопа, снимая на высокой выдержке спектрограммы плохо различимых галактик. В докомпьютерную эру наблюдателю приходилось сидеть на холоде, в открытой кабине, находящейся высоко, около фокальной точки телескопа, рассматривая изучаемый объект через окуляр и постоянно вручную подстраивая зеркало телескопа в соответствии с вращением Земли таким образом, чтобы объект все время находился в прицеле телескопа.

В 1929 году Хаббл опубликовал в официальном журнале Национальной Академии наук США Proceedings of the National Academy of Sciences эпохальную статью, озаглавленную «Связь между расстоянием и лучевой скоростью внегалактических туманностей» (A Relation between Distanceand Radial Velocity among Extra-Galactic Nebulae). Принцип, предложенный им в этой статье, стал известен как закон Хаббла: лучевая скорость галактики прямо пропорциональна расстоянию до нее. Хьюмасон тоже не остался в стороне. Незадолго до выхода статьи Хаббла он опубликовал свою работу, в которой сообщал о том, что эллиптическая галактика NGC 7619 удаляется от Земли со скоростью 3779 км/с. Эта скорость была в два раза больше, чем самая высокая скорость, измеренная прежде, и примерно в 100 раз больше, чем скорость вращения Земли вокруг Солнца.

В работе Хаббла приведен график (рис. 8.3), отображающий зависимость между лучевыми скоростями галактик и расстояниями до них. Хотя разброс точек велик, явно просматривается тенденция: более удаленные туманности движутся быстрее, чего следует ожидать, если Вселенная расширяется. Это не было большим сюрпризом: другие ученые уже подмечали такую закономерность. Однако у Хаббла имелись убедительные доказательства. Что касается выстраивания точек по прямой линии, на рисунке это видно плохо, но на основании имевшихся данных эта тенденция четко прослеживалась.

Подписи к рис. 8.3 взяты непосредственно из работы Хаббла. Неправильно указана единица измерения на оси скоростей — вместо «км» должно быть «км/с». Расстояния даны в парсеках, 1 парсек = = 3,26 светового года.

Рис. 8.3. Зависимость «скорость — расстояние» для внегалактических туманностей. На графике отображена связь между лучевыми скоростями с поправкой на движение Солнца и расстояниями до них, оцененными на основании светимости отдельных звезд или туманности в целом. Черные точки и сплошная линия отображают решение для движения Солнца с использованием отдельных туманностей; белые точки и пунктирная линия представляют решение с использованием объединенных скоплений туманностей; крестик обозначает среднюю скорость, соответствующую среднему расстоянию до 22 туманностей, расстояние до каждой из которых в отдельности оценить нельзя 

В то время как большая часть скоростей, изображенных на графике, положительны, несколько отрицательных значений свидетельствуют о том, что некоторые более близкие галактики, такие как Андромеда, движутся по направлению к нам. Большинство расстояний до галактик в примере Хаббла определены не по цефеидам, которые были слишком тусклыми для этого, а по наиболее ярким звездам либо по общей светимости галактики.

В те дни не практиковался такой педантичный подход к ссылкам в научных работах, как сейчас. На самом деле некоторые из них по современным стандартам выглядели бы небрежными и ненаучными. Так что Хаббл, не указавший в своей работе источники, ничем в этом отношении не выделялся. Из-за этого возникает впечатление — и об этом пишут во многих популярных книгах по астрономии, — что все данные были получены непосредственно Хабблом и Хьюмасоном с помощью 100-дюймового телескопа, установленного в «Маунт-Вилсон». На деле же только четыре точки взяты из наблюдений Хьюмасона в обсерватории «Маунт-Вилсон». Большая часть данных, использованных в работе Хаббла, взята у Слайфера, проводившего наблюдения в менее мощный телескоп обсерватории Лоуэлла. Тем не менее к 1931 году Хаббл и Хьюмасон добавили к ним данные наблюдений еще 40 галактик.

Угловой коэффициент отношения скорости v к расстоянию r, К = v/r, называется постоянной Хаббла, теперь ее принято обозначать буквой Н. Таким образом, закон Хаббла записывается так: v = Hr. Хаббл приводит два значения, основанных на результатах двух различных анализов данных: К = 500 км/с на 1 млн. парсеков для отдельной туманности и К = 530 км/с на 1 млн. парсеков — для туманностей, объединенных в группу.

При этих значениях К галактика NGC 7619, описанная Хьюмасоном, должна находиться на расстоянии 20 млн. световых лет от нас. Как мы вскоре увидим, значение Н, полученное Хабблом, было завышено в семь раз. По расчетам Хаббла, галактика Хьюмасона удалена от Земли на 140 млн. световых лет.

Заметьте, что Н фактически выражает скорость расширения Вселенной, которая не должна быть одинаковой на протяжении всего срока ее жизни, и, как мы знаем теперь, эта величина действительно не постоянна. Итак, я буду, придерживаясь традиции, определять значение Н, ныне обозначаемое Н0, как постоянную Хаббла. А более общий показатель расширения вселенной Н будем определять как параметр Хаббла.

 

Леметра заметили

В своей работе 1927 года, опубликованной на два года раньше статьи Хаббла, Леметр оценил К (или Н) в 625 км/с на 1 млн. парсеков, пользуясь, вероятно, той же выборкой, которая была у Хаббла. В этой работе Леметр прямо утверждает: «Удаляющиеся галактики — это космическое проявление расширения Вселенной».

На статью Леметра начали обращать внимание в 1931 году, когда благодаря помощи Эддингтона, который наряду с Шепли был одним из наставников Леметра и наконец-то обратил на его работу внимание, появился ее перевод на английский язык. Однако Леметр не включил в английскую версию статьи свои расчеты постоянной Хаббла. В любом случае, даже во французской версии работы Леметр не указал на критически значимую зависимость скорости от расстояния, которая действительно необходима, чтобы понять этот эффект.

Тем не менее космологи оценили значимость работы Леметра. Эддингтон отмечал, что статическая Вселенная Эйнштейна зависела от космологической постоянной, имеющей строго определенное значение, причем малейшее изменение привело бы к расширению или сжатию Вселенной. Эддингтон писал де Ситтеру, что Леметр предложил «блестящее решение» проблемы и тот согласился с этим утверждением.

Наконец и Эйнштейн изменил свое мнение, а к 1933 году его примеру последовало астрономическое сообщество. В итоге Эйнштейн отказался от космологической постоянной, назвав ее своей «самой большой ошибкой». Он и не подозревал, что она (или что-то подобное ей) окажется носителем трех четвертей всей энергии Вселенной. Ни де Ситтер, ни Леметр не исключили космологическую постоянную из своих моделей, хотя пройдут годы, прежде чем потребность в ней ощутит большая часть космологов.

Хаббл и Хьюмасон продолжали измерять красное смещение галактик. Предел скорости, доступный их спектрографу, оказался равным 40 000 км/с — на такой скорости до Луны можно добраться за 10 с. Хаббл особенно не увлекался теорией, и хотя его принято считать первооткрывателем расширения Вселенной, он так и не признал эту теорию полностью, будучи осторожным исследователем, оставляющим простор для альтернативных версий, в то время как Шепли искренне проникся этой идеей.

Сегодня нет сомнений в том, что Леметр был первым человеком, связавшим красное смещение галактик с расширением Вселенной. Однако Леметр не был экспериментатором, а теории в науке не имеют смысла без подтверждающих их данных. Роль Хаббла и помогавшего ему Хьюмасона заключалась в том, чтобы представить убедительные результаты наблюдений.

В 1935 году Хаббл читал в Йельском университете Силлимановские лекции, запись которых можно найти в его ставшей классической книге «Мир туманностей» (The Realm of the Nebulae). Силлимановские лекции были учреждены, чтобы «иллюстрировать присутствие и мудрость Бога, проявляющиеся в природе и духовном мире».

 

Первозданный атом Леметра

Открытие расширения Вселенной в популярных книгах по астрономии часто используется в качестве свидетельства того, что Вселенная имела начало в какой-то момент времени в прошлом. Но это неверный вывод. Историк Хельге Краг подчеркивает: «Когда идея о конечном возрасте Вселенной была впервые выдвинута — а это произошло только через два года после открытия Хаббла, — большинство астрономов отвергли ее».

Эддингтон приходил в ужас от мысли о моменте зарождения Вселенной, заявляя, что «с философской точки зрения идея о начале нынешнего естественного порядка невыносима для меня». Вот как он представлял себе это:

«Я воображаю… равномерное распределение протонов и электронов, заполняющих все (сферическое) пространство и находящихся на очень большом расстоянии друг от друга, пребывающих в состоянии, приближенном к равновесию, на протяжении очень долгого времени, пока их внутренняя нестабильность не перевешивает… Ничто не торопит события. Но в конечном итоге небольшие нерегулярные тенденции накапливаются, и эволюция запускает свой ход… По мере того как материя уплотняется и конденсируется, следом начинаются разнообразные эволюционные процессы: эволюция звезд, эволюция более сложных объектов, эволюция планет и биологическая эволюция» {140} .

Леметр позволил себе не согласиться с этим. Во время конференции, посвященной связям между физикой и духовностью, проводившейся в Лондоне в 1931 году, Леметр предположил, что Вселенная расширилась из первоначального шара ядерной материи в результате взрыва, который британский астроном Фред Хойл в 1948 году иронически окрестил Большим взрывом. Леметр кратко обрисовал свою идею в не содержащей никаких математических выражений статье объемом в одну страницу, опубликованной в журнале Nature в том же году. Он писал:

«Если мы вернемся назад во времени, то увидим, что вся энергия Вселенной содержалась в нескольких или даже в одном кванте… Если это предположение верно, Вселенная появилась чуть раньше, чем пространство и время. Мне кажется, такой вариант начала мира отнюдь не противоречив… Мы сможем постичь момент начала Вселенной, представив ее в форме одного-единственного атома, атомная масса которого равняется всей массе Вселенной. Этот в высшей степени нестабильный атом будет делиться на все меньшие и меньшие атомы в ходе некоторого сверхрадиоактивного процесса».

Заметьте, что, в отличие от некоторых современных теистов, о которых мы поговорим позднее, Леметр не обращался к релятивистской космологии, поскольку хорошо понимал, что в ней не содержится какого-то одного-единственного сценария происхождения Вселенной. Вместо этого он полагался на квантовую механику, которая полностью согласуется со специальной теорией относительности, но до сих пор не приведена в согласие с общей теорией относительности. Леметр представляет исходную точку Вселенной как нечто подобное атомному ядру, содержащему все вещество Вселенной, которое начинает самопроизвольно распадаться, формируя Вселенную, какой мы ее знаем.

В 1941 году Леметр издал книгу на французском языке, озаглавленную «Первозданный атом» (L'hypothese de l'atome primitif), в 1950 году вышел ее перевод на английский язык. Хотя в этой книге есть несколько уравнений и приложение с математическими выкладками, это скорее не специализированная работа, а масштабное рассуждение на тему космогонии и космологии, ориентированное на франкоязычную аудиторию. Леметр посвятил целую главу доказательству того, что его гипотеза о происхождении Вселенной из единого гигантского ядра согласуется со всеми научными данными того времени.

Следует отметить, что Леметр предвидел заявление, которое в последние годы стало главным аргументом богословов: в результате Большого взрыва появилась не только Вселенная, но также пространство и время.

Большое значение придается тому, что Леметр был священником-иезуитом и его идея о том, что Вселенная возникла входе гигантского взрыва конечное число лет назад, была продиктована его религиозными убеждениями. Однако он всегда настаивал на том, что первозданный атом — сугубо научная гипотеза, пока не подтвержденная экспериментальными данными. На самом деле сценарий Леметра больше напоминает китайский миф о сотворении мира из «космического яйца», чем сюжет из Книги Бытия.

Оригинальный машинописный текст его статьи в журнал Nature оканчивается предложением, которое Леметр вычеркнул перед тем, как отослать ее:

«Я думаю, что каждый, кто верит в высшее существо, поддерживающее каждое живое существо и каждое действие, верит также, что Бог существенно скрыт от нас и может быть доволен, видя, как современная физика приоткрывает вуаль с сотворения мира» {143} . 

Другими словами, Большой взрыв не стоит считать доказательством существования Бога-творца, поскольку Бог скрыт от нас. Многие люди, подобно Леметру, предпочитающие верить в Бога, несмотря на неочевидность его существования, не находят ничего лучше, чем утешать себя тем, что у него, должно быть, есть причины скрываться от нас. Однако этот «аргумент к скрытому Богу» явно несостоятелен.

Предположение Леметра было по большей части умозрительным. Он не представил какой-либо количественной модели. Самое большее, что можно было сказать на тот момент, — это то, что закон Хаббла v = Hr идеально описывает поведение частиц во время взрыва. Если они не сталкиваются друг с другом после взрыва, более быстрые частицы будут находиться дальше в любой заданный момент времени и r будет линейно пропорционально v. Действительно, лучшее, что можно сделать с точками, изображенными на рис. 8.3, — это свести их в прямую линию. Так обстояли дела на протяжении большей части XX века, пока всего за два года до начала нового тысячелетия не появились куда более точные данные. Но об этом мы поговорим позднее.

В линейной модели, где Н — постоянная, возраст Вселенной обратно пропорционален ей. Вычисленное Хабблом значение 500 км/с на 1 млн. парсеков преобразуется в T = 1/Н = 2 млрд. лет. Уже в те времена это было меньше возраста Земли, оцененного методом радиоизотопного датирования по меньшей мере в 3 млрд. лет. Стоило бы ожидать, что Вселенная должна быть старше Земли.

К тому же были и другие проблемы. Исходя из расстояний до галактик, рассчитанных по закону Хаббла, можно было предположить, что все прочие галактики имеют меньшие размеры, чем Млечный Путь. В частности, Андромеда оказалась меньше, а ее звезды менее яркими, чем ожидалось, что снова порождало мнение о нашей исключительности. Эти серьезные изъяны в законе Хаббла сохранялись в течение нескольких лет.

Только в 1948 году, когда в Паломарской обсерватории в Калифорнии запустили 200-дюймовый телескоп-рефлектор Хейла, числовые несоответствия, связанные с законом Хаббла, были устранены. В 1952 году с помощью телескопа Хейла Вальтер Бааде доказал, что существует две разновидности цефеид. Хаббл, измеряя расстояние до Андромеды, полагался на одну разновидность, в то время как Шепли, вычисляя расстояния до шаровых скоплений в Млечном Пути, использовал другую. Итак, Андромеда не меньше нашей Галактики, а ее звезды не менее яркие, чем звезды Млечного Пути. Она просто находится дальше, чем думал Хаббл. Значение Н, рассчитанное им, оказалось в семь раз больше истинного, поэтому расстояния получились в семь раз меньше реальных.

В настоящее время значение постоянной Хаббла оценивается примерно в 70 км/с на 1 млн. парсеков, что в результате дает возраст Вселенной, равный Т = 1/Н = 14 млрд. лет. Эта оценка основана на предположении, что Н — это постоянная. Как мы увидим позднее, теперь стало ясно, что это не так. На момент написания этой книги, в 2014 году, наиболее точная оценка возраста Вселенной составляет 13,8 млрд. лет с небольшим и статистически незначимым (для всех, кроме СМИ, любящих раздувать шумиху) числовым расхождением между результатами, полученными наблюдателями, которые использовали разные методы.

 

«Следовательно, Бог существует!»

Вопреки воле самого Леметра, явно выраженной им, его Большой взрыв все еще используется богословами и верующими учеными в качестве научного подтверждения божественного творения. 22 ноября 1951 года папа Пий XII в речи перед Папской академией наук объявил, что современная наука и церковь сходятся в одних и тех же фундаментальных истинах.

Открывая тему, которая в последующие десятилетия распространится среди религиозных апологетов, папа сказал: «По мере своего прогресса и вопреки заявлениям, выдвинутым в прошлом, истинная наука открывает все больше доказательств существования Бога — как если бы Бог ждал нас за каждой новой дверью, открываемой наукой». Он определил две основные характеристики космоса,«который наука постигла невероятно глубоко, доказав и усилив свыше всяких ожиданий: 1) способность вещей к мутации, включая их начало и конец; 2) явно проглядывающую в каждом уголке космоса целенаправленность процессов».

Пий XII привел примеры способности к мутации, то есть изменчивости, как в микрокосме, так и в макрокосме: фазовые сдвиги и химические преобразования материи, радиоактивное излучение атомов и радиоактивность ядра.

Переходя к космосу, папа сказал: «Все как будто указывает на то, что некоторое время назад материальная Вселенная имела грандиозное начало, для которого потребовалось неописуемо огромное количество энергии, благодаря которой вначале быстро, а затем, все более замедляясь, она эволюционировала в свое нынешнее состояние».

Папа заключает:

«[Современная наука] проследила курс и направление космических явлений, и, помимо того, что стало возможно мельком взглянуть на исходную точку, к которой неумолимо сходятся эти явления, они указывают на то, что их начало произошло около 5 миллиардов лет тому назад (на тот момент это была обоснованная оценка, — Примеч. авт.). Таким образом, с конкретностью, характерной для физических доказательств, [наука] подтвердила вероятность непредсказуемого возникновения Вселенной, а также обоснованность вывода относительно момента, когда мир вышел из рук Творца».

А затем последовали строки, не раз цитировавшиеся за десятилетия, прошедшие с тех пор:

«Следовательно, создание имело место. Следовательно, есть Творец. Следовательно, Бог существует».

Интересно, что нигде в своей речи папа не обращается к специфическим доктринам католической церкви или к Библии. Упоминая «космические явления», которые указывают «на то, что их начало произошло около 5 млрд. лет тому назад», папа не упоминает, что, согласно Книге Бытия, сотворение произошло намного позже — порядка 10 тыс. лет назад. Он также не упоминает доктрину о неизменности видов, совершенно точно присутствующую в Книге Бытия.

Разумеется, это преимущество статуса папы, так как именно он, а не Библия определяет официальные доктрины католической церкви. Бедняги протестанты. У них нет такой же непрерывной цепочки авторитетов, восходящей к Иисусу Христу, и им приходится полагаться на сборник мифов, написанный несколько тысяч лет назад и определенно полный ошибок.

Даже при всем этом в 1951 году все еще не было убедительных данных, подтверждающих теорию Большого взрыва, так что ее ничто не доказывало. Как отмечает Краг: «В те времена, когда папа излагал свое понимание космологии, в этой области еще не было однозначного согласия, напротив, шла напряженная борьба мнений». Речь папы на самом деле вводила в заблуждение, оставляя у обывателей впечатление, что «описанное в Книге Бытия было буквально подтверждено космологией Большого взрыва». Леметр знал, что это не так, и ему удалось уговорить папу слегка поумерить пыл в дальнейших речах.

 

Утомленный свет

Если даже Хаббл не был абсолютно убежден в том, что Вселенная расширяется, будьте уверены, остальные тоже сомневались. В конце концов, будучи учеными, они просто делали свою работу: ставили все под сомнение, пока не появятся в высшей степени убедительные данные, подтверждающие теорию. Итак, космологи искали другие объяснения бесспорного экспериментально доказанного факта существования красного смещения галактик. Если красное смещение вызвано не эффектом Доплера вследствие удаления галактик, то чем же тогда?

Правдоподобное объяснение предложил человек, бывший одной из наиболее интересных личностей в истории астрономии, — Фриц Цвикки, астроном из Калифорнийского технологического института. Цвикки родился в 1898 году в болгарском городе Варне в семье швейцарского посла. В 1925 году он поступил в Калифорнийский технологический институт и большую часть жизни проработал в Паломарской обсерватории и обсерватории «Маунт-Вилсон». У Цвикки было много идей, опережавших свое время, к примеру идея о том, что галактики формируют скопления.

В 1929 году Цвикки предположил, что красное смещение вызвано утомлением света: фотоны, преодолевшие большое расстояние, просто теряют энергию в ходе попутного взаимодействия с материей, в том числе, возможно, с другими фотонами. Если фотоны теряют энергию, соответствующая им длина волны будет увеличиваться, смещаясь в красную сторону.

Хотя эту идею в различных формах можно было встретить на протяжении десятилетий, в конце концов ее опровергли с помощью теста поверхностной яркости, предложенного американским физиком-теоретиком Ричардом Толменом. В статической Вселенной интенсивность света, идущего от звезды или галактики, снижается по формуле 1 /r2, где r — расстояние до галактики, в то время как видимая площадь света также снижается по тому же закону. Так что наблюдаемая яркость света на единицу площади будет постоянной. В расширяющейся Вселенной яркость по мере увеличения расстояния снижается быстрее по двум причинам. Во-первых, поскольку объект, испускающий фотоны, удаляется, каждому следующему фотону приходится преодолевать большее расстояние, чем предыдущему, вследствие чего интенсивность света снижается. Во-вторых, объект кажется больше, чем в действительности, поскольку он испустил свет, который мы наблюдаем, когда был ближе к нам. Данные точнейших измерений поверхностной яркости подтвердили теорию расширяющейся Вселенной и опровергли гипотезу утомленного света.

 

Переменные постоянные

Еще одно предположение заключалось в том, что наблюдаемое красное смещение вызвано снижением скорости света со временем. Эддингтон отмечал, что это противоречит специальной теории относительности, которая предполагает, что с — постоянная. Как мы узнали из главы 6, предположение, что скорость света в вакууме с — постоянная величина, теперь прочно укрепилось в физике. Но, как обычно, лучше обосновывать выводы данными, нежели теорией. Поскольку специальная теория относительности согласовывалась со многими тысячами экспериментов, проведенных более чем за столетие, мы можем уверенно придерживаться этого мнения, пока новые данные не докажут обратного.

В 1938 году Поль Дирак предложил модель, в которой ньютоновская гравитационная постоянная G изменяется со временем. Это противоречило общей теории относительности и приводило к выводу, что возраст Вселенной составляет всего 700 млн. лет. Когда Дирак понял это, он отказался от своей идеи. В настоящее время мы признаем, что G и с — произвольные постоянные и их числовые значения просто определяют систему измерения, в которой мы работаем.

 

Космология Милна

В 30-х годах XX века Эдвард Артур Милн, брат А. А. Милна, автора «Винни-Пуха», предложил собственный вариант космологии, который не зависел от общей теории относительности. Он отрицал идею об искривлении и расширении пространства. На деле пространство не рассматривалось как что-то физическое, но представляло собой просто систему координат.

В моей книге «Постижимый космос» (The Comprehensible Cosmos), вышедшей в 2006 году, я описал метод, изложенный Милном, благодаря которому можно проводить наблюдения, не используя ничего, кроме часов. Мне кажется, Милн смог точно и объективно описать, как мы на самом деле определяем, что происходит в мире вокруг нас, и трактуем это в рамках пространственно-временной модели. Все, что мы делаем, будучи наблюдателями, — это посылаем и принимаем сигналы. Вслед за Милном я показал, как, используя одни лишь часы, импульсный источник света и детектор, можно построить картину окружающего мира.

Мы просто посылаем сигналы и принимаем их отражения, подобно радару. Без всяких метровых брусков или других приспособлений для измерения расстояний, просто меряя время, мы можем определить величину, называемую расстоянием, на основании которой можно разработать модель окружающего мира. В этой схеме скорость света считается постоянной по определению, следовательно, специальная теория относительности не нужна.

В милновской модели Вселенная состоит из хаотично движущихся частиц, подобных молекулам газа. Далее Милн делает разумное предположение, что Вселенная должна выглядеть одинаково для всех наблюдателей. Историю этого космологического принципа можно проследить вплоть до Николая Кузанского, жившего в XV веке (см. главу 2).

Из этой модели Милну удалось вывести закон Хаббла v = Hr, а из него — расширение Вселенной, в отрыве от общей теории относительности. Однако больше ничего особенного вывести ему не удалось. Он предсказал, что ньютоновская гравитационная постоянная G будет увеличиваться со временем, однако так медленно, что этого нельзя уловить. На самом деле он не считал, что такой вариант времени поддается экспериментальному исследованию, поскольку речь шла о совершенно новом типе времени, который предложил сам Милн, назвав его кинематическим временем. Кинематическое время не измеряется при помощи часов.

Хотя космология Милна и была в высшей мере нетрадиционной, в 1930-е годы она привлекла большое внимание. В частности, Хаббл относился к ней благосклонно и упомянул ее в конце своей книги «Мир туманностей», где он несколько страниц посвятил теории.

Однако многих оттолкнуло то, что Милн смешал космологию с богословием — тоже довольно нетрадиционным. В своей книге 1935 года он говорит, что для получения окончательных ответов на вопросы космологии следует обратиться к Богу. Он часто упоминает Бога в речах и других своих работах. В отличие от Леметра, который имел осторожность разделять религию и науку, Милн верил, что богословские или метафизические аргументы могут иметь научный смысл, в особенности в том, что касается сотворения Вселенной. Он писал: «Исследователи, не принимающие во внимание Бога, raison d'étre (фр. «смысл жизни») Вселенной, обнаруживают свою жалкую неполноценность, сталкиваясь с вопросами космологии».

Но с точки зрения научного сообщества экспериментаторов крайний рационализм Милна был еще хуже его богословских взглядов. Милн ставил логику и здравый смысл превыше наблюдения и эксперимента.

Теорию Милна постигла судьба большинства теорий, в которых слишком большой акцент делается на рациональном мышлении, логике и математике, но недостаточно внимания уделяется данным: эта теория не смогла пройти эмпирическую проверку на фальсифицируемость. В науке нефальсифицируемая теория имеет только историческое значение (по крайней мере, должна иметь), так что в итоге космологию Милна окончательно отвергли, в то время как общая релятивистская космология и теория Большого взрыва, подкрепленные открытиями в области физики на субмикроскопическом уровне, вышли на первый план. Но, как мы теперь видим, это произошло не за один день.

 

Недостающая масса

В 1930-х годах появились первые предвестники открытия, впоследствии оказавшегося еще одной неожиданной и невероятно важной характеристикой Вселенной. В 1932 году нидерландский астроном Ян Оорт открыл, что массы светящихся объектов, таких как звезды и звездная пыль, в галактике недостаточно для того, чтобы объяснить наблюдаемые орбитальные движения звезд. В следующем году Цвикки отметил тот же эффект в отношении орбитальной скорости галактик внутри галактических скоплений. На основе данных своих измерений, применив к ним законы Ньютона, он рассчитал, что масса скопления Волосы Вероники в 400 раз превышает массу ее светящегося вещества. Он назвал этот невидимый источник гравитации dunckle materie — темной материей.

В 1939 году американский астроном Хорее Бэбкок измерил кривую вращения галактики Андромеда» которая представляет собой зависимость скорости звезд от их удаленности от центра галактики. На основании закона всемирного тяготения эта скорость должна падать с увеличением расстояния, как происходит с планетами Солнечной системы. Однако, как подтвердили позднейшие измерения, проведенные в 1960-хи 1970-х годах, кривая вращения остается плоской на протяжении основной светящейся части галактики, а это означает, что звезды движутся через невидимое вещество, довольно равномерно распределенное в пространстве.

Теперь мы знаем, что темная материя заключает в себе 26% массы Вселенной, в то время как на светящееся вещество, видимое в оптические телескопы, приходится всего 0,5%. Более того, как мы увидим в дальнейшем, огромная масса темной материи состоит из чего-то иного, нежели знакомые нам атомы, и нам все еще неизвестно, что это.

 

Радиоастрономия

В 30-х годах XX века произошло также открытие нового окна во Вселенную. В 1933 году инженер компании «Лаборатории Белла» Карл Янский обнаружил радиоволны за пределами Земли. Это привело к развитию новой области, известной как радиоастрономия, которая исследует Вселенную в спектральном диапазоне, далеком от видимого, и имеет существенное значение для космологии.

 

Глава 9.

ЯДЕРНАЯ КОСМОЛОГИЯ

 

Новые детали

Давайте вспомним, на каком этапе находилась космология в середине XX века. К началу 30-х годов великое открытие — то, что мы живем в огромной расширяющейся Вселенной, состоящей из звездных галактик, разлетающихся на огромных скоростях, — прочно укрепилось в науке, и астрономы занимались тем, что дополняли эту картину новыми деталями. Самым мощным телескопом в мире оставался 100-дюймовый рефлектор из обсерватории «Маунт-Вилсон», начавший работать в 1908 году. Он сохранял за собой это звание в течение 40 лет, пока наконец в 1948 году не уступил 200-дюймовому рефлектору из Паломарской обсерватории. Разумеется, это были не единственные телескопы, существовало множество других, спроектированных специально для отдельных видов наблюдений.

Используя это оборудование, астрономы начали детально исследовать небо, занося галактики в каталоги. Этот процесс будет продолжаться много лет и принесет множество неожиданных и впечатляющих результатов. Одним из наиболее плодотворных составителей каталогов был выдающийся астрофизик Фриц Цвикки, уже упомянутый в связи с его неудачной гипотезой утомленного света, призванной объяснить причины красного смещения галактик, а также как человек, открывший массу доселе скрытых галактик. Он также предполагал, что высокоэнергетические космические лучи приходят из-за пределов Солнечной системы и возникают при взрывах крайне массивных звезд. Он назвал такие звезды сверхновыми. Для поиска сверхновых Цвикки использовал установленный в Паломарской обсерватории 18-дюймовый телескоп Шмидта, изобретенный немецким оптиком Бернхардом Шмидтом в 1930 году. Телескоп Шмидта позволяет детально изучать большие участки неба. С момента его запуска в 1936 году Цвикки обнаружил около десятка сверхновых.

В 1948 году более крупный 48-дюймовый телескоп Шмидта использовали при проведении Паломарского обзора неба. В его ходе подтвердилось упомянутое в главе 8 предположение Цвикки о том, что галактики образуют скопления. В 1958 году Джордж Эйбелл, профессор астрономии из Калифорнийского университета, что в Лос-Анджелесе, составил каталог из 2712 скоплений Северного полушария, а к 1989 году каталогизировал 4073 богатых звездами галактических скопления, которые можно наблюдать в обоих полушариях. К 70-м годам XX века астрономы стали замечать, что скопления, в свою очередь, формируют ячеистые структуры с нитями, отверстиями и стенами.

 

Горячее и плотное прошлое

Тем временем центр внимания космической физики сместился с общей теории относительности на ядерную физику. Ученые начали осознавать, что, если Вселенная расширяется, в прошлом она должна была представлять собой очень маленький, горячий и плотный объект, где главенствующую роль играли ядерные реакции. Жорж Леметр, возможно, был первым, кто понял это. Однако его предположение, что первичное сверхъядро распалось в ходе ядерных реакций, образовав Вселенную, какой мы ее знаем сегодня, было чистой воды спекуляцией и не имело под собой каких-либо эмпирических или теоретических оснований.

Как следствие, мало кто из ученых того времени принял эту идею всерьез. В чем заключается настоящий вклад Леметра, так это в предложенном им космологическом решении общей теории относительности для расширяющейся Вселенной. Теперь его называют решением Фридмана — Леметра, поскольку оно содержалось также в уравнениях Фридмана. Сама модель получила название модели Эддингтона — Леметра, поскольку Эддингтон усовершенствовал ее.

В любом случае Леметр представлял Вселенную конечной, зародившейся в определенный момент. Хотя не исключено, что такое представление было продиктовано его религиозной верой в Творца, как уже упоминалось ранее, он никогда не основывал свою аргументацию на богословии и, более того, противился такой трактовке.

В то же время, как мы узнали из главы 8, Эддингтон находил мысль о начале Вселенной невыносимой. В его представлении Вселенная расширялась, однако была вечной, и большинство физиков тех времен были склонны согласиться с этим. Что же касается астрономов-наблюдателей, то они особо не отвлекались от телескопов.

Леметр продолжал развивать свою модель, осознавая, что ее нужно сделать экспериментально проверяемой. Он понимал, что, если Вселенная когда-то была горячей, плотной и радиоактивной, должны были сохраниться следы этого излучения, которые, вероятно, можно увидеть и сегодня. Однако он не считал, что это излучение должно быть электромагнитным, то есть потоком фотонов, предполагая, что оно должно состоять из заряженных частиц. Большинство физиков опять-таки сомневались в этом, хотя Эйнштейн высказал к его идее легкий интерес. Но у них просто не было данных, подтверждающих это.

Более того, одна из основных проблем гипотезы конечной Вселенной заключалась в том временном сроке, на который указывали данные. Согласно закону Хаббла, возраст Вселенной обратно пропорционален постоянной Хаббла. В результате получалось, что он составляет 2 млрд. лет — меньше, чем возраст Земли, рассчитанный на основании данных геологии и ядерной физики. Это может показаться удивительным, но Хаббл сам ставил под сомнение расширение Вселенной, которое в итоге принесло ему мировую славу. Он писал: «Не удается обнаружить каких-либо явлений — факторов разбегания галактик, — свидетельствующих о расширении Вселенной. Имеющиеся данные все еще склоняют нас скорее в сторону статической, нежели быстро расширяющейся модели Вселенной».

Однако предположение, что возраст Вселенной Т = 1/Н, основано на нулевой космологической постоянной. Модель Леметра включала космологическую постоянную и допускала более солидный возраст Вселенной. К сожалению, Эйнштейн отрекся от своей космологической постоянной и не стал продолжать работу над ней.

Вплоть до этого периода, до конца 1930-х годов, физика фигурировала в теоретической космологии только на уровне общей теории относительности. Первозданный атом Леметра был преимущественно спекулятивной гипотезой с осторожными попытками разработать количественную модель. Но в 1938–1939 годах произошел великий прорыв, когда немецкие физики Ханс Бете (работавший в США) и Карл Фридрих фон Вайцзеккер независимо друг от друга предположили, что энергия звезд вырабатывается путем ядерного синтеза. Процесс, предложенный Бете, был чрезвычайно простым. Четыре протона объединяются в атом гелия вследствие серии парных столкновений, включающих только фундаментальные частицы: протоны, нейтроны, электроны, фотоны и, как мы знаем теперь, нейтрино. Механизм, предложенный Вайцзеккером, был значительно сложнее и включал изотопы углерода, кислорода и азота.

Вайцзеккер также предположил, что с помощью этой теории можно объяснить формирование химических элементов. Однако его модель не давала приемлемого объяснения распространенности элементов в космосе. Но все же физики-ядерщики были достаточно заинтригованы для того, чтобы подключиться к работе по исследованию космоса.

 

Илем

Большой шаг в сторону укрепления позиций модели Большого взрыва сделал Георгий Гамов, российско-украинский физик, эмигрировавший в США. В 1924 году Гамов прослушал курс лекций Александра Фридмана под названием «Математические основы теории относительности», который тот читал в Ленинграде. Гамов хотел обучаться под руководством Фридмана, но, к сожалению, ученый умер всего год спустя, будучи совсем молодым.

Получив в Геттингене докторскую степень по квантовой теории (он защитил работу по теории атомного ядра), Гамов работал в Копенгагене с Нильсом Бором, затем в Кембридже с Эрнестом Резерфордом, а в 1931 году, в возрасте 28 лет, стал членом-корреспондентом Академии наук СССР. Среди множества его достижений в ядерной физике — количественное доказательство того, что альфа-распад (поток ядер гелия, называемых альфа-частицами) объясняется туннельным эффектом. Этот процесс важен также для реакций термоядерного синтеза, протекающих в звездах. Как мы выясним позже, космологи признали, что этот сугубо квантово-механический процесс мог лежать в основе возникновения нашей Вселенной.

В 1934 году Гамов уехал в США, где работал с Эдвардом Теллером в Университете Джорджа Вашингтона, в городе Вашингтоне. Во время Второй мировой войны Теллер переключился на работу в Манхэттенском проекте. Однако Гамова к работе над атомной бомбой не допустили, поскольку в СССР он получил офицерское звание, необходимое, чтобы преподавать в военной академии. Он остался в Вашингтоне и стал консультантом Военно-морского ведомства США. После войны Гамова допустили к ядерным исследованиям, проводимым в Лос-Аламосе.

Гамов, который продолжал работу в области ядерной физики, проявляя все возрастающий интерес к астрофизике, получил известность также как автор научно-популярных бестселлеров, в том числе «Раз, два, три… бесконечность», «Рождение и смерть Солнца», «Мистер Томпкинс в стране чудес» (в шести томах) и многих других. Будучи подростком, я с жадностью глотал эти книги, и они, без сомнения, повлияли на мое решение стать физиком. Вот еще одно подтверждение невероятной гениальности Гамова: до аспирантуры он даже не говорил по-английски.

В 1948 году Гамов, Ральф Альфер и Ханс Бете опубликовали в журнале Physical Review короткое письмо под названием «Происхождение химических элементов», в котором вернулись к идее о том, что ядра элементов таблицы Менделеева возникли на начальных этапах формирования Вселенной. Бете включили в соавторы, чтобы статью можно было называть «Альфер, Бете и Гамов». Однако Бете, не будучи непосредственным автором работы, все же внес в ее создание существенный вклад. На Леметра и Вайцзеккера авторы статьи не ссылаются.

Альфер, Бете и Гамов предположили, что вначале существовало компактное ядро первичной, очень плотной и горячей субстанции, состоящей из нейтронов, которую они назвали «илем» (ylem). В ходе бета-распада часть нейтронов превратилась в протоны, испустив при этом электроны и, как мы теперь знаем, антинейтрино электронные, устремившиеся прочь из этого сплава частиц.

Затем в процессе воссоединения протонов и нейтронов, называемом нейтронным захватом, образуются химические элементы. В результате этой реакции к смеси добавляются фотоны. Таким образом, протон и нейтрон соединяются, образуя дейтрон (ядро атома водорода с двумя нейтронами). Если добавить к нему еще один нейтрон, получится тритон (ядро водорода с тремя нейтронами). Тритон и протон или два дейтрона могут объединиться в ядро гелия, высвободив при этом большое количество энергии.

Попутно замечу, что попытки осуществить управляемый ядерный синтез основываются именно на этих реакциях, которые требуют более низких температур, нежели процессы, происходящие в недрах звезд. Но даже в этом случае температура невероятно высока, порядка 100 млн. градусов, и, несмотря на более чем 50 лет попыток, этот источник энергии все еще недоступен для нас.

Гамов и его коллеги полагали, что на ранних этапах жизни Вселенной в ходе серии ядерных реакций образовалась вся периодическая таблица химических элементов. Но, несмотря на все их усилия, выходило, что этот процесс не будет идти дальше. Если добавить нейтрон к ядру гелия, стабильного ядра из пяти нуклонов не образуется. Соединение двух ядер гелия также не дает в результате стабильного ядра из восьми нуклонов.

Как мы вскоре узнаем, позже Фред Хойл с коллегами смогли доказать, что более тяжелые ядра образуются в недрах звезд в процессе так называемого звездного нуклеосинтеза. Первым высказал догадку о существовании этого процесса Артур Эддингтон, его изучал также Ханс Бете. Когда выяснилось, что первичный нуклеосинтез Гамова не объясняет формирование всех элементов периодической таблицы, теорию Большого взрыва вновь стали воспринимать скептически.

Однако модель Альфера — Бете — Гамова, в которую внес вклад и Ральф Герман, имела другие последствия, описанные в примечательной работе Альфера и Германа, опубликованной в 1949 году. Скорость реакций, о которых идет речь, превышает скорость расширения Вселенной, заданной параметром Хаббла, Н, в степени, достаточной для того, чтобы в плазме взаимодействующих частиц установилось квазитепловое равновесие с медленно понижающейся температурой. По оценке Альфера и Германа температура Вселенной во время, «когда процессы нейтронного захвата стали иметь значение», достигала порядка 600 млн. градусов. Фотоны в то время входили в смесь частиц. Исходя из теории расширяющейся Вселенной, они рассчитали, что к настоящему времени эта температура должна опуститься до «порядка 5 К», то есть 5 Кельвинов.

Хоть и не совсем явно, Альфер и Герман высказали прогноз, который потряс весь мир: Вселенная должна быть наполнена тепловым излучением, то есть излучением, соответствующим спектру черного тела при 5 К, которое лежит в микроволновом диапазоне. Это касается только фотонов, которые, в отличие от материи, сохраняли состояние теплового равновесия по мере расширения Вселенной. Пик спектра излучения черного тела при температуре 5 К приходится на длину волны примерно 1 м. Для сравнения: пик оптического спектра Солнца (5000 К) приходится на длину волны 550 миллиардных метра.

Этот прогноз не вызвал никакого интереса у физиков и астрономов, вероятно, потому, что был тесно связан с механизмом первичного нуклеосинтеза, который мог объяснить появление только первых двух элементов таблицы Менделеева.

Кроме того, все еще стояла проблема парадокса возраста Вселенной. Поэтому о Большом взрыве снова забыли. Вопреки энтузиазму папы Пия XII за 10 лет, прошедших после 1953 года, была опубликована только одна работа по теории Большого взрыва. Ее место заняла модель вечной и неизменной Вселенной, привлекавшая куда больше внимания, чем следовало бы, возможно, из-за большого авторитета ее создателей.

 

Проблема стационарной модели

Как уже упоминалось, термин «Большой взрыв» был предложен Фредом Хойлом в 1948 году в интервью «Би-би-си» и был употреблен с иронией. В том же году Хойл вместе с Германом Бонди и Томасом Голдом разработали альтернативную Большому взрыву теорию стационарной Вселенной. Первым космологию стационарного состояния предложил Джеймс Джинс в 1928 году. С помощью Маргарет и Джефри Бербиджей, а также Джайанта Нарликара Хойл продолжал продвигать стационарную модель даже после того, как эмпирических данных в пользу Большого взрыва накопилось в избытке.

Эти исследователи были твердо уверены, что Вселенная должна подчиняться так называемому идеальному космологическому принципу, который они трактовали таким образом, что Вселенная должна выглядеть одинаково везде и всегда, то есть в любом месте и в любое время. Нет не только особого участка пространства, который можно считать центром Вселенной, не существует и определенного момента времени, в который она появилась.

Далее, если общая масса расширяющейся Вселенной остается постоянной, то плотность Вселенной должна уменьшаться со временем. Поскольку, по мнению авторов стационарной модели, средняя массовая плотность Вселенной должна оставаться постоянной, иначе Вселенная выглядела бы иначе, все время должна создаваться новая однородная материя. Скорость ее формирования, однако, должна быть очень мала, всего 10-43 г/см3∙с.

Авторы понимали, что при этом нарушится закон сохранения энергии. Однако различные версии этой модели, предложенные в течение последующих лет, добавляли в нее поле с отрицательным давлением, обеспечивая тем самым соблюдение закона сохранения энергии. Ученые отметили, что это особое поле, по сути, равнозначно космологической постоянной. Положительная космологическая постоянная создает постоянное отрицательное давление расширяющегося газа, вследствие чего внутренняя энергия растет в полном соответствии с законом сохранения энергии. Энергия на создание новой массы берется из работы, совершаемой над системой ее собственным отрицательным давлением. Однако такая трактовка, похоже, не устроила сторонников стационарной модели.

В любом случае вскоре появилось множество экспериментальных данных, подтверждающих, что Вселенная в разное время выглядит немного по-разному. В 1950-х годах радиоастроном Мартин Райл из Кембриджа и его исследовательская группа, проведя дебаты (Хойл работал по соседству), доказали, что плотность астрономических радиоисточников, находящихся на больших расстояниях, а следовательно, в прошлом, была выше, чем сейчас. После открытия квазаров и некоторых других форм активных галактик, о которых мы поговорим в этой главе чуть позже, стало ясно, что в далеком прошлом они также были намного плотнее.

В 1974 году Райл разделил Нобелевскую премию по физике с коллегой по Кембриджу Энтони Хьюишем, чья студентка Джоселин Белл открыла первый пульсар (подробности чуть позже). Это была первая Нобелевская премия, присужденная за достижения в астрономии. Но не последняя.

Тот факт, что Вселенная за миллиарды лет изменила свой облик, указывал на ошибочность идеального космологического принципа в определении Хойла. Однако вместо того, чтобы утверждать, что Вселенная должна выглядеть одинаково в любом месте и времени, можно ввести космологический принцип, который служит той же цели, что и предложенный Хойлом, то есть распространению принципа Коперника с пространства на время. Нам просто нужно, чтобы модели, создаваемые учеными для описания Вселенной, можно было применять везде и всегда. Спектральные линии и другие базовые физические свойства квазаров — наиболее удаленных объектов, которые мы к тому же наблюдаем в их глубоком прошлом, — ничем не отличаются от тех, что можно наблюдать в современных лабораториях, подтверждая тем самым такой вариант космологического принципа.

 

Звездный нуклеосинтез

Идеи Хойла получили огромную поддержку, когда он и его коллеги смогли разработать успешную теорию формирования химических элементов в звездах, названную звездным нуклеосинтезом и опубликованную в 1957 году. Это пошатнуло позиции модели Большого взрыва, поскольку механизм первичного нуклеосинтеза не подтвердился.

В 1952 году физик Эдвин Солпитер обнаружил новый способ преодолеть область нестабильности между 5-м и 8-м нуклонами при формировании элементов тяжелее гелия. В открытой им так называемой тройной гелиевой реакции две альфа-частицы, то есть ядра гелия-4 (Не4), сначала объединяются в ядро бериллия-8 (Be8), состоящее из четырех протонов и четырех нейтронов. Однако ядро бериллия нестабильно, что, как мы уже знаем, стало важным ограничением, не позволяющим первичному нуклеосинтезу продолжаться. Солпитер доказал, что при достаточно высокой температуре и плотности ядро Be8 может захватить еще одно ядро Не4, успевая до распада образовать стабильное ядро углерода-12 (С12). Вот как выглядит эта реакция:

Не 4 + Не 4 → Be 8 ;

Не 4 + Ве 8 → С 12 .

Разумеется, углерод — ведущий элемент в возникновении жизни, какой мы ее знаем. Ядра других элементов, также необходимых для жизни, таких как кислород и кальций, тоже могут образовываться из Не4, соединяясь с другими ядрами:

Не 4 + С 12 → О 16 ;

Не 4 + O 16 →Са 20 .

Теоретически такие процессы могли протекать во время Большого взрыва. Однако температура должна была упасть ниже 1 млрд. градусов, поскольку при более высокой температуре ядра распадаются вследствие фотоядерных реакций с той же скоростью, с которой образуются. При такой температуре плотность ранней Вселенной упала до 10-4 г/см3, а этого слишком мало для процессов, описанных Солпитером.

В 1954 году Хойл доказал, что, когда звезда сжигает все свои запасы водорода и схлопывается под воздействием гравитации, ее ядро достигает температуры порядка 100 млн. градусов и плотности около 10 000 г/см3, позволяя тройной гелиевой реакции произойти.

 

Стационарная вселенная и Бог

Одно из серьезных возражений против модели Большого взрыва, которое высказывали Хойл, Бонди, Голд и другие сторонники стационарной модели Вселенной, носило, по выражению Хойла, эстетический характер. Любое объяснение внезапного появления Вселенной должно опираться на «неизвестные науке причины». Под этим он имел в виду метафизику. Хойл был атеистом, не скрывающим своих убеждений, и даже в 1982 году продолжал нападать на ученых, придерживавшихся теории Большого взрыва, которых к тому моменту было уже большинство, незаслуженно приписывая им религиозные мотивы:

«Меня всегда удивляло то, что, хотя большинство ученых заявляют об отказе от религии, на деле она владеет их сознанием больше, чем сознанием представителей духовенства. Маниакальное неистовство, с которым коллективное сознательное современной науки вцепилось в космологию Большого взрыва, очевидно, следует из глубоко укоренившейся привязанности к первой главе Книги Бытия — религиозный фундаментализм чистой воды» {180} .

В автобиографии, написанной в 1994 году, он заявляет: «Космология Большого взрыва — это разновидность религиозного фундаментализма».

Однако, как мы знаем теперь, модель Большого взрыва одержала победу, в то время как стационарная модель Вселенной канула в небытие — и на то была лучшая причина из всех возможных. Модель Большого взрыва согласовывалась со всеми имеющимися данными, а стационарная модель — нет. Однако Хойл и его коллеги все равно снискали вечную славу, так как теория звездного нуклеосинтеза тоже подтвердилась. Однако она не имеет никакого отношения к стационарной модели Вселенной, и ее успех никак не противоречит модели Большого взрыва.

Возможно, именно из-за своих атеистических взглядов Хойл с предубеждением относился к Большому взрыву и был настроен на поиск другого объяснения синтеза атомных ядер, нежели формирование этих элементов на ранних этапах развития Вселенной. В любом случае сегодня звездный нуклеосинтез стал неотъемлемой частью космологии, первичный же нуклеосинтез обеспечил формирование лишь довольно большого количества сравнительно легких элементов, возместив недостающие звенья звездного нуклеосинтеза. В науке, как и в футболе, не всегда все происходит так, как можно ожидать.

 

Активные галактики

Возможно, самым важным с точки зрения космологии открытием до обнаружения в 1964 году реликтового излучения, о котором мы поговорим в следующей главе, стало наблюдение квазизвездных объектов, теперь широко известных как квазары. В 1960 году радиоастрономия переживала расцвет и было обнаружено около сотни любопытных объектов, излучающих в радиодиапазоне, которые, казалось, имели очень небольшие угловые размеры. Один из них, 3С48, астроном Джон Болтон отождествил с видимым астрономическим объектом. В 1963 году Мартен Шмидт, используя 200-дюймовый телескоп Хейла, установленный в Паломарской обсерватории, нашел источник видимого излучения, соответствующий радиоисточнику 3С273. На самом деле 3С273 можно увидеть с помощью сравнительно небольших любительских телескопов — он выглядит как обычная звезда, хоть и называется квазизвездным объектом.

Измеряя оптический спектр объекта, Шмидт обнаружил, что спектральные линии водорода смещались со скоростью 47 400 км/с, что составляет 15,8% от скорости света. Если на основании скорости, рассчитанной из красного смещения, определить по закону Хаббла расстояние до 3С273, выяснится, что он находился на расстоянии 2 млрд. световых лет от нас, когда испустил наблюдаемый теперь свет. Заметьте, что сейчас он находится намного дальше, так как Вселенная с тех пор все время расширялась. Это определенно была не отдельная звезда.

По оценке Шмидта, этот объект, судя по расстоянию, рассчитанному по закону Хаббла, должен был быть в 100 раз ярче, чем любая галактика, которую до сих пор отождествляли с радиоисточником, а свет его исходил от ядра размерами менее 3 световых лет в поперечнике. Работая в Паломарской обсерватории и имея на вооружении более серьезное оборудование, чем любительский телескоп, Шмидт также увидел оптический джет (полярный струйный выброс) длиной приблизительно 150 световых лет и связал его с соответствующим радиосигналом. Из этого он сделал вывод, что объект имеет галактические масштабы.

В статье, вышедшей вскоре после публикации работы Шмидта в журнале Nature, Джесси Гринстейн и Томас Мэтьюз сообщили о том, что красное смещение объекта 3С48 соответствует скорости 110200 км/с, то есть 37% от скорости света, из чего следовало, что расстояние до объекта составляет почти 5 млрд. световых лет.

Некоторое время обсуждались альтернативные объяснения свойств квазаров, что позволяло бы расположить их намного ближе к Земле, но вскоре стало совершенно ясно, что они на самом деле находятся очень далеко и испускают излучение гигантской, беспрецедентной мощности.

В итоге квазары отнесли к классу астрономических объектов, называемых активными галактиками. Это галактики, светимость которых намного выше, чем светимость обычных галактик, для них характерны крупные спектральные линии, ассоциируемые, как правило, с центральным ядром, а также мощное радио- и рентгеновское излучение. Они зачастую имеют джеты в тысячи световых лет длиной, направленные от центра к периферии. Для них также характерна переменная светимость, которая может за несколько дней измениться в два раза, что весьма необычно для объекта галактических размеров. Из этого следует, что источник невероятной энергии активной галактики сосредоточен на участке всего в несколько световых лет, совсем крошечном по сравнению с размерами галактики, подобной Млечному Пути, которые достигают 100 тыс. световых лет в диаметре. Теперь стало ясно, что эти объекты представляют собой черные дыры сверхвысокой массы. Активные галактики делятся на три подкласса.

1. Сейфертовские галактики. Названы в честь астронома Карла Сейферта, который первым обратил на них внимание в 1943 году. Сейфертовские галактики имеют очень яркое ядро, спектр которого содержит широкие эмиссионные линии водорода, гелия, азота и кислорода. Расширение линий связывают с доплеровским смещением в атомных ядрах газов, движущихся со скоростями 500–4000 км/с.

2. Радиогалактики. Это очень мощные радиоисточники, испускающие гигантские двухлепестковые радиоволновые структуры, как правило, выбрасываемые в противоположные от оптического ядра стороны. Если джет направлен в сторону Земли, так что мы не можем увидеть галактику, такой объект называется блазаром. Объекты, называемые BL Ящерицы, представляют собой подкласс блазаров. Как мы скоро узнаем, блазары посылают в сторону Земли высокоэнергетические гамма-лучи и, возможно, потоки нейтрино.

3. Квазары. Как известно, они представляют собой активные галактики, находящиеся так далеко, что кажутся точечными источниками.

Все галактики, образующие нашу Местную группу, — это типичные галактики. Ближайшая к нам активная галактика, Центавр А, находится на расстоянии 10 млн. световых лет. На самом деле примерно через 2 млрд. лет после Большого взрыва активные галактики преобладали. За 6 млрд. лет их количество уменьшилось — их стало менее 10%.

Если и существует действительно убедительное свидетельство против стационарной модели Вселенной, то вот оно. Вселенная, которую мы видим, изучая активные галактики, выглядит несколько иначе, чем Вселенная, наполненная более близкими галактиками. Когда галактики только формировались, они проходили через этап развития, известный как яркая фаза, когда их светимость была намного выше, чем у сегодняшних галактик. Эти ранние галактики погибли одна за другой, в то время как сформировались поздние, более спокойные галактики. Это объясняется очень просто. Ранние галактики содержали намного больше звезд-гигантов, чем нынешние. Такие звезды испускают больше света, но живут намного меньше.

 

Пульсары

В 1960 году произошло еще одно неожиданное открытие. В 1967 году Джоселин Белл, аспирантка, работавшая в Кембридже под руководством Энтони Хьюиша, открыла первый пульсар — астрономический объект, испускающий радиоимпульсы с интервалом 1,33 с. Вскоре было обнаружено множество подобных объектов, некоторые из них пульсировали с периодичностью всего в несколько миллисекунд. В итоге их отождествили с нейтронными звездами.

Нейтронная звезда представляет собой остаток сверхновой, которая потеряла большую часть своей массы, превратившись в сферу очень высокой плотности, состоящую из нейтронов, образовавшихся в ходе гравитационного коллапса. Ее плотность сопоставима с плотностью атомного ядра. Если нейтронная звезда имеет сильное магнитное поле и быстро вращается, она испускает электромагнитные импульсы с короткими промежутками, что мы и можем наблюдать.

 

Глава 10.

ОТГОЛОСКИ БОЛЬШОГО ВЗРЫВА 

 

Небесные помехи

Из предыдущей главы мы узнали, что, согласно расчетам Ральфа Альфера и Роберта Германа, выполненным в 1949 году, если ранняя Вселенная была настолько горячей и плотной, как того требует модель Большого взрыва, то сейчас ее должно наполнять тепловое излучение, остывшее примерно до 5 К вследствие постоянного расширения Вселенной на протяжении миллиардов лет. Большинство физиков и астрономов тех времен не обратили внимания на эти расчеты. Возможно, они не отнеслись серьезно к теории Большого взрыва, поскольку она не смогла объяснить формирование химических элементов тяжелее гелия, кроме разве что ничтожно малых количеств лития и бериллия.

Либо же они, как, например, Фред Хойл и его сторонники, могли не одобрять выводы религиозных апологетов, в том числе папы, которые утверждали, что модель Большого взрыва является научным подтверждением Божественного сотворения мира.

Этот скептицизм в отношении модели Большого взрыва укрепился еще сильнее, когда теория Хойла, Уильяма Фаулера, Маргарет Бербидж и Джефри Бербиджа, объясняющая формирование более тяжелых элементов в ядрах умирающих звезд, приобрела небывалую популярность. Когда эти звезды истощают все свои запасы водородного топлива, с ними происходит гравитационный коллапс. Условия, необходимые для ядерного синтеза, — сочетание высоких температуры и плотности — существуют в недрах коллапсирующих звезд, однако на раннем этапе развития Вселенной таких условий не было.

Тем не менее идея о существовании так называемого космического фонового, или реликтового, излучения продолжала будоражить умы ученых, очевидно, не знакомых с работой Альфера и Германа. В начале 1960-х физик из Принстонского университета Роберт Дикке занимался исследованием возможности того, что Вселенная циклически претерпевает то Большие взрывы, то Большие сжатия. Эта теория представляет одно из возможных решений космологических уравнений Фридмана. Дикке отметил, что раньше на протяжении текущей фазы колебаний наша Вселенная была значительно горячее, чем сейчас. В этом случае могло образоваться тепловое излучение, которое с тех пор остыло из-за расширения Вселенной.

В 1964 году бывший студент Дикке по имени Джеймс Пиблс рассчитал, что реликтовое излучение должно иметь температуру порядка 10 К, находясь в микроволновом диапазоне.

В Принстоне в то время работали также Питер Ролл и Дэвид Уилкинсон, сконструировавшие радиометр, с помощью которого можно было измерять характеристики излучения с длиной волны 3 см. Так возникла исследовательская группа, занявшаяся поиском реликтового излучения.

Однако тут произошла известная история, описанная, в частности, в бестселлере нобелевского лауреата Стивена Вайнберга «Первые три минуты»: принстонских физиков совершенно случайно опередили двое ученых из «Лабораторий Белла», расположенных в местечке Холмдел Тауншип, штат Нью-Джерси, всего в 40 милях от Принстона. В 1963 году радиоастрономы Арно Пензиас и Роберт Вильсон начали работать на высокочувствительном 7,35-сантиметровом микроволновом приемопередатчике с рупорной антенной, действующей на принципах сверхсовременной криогенной технологии, включающей квантовый СВЧ-усилитель (мазер). Этот прибор изначально предназначался для связи со спутником «Телстар», принадлежащим «Лабораториям Белла». Европейские партнеры «Лабораторий Белла» установили аналогичную систему, и американский прибор выполнял функцию запасного. Однако запасной приемник оказался не нужен, так что Пензиас и Вильсон смогли использовать его для исследований в области радиоастрономии.

Ученые решили попробовать измерить интенсивность излучения нашей Галактики вне ее плоскости, что значит за пределами Млечного Пути. Весной 1964 года они обнаружили избыточные радиопомехи, которые возникали не из-за проблем с антенной или электрическими схемами. Они сделали все, что было в их силах, чтобы исключить возможные источники шума со стороны оборудования, в том числе очистили антенну от «белого диэлектрического вещества», оставленного на ней голубями, после чего сделали вывод, что помехи вызваны внешним источником. Поскольку сигнал шел равномерно со всех сторон, влияние атмосферы Земли или даже всего Млечного Пути можно было исключить.

Радиотехники выражают шум заданного диапазона в температуре черного тела, излучение которого будет давать такой шум. В результате Пензиас и Вильсон получили температуру антенны, равную 3,5 К.

Благодаря быстрому распространению слухов в научной среде две исследовательские группы из Нью-Джерси узнали друг о друге и начали делиться информацией. В 1965 году Пензиас и Вильсон представили данные своих наблюдений в работе, напечатанной в «Астрофизическом журнале» под непритязательным названием «Измерение избыточной температуры антенны при частоте 4080 МГц». Что касается трактовки данных, авторы сослались на опубликованную ранее статью Дикке, Пиблса, Ролла и Уилкинсона на ту же тему, озаглавленную «Космическое излучение абсолютно черного тела». В1978 году Пензиас и Вильсон получили Нобелевскую премию по физике.

Научное сообщество вскоре признало значимость их открытия, которое в конечном счете оказалось одним из важнейших астрономических достижений после открытия красного смещения галактик. Однако, чтобы подтвердить, что наблюдаемые помехи на самом деле являются тепловым излучением, требовалось больше измерений, ведь было обнаружено излучение только одной длины волны. В начале 1966 года Ролл и Уилкинсон сообщили об обнаружении излучения с длиной волны 3,2 см, подтвердив тем самым, что микроволновое излучение где-то рядом. Но требовалось больше данных.

 

Спектр

Планковский спектральный график черного тела при температуре 3 К изображен на рис. 10.1. Заметьте, что его форма отличается от представленной на рис. 6.1. Кроме того, здесь обе оси являются логарифмическими.

Следует отметить несколько фактов: обе группы из Нью-Джерси при расчетах столкнулись с так называемой областью Рэлея — Джинса, которая описана классической волновой теорией, изложенной в главе 5. Чтобы убедиться в том, что они действительно наблюдают излучение черного тела, необходимо было составить график всего спектра. Однако, хотя атмосфера относительно прозрачна для микроволн, она теряет эту прозрачность при смещении в сторону инфракрасного диапазона — как раз когда при 3 К проявляется отклонение от классической волновой теории и спектр схлопывается вследствие квантовых эффектов.

Рис. 10.1. Спектр черного тела при 3К по формуле Планка. Вертикальная ось дана в фотонах на кубический сантиметр объема на сантиметровый интервал длины волны. Линейная часть графика представляет классический спектр Рэлея — Джинса, который резко сужается в четвертом порядке длины волны. Результат измерений Пензиаса — Вильсона соответствует длине волны 7,35 см. Результат измерений Ролла и Уилкинсона при длине волны 3,2 см отмечен на графике ниже. Ни один из них не входит в квантовый диапазон. Авторская иллюстрация 

Еще в 1941 году два оптических астронома, Уолтер Адамс и Эндрю Маккеллар, наблюдали расщепление на три части межзвездной линии поглощения, соответствующей молекуле циана (CN). Маккеллар рассчитал, что две из трех линий появляются вследствие какого-то неизвестного возмущения, соответствующего температуре 2,3 К. После открытия реликтового излучения стало понятно, что расщепление вызвало излучение черного тела с длиной волны 0,263 см, что точно соответствует пику планковского спектра, изображенного на рис. 10. 1.

О Большом взрыве опять вспомнили. Предположительно, ученым удалось обнаружить отголоски взрыва, из которого появилась Вселенная. Разумеется, некоторые все еще сомневались в этом. Фред Хойл и группа его верных последователей — сторонники стационарной модели изо всех сил старались сыграть роль адвокатов дьявола, ведя поиски другого объяснения наблюдаемого излучения. Но все эти попытки делались вслепую, и им недоставало эмпирических подтверждений. Стационарная модель постепенно вышла из доверия, хотя Хойл и Джефри Бербидж продолжали сомневаться в том, что теория Большого взрыва действительно нашла подтверждение. Они требовали еще больше данных.

 

Возрождение первичного нуклеосинтеза

Еще в 1953 году Альфер, Герман и Джеймс Фоллин издали объемную работу, в которой подробно изложили все, что было известно физике того времени об условиях во Вселенной на первом этапе ее существования. Вайнберг назвал этот труд «первым подробным современным анализом ранней истории Вселенной». Однако авторы не рассматривают нуклеосинтез и не упоминают микроволновое излучение.

С открытием реликтового излучения (РИ) в 1965 году модель Большого взрыва вышла на первый план, и новые расчеты процесса первичного нуклеосинтеза были проделаны независимо Яковом Зельдовичем в СССР, Хойлом и Роджером Тейлором в Великобритании и Пиблсом в США. (Еще один маленький экскурс в суть науки: несмотря на то что Хойл резко возражал против теории Большого взрыва, он не считал недостойным провести серьезные, непредвзятые расчеты в рамках этой модели.) Хотя к тому моменту уже было ясно, что химические элементы тяжелее гелия формируются преимущественно в звездах, они составляют всего лишь около 1% общей массы атомов во Вселенной. 75% остальной массы представлены водородом, а еще примерно 24% — гелием, и Хойл признавал, что процессов, происходящих в звездах, недостаточно, чтобы образовалось такое его количество. Тем не менее он все еще не был готов признать Большой взрыв и продолжал искать другие объяснения. Однако следующее поколение космологов докажет окончательно и бесповоротно, что Большой взрыв на самом деле имел место.

 

Дэвид Шрамм: кроткий гигант космологии

В своих «Первых трех минутах» Вайнберг делает отступление, на протяжении целой главы пытаясь разобраться, почему открытие РИ произошло так поздно и по чистой случайности, в то время как уровень знаний и технологий находился на должном уровне в течение довольно длительного времени до того. Одна из причин, которые он упоминает, заключается в недостаточном обмене информацией между теоретиками, работавшими над моделью Большого взрыва, и радиоастрономами. Мы уже сталкивались с такой ситуацией ранее, в случае с Хабблом и другими астрономами-наблюдателями, крайне мало знавшими о релятивистской космологии, в то время как физики, занимавшиеся релятивистской космологией, не обращали внимания на данные наблюдений. Исключением был Жорж Леметр. Пусть он сам не проводил наблюдений, но хотя бы соотносил свои теории с их данными.

Волнующий период развития физики — 1960–1970-е годы, в которые мне довелось жить и работать, — довольно сильно отличался в этом отношении. К тому времени междисциплинарные связи существенно улучшились. Хотя у нас еще не было Интернета, но были телефоны, факсы, ксероксы и реактивные самолеты, позволявшие нам встречаться и беседовать друг с другом. Теоретики и экспериментаторы ходили друг к другу на семинары, вместе обедали и пользовались общим кофейником в лаборатории. Я дважды проводил творческий отпуск в лаборатории ядерной физики Оксфордского университета: там было принято делать один перерыв утром, чтобы выпить кофе, и один днем, во время которого все пили чай (самый лучший и дешевый в городе), сидя вместе за маленькими столиками в большой общей комнате и обсуждая последние новости физики. Иногда к нам присоединялся кто-нибудь из известных личностей.

К 1979 году преграды между сферами научных интересов физики и астрономии также начали рушиться. Одним из основоположников новой научной традиции был Дэвид Норман Шрамм — колоссальный человек, рыжий гигант под два метра ростом и весом около 120 кило, альпинист, участник Олимпийских игр по греко-римской борьбе, которому и посвящается эта книга. Шрамм в 1971 году окончил аспирантуру в Калифорнийском технологическом институте под руководством Вилли Фаулера, будущего нобелевского лауреата, который, как мы уже знаем, работал с Фредом Хойлом в области звездного нуклеосинтеза.

В 1974 году Шрамм начал работать в Чикагском университете, где с 1978 по 1984 год возглавлял кафедру астрономии и астрофизики, а в 1995 году стал проректором по научно-исследовательской работе. В Чикагском университете Шрамм был лидером и наставником исследовательской группы, состоящей из теоретиков нового поколения, овладевших ядерной физикой, физикой элементарных частиц, астрофизикой и релятивистской космологией. Члены этой группы применяли в работе общие знания, выстраивая значительно более подробную картину ранней Вселенной и видя, как она успешно подтверждается новыми, все более точными данными астрономических наблюдений, которые постоянно пополнялись, в частности, благодаря космическим телескопам. Родилась новая научная область, названная астрофизикой частиц, и Дэвид Шрамм был ее отцом.

С помощью Леона Ледермана, еще одного будущего нобелевского лауреата и директора Национальной ускорительной лаборатории имени Энрико Ферми (сокращенно «Фермилаб»),что возле Чикаго, в 1982 году Шрамм организовал в лаборатории исследовательский центр астрофизики частиц, где в сотрудничестве с Чикагским университетом закладывались основы последующей грандиозной работы. Я познакомился со Шраммом и его группой, когда участвовал в астрофизических исследованиях в области высокоэнергетических гамма-лучей и нейтрино, после экспериментов с нейтрино на ускорителе частиц в «Фермилаб». Он всегда был отзывчивым, спокойным, добродушным человеком, и его лекции — как популярные, так и специальные — было очень приятно слушать. Я считал его своим другом. У него же друзей были сотни.

В 1980 году Шрамм купил дом в городе Аспене, штат Колорадо, и начал участвовать в работе Аспенского физического центра, проводившего регулярные летние семинары, которые я время от времени посещал. Обычно он летал на собственном самолете, зарегистрированном как «Авиалинии Большого взрыва», совершающие перелеты между Аспеном и Чикаго. (Он имел лицензию пилота коммерческой авиации.) 19 декабря 1997 года он летел в Аспен на выходные, когда его самолет сорвался в штопор и разбился вскоре после заправки в Денвере. Дейву было всего 52 года. Ледерман тогда сказал, что теперь он на небесах «жарко спорит с Богом о том, что же было до Большого взрыва».

Я позаимствовал заглавие к этому разделу из эссе Денниса Овербая, опубликованного в газете «Нью-Йорк таймс». Краткую биографию Шрамма, полную обожания, но тем не менее в высшей степени информативную, написал один из выдающихся коллег Дейва, Майкл Тернер. Теперь он работает профессором именной кафедры в Чикагском университете. Тернер стал ведущим специалистом в области астрофизики частиц и 2013-м президентом Американского физического сообщества. Тернер тесно сотрудничал с Эдвардом Колбом в «Фермилаб» и Чикагском университете, и в 1990 году они издали в соавторстве классическую монографию по астрофизике частиц, озаглавив ее «Ранняя Вселенная».

Шрамм и его коллеги доказали, что необычные процессы, наблюдаемые сегодня только в физике элементарных частиц, играют ключевую роль во Вселенной — как нынешней, так и ранней. К примеру, в 1975 году они доказали, что слабое взаимодействие нейтральных токов, открытое незадолго до того, участвует в коллапсе массивных звезд, вызывающем вспышки сверхновых.

Шрамм всегда интересовался нейтрино, которые в то время были основной областью моих исследований, так что я внимательно следил за его работой. Наблюдение в ходе двух подземных экспериментов нейтрино, вылетевших во время вспышки сверхновой SN1987A в Большом Магеллановом Облаке в 1987 году, подтвердило, что эти неуловимые частицы играют важную роль в механизме возникновения сверхновых.

В своей выдающейся работе, опубликованной в 1977 году, Шрамм, Гэри Стайгман и Джеймс Ганн доказали, что космология ограничивает допустимое количество типов лептонов. Лептон — родовое название отрицательно заряженного электрона e, двух более тяжелых частиц, мюона μ и тау-лептона τ, а также связанных с ними нейтрино: νe, νμ и ντ. Каждому лептону соответствует античастица. В те времена эти три «поколения» лептонов наряду с родственными им поколениями кварков лишь недавно были найдены, и ученые не видели причин, почему их не может быть больше.

В работе Шрамма и его соавторов 1997 года доказывалось, что дополнительные нейтрино ускорили бы синтез Не4, и устанавливалось предельное количество типов нейтрино — пять, основанное на измеренном на тот момент количестве гелия во Вселенной. К 1989 году результаты расчетов распространенности гелия были уточнены настолько, чтобы установить предел, равный трем поколениям. Это согласовывалось с результатами экспериментальных измерений скрытой энергии с помощью ускорителей частиц на встречных пучках (коллайдерах). Больше нейтрино означает больше скрытой энергии, то есть энергии, не имеющей отношения к зарегистрированным частицам. Количество скрытой энергии соответствовало трем поколениям, и не более того.

Таким образом, стандартная модель элементарных частиц и сил, о которой пойдет речь в следующей главе, пришла к схеме, в которой может быть всего три поколения кварков и лептонов. Именно это и предвидел Шрамм. Пожалуй, только такой мечтатель, как он, мог вообразить, что фундаментальные сведения о природе вещества будут найдены космологами на таком сверхмикроскопическом уровне. Этот процесс идет до сих пор и, похоже, будет продолжаться годами.

 

Температура расширяющейся Вселенной

Прежде чем мы углубимся в детали ядерной физики Большого взрыва, стоит выяснить, какие виды энергии действовали на разных этапах истории Вселенной, поскольку они имеют отношение не только к ядерной физике, но и к физике в целом на каждом этапе.

Хотя Вселенная расширяется очень быстро, частицы, существовавшие на ранних стадиях ее развития, взаимодействовали еще быстрее, так что их тепловое замедление все еще обеспечивало им состояние квазиравновесия. Это значит, что частицы можно описать как имеющие абсолютную температуру Г, которая тем не менее снижается по мере расширения Вселенной.

Большинство авторов, пишущих на эту тему, дают значения температуры на разных стадиях в Кельвинах, вероятно, потому, что считают, что читатель лучше знаком с этими единицами измерения. Однако истинные значения температуры на ранних этапах жизни Вселенной столь высоки, что для нас они не имеют никакого практического смысла.

Более информативны значения средней кинетической энергии частиц во Вселенной в каждый заданный момент времени, которые с точностью, достаточной для наших целей, задаются формулой K = k B T, где kB — постоянная Больцмана. То есть температура тела — это просто средняя кинетическая энергия частиц этого тела. Поскольку kB — это произвольная постоянная, которая просто переводит кельвины в единицы измерения энергии, можно принять kB = 1 и измерять температуру в единицах измерения энергии.

Когда мы имеем дело с атомными, ядерными и субъядерными процессами, самой удобной единицей измерения энергии является электрон-вольт (эВ), который равен кинетической энергии, приобретаемой электроном при прохождении разности электрических потенциалов 1 В. Атомные процессы характеризуются энергией в несколько электрон-вольт или килоэлектрон-вольт (кэВ), где 1 кэВ = 1000 эВ. Ядерные процессы протекают с энергией порядка мегаэлектрон-вольт (МэВ), где 1 МэВ = 1000 000 эВ. Для субъядерных процессов характерна энергия порядка гигаэлектрон-вольт (ГэВ) и тераэлектрон-вольт (ТэВ), где 1 ГэВ = 1 млрд. эВ (109) и 1 ТэВ = 1 трлн эВ (1012).

Стоит отметить, что ускорители на встречных пучках позволяют нам изучать физику самых первых мгновений существования Вселенной. К примеру, когда общую энергию Большого адронного коллайдера (БАК) доведут до 14 ТэВ (что произойдет в 2015 году), это позволит физикам оценить свойства материи, существовавшей через 10-15 с после Большого взрыва, когда температура была именно настолько высока.

На рис. 10.2 показана средняя кинетическая энергия Вселенной от 10™” с существования Вселенной, планковского времени, до настоящего момента. Позже нам нужно будет подробнее поговорить о планковском времени и о том, что могло быть до него. Но пока что начнем историю с этого момента.

Рис. 10.2. Средняя кинетическая энергия частиц во Вселенной в зависимости от времени, прошедшего с момента Большого взрыва. График построен в логарифмическом масштабе по обеим осям. Его также можно рассматривать как график абсолютной температуры в зависимости от времени с температурой, выраженной в электрон-вольтах. Авторская иллюстрация

Около 380 000 лет после Большого взрыва все частицы во Вселенной находились в квазиравновесном состоянии и имели одну и ту же температуру, снижающуюся по мере расширения и охлаждения Вселенной. В это время, называемое моментом последнего рассеяния, атомы вышли из равновесного состояния, тогда как фотоны и нейтрино все еще сохраняли квазиравновесие. График в логарифмическом масштабе не должен вас обманывать. Время, прошедшее между моментом последнего рассеяния и сегодняшним днем, исходя из практических соображений, все еще можно считать равным 13,8 млрд. лет.

По мере расширения и охлаждения Вселенной разные виды частиц постепенно выходили из состояния равновесия. Позвольте продемонстрировать это на примере антипротонов. Они сталкиваются с протонами и распадаются на фотоны и другие, более легкие частицы. Рассмотрим аннигиляцию с образованием фотонов. Реакция выглядит так:

p + p - → γ + γ,

где p - — антипротон, γ — фотон. Фотоны забирают энергию покоя протона и антипротона, а также их исходную кинетическую энергию, какой бы она ни была. Также может произойти обратная реакция, при которой вновь образуются антипротоны:

γ + γ → p + p - .

Однако, поскольку энергия покоя фотонов равна нулю, их общая кинетическая энергия должна равняться по меньшей мере общей энергии покоя протона и антипротона, то есть 1876 МэВ. Итак, пока температура Вселенной превышает это значение, антипротоны и протоны будут находиться в состоянии равновесия, при этом их количество будет примерно одинаковым. Но когда температура Вселенной опустилась ниже 1876 МэВ, что произошло спустя примерно 10–7 с после ее рождения, энергии фотонов стало недостаточно, чтобы создавать пары «протон — антипротон» и количество последних стало постепенно уменьшаться.

Теперь возникает небольшая асимметрия между количеством материи и антиматерии (подробнее мы поговорим об этом в главе 11), так что, когда все антипротоны аннигилируют, остается излишек протонов. Их количество составляет один протон на миллиард фотонов, электронов, позитронов и нейтрино. Если бы не эта асимметрия, все протоны аннигилировали бы и не осталось бы строительного материала для атомов, звезд, планет, а также меня и вас.

Так же как антипротоны исчезли из ранней Вселенной, когда температура упала ниже значения, необходимого для того, чтобы их восстановить, исчезли и позитроны, когда Вселенная еще немного остыла. Давайте рассмотрим аналогичный процесс, в котором электронная пара аннигилирует с возникновением фотонов:

е + + е - → γ + γ

Чтобы позитроны возникли снова, должна произойти обратная реакция:

γ + γ → е + + е - .

Общая энергия фотонов в этой реакции должна равняться по меньшей мере общей энергии покоя позитрона и электрона, то есть 1,022 МэВ. Когда температура Вселенной опустилась ниже этого значения, что произошло спустя примерно 0,15 с после Большого взрыва, энергии фотонов стало недостаточно, чтобы создавать электронные пары, и позитроны аннигилировали. Как и в случае с протонами, из-за асимметрии между частицами и античастицами остался один электрон на миллиард. В конечном итоге, но не в следующие 380 000 лет эти электроны объединились с протонами, образовав атомы водорода. Однако прежде, чем это произойдет, должны сформироваться ядра атомов.

 

Легкие ядра

Ядро He4 было не единственным легким ядром, сформировавшимся во время Большого взрыва. На самом деле возникло значительное количество ядер H2 (дейтронов), H3 (тритонов) и Не3, а также немного Li7, Be7 и Li6. В 70-х годах XX века Шрамм и его все более многочисленные сторонники среди физиков-ядерщиков и астрофизиков начали напряженную работу по вычислению первичной распространенности легких элементов, сравнивая ее с данными наблюдений. Они обнаружили, что данные заметно согласуются. Работа продолжается по сей день, и ученые добились особенных успехов в этой области благодаря сопутствующим невероятным достижениям в области наблюдений.

Чтобы образовались ядра, нужны нейтроны. Нейтрон массивнее протона на 0,782 МэВ и образуется путем слабого взаимодействия:

e - + p ↔ ν e + n

ν - e + p ↔ e + + n,

где νe и ν-e — электронное нейтрино и электронное антинейтрино соответственно. Слабые взаимодействия, а также нейтрино и другие фундаментальные частицы мы рассмотрим в следующей главе. Заметьте, двойные стрелки указывают на то, что эти реакции обратимые.

Поскольку полная масса (энергия покоя) с правой стороны реакции больше, чем с левой, на 0,271 МэВ и 1,293 МэВ соответственно, образование нейтронов в обеих реакциях прекратилось, когда средняя кинетическая энергия Вселенной упала ниже этих значений. Вначале, примерно через 0,1 с, прекратилась вторая реакция, с большей разницей энергии, в то время как первая реакция продолжала производить нейтроны вплоть до 2 с после Большого взрыва. После этого количество нейтронов сократилось примерно до 1/6 числа протонов, поскольку в ходе бета-распада они стали превращаться в протоны:

n → p + e - + ν e .

Среднее время существования нейтрона примерно 880 с, точное значение все еще под вопросом. Первичный нуклеосинтез очень сильно зависит от этого числа.

Теперь, когда температура опустилась ниже 1 МэВ, могут образоваться ядра, поскольку их больше не будут мгновенно разрывать множество высокоэнергетических фотонов, кишащих вокруг. К этому моменту, как уже было сказано, все позитроны аннигилировали, так что нейтрино (и антинейтрино) больше нечего делать и они превращаются в реликтовое тепловое облако подобно фотонному фоновому излучению, которое появится значительно позже. Сегодня это облако формирует нейтринное реликтовое излучение (НРИ) температурой 1,95 К. Есть небольшая надежда в обозримом будущем зарегистрировать его непосредственно.

Теперь давайте посмотрим, как формировались более легкие ядра. Протон и нейтрон могут столкнуться с образованием дейтрона и фотона:

p + n → Н 2 + γ.

Вначале слабо связанные дейтроны расщеплялись в ходе обратной реакции. Но когда температура снизилась в достаточной мере, дейтроны стали контактировать достаточно долго для того, чтобы могли сформироваться нейтрон и ядро Не3:

Н 2 + Н 2 → Не 3 + n или тритон и протон:

Н 2 + Н 2 → Н 3 + p.

He4 формировался следующим путем:

Н 2 + Н 3 → Не 4 + n или

Н 2 + Не 3 → Не 4 + р.

Li7 возник в ходе такой реакции:

H 3 + He 4 → Li 7 + γ,

a Be7 — этой:

Не 3 + Не 4 → Be 7 + γ.

И так далее. Это не полный список реакций, однако он должен дать общее представление о процессе.

Заметьте, что во всех этих реакциях сохраняется как атомный номер, соответствующий символу элемента, так и нуклонное число. Первое объясняется законом сохранения заряда. Второе — частный случай более общего закона сохранения барионного числа, о котором мы поговорим позднее.

Изменение массовой доли различных легких элементов относительно протонов с течением времени показано на рис. 10.3. Иллюстрация взята из онлайн-учебника Эдварда Райта по космологии и основана на работе Берлса, Ноллетта и Тернера. Как мы видим, максимум их продукции приходится примерно на 200-ю с, а распространенность большинства частиц снижается примерно через 1000 с. Li6 появляется совсем ненадолго, а нейтроны быстро исчезают по мере своего распада или формирования атомных ядер. Только Не4 образуется в значимом количестве.

Рис. 10.3. Массовая доля нуклонов и ядер по отношению к протонам в ранней Вселенной в зависимости от времени. Иллюстрация предоставлена Эдвардом Л. Райтом

Затем нуклеосинтез прекратился из-за отсутствия стабильных ядер, состоящих из пяти или восьми нуклонов. Как мы уже знаем, более тяжелые ядра синтезируются позднее, в условиях температуры и давления, характерных для коллапсирующих звезд.

Общепринятая модель первичного нуклеосинтеза, используемая большинством специалистов по ядерной космологии, опирается на один-единственный параметр η — отношение числа барионов к числу фотонов, имеющее порядок 10-9. Барион — родовое понятие физики частиц, обозначающее определенный класс частиц, включающий протоны и нейтроны (см. главу 11). На этом этапе жизни ранней Вселенной протоны, нейтроны и ядра, сформировавшиеся из них, были единственными существующими барионами.

Распространенность Не4 (около 25% всей массы протонов) слабо зависит от условий, существовавших в ранней Вселенной. Вот почему даже самые первые приблизительные оценки, сделанные тогда, когда об этих условиях знали еще крайне мало, оказались близкими к истине. В то же время оставшиеся легкие ядра, в особенности дейтроны (H2), очень чувствительны к массовой плотности барионов ρ B которая на тот момент равнялась просто нуклонной плотности.

Барионная плотность обычно выражается соотношением ΩB = ρB/ρc, где ρc — это критическая плотность — средняя плотность Вселенной, когда положительная кинетическая энергия и отрицательная гравитационная энергия точно уравновешивали друг друга. По самым последним данным, ρc = 9,467∙10–30 г/см3. В модели Фридмана, описанной в главе 8, это ситуация, при которой коэффициент кривизны k = 0 и Вселенная представляет собой евклидово пространство, хотя, как мы вскоре увидим, k = ±1 тоже не исключается.

На рис. 10.4 приведена теоретическая и экспериментально измеренная распространенность элементов в порядке их доли относительно числа протонов. Полосами показаны экспериментальные количества, при этом ширина полос указывает на погрешность измерений.

Рис. 10.4. Распространенность ядер разных элементов в зависимости от барионной плотности. Полосами показаны последние экспериментальные значения. Иллюстрация предоставлена Эдвардом Л. Райтом 

Этот график не опирается на старые данные и теории, на нем представлена последняя информация на момент написания этой книги, когда появились результаты исследований микроволнового анизотропного зонда Уилкинсона (WMAP), существенно дополнившие предыдущие данные. На подходе еще более точные результаты наблюдений, выполненные космической обсерваторией «Планк», однако данных, полученных WMAP, вполне достаточно для наших целей.

Здесь указана зависимость распространенности ядер химических элементов от ΩBh2, где h — безразмерный множитель, который вводит поправку на возможные изменения эмпирического значения постоянной Хаббла H 0 (не следует путать здесь h с постоянной Планка). Итак, космологи считают Н 0 = 100h километров в секунду на мегапарсек. По последней оценке h = 0,71.

Оценить первичную распространенность элементов нелегко. Ученым приходится опираться на значения, измеренные для современной Вселенной, а затем вычислять, какая доля приходится на первичные элементы.

Не4 также образуется в звездах в ходе первичной реакции ядерного синтеза, протекающей в их недрах, однако он выходит наружу только тогда, когда они взрываются сверхновыми, а это происходит только с самыми тяжелыми звездами. Не4 можно наблюдать в горячем ионизированном газе в других галактиках и так называемых звездах с низкой металличностью, при этом металлом считается любой элемент после гелия, то есть такие звезды, вероятнее всего, состоят преимущественно из первичного вещества.

Все еще существуют некоторые разногласия относительно точного соотношения Не4 и протонов, однако расчеты становятся все более точными. На самом деле, как и в случае упомянутого ранее ограничения, которое космология накладывает на количество типов нейтрино, распространенность гелия также прочно связана с точным временем жизни нейтронов, так что тут мы снова видим, как важна субатомная физика для космологии и наоборот.

Дейтерий, Н2, имеет очень нестойкое ядро, состоящее из протона и нейтрона. Оно легко разрушается в ходе ряда астрофизических процессов. Последняя оценка его первичной распространенности основана на наблюдении линий поглощения в очень далеких межгалактических облаках, где его источником являются квазары.

Li7 образуется и разрушается в звездах. Его первичную распространенность оценили на основании его распространенности в атмосферах самых старых звезд в гало нашей Галактики, которые, как считается, еще не сильно истощили свои запасы лития.

Первичный Н2 превращается в звездах в Не3, однако данные измерений говорят о том, что их суммарная распространенность примерно постоянна. Поэтому распространенность Не3 вычисляют, вычитая из этой суммы распространенность Н2, оцененную другим способом.

Как можно увидеть на рис. 10.4, модель первичного нуклеосинтеза в значительной степени согласуется с данными наблюдений. Первичная распространенность ядер четырех элементов рассчитана точно на основании единственного параметра — барионной плотности. Все ядра, кроме Не4, сильно зависят от этого параметра, хотя точные значения их распространенности рассчитаны математически. Все пять значений полностью соответствуют данным наблюдений.

Благодаря Дэвиду Шрамму, а также его студентам и коллегам модель Большого взрыва прочно укрепилась, подтвержденная этими данными. Ни одна из альтернативных теорий, которыми еще бросаются некоторые ученые, и близко не подошла к такому результату. На самом деле они даже не представляют, как это можно сделать. Давайте посмотрим правде в глаза. Большой взрыв произошел.

 

Переходим к атомам

Спустя 30 минут после возникновения Вселенной все успокоилось. В то время температура достигала 300 млн. градусов, а средняя кинетическая энергия — порядка 25 кэВ, при этом она постоянно снижалась. Ядерные реакции остановились, поскольку температура теперь была для них слишком низкой. Электроны, которых когда-то было примерно столько же, сколько фотонов, практически полностью аннигилировали в реакции с позитронами, остался всего один электрон на миллиард благодаря асимметрии между материей и антиматерией. Эта асимметрия, без которой не существовало бы Вселенной, какой мы ее знаем, до сих пор не до конца понятна ученым. Об этом мы поговорим позднее, в главе 11.

В этот момент Вселенная по большей части (за исключением темной материи) состояла из фотонов (69 96) и нейтрино (31%), количество протонов, электронов и ядер Не4 было в миллиарды раз меньше, и еще меньше встречалось ядер He3, Li7, Be7 и дейтронов. Нейтроны либо исчезли в процессе бета-распада, либо были поглощены ядрами.

Число протонов (плюс другие ядра) и электронов совпадает не случайно, хотя некоторые религиозные апологеты утверждают, что это еще одно стечение обстоятельств, подстроенное Богом. На деле же их равенство следует из закона сохранения заряда: согласно разумному предположению, подтвержденному экспериментальными данными, суммарный заряд Вселенной равен нулю.

Период в жизни Вселенной, описанный в предыдущем разделе, называется эпохой доминирования излучения, поскольку число фотонов все еще превосходит количество всех остальных частиц, кроме нейтрино. В отличие от нейтрино эти фотоны продолжали вступать в значимые взаимодействия с остальной материей.

Стоит прояснить один момент: космологи разграничивают понятия «излучение» и «материя». Частица считается излучением, если ее кинетическая энергия намного больше потенциальной, вследствие чего она движется со скоростью света или близкой к ней. В таком случае ее движение должно описываться кинематикой эйнштейновской специальной теории относительности. Поскольку самыми массивными частицами в ранней Вселенной были ядра с энергией покоя менее нескольких гигаэлектрон-вольт (см. рис. 10.2), до 10-10 с существовало только излучение.

Фотон всегда представляет собой излучение, поскольку его энергия покоя равна нулю. Нейтрино является излучением, пока его кинетическая энергия не падает ниже энергии покоя, то есть порядка 0,1 эВ, что в 5 млн. раз меньше, чем масса электрона (см. главу 13).

Если потенциальная энергия частицы намного больше ее кинетической энергии, она называется материей, хотя фотоны и другие объекты, называемые излучением, тоже полностью материальны, так что это различие немного сбивает с толку. Скорость этих частиц намного меньше скорости света c.

Как только температура Вселенной упала примерно до 100 МэВ, что произошло приблизительно на 10-5 с ее жизни, кинетическая энергия таких частиц, как протоны и ядра, стала намного ниже их энергии покоя и с этого момента поддавалась адекватному описанию в рамках нерелятивистской кинематики Ньютона.

В течение тысячелетий излучение в форме фотонов продолжало доминировать во Вселенной. Как уже упоминалось, эта стадия называется эпохой доминирования излучения. Однако плотность энергии излучения (вся кинетическая энергия) снижается по формуле 1/a4, где a — масштабный фактор Вселенной, в то время как энергетическая плотность материи (вся энергия покоя) снижается всего лишь со скоростью 1/a3. Итак, примерно через 70 тыс. лет после Большого взрыва энергетическая плотность материи сравнялась с энергетической плотностью излучения и перегнала ее и Вселенная вступила в эпоху доминирования материи.

Вплоть до этого момента Вселенная была непрозрачна, поскольку фотоны окружало множество заряженных электронов и ядер, с которыми они взаимодействовали. Наблюдатель, находящийся в такой Вселенной (очевидно, не человек), не смог бы ничего увидеть ни в одном световом диапазоне, поскольку фотоны не уходили далеко, двигаясь как бы в плотном тумане. Затем, когда температура опустилась до нескольких тысяч градусов и кинетическая энергия упала до нескольких десятков электрон-вольт, электроны и ядра начали объединяться, формируя атомы.

Этот процесс называется рекомбинацией, что звучит глупо, поскольку ядра и электроны никогда до того не были объединены в атомы. Но именно так это называется с точки зрения химии, которая обычно ставит атомы на первое место. В любом случае все частицы с противоположными зарядами объединились в нейтральные атомы (не забывайте, их было как раз поровну) и фотонам больше не с чем было взаимодействовать. Этот важный момент в истории, который произошел спустя 380 000 лет после Большого взрыва, как мы уже знаем, называется моментом последнего рассеяния. Вселенная стала прозрачной, и фотоны образовали тепловое облако, которое за следующие 13,8 млрд. лет остыло до 3 К и сформировало космический микроволновой фон (реликтовое излучение).

 

Глава 11.

ЧАСТИЦЫ И КОСМОС

 

Видимая Вселенная

Флагманским проектом в астрономии 1970-х годов стал первый пилотируемый полет на Луну на корабле «Аполлон-11», состоявшийся 20 июля 1969 года. Затем было еще пять полетов, последний — на корабле «Аполлон-17» 11 декабря 1972 года. Беспилотные космические аппараты «Вояджер-1» и «Вояджер-2», запущенные в 1977 году, исследовали Юпитер и Сатурн, после чего отправились к границам Солнечной системы, а теперь выходят в межзвездное пространство. В 1974 году «Маринер-10» прошел около Венеры и исследовал Меркурий. В 1976 году космический аппарат «Викинг» приземлился на Марсе.

Космический телескоп «Эксплорер-57» был запущен в 1978 году, чтобы исследовать астрономические объекты в ультрафиолетовом (УФ) диапазоне, что невозможно сделать с Земли из-за поглощения УФ-лучей атмосферой. Проработав почти 18 лет, он провел более 104000 наблюдений объектов всех видов, от планет до квазаров.

Три спутника Астрономической обсерватории высоких энергий НАСА (НЕАО) исследовали космос еще в трех дополнительных диапазонах: в рентгеновских, гамма- и космических лучах. Обсерватория НЕАО 1, запущенная в 1977 году, исследовала небо в рентгеновском диапазоне и открыла 1500 источников этого излучения. НЕАО 2, переименованная в Обсерваторию имени Эйнштейна, была запущена в следующем году. Ее рентгеновский телескоп обнаружил на несколько тысяч источников больше, точно установив их местоположение. Ведущий эксперт проекта Обсерватории имени Эйнштейна Риккардо Джаккони ранее возглавлял исследовательскую группу, которая в 1962 году открыла мощный источник рентгеновского излучения Скорпион Х-1. Позже ученые определили, что он является нейтронной звездой. Его рентгеновское излучение в 10 тыс. раз мощнее видимого. В 2002 году Джаккони получил Нобелевскую премию по физике. Обсерватория НЕАО 3, запущенная в 1979 году, измеряла спектральные характеристики и изотропию рентгеновских и гамма-источников и определяла изотопный состав космических лучей.

Что же касается земных обсерваторий, то новые гигантские телескопырефлекторы появились на вершинах гор в Аризоне, Чили, Австралии, на Гавайях и в России. Приборы с зарядовой связью постепенно вытеснили фотопластинки в роли главного детектора, что существенно улучшило чувствительность телескопов к фотонам и повысило эффективность работы, одновременно обеспечивая автоматический цифровой вывод данных. Новые высокоскоростные цифровые компьютеры могли быстро обрабатывать большие объемы данных и позволяли автоматически управлять зеркалами. Астрономам больше не нужно было проводить долгие часы в холодных кабинах телескопов, вручную наводя их на цель.

К концу десятилетия возможности телескопов по сбору данных увеличились — прошли те времена, когда в телескопе использовалось одно-единственное зеркало. Теперь их стали оснащать системой из множества зеркал с компьютерной синхронизацией улавливаемого пучка света. Первое такое устройство, названное многозеркальным телескопом, работало в обсерватории имени Уипла (тогда называвшейся «Маунт Хопкинс») в Аризоне в то время, когда я работал в этом же месте над другим проектом, измеряя характеристики высокоэнергетических гамма-лучей.

Во время работы в Гавайском университете я наблюдал установку международных телескопов на Мауна-Кеа, горе высотой 4205 м, расположенной на острове Гавайи. В результате эта гора стала лучшим местом для астрономических наблюдений из имеющихся на Земле. Из-за большой высоты и уникально сухого воздуха над вершиной Мауна-Кеа — не только превосходное место для наблюдений в видимом диапазоне, но и хорошо подходит для изучения неба в инфракрасном спектре.

Нет нужды перечислять впечатляющие наблюдения, проведенные с помощью этих удивительных инструментов, и мне едва ли удастся отдать им здесь должное. Фотографии, которыми заполнены книги по астрономии и веб-сайты НАСА, демонстрируют, что природа может состязаться с любым человеческим видом искусства и любой религией в способности создавать красоту и вызывать священный трепет. Для моих целей на данном этапе достаточно сказать, что контраст между светящимся веществом во Вселенной и реликтовым излучением трудно продемонстрировать еще ярче. Видимая человеческим глазом Вселенная сложна, изменчива и непостоянна. Условно говоря, в масштабе 1:100 000 реликтовое излучение просто, однородно и постоянно. При таком уровне точности для его описания требуется всего один показатель — температура, равная 2,725 К. Однако оказалось, что небольшие отклонения от однородности в РИ смогут рассказать нам о том, как возникла вся эта невероятная сложность.

 

Проблема структуры

Задолго до открытия РИ астрономы ломали головы над тем, как сформировалась структура Вселенной. Выдающийся британский физик и астроном Джеймс Джинс вычислил механизм, благодаря которому однородное облако газа под воздействием гравитации сжимается, образуя плотный ком. Он вывел выражение для минимальной массы, при которой гравитационный коллапс пересилит давление газа, направленное вовне. Она называется массой Джинса и зависит от скорости звука в газе и плотности этого газа.

Механизм Джинса неплохо объясняет механизм формирования звезд, но не работает в случае галактик. В 1946 году российский физик Евгений Лифшиц применил вычисления Джинса к расширяющейся модели Вселенной и доказал, что гравитационная нестабильность сама по себе не способна объяснить формирование галактик из окружающей среды. На деле выходит, что расширение Вселенной в совокупности с давлением излучения преодолевает гравитационные силы. Неспособность понять, как образовались галактики, пугала астрономов вплоть до 80-х годов XX века.

В начале 1970-х ряд авторов выдвинул предположение, что галактики сформировались вследствие флуктуации плотности первичной материи в ранней Вселенной. Поскольку отношение давления среды к ее плотности описывается уравнением состояния, флуктуации плотности создают флуктуации давления, которые есть не что иное, как звук. Часто можно услышать, что Большой взрыв (англ. big bang — «большой бабах») — ошибочное название, поскольку взрывы в космосе беззвучны. Но Большой взрыв на самом деле породил звуковые волны, которые можно услышать.

Как заметил еще Пифагор, звуки, издаваемые музыкальными инструментами, можно разложить на гармонические составляющие, где каждая гармоника — это чистый звук определенной частоты или высоты. То же самое верно для любого звука, хотя их гармоники обычно не так чисты, как гармоники звуков, издаваемых музыкальными инструментами. Распределение мощности звука по разным частотам задается функцией, называемой спектральной плотностью мощности.

Математический метод, называемый преобразованием Фурье, разработанный французским математиком Жаном Батистом Фурье (1768–1830), широко используется физиками и инженерами во многих областях помимо акустики. Преобразование Фурье позволяет превратить любую пространственную или временную функцию в функцию длины волны или частоты. Если функция имеет периоды во времени или пространстве, пиковые значения спектрального графика будут соответствовать определенным частотам или длинам волн.

В 70-х годах ХХ века Эдвард Харрисон и Яков Зельдович независимо предсказали, что спектр звука, порожденного флуктуациями плотности во Вселенной, должен характеризоваться так называемой масштабной инвариантностью. В общем случае масштабная инвариантность — это принцип, который применяется во многих областях, от физики до экономики. Он касается любой характеристики системы, которая не изменяется при изменении ее переменных в одинаковое число раз. К примеру, законы механики Ньютона не изменятся, если единицы измерения пространства перевести из метров в футы. Масштабная инвариантность — это еще один принцип симметрии.

Но масштабная инвариантность соблюдается не всегда. При условии одинакового биологического строения высота, на которую может прыгнуть животное, практически не зависит от его размеров. То есть она не масштабируется. Этот принцип, известный как закон Борелли, был предложен Джованни Альфонсо Борелли (1608–1679). В своей классической работе 1917 года «О росте и форме» Д’Арси Вентворт Томпсон пишет: «Кажется, что кузнечик так же приспособлен для прыжков, как и блоха… однако блоха прыгает на высоту примерно в 200 раз больше своего роста, в то время как кузнечик — в лучшем случае в 20–30 раз».

Хотя Харрисон и Зельдович в своих работах изложили эту идею в более сложных терминах, по сути, они указали на то, что флуктуации плотности в пределах Вселенной не должны зависеть от масштаба Вселенной, увеличивающегося по мере ее расширения. Если бы колебания плотности были сильнее в прошлом или будущем, отдельные участки Вселенной схлопнулись бы, превратившись в черные дыры.

Спектр мощности Харрисона — Зельдовича выражается через волновое число (также называемое пространственной частотой) k = 2π/λ, где λ — длина волны. (Не следует путать эту k с коэффициентом кривизны k.) Предполагается, что спектральная плотность излучения должна быть пропорциональна kn, где n — спектральный индекс. Масштабная инвариантность предполагает, что n = 1.

Итак, как же мы рассчитываем «услышать» эти первозданные звуки? В 1966 году, после открытия реликтового излучения, Райнер Сакс и Артур Вольфе доказали, что неоднородность плотности Вселенной может вызвать флуктуации температуры РИ, так как фотоны, переходящие в область с более высоким гравитационным потенциалом, смещаются в красную сторону, а те, что переходят в область с более низким потенциалом, — в синюю.

Сакс и Вольфе не думали о первичных флуктуациях. Однако оказалось, что благодаря РИ, которое само по себе стало одним из важнейших достижений в истории науки, можно будет проследить эти первичные флуктуации до того момента, когда Вселенной было всего 10-35 с, и увидеть, как галактики и другие сгустки материи сформировались миллиарды лет спустя в результате этих флуктуации. Чтобы объяснить возникновение галактик, относительное изменение температуры излучения, наблюдаемого сегодня, должно составлять не менее ΔT/T = 10-5 — такова оценка ученых.

 

Гравитационное линзирование

Одно из самых впечатляющих предсказаний общей теории относительности было таким: лучи света отклоняются под воздействием гравитационного поля Солнца. В 1936 году Эйнштейн указал на то, что свет, изогнутый под воздействием астрономических тел, может образовывать множественные изображения. В 1937 году Фриц Цвикки предположил, что скопление галактик может создавать эффект гравитационной линзы. Однако это явление было обнаружено только в 1979 году астрономами из Национальной обсерватории «Китт-Пик» в штате Аризона. Они сфотографировали два объекта, оказавшихся квазарами, расположенные необычайно близко друг к другу, с одинаковыми красным смещением и спектром, что свидетельствовало: на самом деле это один и тот же объект. С тех пор было обнаружено множество случаев линзирования.

В 2013 году с помощью телескопа, установленного на Южном полюсе и получившего довольно очевидное название «Телескоп Южного полюса», в поляризации РИ был обнаружен статистически значимый вихревой паттерн, названный В-модой, вызванный линзированием от вмешивающихся структур Вселенной. Эти наблюдения подтвердились в 2013 и 2014 годах в ходе проведенного в Чили эксперимента, названного Polarbear («Полярный медведь»). В главе 14 мы вернемся к гравитационному линзированию, а также обсудим последние результаты исследования гравитационных волн на Южном полюсе, в число которых входит обнаружение В-моды поляризации реликтового излучения.

 

Невидимая Вселенная

Мы уже знаем, каким образом астрономы 1930-х годов обнаружили, что во Вселенной присутствует намного больше материи, чем та, которая представлена светящимся веществом в галактиках — звездами и горячим газом. Данные наблюдений просто не укладывались в ньютоновские законы механики и всемирного тяготения, но мало кто стал бы утверждать, что их в каком-либо смысле опровергли. Фриц Цвикки окрестил этот невидимый источник гравитации duncklematerie — темная материя.

Никаких серьезных результатов в этой области не было получено до 1970-х годов, когда радиоастрономы в нидерландском Гронингене занялись исследованием 21-сантиметровой сверхтонкой линии в спектрах нейтральных молекул водорода из разных галактик. Согласно их измерениям, для большой выборки галактик была характерна плоская кривая вращения. Кривая вращения представляет собой график зависимости вращательной скорости звезды, которая вызывает доплеровское смещение наблюдаемой спектральной линии, от расстояния между этой звездой и центром галактики. Согласно законам Ньютона у звезд, находящихся дальше от центра, этот показатель должен быть ниже, так же как скорости планет Солнечной системы снижаются с увеличением расстояния до Солнца, где находится большая часть общей массы Солнечной системы. Но вместо этого скорости оставались по большей части постоянными.

Это наблюдение объясняется тем, что галактики имеют гало, состоящие из невидимой темной материи, которое распространяется за пределы плотной светящейся области в центре. Невидимой материей едва ли можно пренебречь. Теперь нам известно, что она составляет 90% массы изученных галактик. Как мы выясним в дальнейшем, благодаря гравитационному линзированию, описанному в предыдущем разделе, были получены прямые доказательства существования темной материи.

Тем временем американский астроном Вера Рубин и ее коллеги провели систематическое исследование вращения спиральных галактик в оптическом спектре и обнаружили тот же эффект. Ученым было хорошо известно, что многие астрономические тела, к примеру планеты, коричневые карлики, черные дыры, нейтронные звезды, не излучают свет напрямую или излучают крайне мало. Однако было понятно, что для того, чтобы объяснить значение общей массы, вычисленное методом ньютоновской динамики, этого вряд ли достаточно.

Более того, существовали независимые данные, указывающие на то, что большая часть темной материи не может состоять из известных нам атомов, но должна представлять собой нечто до сей поры неизвестное. Эти данные появились благодаря тому же источнику, который, как мы узнали из главы 10, обеспечил надежное подтверждение Большого взрыва, — первичному нуклеосинтезу.

На рис. 10.4 сравнивается теоретическая и экспериментально измеренная распространенность легких ядер в зависимости от ΩB — отношения барионной плотности к критической плотности. Хотя числовые значения все еще уточняются, последние измерения указывают на то, что ΩB меньше 5%, а 26% от общей массы Вселенной представлены темной материей, которая не может состоять из известных нам атомов.

 

Расцвет физики частиц

Одновременно с открытием РИ в 1964 году произошел расцвет новой области — физики элементарных частиц. В этой деятельности довелось принять участие и мне. Будучи аспирантом, я работал в Калифорнийском университете в Лос-Анджелесе, а после защиты докторской в 1963 году в течение 37 лет занимал должность преподавателя физики в Гавайском университете, периодически читая лекции в университетах Гейдельберга, Оксфорда, Рима и Флоренции. В итоге оказалось, что физика частиц играет важную роль в космологии, поэтому позвольте мне на время переключить ваше внимание с очень больших объектов на очень маленькие.

Использование все более мощных ускорителей и все более чувствительных детекторов частиц открыло дверь в огромный новый мир субатомной материи. Кульминацией стало создание в 1970-х годах стандартной модели элементарных частиц и взаимодействий. В этой модели нашлось место всем обнаруженным частицам, и она успешно описывает их взаимодействие.

10 апреля 2014 года, когда эта книга еще была в процессе написания, сотрудники лаборатории ЦЕРН (Европейского центра ядерных исследований) в Женеве подтвердили с высокой степенью статистической значимости существование «экзотической» отрицательно заряженной частицы, названной Z(4430), о существовании которой ранее заявляла другая исследовательская группа. Журналисты предположили, что это пошатнуло стандартную модель. Но это не так. Частица Z(4430) определенно состоит из четырех кварков, она первая в своем роде. Однако ее существование опровергает стандартную модель не более, чем существование ядра гелия с четырьмя нуклонами противоречит ядерной модели.

В табл. 11.1 приведены элементарные частицы и их массы согласно стандартной модели. Масса каждой частицы дана в единицах измерения энергии — миллионах электрон-вольт (МэВ) или миллиардах электронвольт (ГэВ), которые равны энергии покоя частицы, эквивалентной ее массе согласно формуле Е = mc 2 , поскольку c — не более чем произвольная постоянная.

Таблица 11.1.

Частицы в стандартной модели. Масса дана в единицах измерения энергии. Античастицы и бозон Хиггса не представлены

Фермионы (антиастицы не показаны) Бозоны
Кварки u c t γ
2,3 МэВ 1,27 ГэВ 173 ГэВ 0
d s b g
4,8 МэВ 95 МэВ 4,18 ГэВ 0
Лептоны ν e ν μ ν τ Z
см. в тексте см. в тексте см. в тексте 90,8 ГэВ
e μ τ W
0,511 МэВ 106 МэВ 1,78 ГэВ 80,4 ГэВ

Рассмотрим группу частиц, называемых фермионами. Все они имеют собственный момент импульса, или спин, равный 1/2. Существует три «поколения» фермионов, им соответствуют столбцы, обозначенные «u», «c» и «t». Каждое поколение состоит из двух кварков и двух лептонов. Первое поколение слева состоит из u-кварка с зарядом +2е/3, где e — элементарный электрический заряд, и d-кварка с зарядом -e/3. Ниже расположены лептоны первого поколения: нейтрино электронное νe с нулевым зарядом и электрон e с отрицательным зарядом -e. Каждый фермион сопровождает противоположно заряженная античастица, не показанная в таблице (антинейтрино, как и нейтрино, имеют нулевой электрический заряд).

О массе нейтрино мы поговорим в главе 13. Пока достаточно сказать, что одно нейтрино имеет массу порядка 0,1 эВ. Для сравнения масса электрона следующей по порядку возрастания частицы с ненулевой массой равна 511 000 эВ.

Второе и третье поколения имеют схожий состав кварков и электронов, за исключением того, что все они более тяжелые, нестабильные и быстро распадаются на более легкие частицы. К примеру, мюон, μ, средняя продолжительность жизни которого составляет 2,2 мкс, по сути, представляет собой просто более тяжелый электрон массой 106 МэВ. Основной процесс распада этой частицы выглядит так:

μ - → e - + ν - e + ν μ ,

где ν-e — антинейтрино электронное. Антимюон μ+ распадается сходным образом:

μ + → e + + ν e + ν - μ ,

Заметьте, что t-кварк в 184 раза массивнее протона (938 МэВ).

В стандартной модели действуют три взаимодействия: электромагнитное, слабое ядерное и сильное ядерное. Гравитация, воздействием которой на субатомном уровне можно пренебречь и которая уже довольно хорошо описывается на макроуровне общей теорией относительности, не включена в эту модель. Общая теория относительности перестает действовать только тогда, когда мы спускаемся до масштаба шкалы Планка, 10 35 м. Об этом мы побеседуем позже.

Частицы в правом столбце табл. 11.1 — так называемые носители взаимодействий. Это бозоны, частицы с целым спином. В этом случае все они имеют спин, равный 1. Бозоны в стандартной модели иногда называют частицами взаимодействий, поскольку в квантополевых теориях взаимодействий, лежащих в основе стандартной модели, эти частицы — кванты, соответствующие различным силовым полям. К примеру, фотон, обозначаемый у (потому что это носитель гамма-излучения), представляет собой квант электромагнитного поля.

В рамках стандартной модели частицы взаимодействий обычно изображают в роли переносчиков импульса и энергии, курсирующих между взаимодействующими кварками и лептонами. На рис. 11.1 показано взаимодействие двух электронов, обменивающихся фотоном. Это канонический пример диаграммы Фейнмана (были предложены Ричардом Фейнманом в 1948 году). Диаграммы Фейнмана, по сути, являются вычислительными инструментами, и их не следует воспринимать слишком буквально.

Рис. 11.1. Диаграмма Фейнмана, демонстрирующая взаимодействие двух электронов, обменивающихся фотоном. Авторская иллюстрация

Итак, в стандартной модели фотон является носителем электромагнитного взаимодействия. Такому взаимодействию подвержены все элементарные частицы, кроме нейтрино. Квантовая теория поля, называемая квантовой электродинамикой, успешно описывающая электромагнитное взаимодействие, была разработана в конце 1940-х учеными Синьитиро Томонагой, Джулианом Швингером, Ричардом Фейнманом и Фрименом Дайсоном. Первые трое разделили в 1965 году Нобелевскую премию по физике, которую не дают более чем троим людям одновременно.

На рис. 11.2 показано столкновение электрона и позитрона, аннигилирующих с образованием Z-бозона, который затем воссоздает эту пару. Это только два примера из множества диаграмм, иллюстрирующих взаимодействия частиц.

W-бозон встречается в двух электрически заряженных состояниях, +e и -e. Вместе с Z-бозоном, не имеющим заряда, он относится к слабым бозонам — носителям слабого ядерного взаимодействия, которому подвержены все элементарные частицы, кроме фотонов и глюонов. О глюонах мы вскоре поговорим.

Самая известная реакция слабого взаимодействия — бета-распад ядра, при котором испускаются электрон и антинейтрино. В стандартной модели в этот фундаментальный процесс вовлечены кварки внутри нуклонов (протонов и нейтронов), которые, в свою очередь, взаимодействуют внутри ядра:

d → u + e - + ν - e .

Рис. 11.2. Электрон и позитрон сталкиваются и аннигилируют, образуя Z-бозон, который затем воссоздает эту пару. Авторская иллюстрация

Чтобы понять, какую роль в этом играет W-бозон, обратитесь к рис. 11.3.

Рис. 11.3. Бета-распад d -кварка. Здесь d- кварк распадается на бозон W - и u -кварк. W - пролетает небольшое расстояние (около 10 -18 м), а затем распадается на электрон и антинейтрино электронное. Авторская иллюстрация

Частица, обозначенная в табл. 11.1 буквой g, — это глюон. Было обнаружено восемь различных состояний так называемого цветового заряда глюона, который аналогичен электрическому, но имеет восемь вариантов, метафорически называемых цветами. 1люон является посредником в сильном ядерном взаимодействии, ответственном за удержание нуклонов в ядре. Только кварки взаимодействуют посредством этой силы. В стандартной модели сильное взаимодействие описывается квантовой теорией поля, которую Фейнман назвал квантовой хромодинамикой.

Из сотен новых частиц, открытых в 1960-е, большинство были подвержены сильному ядерному взаимодействию. Этим частицам соответствует родовое понятие адроны. Было обнаружено два типа адронов: барионы, с полуцелым спином, и мезоны, имеющие целый спин. Протон и нейтрон являются барионами. Самый легкий мезон — это пион, или π-мезон, имеющий три варианта заряженного состояния: π + , π 0 и π. Свою докторскую работу я посвятил К-мезонам, или каонам, имеющим четыре разновидности: К+, К-, К0, К-0. Они состоят из пар «кварк — антикварк», один из которых — это s-кварк или его античастица. Рассматривать эту тему подробнее нужды нет.

Все адроны, кроме нуклонов, очень нестабильны, некоторые имеют настолько короткое время жизни, что едва успевают пересечь ядро атома, прежде чем распасться. Нейтрон нестабилен, поскольку подвержен бета-распаду, его среднее время жизни составляет порядка 15 минут. Хотя большинство ядер имеет в составе нейтроны, они стабильны, поскольку закон сохранения энергии предохраняет их от распада. В открытом космосе сейчас можно обнаружить не так уж много свободных нейтронов (или других адронов, за исключением фотонов), лишь небольшое количество, которое на мгновение появляется в ходе высокоэнергетических столкновений частиц в космических лучах.

Очевидно, что протон очень стабилен, иначе мы бы не наблюдали столько водорода во Вселенной через 13,8 млрд. лет после ее рождения. Однако, как мы вскоре увидим, потенциальная способность протонов распадаться, хоть и спустя большое количество времени, имеет огромные космологические последствия.

Стандартная модель элементарных частиц и взаимодействий появилась отчасти благодаря попытке уложить все эти новые частицы в простую схему. Ее ожидал впечатляющий успех. Вот эта схема: барион состоит из трех кварков, антибарион состоит из трех антикварков, мезон состоит из кварка и антикварка. Пока не было обнаружено ни одного адрона, который нельзя было бы составить из кварков, перечисленных в табл. 11.1, и их антикварков.

Ядра атомов, образующих знакомую нам материю, состоят из u- и d-кварков. Протон имеет кварковый состав uud, а нейтрон — udd. Любой физический объект, с которым мы имеем дело в повседневной жизни, и любой объект, с которым работают ученые всех специальностей, кроме физики частиц и астрофизики частиц, состоит всего из трех элементарных частиц. Это u- d-кварки, образующие ядра атомов, и электроны, облака которых летают вокруг, формируя атомы.

Открытие в 2012 году частицы, которая почти наверняка является долгожданным бозоном Хиггса, стало «вишенкой на торте» стандартной модели. Бозон Хиггса — частица с нулевым спином, обозначаемая Н, — придает массу лептонам и слабым бозонам. Кварки получают небольшую долю своей массы таким же образом, но большая ее часть возникает благодаря другому механизму, в котором участвует сильное взаимодействие, подробнее описывать которое излишне. Фотон и глюон — безмассовые частицы.

Теперь давайте рассмотрим теоретические построения, лежащие в основе стандартной модели. Мы увидим, что они распространяются далеко за пределы этого отдельного случая, охватывая все наши представления о смысле физических законов.

 

Симметрия и инвариантность

Центральными понятиями современной физики, от теории относительности и квантовой механики до стандартной модели, являются принципы симметрии и то, каким образом эти принципы нарушаются. Принципы симметрии очень помогли нам в понимании Вселенной — как ранней, так и современной.

Симметрия тесно связана с еще одним понятием — инвариантностью. Идеальная сфера инвариантна в отношении вращения по любой оси. То есть она выглядит одинаково под любым углом. Поэтому мы говорим, что она обладает сферической симметрией.

Если взять сферический шар, состоящий из мягкого и податливого вещества (подобно земле), и начать быстро вращать его, он начнет раздуваться в области экватора и его сферическая симметрия нарушится. Однако мяч все еще будет сохранять вращательную симметрию относительно оси вращения.

Но здесь нас больше интересуют не симметрии геометрических фигур, а симметрии, заключенные в математических принципах, называемых «законами физики». Это принципы, возникающие в моделях, которые физики разрабатывают, чтобы описывать свои наблюдения.

Если наблюдение инвариантно в отношении какого-то действия, скажем изменения угла обзора, под которым проводится наблюдение, то модель, должным образом описывающая это действие, должна заключать в себе соответствующую симметрию. В частности, в этой модели не может действовать трехмерная система координат, в которой оси X, Y, Z соответствуют определенным направлениям.

В 50-х годах XX века ученые доказали, что слабое ядерное взаимодействие нарушает зеркальную симметрию, которую специалисты называют четностью. Это значит, что слабые ядерные взаимодействия не инвариантны относительно перемены слева направо и наоборот, в точности как ваши руки (или лицо, если уж на то пошло). С точки зрения математики оператор P, называемый оператором четности, изменяет состояние системы на его зеркальное отражение.

Физика частиц выделяет также оператор С, который заменяет частицу ее античастицей, и оператор T, запускающий время в обратном направлении. В 1960-х ученые открыли, что комбинированная СР-симметрия слегка нарушается при распаде нейтральных каонов. Комбинированная СРТ-симметрия считается фундаментальной. В этом случае нарушение СР-симметрии предполагает нарушение Т-симметрии. Прямое нарушение Т-симметрии эмпирически подтвердилось; однако нарушение СРT-инвариантности до сих пор не наблюдалось ни в одном физическом процессе.

Заметьте, что нарушение Т-симметрии не стоит трактовать как обоснование для концепции стрелы времени, поскольку этот эффект очень мал — порядка 0,1% и не препятствует обращению направления времени. Оно просто делает одно временное направление несколько более вероятным, чем второе.

СРТ-инвариантность означает, в частности, что, если взять любую реакцию, заменить все частицы в ней античастицами, запустить ее в обратном направлении и наблюдать ее в зеркало, вы не сможете отличить эту реакцию от изначальной. Сейчас похоже, что это так.

Кратко говоря, законы физики не только подчиняются определенным симметриям, некоторые из них (но не все) могут также нарушать какие-то виды симметрии, как правило, спонтанным образом, то есть случайно.

Это можно сравнить с подростковой игрой «в бутылочку». Мальчик раскручивает на полу бутылку, сидя в центре круга из девочек. Бутылка имеет вращательную симметрию относительно вертикальной оси. Но, когда сила трения заставляет ее остановиться, симметрия спонтанным образом нарушается и горлышко бутылки случайным образом указывает на конкретную девочку, которую мальчик должен поцеловать.

 

Симметрии и законы физики

Как мы знаем из главы 6, в 1915 году Эмми Нётер доказала, что три великих физических закона сохранения: линейного момента, момента импульса и энергии — автоматически подчиняют себе любую теорию, которая включает трансляционную симметрию пространства, вращательную симметрию пространства или трансляционную симметрию времени соответственно. Законы сохранения не ограничивают возможности поведения вещества в том виде, в каком эти законы обычно описываются на уроках и в учебниках по физике. Они ограничивают возможности физиков. Бели физик хочет создать модель, которая будет работать в любой точке времени и пространства и под любым углом, у него нет выбора. Такая модель автоматически будет заключать в себе три закона сохранения.

Хотя стандартная модель элементарных частиц далеко ушла от оригинальной работы Нётер, она подтвердила общую идею о том, что важнейшая составляющая известных нам законов физики заключается просто в требованиях логики, накладываемых на наши модели, чтобы сделать их объективными, то есть независимыми от точки зрения какого-либо наблюдателя. В моей книге «Постижимый космос» (The Comprehensible Cosmos) я назвал этот принцип инвариантностью точки зрения и доказал, что практически всю классическую и квантовую механику можно вывести из него.

Подзаголовок этой книги звучит так: «Откуда появились законы физики?» Ответ: они не появились ниоткуда. Они представляют собой либо метазаконы — необходимые требования симметрии, которые сохраняют инвариантность точки зрения, либо внутренние законы — случайности, происходящие, когда какая-нибудь симметрия спонтанно нарушается при определенных условиях. Заметьте, если существует множество вселенных, все они должны иметь общие метазаконы, но внутренние законы могут быть разными.

Хоть это и не общепризнанный факт, обнаруженную Нётер связь между симметриями и законами можно распространить с пространства-времени на абстрактное внутреннее пространство квантовой теории поля. Теории, основанные на этой концепции, называются калибровочными теориями. В начале XX века ученые доказали, что закон сохранения электрического заряда и уравнения Максвелла для электромагнитного поля можно напрямую вывести из одной и той же калибровочной симметрии.

В конце 1940-х калибровочную теорию применили в квантовой электродинамике — квантовой теории электромагнитного поля, описанной ранее. Впечатляющий успех этого подхода, благодаря которому удалось сделать самые точные прогнозы в истории науки, позволял предположить, что другие силы также можно вывести из симметрии. В 1970-х годах Абдус Салам, Шелдон Глэшоу и Стивен Вайнберг, работая преимущественно независимо друг от друга (они, должно быть, читали одни и те же работы), открыли калибровочную симметрию, которая позволяла объединить электромагнитное и слабое взаимодействия в единое электрослабое взаимодействие. Это стало первым шагом к разработке теоретической стороны стандартной модели. В 1979 году эти трое разделили Нобелевскую премию по физике.

Позвольте мне объяснить, что имеется в виду под объединением двух взаимодействий (двух сил). До Ньютона считалось (говоря современным языком), что существует один закон тяготения для Земли, а другой — для небес. Ньютон объединил их, доказав, что в основе лежит одна и та же сила, которая описывает движение как яблок, так и планет в рамках единого закона всемирного тяготения. В XIX веке считалось, что электричество и магнетизм — это две разные силы, пока Майкл Фарадей и Джеймс Клерк Максвелл не объединили их в одну силу, названную электромагнитной.

Однако электромагнитное и слабое ядерное взаимодействия едва ли походили на единую силу на том уровне энергии, который был доступен нам на ускорителях частиц до совсем недавнего времени. Электромагнитная сила способна пересечь Вселенную, о чем свидетельствует тот факт, что мы можем увидеть галактики, которые находились в более чем 13 млрд. световых лет от Земли, когда испустили наблюдаемый нами свет. Максимальное расстояние, которое способно преодолеть слабое взаимодействие, составляет всего около 1/1000 диаметра ядра. Нужно недюжинное воображение, чтобы предположить, что они могут представлять собой одну и ту же силу! Помнится, Фейнман особенно сомневался в этом.

На диаграмме Фейнмана взаимодействие происходит путем обмена частицами, чья масса обратно пропорциональна радиусу взаимодействия. Поскольку радиус электромагнитного взаимодействия, похоже, не имеет пределов, его носитель, фотон, должен иметь массу, очень близкую к нулю. На деле же, согласно принципу калибровочной инвариантности, масса фотона в точности равна нулю. В то же время частицы, являющиеся переносчиками слабого взаимодействия, должны иметь массу 80,4 или 90,8 ГэВ. Это значит, они почти на два порядка массивнее протона (0,938 ГэВ).

Согласно модели Салама — Глэшоу — Вайнберга, при энергии, примерно равной 100 ГэВ (теперь известно, что это значение равно 173 ГэВ), электромагнитное и слабое взаимодействие объединяются. При более низкой энергии симметрия спонтанно, то есть случайным образом, разделяется на две разные симметрии: одна соответствует электромагнитному, а вторая — слабому взаимодействию. Фотон все так же не имеет массы, в то время как три слабых бозона — W + и W - , имеющие электрические заряды +е и -e соответственно, и электрически нейтральный Z-бозон — имеют массу, обусловленную коротким радиусом слабого взаимодействия.

При нарушении электрослабой симметрии слабые бозоны, как и лептоны, получают массу благодаря механизму Хиггса, который впервые предложили в 1964 году шесть авторов: Питер Хиггс из Эдинбургского университета, Роберт Браут (ныне покойный) и Франсуа Энглер из Брюссельского свободного университета, Джеральд Гуральник из Брауновского университета, Дик Хаген из Рочестерского университета и Том Киббл из Имперского колледжа Лондона — в трех независимых работах, опубликованных задолго до появления стандартной модели. Процесс был назван в честь лишь одного из шестерых — скромного британского физика Питера Хиггса, к его великому смущению.

Согласно механизму Хиггса безмассовые частицы обретают массу, разбрасывая в стороны частицы с нулевым спином, называемые бозонами Хиггса. Этот механизм стал неотъемлемой частью стандартной модели, которая была разработана спустя 10 лет.

По сути, это можно представить так: Вселенная — это среда, наполненная массивными частицами Хиггса, которые то существуют, то перестают существовать. Когда элементарная частица с нулевой массой пытается пролететь сквозь эту среду на скорости света, она отскакивает от частиц Хиггса, так что ее продвижение через среду замедляется. Таким образом происходит фактическое увеличение инерции, а масса представляет собой меру инерции тела.

Стандартная модель прогнозирует, чему в точности будут равны массы слабых бозонов: 80,4 ГэВ для Ws и 90,8 ГэВ для Z. Она также предсказывает существование слабых нейтральных токов, упомянутых в главе 10 в связи с их ролью во взрывах сверхновых, которые появляются вследствие обмена незаряженными Z-бозонами. В 1983 году эти прогнозы были блестяще подтверждены.

Полная стандартная модель, включающая как сильное, так и слабое взаимодействие, основывается на объединенной группе симметрии. Сильное взаимодействие рассматривается отдельно, а его переносчики, как уже упоминалось, — это восемь безмассовых глюонов. Небольшой радиус сильного взаимодействия — порядка 10-15 м — обусловлен не массами глюонов, которые равны нулю, однако нет нужды углубляться в этот вопрос.

К концу XX века эксперименты на ускорителях частиц обеспечили достаточное эмпирическое подтверждение стандартной модели при энергии меньше 100 ГэВ, а также измерения ее 20 или около того настраиваемых параметров, в некоторых случаях невероятно точные. Модель согласуется с данными всех наблюдений, проведенных в физических лабораториях за десятилетия, прошедшие с момента ее появления.

4 июля 2012 года результаты двух экспериментов стоимостью в миллиарды долларов с участием тысяч физиков, работавших на БАК в ЦЕРНе, показали независимо и с большой степенью статистической значимости, что были обнаружены сигналы в массовом диапазоне 125–126 ГэВ, соответствующие всем условиям, которым должен отвечать бозон Хиггса в стандартной модели. Двое из шести ученых, предположивших его существование, Питер Хиггс и Франсуа Энглер, разделили в 2013 году Нобелевскую премию по физике.

Разумеется, как это всегда бывает с моделями, стандартная модель не ставит точку в физике частиц. Но с подтверждением существования бозона Хиггса и появлением более мощных источников энергии мы окончательно готовы перейти на следующий уровень понимания базовой природы вещества и, как мы вскоре увидим, глубже проникнуть в суть Большого взрыва. В настоящее время мощность БАК повышают до 14 ТэВ, но придется подождать еще год или два, чтобы выяснить, что нового он позволит нам узнать о физике на этом уровне.

На момент написания книги у нас уже имеются и данные, и описывающая их теория, которые предоставляют нам надежную информацию о физических процессах, протекавших во Вселенной на этапе, когда ее температура равнялась 1 ТэВ (1016 градусов), то есть тогда, когда ее возраст был всего 10-12 с (одна триллионная).

 

Частицы или поля?

Теория относительности, квантовая механика и выведенные из них квантовая теория поля и стандартная модель входят в список наиболее успешных научных теорий всех времен. Они согласуются со всеми эмпирическими данными, во многих случаях с невероятной точностью. Тем не менее, если вы следите за популярными научными СМИ, у вас может появиться впечатление, что эти теории находятся в серьезном кризисе, поскольку никто не может удовлетворительно объяснить, что же они «на самом деле значат».

Этим ощущением кризиса пользуются шарлатаны, убеждая множество простодушных обывателей в том, что «новая реальность» современной физики разрушила старую материалистическую редукционистскую картину мира, а на ее месте возникла холистическая реальность, в которой фундаментальной субстанцией Вселенной является разум — вселенское космическое сознание. Я называю такой подход квантовым мистицизмом {221} . К сожалению, некоторые физики-теоретики непреднамеренно поддерживают эту новую метафизику, воскрешая собственные мистические представления о реальности. Типичный пример приводит Дэвид Тонг в своей статье, вышедшей в декабре 2012 года в журнале Scientific American:

«В физике принято учить, что “кирпичики” природы — это дискретные частицы, такие как электрон или кварк. Но это ложь. Кирпичики наших теорий — не частицы, а поля: непрерывные, похожие на жидкость объекты, разливающиеся в пространстве» {222} . 

Такой подход сильно сбивает с толку. Никому до сих пор не удавалось наблюдать квантовое поле. Однако мы наблюдаем то, что всегда получается просто и точно описать как точечные частицы.

Квантовые поля — это чистая абстракция, математические построения в рамках квантовой теории поля. В этой теории каждое квантовое поле имеет связанную с ним частицу, которая называется квантом поля. Фотон представляет собой квант электромагнитного поля. Электрон — это квант поля Дирака. Бозон Хиггса — квант поля Хиггса. Другими словами, как в любви и браке, один не может существовать без другого. Кирпичики наших теорий — и частицы, и поля.

Но, заметьте, Тонг называет ложью представление о том, что кирпичики природы представлены дискретными частицами, утверждая, что настоящими кирпичиками наших теорий являются поля. То есть он приравнивает окончательную реальность к математической абстракции в рамках наиболее модной современной теории. Это значит, что, когда сменится мода, реальность тоже изменится.

Тонг открывает нам свое понимание популярного среди современных физиков-теоретиков мнения. Физики считают, что символы их математических формул отражают истинную реальность, в то время как наблюдаемые нами феномены, всегда выглядящие как локализованные частицы, — это всего лишь способ, которым реальность проявляет себя. В общем, это современные платоники. Важно отметить, что такие великие ученые XX века, как Поль Дирак и Ричард Фейнман, не принадлежали к этой школе. Да и не все современные теоретики являются сторонниками «полевого платонизма».

В своей книге «Скрытая реальность», вышедшей в 2011 году, физик и знаменитый автор научно-популярной литературы Брайан Грин так высказался по поводу частиц и реальности:

«Я считаю, что физическая система полностью определяется тем, как скомпонованы частицы, из которых она состоит. Скажите мне, какие возможные конфигурации допустимы для частиц, составляющих нашу планету, Солнце, галактику и все остальное, и вы совершенно отчетливо опишете окружающую действительность. Такой редукционистский подход довольно широко распространен среди физиков, но тем не менее, конечно же, есть люди, думающие иначе» {223} .

Никто не утверждает, что нужно представлять частицы стандартной модели в виде классического миллиарда шариков. Но, как отмечает философ Майнард Кульман, квантовые поля также не стоит рассматривать как классические поля, такие как поля, описывающие плотность газа. Он пишет:

«Почему столь фундаментальная полемика может вестись по вопросам столь успешной эмпирически проверенной теории, как квантовая теория поля? Ответ лежит на поверхности. Хотя теория говорит нам, что мы можем измерить, она кажется туманной, когда дело касается природы любых сущностей, порождающих результат наших наблюдений. Теория объясняет наши наблюдения на языке кварков, мюонов, фотонов и различных квантовых полей, но она не говорит нам, что такое в действительности фотон или квантовое поле Она и не должна, поскольку физические теории могут быть эмпирически справедливыми в большинстве случаев без постановки таких метафизических вопросов».

Кульман описывает распространенную среди наиболее упрямых экспериментаторов позицию, хотя и не утверждает, что сам придерживается такого мнения. Он представляет все альтернативные точки зрения, со всеми «за» и «против».

Для многих ученых этого достаточно. Они занимают так называемую инструменталистскую позицию, отрицая, что научные теории предназначены прежде всего для того, чтобы отображать мироустройство. Для них теории — всего лишь инструмент для предсказания результатов экспериментов.

Другие же проявляют несколько большую гибкость.

Однако большинство ученых в глубине души полагают, что их теории все же описывают по крайней мере некоторые аспекты природы как таковой до тех пор, пока не будет проведено измерение. В конце концов, ради чего еще заниматься наукой, если не для познания мира?

Я добавлю только, что, если теория хотя бы в принципе не подразумевает какой-либо наблюдаемый эффект, она не может быть проверена и нам нет особого смысла считать, что она правильно моделирует действительность. Такая теория может представлять интерес с математической или философской точки зрения, однако ее положения будут не очень хорошими кандидатами на роль «аспектов природы».

Хоть я и не могу доказать, что частицы являются элементами окончательной реальности, по крайней мере то, что мы наблюдаем при проведении экспериментов, выглядит скорее как локализованные частицы, и это намного доступнее для понимания, чем трансцендентные квантовые поля. В конце концов, астрономические тела похожи на частицы, если смотреть на них с достаточно большого расстояния, но мы не подвергаем сомнению их реальность. Итак, с чисто практической точки зрения можно считать, что частицы реальны, пока данные наблюдений не скажут нам обратное.

Более того, как мы узнали из главы 6, волноподобные феномены, связанные с частицами в квантовой механике и квантовой теории поля, — это свойства не отдельных частиц, а их групп. Выражение «корпускулярно-волновой дуализм» неточно описывает данные наблюдений. Отдельная частица никогда не ведет себя как волна.

Часто можно услышать, что квантовая механика свергла редукционизм и заменила его новым холистическим подходом, в котором все вещи взаимосвязаны. Это не так. Физики, да и вообще все ученые, в частности врачи, продолжают делить материю на части, которые можно исследовать независимо. После короткого увлечения холизмом в 1960-е годы физики, впечатленные успехом стандартной модели, вернулись к редукционистскому методу, который так хорошо служил им в течение всей истории науки, от Фалеса и Демокрита до наших дней.

 

Рождение астрофизики частиц

Как мы узнали из главы 10, к 90-м годам XX века ядерная астрофизика с помощью модели первичного нуклеосинтеза успешно описывала процесс образования легких ядер в период, когда возраст Вселенной составлял 1 с. Рассчитанная распространенность ядер химических элементов точно согласовывалась с данными наблюдений, в том числе это касалось очень тесной связи между распространенностью дейтронов и барионной плотностью. Глядя на эти результаты, любому пришлось бы согласиться с тем, что Большой взрыв действительно произошел.

А пока этот процесс продолжался, астрофизики частиц (по большей части все те же люди во главе с Дэвидом Шраммом) с помощью новой стандартной модели элементарных частиц начали описывать то, что могло происходить, пока возраст Вселенной еще не достиг 1 с. Они приняли концепцию нарушения симметрии, которая стала фундаментальной составляющей физики, чтобы охарактеризовать серию фазовых переходов, происходивших, начиная с самого первого определимого момента Вселенной. При достижении критических значений температуры Вселенная совершала фазовый переход — подобно тому, как вода замерзает, становясь льдом, — от более высокой к более низкой симметрии с различными наборами частиц и сил, появляющимися вместе с новой симметрией.

Вспомним, что до истечения 1 с, когда температура составляла порядка 1 МэВ, Вселенная находилась в квазиравновесном состоянии, представляя собой смесь из примерно равного количества электронов, нейтрино, антинейтрино и фотонов, а также протонов и нейтронов, которых было в миллиард раз меньше. Из последних позже, когда Вселенная остыла и равновесие больше не могло поддерживаться, сформировались ядра легких элементов.

Давайте вернемся еще дальше во времени, до 10-6 с, когда температура равнялась 1 ГэВ. Этот период все еще относится к эпохе, которую мы можем описать с позиции известных нам физических процессов как теоретически, так и эмпирически, так что это не просто спекуляция. Перед самым этим моментом Вселенная состояла из элементарных частиц, перечисленных в табл. 11.1, тогда не было ни протонов, ни нейтронов, ни вообще составных адронов какого-либо типа. Однако кварки не были свободными (в квантовой хромодинамике они и не бывают свободными), их наряду с глюонами удерживал заполняющий Вселенную густой «суп», называемый кварк-глюонной плазмой. Когда температура опустилась примерно до 1 ГэВ, произошел спонтанный фазовый переход, при котором образовались адроны с нулевым цветовым зарядом. В 1960-е годы мы с коллегами изучали их на ускорителях частиц. В ранней Вселенной было мало адронов, кроме протонов и нейтронов, но только потому, что они имели очень короткое время жизни.

Хотя с тех пор мы продвинулись в своих измерениях физических параметров примерно до уровня 1 ТэВ, ниже которого различимы сильное, слабое и электромагнитное взаимодействия, в основе стандартной модели лежит предположение, что свыше этого энергетического предела, то есть до одной триллионной доли секунды после начала Большого взрыва, слабое и электромагнитное взаимодействия были едины.

БАК позволит нам впервые экспериментально исследовать область высокой симметрии, предоставляя данные о состоянии физических процессов во Вселенной до 10-12 с от начала Большого взрыва.

 

Асимметрия материи и антиматерии

Несмотря на свой успех, стандартная модель не объясняет довольно важную характеристику нашей Вселенной — преобладание материи над антиматерией.

Один из принципов, заключенных в стандартной модели, — это закон сохранения барионного заряда. Каждый барион имеет барионный заряд (или барионное число) B = +1. У антибарионов B = -1. Кварки имеют B = +1/3, антикварки — B = -1/3. Лептоны, калибровочные бозоны (то есть носители взаимодействий) и бозон Хиггса имеют нулевое барионное число. Закон сохранения барионного заряда говорит о том, что общий барионный заряд частиц, участвующих во взаимодействии, после реакции остается таким же, каким был до нее. Не было обнаружено ни одной реакции в физике частиц, ядерной физике или химии, которая бы нарушала этот закон.

Если разумно предположить, что, когда Вселенная только возникла, ее общий барионный заряд равнялся нулю, то выйдет, что число барионов в ней должно было равняться числу антибарионов. К настоящему моменту они бы полностью аннигилировали друг с другом и не было бы протонов и нейтронов, из которых могли бы образоваться ядра атомов.

Стандартная модель включает также закон сохранения лептонного заряда. Лептоны имеют L = +1, у антилептонов L = -1. Барионы и калибровочные бозоны имеют нулевой лептонный заряд. Итак, аналогично все лептоны и антилептоны аннигилировали бы и во Вселенной не осталось бы ни одного электрона. То есть стандартная модель утверждает, что во Вселенной не осталось бы ничего, кроме фотонов и нейтрино. Это значит, никаких атомов, никакой химии, никакой биологии, ни меня, ни вас, ни вашего кота.

Однако мы все существуем. Число протонов и электронов превышает число антипротонов и позитронов в соотношении 1 млрд/1. В какой-то момент на самых ранних этапах жизни Вселенной, до того как сформировались ядра и атомы, законы сохранения барионного и лептонного зарядов были нарушены и образовалась огромная асимметрия между материей и антиматерией.

Если закон сохранения барионного заряда нарушается, протоны в конечном счете должны оказаться нестабильными. Насчет нестабильности электронов волноваться нечего из-за их маленькой массы: нет более легких заряженных частиц, на которые они могут распасться. От распада на фотоны и нейтрино их предохраняет закон сохранения электрического заряда. В противоположность этому существует множество заряженных лептонов, на которые могут распадаться протоны. В таблицах элементарных частиц, в которых перечисляются все их свойства, представлены также дюжины возможных типов распада частиц. Вот только один пример:

p → e + + γ,

где e + — позитрон. Обратите внимание на нарушение законов сохранения лептонного и барионного зарядов.

Еще до завершения работы над стандартной моделью, в 1970-х годах, теоретики искали способы ее расширения. Один из классов моделей, о которых идет речь, называется теориями великого объединения (ТВО). Стандартная модель объединила электромагнитное и слабое ядерное взаимодействия в единое электрослабое взаимодействие, однако сильное ядерное взаимодействие осталось независимым. В рамках ТВО делаются попытки объединить сильное взаимодействие с другими силами.

Большинство ТВО предусматривают бариогенезис — формирование барионной асимметрии наряду с лептогенезисом — образованием лептонной асимметрии. Возможный механизм этих процессов, основанный на оригинальном предположении, которое выдвинул в 1967 году известный советский физик и диссидент Андрей Сахаров, показан на рис. 11.4. В нем задействованы новый калибровочный бозон, называемый Х-бозоном, и его античастица.

Рис. 11.4. Механизм нарушения законов сохранения лептонного и барионного зарядов: а — два антикварка аннигилируют с образованием Х-бозона, превращаясь в кварк и электрон. Барионный и лептонный заряды каждого из них равны 1; б — та же реакция, но с античастицами вместо частиц с соответствующим снижением барионного и лептонного зарядов на единицу. Вследствие нарушения СР-симметрии скорость реакции а выше, чем реакции б, поэтому барионов и лептонов образуется больше, чем их античастиц. Авторская иллюстрация 

Простейшая из ранних ТВО была предложена Говардом Джорджи и Шелдоном Глэшоу в 1974 году. Я буду называть ее ГГ-ТВО (в научном мире она называется минимальной SU(5)-моделью). Ее достоинство заключалось в возможности предсказать время жизни протона, составляющее, согласно этой модели, 1032 лет.

 

В поисках распада протона

Существующих научно-технических возможностей было вполне достаточно, чтобы проверить предсказанное в рамках ГГ-ТВО время жизни протона, и вскоре были проведены четыре эксперимента по регистрации его распада. Эти эксперименты проводились в шахтах глубоко под землей, чтобы минимизировать фоновое излучение, в особенности от летящих из космоса высокоэнергетических мюонов, способных проникнуть глубоко под землю. По меньшей мере два из этих экспериментов вполне позволили бы обнаружить распад протона в случае, если время его жизни составляет 1032 лет или меньше. Один из них проводился в соляной шахте около Кливленда и получил название 1MB в честь трех основных учреждений, задействованных в нем (Калифорнийский университет в Ирвайне, Мичиганский университет и Брукхейвенская национальная лаборатория). В эксперименте участвовали мои коллеги из Гавайского университета. Еще один высокочувствительный эксперимент проводился в цинковой шахте японского поселка Камиоки и получил название Kamiokande — Камиоканский эксперимент по поиску нуклонного распада (Kamioka Nucleon Decay Experiment).

К 1982 году ученые, проводившие все четыре эксперимента, сообщили, что на уровне, предсказанном ГГ-ТВО, распад протона обнаружить не удалось. Таким образом, модель была опровергнута (что бы ни утверждали некоторые философы, научные теории действительно иногда опровергаются). К сожалению, ни одна из оставшихся ТВО не предусматривала доступного измерению срока жизни протона или каких-либо иных осуществимых вариантов экспериментальной проверки.

Чувствительность экспериментов продолжает повышаться, лучшим является усовершенствованный эксперимент в Камиоки, названный Super-Kamiokande (Super-K). Мне удалось немного поучаствовать в этом эксперименте, прежде чем я оставил исследовательскую деятельность в 2000 году. В 2011 году в эксперименте Super-K было найдено наиболее точное на сегодня значение нижнего предела времени распада протона, составляющее 1,01∙1034 лет, что на два порядка выше, чем прогноз ГГ-ТВО.

Иногда отрицательные результаты не менее важны, чем положительные. Знание нижнего предела времени жизни протона при распаде по различным каналам вносит бесценный вклад в работу теоретиков, занимающихся поиском физических процессов, лежащих за пределами стандартной модели. Теперь они могут исключить модели, которые предсказывают нарушение этого предела. Когда и если ученым удастся наблюдать распад протона, скорость, с которой он распадается по различным каналам, поможет им познать строение физического мира, лежащего за пределами стандартной модели.

Благодаря подземным экспериментам были совершены также некоторые полезные побочные открытия, значимость которых приближается к значимости провала попытки обнаружить распад протона. Как уже упоминалось в главе 10, в 1987 году в ходе экспериментов в Кливленде и Камиоки были обнаружены нейтрино, источником которых являлась сверхновая SN 1987A в Большом Магеллановом Облаке. Впервые ученые наблюдали нейтрино, прилетевшие из-за пределов Солнечной системы.

 

Фазовый переход ТВО

Учитывая успех стандартной модели, разумно предположить, что до электрослабого фазового перехода, произошедшего, по современной оценке, при температуре 173 ГэВ, что соответствует возрасту примерно 10-11 с, Вселенная описывалась стандартной моделью с электрослабым объединением. Это значит, что сильное взаимодействие все еще представляет отдельную силу, но электрическое и слабое взаимодействия едины. Вселенная на этом этапе все еще состоит из кварков,

лептонов и калибровочных бозонов, перечисленных в табл. 11.1, однако они не имеют массы, а бозоны Хиггса еще не появились. Частицы все еще превосходят античастицы в соотношении 1 млрд/1. При некотором более высоком уровне энергии в более ранний момент времени определенно должен был произойти фазовый переход из состояния более высокой симметрии, которая, в свою очередь, была результатом фазового перехода из еще более высокосимметричного состояния.

Лучший кандидат на эту роль — все еще одна из ТВО, в которой сильное и электрослабое взаимодействия объединены, а законы сохранения барионного и лептонного зарядов нарушаются. Эта ТВО, в свою очередь, появляется из другой симметрии, существовавшей на более высоком уровне энергии, при которой эти законы сохранения выполняются.

Большинство предложенных учеными ТВО обладают этими свойствами. При этом симметрия проявляется в отсутствии различия между кварками и лептонами, вследствие чего могут происходить реакции, подобные показанным на рис. 11.4. Х-частицу, которой обмениваются другие частицы на рисунке, можно считать лептокварком — комбинацией кварка и лептона. Нарушение законов сохранения барионного и лептонного зарядов произошло, согласно идее Сахарова, из-за различия в скорости реакций, вызванного нарушением СР-симметрии.

В более симметричном состоянии, предшествующем фазовому переходу ТВО, соблюдается СР-инвариантность и законы сохранения барионного и лептонного зарядов снова действуют. Итак, вначале во Вселенной соблюдаются все симметрии, а число частиц равно числу античастиц. Асимметрия материи и антиматерии формируется после фазового перехода из более раннего состояния в состояние ТВО.

Итак, все, что нам остается, — это продолжать строить все более и более мощные ускорители частиц, чтобы все дальше и дальше продвигаться в своих исследованиях назад во времени, пока мы не достигнем условий, соответствующих ТВО. Проблема состоит в том, что мы и близко не подошли к требуемому количеству энергии. Фазовый переход ТВО, согласно оценке ученых, произошел при энергии, равной примерно 1025 эВ, что на 12 порядков больше, чем энергия БАК. Между ТВО и электрослабым фазовым переходом может находиться широкая «пустыня», во время существования которой Вселенная непрерывно сохраняла фазу электрослабого объединенного состояния.

По меньшей мере, БАК позволит нам исследовать эту непрерывную фазу. Но сможем ли мы когда-нибудь продвинуться за ее пределы? Крайне маловероятно, чтобы нам удалось сделать это при помощи ускорителей частиц, по крайней мере в обозримом будущем. Однако у нас есть еще один способ взглянуть на первые мгновения Вселенной — это распад протона. Возможно, эксперимент Super-K приближается к точке, в которой распад протона можно будет наблюдать. Некоторые ТВО предсказывают модели распада, доступные детектору Super-K или его более мощному аналогу.

 

Суперсимметрия

Многообещающий подход к физике, лежащей за пределами стандартной модели, который привлек внимание целого поколения теоретиков, работающих в области физики частиц, — это суперсимметрия (название часто сокращается как SUSY, «сьюзи»). Это принцип симметрии, при котором в физической модели не проводится различие между фермионами и бозонами. Вспомним, что фермионы имеют полуцелый спин, в то время как спин бозонов равен либо целому числу, либо нулю.

Согласно SUSY каждая элементарная частица сопровождается частицей-суперпартнером, или «счастицей», с противоположным спином. Таким образом, электрон со спином 1/2 сопровождается сэлектроном со спином, равным нулю, фотон со спином 1 — фотино со спином 1/2, кварк, чей спин равен 1/2, — скварком с нулевым спином.

Если бы SUSY была идеальной симметрией, счастицы имели бы такие же массы, как и их партнеры, и они не только были бы наблюдаемы, но и не подчинялись бы таким правилам, как принцип исключения Паули, который отделяет бозоны от фермионов. В таком случае химии бы не существовало. Поскольку до сих пор нам не удалось наблюдать ни одной счастицы, а химия существует, эта симметрия нарушается при низком уровне энергии (в сравнении с характерным для ранней Вселенной), при котором мы можем существовать. Если счастицы существуют, их массы должны быть огромными.

Как мы увидим в главе 13, в экспериментах на Большом адронном коллайдере до сих пор не удалось обнаружить ни одной из предполагаемых частиц-суперпартнеров, а значит, сама эта идея все еще под большим вопросом.

 

М-теория

Суперсимметрия предполагает возможность найти теорию, объединяющую гравитацию с другими силами природы, описанными в этой главе, — ее часто называют теорией всего (ТВ). Изначально она называлась теорией струн. Предполагалось, что Вселенная имеет больше трех пространственных измерений, при этом дополнительные измерения закручены так плотно, что их невозможно обнаружить. Теория струн заменила нуль-мерные частицы одномерными струнами.

Со временем было предложено дальнейшее обобщение этой идеи, названное М-теорией, в которую включили объекты более высокой мерности, называемые вранами. Двухмерная брана называется мембраной. P-мерная брана, что достаточно очевидно, называется p-браной. Частица — это 0-брана, струна — 1-брана, а мембрана — это 2-брана. М-теория допускает количество измерений до p = 9. Хотя сторонники М-теории в ходе поиска теории всего совершили множество значимых математических открытий, они до сих пор не смогли предложить эмпирического прогноза, который можно было бы проверить экспериментально. Более того, из-за только что упомянутого фактора теория суперсимметрии до сих пор не была подтверждена, как ожидалось, в экспериментах на БАК. Хотя ей уделяется много внимания в СМИ, из-за чего обыватели считают, что теория всего уже на подходе, М-теория еще далека от подтверждения и, возможно, вскоре будет опровергнута.

 

Глава 12.

ИНФЛЯЦИОННАЯ МОДЕЛЬ ВСЕЛЕННОЙ

 

Проблемы теории Большого взрыва

Из предыдущей главы мы узнали, как в 70-е годы XX века модель Большого взрыва подтвердилась практически с полной достоверностью. Однако в науке довольно часто бывает так, что модель, прекрасно согласующаяся со всеми данными и не имеющая видимой достойной альтернативы, все же сталкивается с некоторыми теоретическими или философскими проблемами. В конце концов, теория плоской Земли тоже когда-то согласовывалась со всеми данными наблюдений, доступными первобытным людям. А посмотрите только, как долго продержалась геоцентрическая модель Солнечной системы — не просто как миф, но как инструмент для точного предсказания движений планет. В 1980-х появляются рассмотренные далее теоретические проблемы, связанные с моделью Большого взрыва и признанные большинством космологов.

Проблема плоской Вселенной

Вспомним, что космологи выделяют параметр плотности Ω = ρ/ρc где ρ — средняя массовая плотность какого-либо компонента Вселенной, а ρc — критическая плотность, при которой Вселенная находится в точке равновесия между гравитационным коллапсом и бесконечным расширением. Если принять за ρc среднее значение плотности всех компонентов Вселенной, то Ω = 1 и Вселенная представляет собой плоскость, то есть в ней действует евклидова геометрия.

Но с этим есть одна проблема: согласно уравнениям Фридмана скорость расширения Вселенной определяется ее плотностью. Возьмем планковское время t = 10-43 с. Если бы в это время Ω была больше единицы хотя бы на 1/1060, Вселенная бы немедленно коллапсировала. Но при значении Ω меньше единицы хотя бы на 1/1060 Вселенная расширялась бы так быстро, что ее видимая часть вскоре стала бы настолько разреженной, что в ней не смогла бы появиться жизнь. В модели Большого взрыва жизнь может существовать только при Ω = 1, с огромной точностью, и Вселенная должна быть в высшей степени плоской.

Это как раз один из тех параметров, в отношении которых христианские апологеты заявляют, что Бог-творец должен был провести точную настройку, чтобы сделать существование жизни возможным. В своей книге 2009 года «Жизнь после смерти: доказательства» (Life after Death: The Evidence). Динеш Д'Суза цитирует «Краткую историю времени» Стивена Хокинга: «Если бы через секунду после Большого взрыва скорость расширения оказалась хоть на одну сто квадрилионную (1/100 000 000 000 000 000) меньше, то произошло бы повторное сжатие Вселенной и она никогда бы не достигла своего современного состояния». УильямЛейн Крейг также ссылается на это утверждение в многочисленных дебатах.

Проблема горизонта

Если исследовать небо в двух противоположных от Земли направлениях, мы увидим, что температура и спектр реликтового излучения одинаковы в обеих областях. Из этого следует, что РИ исходит из двух источников, которые на каком-то более раннем этапе были причинно связаны, благодаря чему смогли взаимодействовать друг с другом и установить тепловое равновесие. Две точки в пространстве могут быть причинно связаны, только если у них было достаточно времени, чтобы сигнал смог дойти от одной к другой и обратно. По последним данным, эти точки сейчас находятся на расстоянии 93 млрд. световых лет друг от друга.

В главе 10 мы выяснили, что фотоны реликтового излучения начали свое направленное движение, когда Вселенная стала прозрачной для них на 380 000-м году своей жизни. Если применить стандартную модель Большого взрыва с линейным расширением по закону Хаббла, выяснится, что расстояние между двумя точками по разные стороны Вселенной во время, когда ей было 380 000 лет, должно было составлять около 84 млн. световых лет, как показано на рис. 12.1. Это намного больше того расстояния, которое мог преодолеть свет от момента Большого взрыва, следовательно, источники A и B никогда не вступали в связь, которая бы позволила им установить тепловое равновесие.

Рис. 12.1. Иллюстрация проблемы горизонта. Вдоль горизонтальной оси показано время, вдоль вертикальной — расстояние между двумя точками во Вселенной. Точки A и B на разных концах Вселенной в момент последнего рассеяния находились на расстоянии около 84 млн. световых лет друг от друга. Пути, проделанные фотонами, которые вышли из этих точек, показаны пунктирными линиями. В наши дни наблюдатели РИ регистрируют эти сигналы, идущие с двух противоположных направлений. Из-за расширения Вселенной сейчас они находятся на расстоянии 93 млрд. световых лет друг от друга. Коротким пунктиром обозначены световые лучи, показывающие, что области, которые могли воздействовать на точки A и B, никогда не были причинно связаны. Масштаб не соблюдается. Авторская иллюстрация

Проблема структуры

В главе 10 мы узнали, что космологи в течение многих лет силились объяснить, как в видимой Вселенной могли образоваться сложные структуры. Даже в рамках статической модели Вселенной это была довольно сложная проблема. В случае расширяющейся Вселенной все стало только хуже, ведь материя в ней рассеяна на большее расстояние, что делает еще менее вероятным гравитационный коллапс отдельных скоплений вещества.

Проблема монополей

В классической электромагнитной теории простейший электрический заряд представляет собой точечную частицу, электрическое поле которой можно показать наглядно в виде линий силы, расходящихся, как лучи, от центра. Два противоположных точечных заряда, положительный и отрицательный, формируют электрический диполь. Следовательно, отдельный точечный заряд можно назвать электрическим монополем. Существуют также квадруполи, октуполи и т. д. Если взять электрический диполь и растащить заряды в разные стороны, получатся два электрических монополя.

Магнитный брусок представляет собой пример магнитного диполя с северным и южным полюсами. Но если вы разделите магнитный диполь надвое, то не получите два магнитных монополя, вместо этого у вас появятся еще два диполя. В классической теории не существует магнитных монополей, и ни один до сих пор не удалось обнаружить экспериментально.

Как заметил в 1894 году французский физик Пьер Кюри, отсутствие магнитных монополей — это единственное различие между электричеством и магнетизмом. В 1931 году Поль Дирак доказал, что существование магнитных монополей согласуется с законами квантовой механики и тем самым восстанавливает электромагнитную симметрию.

В 1974 году нидерландский физик Герард Хуфт и советский физик Александр Поляков независимо друг от друга доказали, что в рамках калибровочных теорий объединения, включающих электромагнитное взаимодействие, должны существовать магнитные монополи. В 1976 году британский физик Томас Киббл (один из шести авторов, предложивших в 1964 году механизм Хиггса, см. главу 11) доказал, что при фазовом переходе с нарушением калибровочной симметрии новая фаза не обязана быть однородной, но может иметь так называемые топологические дефекты, подобные тем, которые возникают в ферромагнетиках. Эти дефекты включают доменные стенки, струны и монополи.

В 1979 году гарвардский аспирант Джон Прескилл рассчитал, что во время фазового перехода ТВО должны были образоваться монополи массой в 1016 раз больше массы протонов в количестве, сопоставимом с числом протонов. Если бы все было так, масса Вселенной в то время стала бы настолько большой, что она схлопнулась бы менее чем за 1200 лет.

В 1980-е проводилось множество экспериментов по поиску магнитных монополей, но ни один так и не был найден. В 1987 году я провел шесть месяцев своего творческого отпуска в Италии, работая в проекте MACRO (Monopole, Astrophysics, and Cosmic Ray Observatory — «Обсерватория монополей, астрофизики и космических лучей») в Национальной лаборатории Гран-Сассо, расположенной под землей. Эта лаборатория представляет собой магистральный туннель, проложенный через горную цепь недалеко от горы Л’Акуила, где в 2009 году произошло землетрясение (лаборатория не пострадала). Основной целью эксперимента MACRO был поиск магнитных монополей, и он стал самым чувствительным экспериментом из когда-либо проводимых в этой области. Обнаружить монополи так и не удалось, но к 2002 году в этом эксперименте был установлен очень строгий верхний предел для регистрации потока монополей, намного ниже расчетного значения, основанного на эффекте, который монополи должны производить на магнитные поля галактик.

Тем не менее провал попытки обнаружить магнитные монополи — это в худшем случае проблема теорий великого объединения, но никак не модели Большого взрыва. Я упомянул об этом в основном из исторических соображений, поскольку проблема монополей сильно поспособствовала привлечению физиков, работающих с элементарными частицами, к работе над космологией ранней Вселенной.

 

Старая и новая инфляция

В 1980 году несколько физиков и астрофизиков начали независимо друг от друга разрабатывать сценарий развития ранней Вселенной, который должен был в конечном итоге представить возможное решение проблем, связанных с общепринятой моделью Большого взрыва. В том же году, 11 января, российский физик Алексей Старобинский, работавший со Стивеном Хокингом в Кембридже, отправил в журнал Physics Letters статью, в которой доказывал, что квантовые эффекты в ранней Вселенной могли привести к появлению пространства де Ситтера, а значит, к экспоненциальному расширению Вселенной, называемому теперь инфляцией.

В 1970 году Хокинг и Роджер Пенроуз применили общую теорию относительности, чтобы доказать, что наша Вселенная вначале представляла собой сингулярность, бесконечно малую точку бесконечно высокой плотности. С тех пор этот вывод используется богословами в качестве доказательства того, что наша Вселенная имела начало и, хотя это и не является следствием, что у нее должен был быть единоличный Творец. Старобинский доказал, а Хокинг и Пенроуз согласились, что квантовые эффекты в ранней Вселенной уничтожили сингулярность. Общая теория относительности не относится к квантовым теориям и перестает действовать на расстояниях меньше планковской длины — 10-35 м.

5 мая 1980 года знакомый астрофизик Демосфен Казанас из Центра космических полетов имени Годдарда отправил в Astrophysical Journal статью, озаглавленную «Динамика Вселенной и спонтанное нарушение симметрии». В ней он утверждает, что фазовый переход в ранней Вселенной, связанный со спонтанным нарушением симметрии, приведет к экспоненциальному расширению, которое может объяснить наблюдаемую изотропность Вселенной. Я считаю, что это была первая опубликованная работа, прямым текстом признающая экспоненциальное расширение в качестве решения одной из главных проблем с общепринятой моделью Большого взрыва, а именно проблемы горизонта.

9 сентября 1980 года японский физик Кацухико Сато отправил в «Ежемесячный обзор Королевского астрономического общества» (Monthly Notices of the Royal Astronomical Society) статью, в которой также доказывал, что фазовый переход первого рода может привести к экспоненциальному расширению Вселенной. Он предположил, что происхождение галактик может объясняться флуктуациями, но не упомянул другие проблемы, связанные с моделью Большого взрыва.

Однако решающей работой по инфляционной теории стала статья, отправленная в Physical Review 1 августа 1980 года физиком Аланом Гутом, в ту пору получившим докторскую степень и занимавшимся исследованиями на Стэнфордском линейном ускорителе. Гут осознал всю значимость раннего периода экспоненциального расширения Вселенной, подчеркнув, каким образом это решает проблемы горизонта и плоской Вселенной, а также предложил возможное решение проблемы монополей.

Как вскоре понял Гут, проблемы плоской Вселенной и горизонта, вне всяких сомнений, были самыми важными. Любая из них могла опровергнуть модель Большого взрыва, если для нее не найдется возможного решения. В то же время проблема магнитных монополей не была критически важной. Магнитные монополи не существуют ни в классической, ни в квантовой электродинамике, и ни один монополь так и не удалось зарегистрировать в природе. В лучшем случае они добавляют симметрии электричеству и магнетизму, однако их существование требуется только в рамках теорий великого объединения.

В своей замечательной популярной книге «Инфляционная Вселенная» (The Inflationary Universe), вышедшей в 1997 году, Гут рассказывает, как проблема монополя подтолкнула его к идее инфляционной модели Вселенной, и признает, что в то время он мало знал о космологии. О проблеме горизонта он впервые услышал в декабре 1979 года. Но он быстро учился и ко времени написания работы полностью осознавал всю глубину значимости как проблемы плоской Вселенной, так и проблемы горизонта.

В этой книге Гут прекрасно объясняет свою оригинальную модель, но и он, и остальные вскоре поняли, что она требует корректировки. Вместо того чтобы приводить здесь эту весьма сложную для понимания неспециалистом историю, я просто скажу, что экспоненциальная инфляция Вселенной является естественным следствием из общей теории относительности.

Если записать уравнения Фридмана для де-ситтеровской Вселенной с положительной космологической постоянной, достаточно математики на уровне первого курса, чтобы доказать, что решение представляет собой экспоненциальное расширение. Независимо от конкретной модели, теория инфляционного расширения решает проблемы плоской Вселенной, горизонта и монополей, а также закладывает основы для решения проблемы структуры.

Проблема плоской Вселенной решена

Вспомните, в главе 8 я описывал расширяющееся трехмерное пространство с помощью традиционной аналогии расширяющейся двухмерной поверхности надувающегося шарика. Представьте себе шарик, который вначале имеет небольшие размеры, но затем расширяется на много порядков. Отдельные маленькие участки его поверхности станут очень плоскими. Вселенная, находящаяся в пределах нашего светового горизонта, подобна этому маленькому участку, который вследствие инфляции действительно стал очень плоским.

Сейчас это принято трактовать таким образом: Вселенная имеет Ω = 1, то есть плотность р в точности равна критическому значению ρc, для которого действует геометрия Евклида. Вспомним, что в этом случае космологический коэффициент кривизны k = 0. Текущее экспериментально определенное значение Ω = 1,002 ± 0,011. Если ρ будет лишь совсем немного меньше, чем ρc, скажем на 1/10100, то наша Вселенная будет иметь небольшую отрицательную кривизну k = -1, а также будет бесконечно расширяться.

В то же время, если ρ хотя бы чуть-чуть больше, чем ρc, скажем на 1/10100, наша Вселенная будет иметь небольшую положительную кривизну k = +1. В классической космологии, когда космологическая постоянная принималась за ноль, k = +1 означало «закрытую Вселенную», которая однажды схлопнется в ходе Большого сжатия. Однако, как мы вскоре увидим, даже «закрытая Вселенная», в которой действует положительная космологическая постоянная, продолжит расширяться.

Позже станет ясно, что модель, в которой k = +1, заключает в себе вполне правдоподобный механизм происхождения нашей Вселенной, полностью согласующийся с имеющимися данными и разработанный сугубо математическим путем.

Ранее в этой главе я упомянул, что христианские апологеты Динеш Д'Суза, Уильям Лейн Крейг и другие цитируют Стивена Хокинга, пишущего, что скорость расширения Вселенной точно равняется «одной на сто тысяч миллионов миллионов». Это цитата из «Краткой истории времени», глава 8. Однако они просто проигнорировали объяснение, которое Хокинг дал спустя всего несколько страниц:

«Кроме того, скорость расширения Вселенной стала бы автоматически очень близка к критическому значению, определяемому плотностью энергии во Вселенной. Тогда такую близость скорости расширения к критической можно было бы объяснить, не делая предположения о тщательном выборе начальной скорости расширения Вселенной» {248} .

Иными словами, инфляционная модель Вселенной объясняет тот факт, что скорость расширения Вселенной равняется критической скорости с точностью до 60 знаков после запятой.

Проблема горизонта решена

Проблема горизонта вытекает из факта высокой однородности реликтового излучения в разных частях неба с одинаковыми спектром черного тела и температурой. Как можно увидеть на рис. 12.1, фотоны, наблюдаемые в противоположных частях неба, согласно модели Большого взрыва, в которой хаббловское расширение экстраполировали назад во времени до рождения Вселенной, никогда не имели причинной связи.

Как показано на рис. 12.2, инфляционная модель решает эту проблему. В период времени после рождения Вселенной, но до начала ее инфляционного расширения точки A и B находились ближе друг к другу, и таким образом между ними установилось тепловое квазиравновесие. Инфляция Вселенной увеличила расстояние между ними на множество порядков, так что фотоны, идущие из этих точек, сегодня формируют взаимосвязанные сигналы, идущие с противоположных сторон небосвода.

Рис. 12.2. Как инфляционная модель решает проблему горизонта. Флуктуация в небольшой области пространства посылает фотоны в противоположных направлениях. Инфляция увеличивает расстояние между ними, так что они формируют взаимосвязанные сигналы, идущие с противоположных сторон небосвода. Авторская иллюстрация

Проблема монополий решена

Как уже упоминалось, Гут пришел к идее об инфляционном расширении Вселенной, пытаясь решить проблему монополей в рамках ТВО. Однако, поскольку монополи все равно до сих пор никем не наблюдались, это исключительно теоретическая проблема, связанная с теориями Великого объединения. Провал попытки экспериментально обнаружить монополи мог опровергнуть ТВО в случае невозможности найти решение, однако модели Большого взрыва он бы не повредил.

Гут не утверждал в своей оригинальной работе, что решил проблему монополей, однако он предложил ее возможное решение. Гут и его коллега Генри Тай пришли к мысли, что произошло сверхохлаждение, отодвинувшее завершение фазового перехода ТВО и нуклеацию монополей. Сверхохлаждение и сверхнагревание — явления, хорошо известные как в термодинамике, так и в повседневной жизни, по сути представляющие собой наиболее распространенные виды фазовых переходов, называемых фазовыми переходами первого рода. На знакомом примере это можно объяснить так: когда вы нагреваете воду, она не сразу превращается в пар, но вначале формирует пузырьки. Нужно много времени, чтобы вся вода превратилась в пар. Если поставить в микроволновку чашку очень чистой воды, вы сможете нагреть ее свыше точки кипения, не вскипятив, — это и есть сверхнагревание. Затем, если ее потревожить, например тронув чашку, вся вода одновременно превратится в пар (осторожнее, из-за этого явления люди получали серьезные ожоги). Аналогично, если вы охладите воду до температуры ниже точки замерзания, нуклеация кристаллов льда произойдет, если в воде присутствует какая-то примесь, способная стать центром кристаллизации. Но если вода очень чиста, происходит гомогенная нуклеация и образуется однородный кусок льда, похожий на стекло.

На тот момент ученые уже установили, что фазовый переход ТВО определенно был переходом первого рода. Пузырьки фазы ТВО, образовавшиеся во время фазового перехода, не образуют монополи моментально, поскольку поля остаются перемешанными, пока температура не опустится достаточно низко. Гут и Тай предположили, что за время фазы суперохлаждения эти «пузырьки» расширятся достаточно для того, чтобы, когда монополи наконец образуются, они были очень сильно рассредоточены.

Вначале Гут предполагал, что наша Вселенная сформировалась, когда пузырьки столкнулись и их энергия, сконцентрированная в стенках, превратилась в частицы. Но расчеты Гута и Эрика Вайнберга показали: поскольку пространство между пузырями продолжало расширяться, они никогда не смогли бы сформировать единую массу, но вместо этого образовали отдельные скопления. Они рассмотрели возможность того, что Вселенная находилась внутри одного такого пузыря, однако предварительно сделали вывод, что он был бы слишком пустым, чтобы походить на какую-либо существующую Вселенную.

Но это так только в случае модели Гута — Вайнберга. Выбрать модель, не имея никаких экспериментальных данных, можно только путем догадок, пусть и основанных на научных знаниях. В то же самое время российский физик Андрей Линде и американские физики Андреас Альбрехт и Пол Стейнхардт предложили собственные модели. Эти модели доказывали возможность того, что наша Вселенная образовалась из одного такого пузырька. Они получили название новых инфляционных моделей. Их я также не буду описывать подробнее, поскольку Линде вскоре предложил идею получше.

 

Хаотическая инфляция

Из всех самобытных и продуктивных космологов, специализирующихся на инфляционных моделях, на которые обратили внимание вскоре после выхода работы Гута, Андрей Линде — один из самых выдающихся. Гут любезно признает, что Линде независимо разработал большую часть инфляционной теории Вселенной в конце 1970-х, хотя сам Линде отметил, что не сразу осознал всю ее значимость.

В 1983 году Линде сформулировал еще одну модель, названную хаотической теорией инфляции, настолько простую и понятную, что, хотя она не обязательно в точности верна, вероятно, совсем недалека от истины и позволяет нам разобраться в этом процессе при минимальном количестве догадок и узкоспециальных деталей. К тому же она довольно хорошо согласуется с самыми последними данными наблюдений.

В отличие от других инфляционных моделей хаотическая теория инфляции не опирается на попытку вывести форму потенциальной функции инфляции из ТВО или какой-либо другой динамической теории, не имеющей экспериментальной поддержки и фундаментного принципа, которым можно было бы ее обосновать. Она начинается практически из ничего и позволяет квантовой механике и статистике делать свою работу.

Я буду следовать современной традиции и называть поле, ответственное за расширение Вселенной, инфлятонным полем. Таким образом, мы не будем привязываться к ТВО или любой другой чересчур конкретной модели. Просто предположим, что поле, возникающее в результате, — это скалярное поле, эквивалентное космологической постоянной в пространстве де Ситтера, которая, как мы уже знаем, вызывает экспоненциальное расширение Вселенной.

И вновь давайте вернемся к планковскому времени, 10-43 с, а о том, что могло происходить до этого, побеспокоимся потом. Позвольте предположить, что Вселенная в то время была настолько мала, насколько это возможно при условии, что ее можно определить операционально, то есть это сфера, радиус которой равен планковской длине, 1035 м (порядки величин на этом уровне еще достаточны для этого). Эта сфера будет пуста за исключением энергии вакуума, которая будет иметь случайное значение, следуя нормальному (гауссовскому) распределению, со стандартным отклонением, равным планковской энергии, 1028 эВ. Заметьте, что это не маленькое число. Оно равносильно температуре 1032 градусов и энергии покоя, примерно в 30 раз больше энергии частицы пыли.

Положительная флуктуация энергии, равная положительной космологической постоянной, приведет к появлению экспоненциально расширяющейся де-ситтеровской Вселенной. Отрицательная флуктуация вызовет экспоненциальный коллапс, однако рассматривать этот вариант нет необходимости. Поскольку плотность энергии в вакууме де Ситтера постоянна, по мере расширения Вселенная приобретает внутреннюю энергию. Она равна массе, которую можно назвать центром кристаллизации для инфляционного расширения. Закон сохранения энергии соблюдается, а внутренняя энергия или масса берется из потери гравитационной энергии по мере того, как Вселенная «падает вверх» из-за отрицательного давления вакуума. Масса центра кристаллизации должна превышать некоторый определенный предел, достаточный для того, чтобы поддерживать инфляционное расширение, иначе нормальное гравитационное притяжение этой массы быстро приведет к коллапсу.

Как в классической, так и в квантовой теории поля имеют математические характеристики одномерного простого гармонического осциллятора, подобного математическому маятнику. Потенциал поля φ аналогичен смещению маятника из положения равновесия. Из-за принципа неопределенности квантовый гармонический осциллятор никогда не находится в покое, он колеблется относительно своей точки равновесия с минимальной энергией, называемой энергией нулевых колебаний. Таким образом, любой вариант φ будет верно описать как квантовую флуктуацию.

Как показано на рис. 12.3, образно этот осциллятор можно представить как шарик, катящийся вверх-вниз по стенкам миски. Если миска имеет форму параболы, шар будет совершать простые гармонические колебания, так что это хорошая модель для иллюстрации поведения φ. Математическая часть ничем не отличается.

Рис. 12.3. Хаотическая инфляция. Плотность потенциальной энергии рассчитывается по формуле u(φ) = m 2 φ 2 /2, где (φ — скалярное поле, а m — масса инфлятона. График начинается с φ = 10 планковских единиц. Изменение инфлятонного поля подобно шарику с массой 1, катящемуся вниз по параболическому колодцу, так же как и в случае затухающих колебаний математического маятника. Авторская иллюстрация

В норме шарик будет быстро катиться обратно вниз. Однако, согласно уравнению движения для осциллятора, в расширяющейся Вселенной из-за расширения пространства возврат к точке равновесия будет замедляться силой трения. Это можно сравнить с кувшином, наполненным патокой. На самом деле содержимое миски больше напоминает патоку, движущуюся по воде, которая, в свою очередь, движется по воздуху. Итак, в случае небольших смещений шарик просто будет кататься из стороны в сторону где-то в области дна миски. Однако Линде заметил, что время от времени при больших смещениях патока будет замедлять шарик и он некоторое время будет находиться в состоянии сильного отклонения от точки равновесия.

Это так называемое медленное вращение — необходимая черта большинства инфляционных моделей, которую искусственным образом внедрили в новые инфляционные модели, упомянутые ранее. Хаотической модели она присуща изначально. Медленное вращение обеспечивает промежуток времени, достаточный для того, чтобы центр кристаллизации расширился на много порядков, прежде чем шарик наконец достигнет дна. Оказавшись на дне, он начинает кататься из стороны в сторону со все более сужающейся амплитудой, уже больше не останавливаясь до конца. Из энергии, расходуемой на трение, образуются элементарные частицы, которые затем формируют Вселенную.

Все это можно выразить количественно хотя бы просто для наглядности. Для инфлятонного поля φ можно записать плотность потенциальной энергии как формулу гармонического осциллятора u(φ) = m2φ2/2, где m — масса кванта этого поля, который можно считать частицей, называемой инфлятоном. Значение т неизвестно, и потому эта величина считается переменным параметром, в этой модели он такой один. Теперь, если мы подставим и в уравнение движения, то сможем использовать численные методы для расчета значений φ, H и космологического масштабного фактора a в зависимости от времени. В моей книге «Постижимый космос» (Comprehensible Cosmos) все это детально разбирается, включая математические выводы всех уравнений на доступном студентам уровне. Здесь я привожу только результаты.

Работать мы будем в планковских единицах, где ħ = h/2π = с = G = 1 (G — это гравитационная постоянная Ньютона). Для наглядности я выбрал значение начальной флуктуации в поле φ, равное 10 планковским единицам, и m = 10-7 планковских единиц (1011 ГэВ). На рис. 12.3 показано движение шарика, катящегося вниз по склону из этой точки. По мере того как шарик медленно спускается, объем Вселенной увеличивается экспоненциально. Его движение замедляется расширением пространства, поэтому шарик теряет свою энергию по мере того, как он катится вниз и затем колеблется из стороны в сторону в области нижних значений своей потенциальной энергии с уменьшающейся амплитудой.

На рис. 12.4 изображено, как изменяется поле со временем t в единицах планковского времени. Область графика с t < 0,5 не показана, чтобы продемонстрировать затухающие колебания поля. За период времени t < 0,6, поле уменьшается с 10 единиц (не показано на графике) до нуля и затем колеблется в области нуля с все более уменьшающейся амплитудой.

Рис. 12.4. Изменение потенциала инфлятонного поля u(φ) со временем при хаотической инфляции Вселенной. Шкала времени дана приблизительно в 1∙10 -34 с. Область графика с t < 0,5 опущена. Авторская иллюстрация 

На рис. 12.5 показано изменение масштабного фактора Вселенной а, который для наших целей можно принять за радиус Вселенной. Вслед за экспоненциальной инфляцией Вселенной, во время которой она увеличилась на 214 порядков, наступает плавный переход к привычному хаббловскому расширению. Это просто наглядное изображение, которое не претендует на точное моделирование нашей Вселенной.

Рис. 12.5. Изменение масштабного фактора Вселенной со временем для хаотической инфляционной модели, где m = 10 -7 , начальный потенциал инфлятонного поля равен 10 планковским единицам. Шкала времени дана приблизительно в 1∙10 34 с. Начало координат на графике опущено для наглядности. Часть кривой, обозначенная как Большой взрыв, относится к нормальному хаббловскому расширению. Авторская иллюстрация

 

Крупномасштабная структура

В 1980-е годы, пока специалисты по астрофизике частиц носились с невероятной идеей о том, что Вселённая увеличилась на множество порядков в течение первой мельчайшей доли секунды, астрономы-наблюдатели делали свои открытия: то, что находили в космосе их новые телескопы, оказалось невероятным.

В 70-е годы XX века Вселенную в общем виде представляли в форме более или менее однородного распределения скоплений галактик, движущихся друг от друга по единому принципу вследствие расширения Вселенной по закону Хаббла. Но к началу 1980-х начали накапливаться данные, свидетельствующие о том, что тысячи галактик в области пространства, равной миллионам световых лет, проявляют небольшие, но поддающиеся измерению отклонения от лучевой скорости разбегания, которую, как ожидалось, придает им расширение Вселенной. Движение галактик в нашем местном скоплении, похоже, направлено в сторону области, которая находится примерно в 200 млн. световых лет от нас, в центре сверхскопления Гидры — Центавра. Эта точка получила название Великий аттрактор.

В течение нескольких лет в распределении скоплений, сверхскоплений (скоплений скоплений) и комплексов сверхскоплений были обнаружены другие неожиданные структуры. В 1987 году мой коллега по Гавайскому университету Брент Талли наблюдал нитевидную структуру длиной 1 млрд. световых лет и шириной 150 млн. световых лет, которую он назвал комплексом сверхскоплений Рыб — Кита. Он состоит из пяти сверхскоплений общей массой в 1018 раз больше массы Солнца, включая сверхскопление Девы, масса которого равна 1015 солнечным массам, частью которого мы являемся.

Как мы уже знаем: измерение расстояний всегда было серьезным испытанием для астрономов. Они разработали так называемую лестницу космических расстояний. Она представляет собой набор методов, каждый из которых применяется до некоторого предельного расстояния, после чего вступает в силу следующий. Методы в достаточной степени перекрывают друг друга, так что с помощью одного из них можно уточнить показания, полученные с помощью другого.

Не думаю, что стоит подробнее описывать эти методы. Я уже рассказал вам о способе определения расстояний по параллаксу, который используется для звезд, расположенных близко — на расстоянии до сотни световых лет, и об определении расстояний по цефеидам, что работает для галактик, расположенных на расстоянии до 13 млн. световых лет от Земли. В 1977 году Талли в соавторстве с Ричардом Фишером опубликовал новый метод определения расстояний до спиральных галактик, который заключается в определении зависимости между внутренней светимостью галактики и скоростью ее вращения. Как и в случае с другими методами, вы определяете расстояние, измеряя наблюдаемую на Земле светимость, и предполагаете, что она падает до наблюдаемого значения пропорционально квадрату расстояния до объекта. С помощью этого и других методов Талли и Фишер создали атлас галактик, названных ими близкими.

Но, по сути, красное смещение остается самым точным методом измерения, доступным астрономам, и с помощью закона Хаббла все еще можно получить приближенные значения расстояний. Новейший период в истории астрономии ознаменовался масштабными исследованиями красных смещений галактик, благодаря которым была обнаружена впечатляющая паутинообразная структура видимой части Вселенной.

Первое масштабное исследование красных смещений началось в Гарвард-Смитсоновском центре астрофизики (Harvard-Smithsonian Center for Astrophysics, CfA) в 1977 году и завершилось в 1982-м. Еще одно такое исследование проводилось в CfA с 1985 по 1995 год. На основании этих данных Маргарет Геллер и Джон Хукра в 1989 году открыли нить из галактик, красные смещения которых свидетельствовали о том, что она находится на расстоянии примерно 200 млн. световых лет, ее длина составляет 500 млн. световых лет, ширина — 300 млн. световых лет, а толщина — 16 млн. световых лет. Эту структуру назвали Великой стеной CfA2. Как мы увидим в следующей главе, с 2000 года проводилось и проводится огромное количество масштабных исследований красных смещений галактик.

В сущности, число галактик видимой Вселенной составляет от 100 млрд. до, возможно, целого триллиона. Астрономы объединяют эти галактики в группы, скопления, сверхскопления, листы, нити и стены. Их разделяют так называемые войды диаметром от 30 до 500 млн. световых лет, в которых находится очень мало галактик. В 2013 году Брент Талли с коллегами создали достойное внимания видео, в котором наглядно показана эта структура.

Тем не менее необъятность, красота и многокомпонентность структуры, которую мы наблюдаем невооруженным глазом и при помощи телескопов, создают ложное впечатление, что космос очень сложно организован, а значит, является результатом в высшей степени замысловатого плана. На самом деле Вселенная в целом довольно проста и организована по большей части случайным образом. Из 99,5% невидимой и не имеющей четкой организации массы Вселенной 69% темной энергии не входят ни в какие структуры, а 26% темной материи не определены столь точно, как видимые объекты, которые она окружает. Более того, численно во Вселенной преобладают фотоны и нейтрино, количество которых в миллиард раз больше, чем атомов. При этом примерно одна из 100 000 этих частиц движется совершенно случайным образом. Наша Вселенная отнюдь не похожа на проект высшего бесконечно разумного существа, скорее она выглядит как сумма вероятностей.

 

Инфляция и структура

Вначале считалось, что инфляционная модель только усугубила проблему структуры. В конце концов, одним из триумфов инфляционной модели стало объяснение необычайной однородности реликтового излучения. Тогда как же объяснить очевидную неоднородность окружающей нас видимой материи — галактик, звезд, планет, Скалистых гор?

Я уже отмечал, что еще до появления инфляционной космологии несколько авторов предположили, что формирование структуры Вселенной произошло вследствие первичных флуктуации плотности в ранней Вселенной. Но, не имея никаких данных о природе первичной материи, они могли только строить необоснованные догадки.

Инфляционные космологи осознали, что небольшие возмущения в плотности вещества, вызванные квантово-механическими нулевыми флуктуациями в инфлятонном поле, были усилены на много порядков в процессе инфляционного расширения и могли вызвать различия в плотности, необходимые для группирования вещества под воздействием гравитации и формирования галактик.

Используя различные инфляционные модели, космологи 1980-х пытались рассчитать различия в плотности, вызванные квантовыми флуктуациями в инфлятонном поле. Гут описывает организованный Стивеном Хокингом и Гэри Гиббонсом трехнедельный семинар по ранней Вселенной, проводившийся в Кембридже с 21 июня по 9 июля 1982 года, и то, как каждый предлагал свои оценки, большинство из которых были на много порядков ниже значений, необходимых для того, чтобы образовались галактики. Однако вскоре в работе, вышедшей в 1983 году, Джеймс Барден, используя новаторскую технику вычислений, не зависящую от модели, утверждал, что флуктуация плотности порядка 10-3–10-4 представляется вполне правдоподобной для инфляционной модели.

Несмотря на неопределенность порядка величин, ожидалось, что флуктуации в инфляционной модели будут хотя бы приблизительно масштабно-инвариантны. Эти флуктуации, как мы выяснили в главе 11, считаются необходимым условием для формирования структуры Вселенной. В простейшей модели, где инфлятонное поле представлено однородным скалярным полем в де-ситтеровской Вселенной, масштабная инвариантность следует из трансляционной инвариантности времени экспоненциального решения. Отдельные инфляционные модели намного сложнее, но все они дают в результате что-то очень близкое к масштабной инвариантности. На самом деле мы вскоре увидим, что эти модели, включая модель хаотической инфляции, предсказывают небольшое, но статистически значимое отклонение от масштабной инвариантности, которое становится еще одним рискованным испытанием для инфляционной модели.

В период инфляционного расширения крошечные квантовые флуктуации плотности инфлятонного поля увеличились на много порядков. Когда инфляция прекратилась, Вселенная представляла собой скопление горячего сверхплотного газа, состоящего из элементарных частиц, после чего наступила стадия более спокойного хаббловского расширения. Флуктуации заставили расширяющийся газовый шар вибрировать, испуская звуковые волны, которые начали распространяться во все стороны. Поскольку вибрирующая среда состояла преимущественно из фотонов, скорость звука обязана была равняться скорости света, деленной на √3. В более сложных моделях, о которых мы поговорим позже, скорость света может варьироваться по мере изменения соотношения между числом барионов и фотонов, позволяя тем самым вычислять их относительные доли.

По мере того как Вселенная продолжала расширяться и остывать, происходили разнообразные процессы, описанные в главе 10. В течение всего этого периода частицы были тесно связаны квазиравновесным состоянием с четко определенной температурой, которая понижалась по мере расширения Вселенной от значения 1027 градусов, соответствующего концу стадии инфляции, в линейной зависимости, показанной в логарифмическом масштабе на графике, изображенном на рис. 10.2.

Вспомните искусственное разграничение, которое астрономы проводят между излучением и материей. И то и другое состоит из материальных частиц, но излучение имеет выраженные релятивистские свойства (v >> с), в то время как материя их не проявляет (v << c). Излучение состоит из фотонов, которые преобладали во Вселенной на протяжении 57 тыс. лет, из-за чего этот период называют эпохой преобладания излучения. Однако из-за красного смещения, вызванного расширением Вселенной, плотность энергии излучения падает быстрее, чем плотность энергии вещества, поэтому Вселенная перешла от эпохи преобладания излучения к эпохе преобладания материи. Как мы вскоре выясним, эпоха преобладания материи закончилась около 5 млрд. лет назад. С тех пор во Вселенной все сильнее доминирует так называемая темная энергия, по свойствам очень напоминающая космологическую постоянную, которая вызывает ускоряющееся расширение Вселенной.

Сейчас мы ведем речь о плотности массы/энергии, а не о численной плотности. В эпоху преобладания материи безмассовые фотоны и нейтрино с очень маленькой массой все еще численно превосходили другие виды частиц. Затем, на 380 000-м году, температура упала до значения, при котором могли образоваться атомы. Этот процесс называется рекомбинацией. Рекомбинация избавила Вселенную от большинства заряженных частиц, поскольку положительно заряженные ядра и отрицательно заряженные электроны нейтрализовали друг друга, образовав атомы. Кроме того, и это наиболее важно, поскольку не осталось таких заряженных частиц, с которыми могли бы сталкиваться фотоны, последние рассеялись среди оставшейся части Вселенной, ставшей для них прозрачной. За последующие 13,8 млрд. лет эти фотоны остыли до 2,725 К и сформировали космический микроволновой фон (реликтовое излучение), который мы наблюдаем сегодня.

В наши дни фотоны все еще численно превосходят атомы в соотношении 1 млрд/1. Нейтрино рассеялись намного раньше, на второй секунде, сформировав собственный реликтовый фон температурой 1,95 К. Хотя на каждый кубический сантиметр приходятся сотни нейтрино, они не вызывают измеримых эффектов (по крайней мере, на нынешнем уровне развития техники мы не можем их зафиксировать) и в общем случае не принимаются в расчет. Как мы вскоре выясним, они вряд ли являются составными частями темной материи.

Рассеяние фотонов привело также к тому, что давление света на материю, которое противодействовало гравитации и предотвращало коллапс, исчезло и смог начаться процесс формирования структуры Вселенной путем гравитационного слияния. Этому способствовала темная материя, которая была там все это время, но не участвовала в электромагнитных взаимодействиях; ранее удерживавших фотоны и заряженные частицы в состоянии равновесия. Итак, каким бы ни был вибрационный паттерн этого фотонного шара, в момент последнего рассеяния эти вибрации зафиксировались навсегда. Области более высокой плотности были горячее, а менее плотные — холоднее, так что температурные флуктуации в газе следовали за флуктуациями плотности. Сегодня этот паттерн можно увидеть в колебаниях температуры РИ в разных частях неба.

 

Возвращаясь к началу

К 80-м годам XX века осознание того, что РИ содержит информацию о самых первых моментах Вселенной, стимулировало множество попыток провести более точные измерения любых возможных отклонений от обнаруженного немногим ранее гладкого распределения этого излучения во всех областях неба. Инфляционная модель объясняла эту однородность, но она также предполагала существование небольших, примерно на уровне 0,00001 градуса, различий в температуре, или «морщин». Поиск этих анизотропии стал для инфляционной теории критическим испытанием, которое могло подтвердить ее или опровергнуть.

Одним из лидеров в области этих исследований стал Джордж Смут, специалист по физике элементарных частиц из Калифорнийского университета в Беркли. Работая вместе с нобелевским лауреатом Луисом Альваресом и другими учеными в Национальной лаборатории имени Лоуренса (в те годы я часто там бывал, занимаясь другими исследованиями), Смут и его коллеги разработали избирательный микроволновой радиометр, с помощью которого можно было измерить различие в температуре РИ, идущего из двух разных направлений.

В 1976 году этот прибор несколько раз брали на борт самолета-разведчика «Локхид У-2». В ходе таких полетов на скорости 600 м/с удалось зафиксировать различия в температуре, обусловленные движением Млечного Пути, воздействующим в том числе на наше Солнце и Землю сквозь фоновое поле реликтового излучения. Это так называемая дипольная анизотропия, заключающаяся в том, что под влиянием доплеровского эффекта частота РИ смещается в синюю сторону с той стороны, в которую мы движемся, и в красную — со стороны, от которой удаляемся.

В середине 1970-х Смут с коллегами предложили НАСА разработать спутник под названием СОВЕ (Cosmic Microwave Background Explorer — «Космический исследователь микроволнового фона»). Этот космический аппарат должен был нести на борту три основных прибора:

♦ избирательный микроволновой радиометр (Differential Microwave Radiometer, DMR), представляющий собой улучшенную версию предыдущего прибора Смута для измерения колебаний температуры РИ в различных областях неба на трех длинах волн: 3,3,5,7 и 95 мм;

♦ спектрофотометр в далеком инфракрасном диапазоне (Far-Infrared Absolute Spectrophotometer, FIRAS), измеряющий характеристики спектра в диапазоне длин волн 0,1–10 мм;

♦ многоволновой датчик для получения распределения излучения пыли по небесной сфере в инфракрасном диапазоне (Diffuse Infrared Background Experiment, DIRBE) для поиска космического инфракрасного фонового излучения в диапазоне длин волн 1,25–240 мкм.

После значительной задержки, вызванной катастрофой шаттла «Челленджер» и другими проблемами, 18 ноября 1989 года обсерватория СОВЕ была запущена с помощью ракеты-носителя «Дельта». Так началась следующая изумительная глава в познании космоса человеком.

 

Глава 13. ПАДАЯ ВВЕРХ 

 

Морщины времени

В начале 1990-х годов скептики, имевшие собственные излюбленные теории, продолжали ставить под сомнение как модель Большого взрыва, так и теорию инфляции. На встрече Американского астрономического общества, проходившей в январе 1990 года в Арлингтоне, штат Виргиния, Джон Мазер, научный руководитель проекта FIRAS, одного из трех приборов, находившихся на борту обсерватории СОВЕ, представил первые результаты, полученные с помощью этого космического аппарата. В своей книге «Морщины времени» (Wrinkles in time) Джордж Смут и Кей Дэвидсон описывают момент, когда Мазер продемонстрировал график, изображенный на рис. 13.1: «Когда на экране проектора возникло изображение, на мгновение в воздухе повисла тишина. Затем публика встала и раздался взрыв аплодисментов». Чернотельная природа реликтового излучения окончательно подтвердилась.

Спектр реликтового излучения согласно измерениям СОВЕ

Рис. 13.1. Спектр реликтового излучения, измеренный с помощью спектрофотометра в далеком инфракрасном диапазоне (FIRAS). Нижняя шкала соответствует обратной длине волны, которая прямо пропорциональна ее частоте. Кривая соответствует планковскому спектру черного тела для температуры 2,75 К. Изображение предоставлено Центром космических полетов Годдарда 

В тот момент казалось, что истинность теории Большого взрыва уже нельзя поставить под сомнение. Ни одна предложенная альтернатива не способна была объяснить эти результаты без необходимости в специально сделанных допущениях. Однако инфляционная модель все еще оставалась под угрозой опровержения.

Ее заклятые противники, в том числе известные астрономы Фред Хойл и Джефри Бербидж, чей великий вклад в разработку модели звездного нуклеосинтеза не стоит преуменьшать, продолжали высказываться на этот счет и даже утверждать, что инфляционная модель уже опровергнута, поскольку подтверждающие ее эмпирические данные отсутствуют.

Но они слегка погорячились.

Двадцать третьего апреля 1992 года Смут выступил перед полным залом на собрании Американского физического сообщества в городе Вашингтоне, показав серию карт РИ. Как и в случае с его коллегой Джоном Мазером двумя годами ранее, Смуту аплодировали стоя, когда он продемонстрировал эффекты, названные им морщинами времени, полностью подтвердившие прогнозы инфляционной модели.

Стивен Хокинг с некоторым преувеличением назвал это «научным открытием века, если не всех времен». Смут сказал, что это было «как будто увидеть Бога». Газета National Enquirer (или какое-то подобное издание) опубликовала свою версию этой новости — лик Иисуса в небесах.

Предсказанные инфляционной космологией различия в температуре реликтового излучения после 10 лет напряженных поисков наконец подтвердились. В 2006 году Мазер и Смут получили Нобелевскую премию по физике.

В книге Алана Гута «Инфляционная Вселенная» представлена упрощенная версия графика результатов, полученных обсерваторией СОВЕ. С разрешения автора она приведена на рис. 13.2. Здесь представлена зависимость разности температуры реликтового излучения, возведенной в квадрат и усредненной по всем направлениям, от угла между двумя направлениями, измеренного с помощью дифференциального радиометра, в диапазоне от 0 до 180 градусов. Полученные данные полностью соответствуют форме графика, предсказанной теорией инфляции, хотя в книге Гут ничего не говорит об абсолютном значении эффекта, которое на рисунке было скорректировано, чтобы соответствовать данным.

Рис. 13.2. Зависимость различий в температуре реликтового излучения, возведенных в квадрат и усредненных по всем направлениям, от угла между двумя направлениями, измеренного с помощью дифференциального радиометра, в сравнении с прогнозами инфляционной модели. Абсолютные значения скорректированы таким образом, чтобы соответствовать данным. Изображение предоставлено Аланом X. Гутом

Однако вскоре стало понятно, что, если не будет обнаружено отклонение от основного реликтового фона хотя бы на 1/100000, инфляционная модель будет всерьез поставлена под сомнение, если не опровергнута.

В науке считается, что модель, которую нельзя опровергнуть, нельзя назвать научной. Но когда модель успешно проходит рискованное испытание, способное ее развенчать — такое, как описанное, — она зарабатывает право на серьезное отношение со стороны ученых. Но тут все же следует вставить предостерегающую ремарку, основанную на историческом опыте науки. Даже если модель проходит фальсификационную проверку, это не значит, что она утвердилась окончательно и что однажды ее не вытеснит более качественная модель. Однако, как мы вскоре увидим, в качестве составной части полноценной космологической модели инфляционная теория все еще предоставляет больше возможностей, чем может любая другая альтернативная модель.

В работе, интерпретирующей полученные результаты, рабочая группа СОВЕ сопоставляет данные своих наблюдений с множеством предложенных моделей. В результате было обнаружено, что измеренные значения анизотропии слишком велики по сравнению с неоднородностями, найденными в ходе галактических обзоров, следовательно, они должны иметь первичную природу. Ученые сделали вывод, что обсерватория СОВЕ предоставила «самые первые сведения о начальной стадии жизни Вселенной, вплоть до 1035 с после Большого взрыва».

Вначале ученые сочли, что, учитывая наблюдаемую плотность материи, первичных флуктуации в период инфляционного расширения порядка 10 5 было бы недостаточно, чтобы сформировались галактики. Однако ответ нашелся очень быстро (на самом деле кто-то из слушавших выступление Смута выкрикнул его вслух): «Темная материя!»

Как много ее требовалось? Как мы скоро узнаем, в точности столько, сколько, по-видимому, существует, — примерно в пять раз больше массы видимого вещества.

Как показано на рис. 13.2, для углов порядка 30° распределение преимущественно плоское, что подтверждает предсказанную масштабную инвариантность. У нас нет нужды рассматривать этот спектр детальнее, поскольку в последующих экспериментах, о которых мы еще поговорим, получили существенно более качественные данные и, работая с меньшими углами, открыли структуру, определяющую раннюю Вселенную во всех подробностях.

 

Новые окна во Вселенную

Наблюдения РИ были не единственным значимым достижением 1990-х, еще одного знаменательного для астрономии и космологии десятилетия. Я лишь кратко упомяну несколько отдельных примеров, касающихся главным образом космологии.

В 1990-м шаттл «Дискавери» доставил на орбиту космический телескоп «Хаббл» (Hubble Space Telescope, HST). К сожалению, у его главного зеркала обнаружился серьезный дефект, требовавший ремонта прямо на орбите. Эта работа была выполнена в 1994 году командой еще одного космического шаттла — впечатляющее достижение. На мой взгляд, это был самый серьезный вклад в науку в период действия всей программы шаттлов. Другие экспедиции по обслуживанию телескопа «Хаббл» осуществлялись в 1997,1999,2002 и 2009 годах.

Телескоп «Хаббл», работающий в околоультрафиолетовом, видимом и околоинфракрасном диапазонах, позволил получить самые подробные изображения, когда-либо сделанные в астрономии, и составить карту Вселенной до самого горизонта событий. Этот телескоп, все еще работающий на момент написания этой книги, внес вклад в космологию, обеспечив значительно более точные оценки постоянной Хаббла и других ключевых параметров. В ходе наблюдений наиболее отдаленных глубин Вселенной с помощью этого телескопа обнаружилось, что самые далекие и старые галактики меньше размером и менее упорядочены, чем более близкие и молодые спиральные галактики. Это стало еще одним гвоздем в крышке гроба и без того давно мертвой стационарной модели Вселенной.

В 1990 году был пущен в работу «Кек-1» — десятиметровый оптический многозеркальный телескоп, расположенный на горе Мауна-Кеа. В 1998 году к нему присоединился «Кек-2». Вспомним, что Мауна-Кеа — лучшая точка для наблюдений с Земли, с которой можно исследовать не только видимую, но и инфракрасную область спектра. Телескопы обсерватории Кека стали одним из самых плодотворных проектов наземной астрономии последних лет. С помощью этих приборов были найдены одни из первых свидетельств существования планет вокруг звезд (помимо Солнца). Определив орбитальные скорости звезд, расположенных недалеко от центра нашей Галактики, телескопы «Кек» помогли установить тот факт, что в центре Млечного Пути находится черная дыра массой в 4 млн. раз больше массы Солнца.

В 1993 году от Гавайских до Виргинских островов была протянута антенная решетка со сверхдлинными базами (Very Long Baseline Array, VLBA) — 10 радиотелескопов, контролируемых удаленно из Нью-Мексико. Благодаря использованию метода интерферометрии с длинными базами удалось достичь угловой разрешающей способности от 0,17 до 0,22 угловой миллисекунды на 10 длинах волн, от 0,7 до 90 см. С помощью антенной решетки были обнаружены две гигантские черные дыры массой 150 млн. солнечных каждая, расположенных на расстоянии всего 24 световых лет друг от друга! Они находятся в центре галактики 0402+379 в 750 млн. световых лет от Земли.

На самом деле теперь нам известно, что в центре большинства, если не всех крупных галактик находятся черные дыры сверхвысокой массы.

В 1995 году на орбиту была запущена Инфракрасная космическая обсерватория (Infrared Space Observatory, ISO). Она была спроектирована для работы в диапазоне длин волн 1,5–196,8 мкм. С помощью этой обсерватории было проведено 26 тыс. успешных наблюдений, прежде чем она вышла из строя в 1998 году.

Что касается гамма-диапазона, еще в 1967 году спутники «Вела», спроектированные для обнаружения испытаний ядерного оружия на Земле, по счастливой случайности обнаружили однократные всплески гамма-излучения, разбросанные по небу случайным образом. Из-за их яркости большинство ученых сочли, что они исходят изнутри нашей галактики.

В 1991 году в космос запустили гамма-обсерваторию «Комптон». На ее борту находился в том числе инструмент для исследования вспышечных и транзиентных событий (Burstand Transient Source Experiment, BATSE), разработанный для обнаружения и анализа всплесков гамма-излучения. С его помощью было обнаружено всего 2700 всплесков, в среднем по одному в день. Благодаря этим наблюдениям стало понятно, что гамма-всплески берут начало в далеких галактиках, а значит, представляют собой огромные выбросы энергии.

Представители НАСА сообщили, что космический телескоп «Хаббл» обнаружил такой всплески, согласно расчетам, он вызван столкновением двух нейтронных звезд.

 

Астрономия сверхвысоких энергий

Хотя сигналы, фиксируемые радиотелескопами, обычно описывают как радиоволны, как и любое другое электромагнитное излучение, они состоят из фотонов, то есть из частиц. Энергия фотона Е в потоке, составляющем электромагнитную волну, рассчитывается по формуле Е = hc/γ, где γ — длина волны. Если величина X выражена в метрах, это можно записать как E = 1,97∙10-7/γ эВ. Поскольку максимальная длина волны, доступная для наблюдений с помощью антенной решетки со сверхдлинными базами, — около 1 м, энергия фотона в этом случае меньше одной миллионной электрон-вольта.

В противоположной области спектра на борту обсерватории «Комптон» работал гамма-телескоп высоких энергий (Energetic Gamma Ray Experiment Telescope, EGRET). Максимальная энергия фотона, доступная ему, составляла 30 ГэВ = 3∙1010 эВ, что соответствует длине волны порядка 10-17 м.

В то время несколько человек, включая меня, стремились пойти еще дальше как в наращивании энергии, так и в типе искомых частиц. В середине 1970-х я участвовал в проекте, в ходе которого предполагалось установить большой детектор на дне океана, на глубине 4,8 км, в районе южного побережья (область Кона) Большого острова Гавайи. Проект получил название DUMAND — Deep Underwater Muonand Neutrino Detector («Глубоководный детектор мюонов и нейтрино»). Целью проекта было открытие целого нового окна во Вселенную путем поиска космических сверхвысокоэнергетических нейтрино с энергией более 1 ТэВ (1012 эВ). Первоначально руководителем проекта был Фредерик Райнес, который в 1995 году разделил с Клайдом Кованом Нобелевскую премию по физике за совместное открытие нейтрино в 1956 году.

Считалось, что теоретически высокоэнергетические нейтрино могут появляться из гигантских источников энергии, существующих в центрах активных галактик (см. описание активных галактик в главе 9). Поскольку они, по-видимому, происходили из более глубоких недр галактик, чем фотоны, мы надеялись, что они дадут нам информацию об этих колоссальных источниках энергии. В 1984 году я опубликовал в «Астрофизическом журнале» статью, в которой доказал, что активные галактики могут при определенных условиях производить сверхвысокоэнергетические нейтрино, доступные наблюдению.

Предложенный метод все еще является основным для всех экспериментов, которые до сих пор проводятся в астрофизике сверхвысоких энергий наряду с экспериментами по распаду протона. Если заряженная частица движется быстрее скорости света в прозрачной среде, такой как вода или воздух (но все же медленнее, чем со скоростью с), она испускает электромагнитную ударную волну, называемую излучением Вавилова — Черепкова, представляющую собой голубоватый свет, который можно обнаружить с помощью сверхвысокочувствительных фотодетекторов, называемых фотоэлектронными умножителями.

Проект DUMAND подразумевал установку большого массива этих фотодетекторов на дне океана, где фоновое космическое мюонное излучение минимально. В упомянутых в главе 11 экспериментах по регистрации распада протона Kamiokande и IMB также использовался этот метод: фотоэлектронные умножители устанавливались в больших цистернах с очень чистой водой на дне глубоких шахт.

Во время работы над проектом DUMAND в 1980-е я параллельно принимал участие еще в одном эксперименте, который, как мне казалось, должен был дать дополнительную информацию, полезную для проекта DUMAND. Рабочая группа под руководством Тревора Уикса из Гарвард-Смитсоновского центра астрофизики установила в обсерватории имени Уипла на горе Хопкинс в Аризоне очень недорогое зеркало диаметром 10 м, состоящее из плоских пластин, формирующих сферическую отражающую поверхность. В его фокусе было установлено несколько небольших фотоэлектронных умножителей.

Когда сверхвысокоэнергетический фотон гамма-излучения ударяется о верхнюю часть атмосферы, он генерирует ливень из тысяч электронов и других заряженных частиц, низвергающихся на Землю. Этот телескоп был спроектирован с целью обнаружить излучение Вавилова — Черенкова, возникающее в этом воздушном ливне.

В 1989 году, после того как я покинул проект на горе Хопкинс, чтобы поработать над аналогичным экспериментом ближе к дому, на горе Халеакала на острове Мауи, Уикс и его коллеги сообщили, что им удалось с высокой степенью статистической значимости обнаружить сигнал, идущий из Крабовидной туманности. Крабовидная туманность представляет собой остатки сверхновой, вспышку которой зафиксировали арабские, китайские, индийские и японские астрономы в 1054 году.

Крабовидная туманность всегда считалась очень перспективной, и мы внимательно наблюдали за ней. В 1968 году в центре этой туманности был обнаружен вращающийся пульсар, который определили как нейтронную звезду. Магнитное поле нейтронной звезды, имеющее очень высокую скорость вращения — один оборот за 33,5 мс, — может ускорять электроны до очень высоких энергий. Когда они сталкиваются с окружающим газом, то образуют фотоны гамма-излучения, а также, как я надеялся, нейтрино.

Крабовидная туманность находится в пределах нашей Галактики. В 1992 году Уикс с коллегами сообщили об обнаружении внегалактического источника, блазара Маркарян-421. Мы с моим ассистентом Питером Горхэмом также считали блазары перспективными источниками, поскольку их лучи направлены в сторону Земли.

Тем временем исследовательская группа из Германии установила на Канарских островах еще один телескоп, названный HEGRA (High Energy Gamma Ray Astronomy — «Высокоэнергетическая гамма-астрономия»). В 1996 году данные с этого телескопа подтвердили наличие источников, обнаруженных в обсерватории имени Уипла, а в 1997 году исследовательская группа сообщила об обнаружении еще одного блазара, Маркарян-501.

Итак, верхний предел энергетического спектра наблюдаемых космических сигналов сместился вверх еще на один порядок по сравнению с доступным комптоновскому гамма-телескопу высоких энергий (EGRET). Должен заметить, в денежном выражении это обошлось на много порядков меньше.

Но все же эти фотоны с энергией в триллионы электрон-вольт — на 18 порядков большей, чем фотоны радиоизлучения, обнаруженные с помощью антенной решетки со сверхдлинными базами (VLBA), — это не самые высокоэнергетические объекты во Вселенной. С тех пор как множество детекторов частиц заняли огромные территории на нашей планете, ученые наблюдают ливни из частиц, возникающие вследствие столкновения с атмосферой космических лучей, в том числе первичных космических лучей с энергией вплоть до 1 ЗэВ = 1021 эВ.

Однако существует предел энергии космических частиц, пересекающих Вселенную, названный пределом Грайзена — Зацепина — Кузьмина и равный 0,5 ЗэВ. Сверх этого предела они будут терять энергию в столкновении с частицами реликтового излучения. Таким образом, частицы с энергией порядка зептоэлектрон-вольт, вероятно, исходят из источников, относительно близких к Земле. Один из возможных источников — галактика М 87 в созвездии Девы, находящаяся «всего лишь» в 53 млн. световых лет от нас и имеющая активное ядро, в котором, по мнению ученых, имеется сверхмассивная черная дыра.

В то же время сверхвысокоэнергетические нейтрино не ограничены этим пределом, и только они позволяют наблюдать такие высокие энергии на больших расстояниях.

В момент написания этой книги «нейтринное окно» во Вселенную уже было открыто благодаря сверхновой 1987, а теперь появляются новые впечатляющие результаты наблюдений на значительно более высоких уровнях энергии. Однако, после того как были приложены огромные усилия, включая установку на дне океана множества очень сложных и дорогостоящих контрольно-измерительных приборов, проект DUMAND признали технически слишком сложным, и в 1995 году финансирующая организация — Министерство энергетики США — закрыла его. Тем не менее проект DUMAND послужил испытательным полигоном для самой идеи сверхвысокоэнергетической нейтринной астрономии, а на основании полученной информации был разработан ряд других похожих проектов. Как мы увидим в следующей главе, эти эксперименты начинают приносить плоды. В частности, в 2013 году появился отчет исследователей, работающих на Южном полюсе, о наблюдении 28 нейтрино с энергией свыше 30 ТэВ.

 

Масса нейтрино

В 1998 году заголовки все еще пестрели сообщениями о небесных нейтрино, когда в ходе эксперимента Super-Kamiokande были найдены первые убедительные свидетельства того, что нейтрино имеют массу. Мне удалось немного поучаствовать в этом эксперименте, который стал моим последним исследовательским проектом, до того как я вышел на пенсию в 2000 году. Однако я более двух десятилетий работал в области нейтринной физики и астрофизики, а использованный в этом открытии метод был предложен мной на состоявшемся в 1980 году семинаре, посвященном массе нейтрино, и его изложение опубликовано в сопутствующих материалах.

Предполагалось, что нейтрино с ненулевой массой должны иметь свойство, известное как нейтринные осцилляции. Перечисленные в табл. 11.1 три вида нейтрино и их античастицы возникают в результате реакций слабых распадов, таких как бета-распад:

n → p + е + v - e ,

где v-e — антинейтрино электронное. Однако у этих нейтрино нет определенной массы. Квантовое состояние каждого из них представляет собой комбинацию из трех других нейтринных состояний, при которых они имеют определенную массу, обозначаемых ν1, ν2, ν3. Их массы (энергии покоя) различаются, поэтому волновая функция, описывающая пучок нейтрино каждого из этих типов, будет иметь свою частоту. Из-за этой разницы со временем комбинация изменяется. Предположим, мы начнем с чистого пучка νμ. Co временем комбинация изменится, так что, если мы обнаружим отдельное нейтрино, есть некоторая вероятность того, что это будет нейтрино другого типа: νe или ντ. Нейтринные осцилляции не происходят при нулевой массе, поэтому факт наблюдения нейтринных осцилляции прямо свидетельствует о наличии у нейтрино массы.

Высокоэнергетические протоны космических лучей и другие ядра, сталкиваясь с атмосферой Земли, образуют множество короткоживущих пионов и каонов. Среди их продуктов распада значительное количество мюонов и электронных нейтрино и несколько меньшее количество тау-нейтрино. Чтобы достичь подземного детектора Super-Kamiokande, нейтрино, летящее прямо из верхнего слоя атмосферы, должно пролететь порядка 15 км. В то же время нейтрино, летящее прямо с противоположной точки Земли, преодолевает порядка 13 000 км, так что у него в запасе больше времени на осцилляции.

В ходе эксперимента Super-K была обнаружена асимметрия мюонных нейтрино, летящих «вверх» и «вниз», которая достигала почти 50% при самом высоком уровне энергии, равном 15 ГэВ. С точки зрения теории нейтринных осцилляции это означало, что между квадратами массы двух видов нейтрино существует разница, находящаяся в диапазоне от 5∙10-4 до 8∙10-3 эВ2.

В ходе дополнительных экспериментов было точно установлено, что нейтрино различаются по массе и что по меньшей мере один вид нейтрино имеет массу порядка 0,1 эВ. Для сравнения: масса электрона, ранее считавшегося самым легким среди частиц с ненулевой массой, равна 5,11∙105 эВ, что в 10 млн. раз больше.

Кроме того, в 1998 году в ходе эксперимента Super-K с помощью нейтрино было получено изображение Солнца, показанное на рис. 13.3. Фотография была сделана ночью сквозь толщу Земли — впервые людям удалось увидеть, как выглядит ядро звезды. Тем, кто думает, что Солнце исчезает, опускаясь вечером за горизонт, эта картинка докажет, что оно на самом деле никуда не делось.

Масатоси Косиба получил в 2002 году Нобелевскую премию по физике за руководство камиоканскими экспериментами.

Рис. 13.3. Изображение ночного Солнца, полученное сквозь толщу Земли с помощью нейтрино в ходе эксперимента Super-Kamiokande. Изображение предоставлено Р. Свобода, Калифорнийский университет в Дэвисе (сотрудничество Super-Kamiokande)

 

Темная материя

Как мы уже знаем, одной из главных проблем с первоначальной моделью Большого взрыва было то, что, если бы в самый первый эмпирически определяемый момент нашей Вселенной средняя плотность вещества в ней превышала критическую плотность более чем на 1/1060, произошел бы моментальный коллапс Вселенной. Если бы она была настолько же ниже, Вселенная начала бы расширяться с такой высокой скоростью, что к настоящему времени по большей части опустела бы. Эту проблему назвали проблемой плоскости, поскольку она требует, чтобы пространство Вселенной было почти абсолютно евклидовым. Инфляционная модель решает проблему плоскости, поскольку, согласно ей, пространство расширилось на много порядков, так что стало плоским, а плотность вещества в нем — критической.

Однако астрономы давно знают, что плотность видимого вещества во Вселенной, большая часть которого представлена светящимися звездами и звездной пылью, далеко не равна критической. Хотя довольно убедительные свидетельства существования большой невидимой части Вселенной, называемой темной материей, появились еще в 1930-х, большинство астрономов не спешили признавать ее реальность по весьма разумной причине: они не могли увидеть ее непосредственно с помощью телескопов. Вывод о существовании скрытой массы можно было сделать, применив законы Ньютона к наблюдаемым орбитальным движениям звезд в галактиках.

Кто-то мог подумать, что эти законы следует подкорректировать для описания движения в астрономических масштабах, и ученые даже предложили несколько таких моделей. Однако, согласно принципу бритвы Оккама, не стоит бросаться заменять существующую теорию, в особенности так прочно устоявшуюся, как закон всемирного тяготения Ньютона, если есть другой вариант. Итак, до сих пор существование темной материи представляет собой наиболее экономное решение. Заметьте, что, хотя место закона всемирного тяготения Ньютона заняла общая теория относительности, это не меняет выводов касательно скрытой массы, поскольку закон Ньютона в этом случае все еще применим.

Но все же, чтобы инфляционная модель и гипотеза темной материи имели право на существование, оставалось решить некоторые проблемы. Как описывается в главе 9, впечатляющий успех теории первичного нуклеосинтеза в отношении расчетов точной распространенности легких ядер, в особенности дейтерия, доказал, что барионная плотность, то есть плотность известной нам материи, составляет в лучшем случае 5% от критической. Сюда входит не только светящееся вещество (галактики и пр.), на которое приходятся жалкие 0,5%, но также все тела, состоящие из атомов (планеты, коричневые карлики, черные дыры), которые не испускают излучения, поддающегося регистрации. Темная материя не просто темная — это вообще не материя, какой мы ее знаем.

Поскольку, чтобы оставаться незамеченной, темная материя должна быть электрически нейтральной, стабильной и слабо взаимодействующей, среди знакомых нам элементарных частиц единственным кандидатом на роль такой материи являются нейтрино. Они не относятся к барионам.

В основном рассматриваются две модели темной материи: горячая темная материя с релятивистскими частицами, то есть движущимися со скоростями, достаточно близкими к скорости света, чтобы их могла описывать релятивистская кинематика, и холодная темная материя, состоящая из нерелятивистских частиц. Однако не следует забывать о промежуточном варианте — теплой темной материи. Гравитационная масса частиц горячей темной материи, по существу, равна их кинетической энергии, поскольку энергией покоя можно пренебречь. И напротив, гравитационная масса Частиц холодной темной материи по большей части равна их инертной массе, поскольку кинетической энергией можно пренебречь. Температура, то есть кинетическая энергия темной материи, должна равняться температуре РИ, поскольку они находятся в равновесии и сами по себе не создают тепло, хотя реликтовое нейтринное излучение несколько холоднее, его температура — 1,95 К. В случае теплой темной материи ни одним видом энергии пренебречь нельзя. Однако, поскольку температура Вселенной в космических масштабах изменяется с огромной скоростью, обычно переход какой-либо частицы из горячего состояния в холодное также происходит очень быстро.

Нейтрино были первыми кандидатами на роль частиц горячей темной материи. Как мы выяснили в предыдущем разделе, масса по меньшей мере одного вида нейтрино не превышает 0,1 эВ, у остальных она еще меньше. Итак, будут ли космические нейтрино горячими или холодными, зависит от их температуры. Переход из холодного состояния в горячее произошел примерно через 1 млн. лет после Большого взрыва. До этого момента нейтрино с такой массой были горячими, позже они стали холодными.

Однако при такой массе количество нейтрино, требуемое, чтобы обеспечить достаточную часть критической плотности, должно быть порядка 1090, что крайне маловероятно. Для сравнения: количество реликтовых нейтрино «всего лишь» 1088, примерно столько же, сколько фотонов в реликтовом излучении. Атомов в 1 млрд. раз меньше. Таким образом, гипотеза темной материи, состоящей из знакомых нам легких нейтрино, в свете последних данных о РИ по большей части исключается и нам нужно искать новых кандидатов на роль ее частиц. Правильным порядком действий в такой ситуации будет вначале исследовать те возможности, которые требуют привлечения как можно меньшего числа новых гипотез.

В то время как в рамках стандартной модели кандидатов не осталось, существуют два варианта, которые требуют не полного пересмотра теории, но лишь небольшого ее расширения, — это стерильные нейтрино и аксионы.

После открытия массы известных нам нейтрино стало ясно, что должен существовать еще один вид нейтрино, до сих пор не обнаруженный. Считается, что эти дополнительные нейтрино стерильны, то есть взаимодействуют только гравитационно или в лучшем случае очень слабо. Если эти кандидаты на роль частиц темной материи обладают массой, поддающейся измерению, скажем, большей, чем несколько сотен электрон-вольт, то они все еще вписываются в физику стандартной модели, слегка расширенной, чтобы включить параметры, описывающие эти состояния.

В период написания этой книги проводился ряд новых наблюдений, результаты которых внезапно выдвинули стерильные нейтрино на передний план программы поиска темной материи. Об этом мы поговорим в главе 14.

Еще один гипотетический кандидат на роль темной материи, все еще вписывающийся в основные положения стандартной модели, — это аксион, частица, предложенная еще в 1977 году для решения некоторых специальных проблем квантовой хромодинамики. По оценкам ученых, он должен иметь массу менее 1 эВ.

ВИМП-частицы и суперсимметрия

Других кандидатов на роль холодной темной материи в рамках минимально измененной стандартной модели не существует. Если это не стерильные нейтрино и не аксионы, то это должно быть что-то абсолютно новое. Такие частицы объединяют под общим названием «вимп-частицы» (от англ. WIMP — Weakly Interacting Massive Particle, что означает «слабовзаимодействующие массивные частицы»). Вероятнее всего, они должны быть нерелятивистскими и иметь большую массу. Долго фаворитом была одна из частиц, предсказанных в рамках расширенной версии стандартной модели, включающей суперсимметрию (SUSY), описанную в главе 11. Общее название вимп-частиц в рамках теорий суперсимметрии — нейтралино. Были предложены четыре возможных типа нейтралино, которые являются фермионами-суперпартнерами калибровочных бозонов стандартной модели.

Ученые не сомневались в том, что во время первых запусков Большого адронного коллайдера им удастся обнаружить данные, подтверждающие теорию суперсимметрии. Однако этого не произошло. Значительная часть теоретических изысканий последних 40 лет основывалась на суперсимметрии, в частности большинство теорий квантовой гравитации (теория супергравитации) и М-теория. Если теория суперсимметрии не подтвердится во время следующего запуска БАК, который начнется в 2015 году, все эти теории, вполне возможно, ожидает крах.

Если это случится, многие физики будут разочарованы, но отнюдь не все, включая меня. Серьезные открытия в физике обычно приводят к появлению более простых теорий с меньшим количеством переменных параметров. Теория суперсимметрии увеличивает количество настраиваемых параметров примерно вдвое, а М-теория имеет 10500 различных вариаций. Несмотря на всю их математическую красоту, в моих глазах экспериментатора это уродует их.

Но проблемы, с которыми столкнулись космологи в конце второго тысячелетия нашей эры, на этом не заканчиваются. К 1998 году было установлено, что темная материя, какой бы ни была ее природа, составляет в лучшем случае около 25% критической плотности Вселенной. Недоставало еще трех четвертей массы, требуемой инфляционной моделью. Вновь теория инфляции оказалась на грани опровержения. Но природа и тут пришла ей на помощь.

 

Темная энергия

С тех пор как Хабблв 1929 году впервые построил график зависимости скоростей разбегания галактик от расстояния до них, астрономы непрерывно совершенствовали свои измерения, однако тенденция к линейной зависимости сохранялась. Это значит, что угловой коэффициент H, которому соответствует скорость расширения Вселенной, оказался постоянным. На самом деле его и назвали постоянной Хаббла.

Однако нет никаких причин, по которым Н, скорость расширения Вселенной, должна быть постоянной. Ожидалось, что в какой-то момент график начнет загибаться книзу по мере того, как взаимное гравитационное притяжение будет замедлять расширение. То есть расширение Вселенной должно замедляться.

Но в 1995 году космологи Лоуренс Краусс и Майкл Тернер отметили, что, согласно существующим на тот момент данным, во Вселенной действует положительная космологическая постоянная, которая на деле вносит свой вклад в критическую плотность Вселенной. Они отметили, что вследствие этого должно происходить ускоряющееся расширение, проявляющееся в увеличении скоростей разбегания галактик на больших расстояниях, то есть график начнет загибаться вверх.

Ранее, в 1982 году, о том, что космологическая постоянная может иметь положительное значение, заявлял выдающийся французский астроном Жерар Анри де Вокулер. Он заметил, что распространенность квазаров в пространстве свидетельствует о небольшой положительной кривизне, которая может быть следствием действия положительной космологической постоянной.

Как нам теперь известно, дальнейшие наблюдения подтвердили существование этого эффекта, но до тех пор не все ученые принимали выводы, сделанные в этих работах, и осознавали их значение.

Скорости разбегания галактик легко измерить с помощью их красных смещений. Но, как мы уже знаем, измерение расстояний всегда было непростой задачей для астрономов. В 1990-х годах две исследовательские группы приняли в качестве нового эталона светимости, так называемой стандартной свечи, особый вид сверхновых, образующихся в результате взрыва белых карликов. Этот метод существенно повысил точность оценки расстояний до самых удаленных галактик.

Белые карлики представляют собой остатки относительно типичных звезд (таких как наше Солнце), которые сожгли все свои запасы термоядерного горючего. Тусклый свет, который они все еще излучают, обусловлен остатками тепловой энергии. Если масса белого карлика не превышает 1,38 солнечной массы, он будет оставаться относительно стабильным. Однако если он является частью двойной звезды, то может за счет своей соседки прирастить массу, так что ее станет достаточно для того, чтобы произошел взрыв сверхновой. Это явление называется сверхновой типа 1а. Поскольку взрыв происходит при достижении определенной массы, пиковая светимость сверхновой во всех таких случаях будет примерно одинаковой.

Согласно закону сохранения энергии, интенсивность света сверхновой будет падать пропорционально квадрату расстояния до нее. Таким образом, измеряя наблюдаемую светимость сверхновой типа 1а, определяемую на основании ее кривой блеска (изменения яркости со временем), расстояние до нее можно определить с небывалой точностью.

Одна из таких исследовательских групп называлась High-Z Supernova Search Team («Хай-зет сверхновая»), ее руководителями были Брайан Шмидт из Австралийского национального университета и Адам Рисе из Института исследований космоса с помощью космического телескопа. В эту группу входили 25 астрономов из Австралии, Чили и Соединенных Штатов, занимавшихся анализом данных наблюдений, полученных в филиале Европейской южной обсерватории и чилийской обсерватории «Ла-Силья».

Другая группа, под руководством Сола Перлмуттера из Центра астрофизики элементарных частиц при Калифорнийском университете в Беркли, называлась Supernova Cosmology Project («Проект космологии сверхновых»). В ее состав входил 31 ученый из Австралии, Чили, Франции, Испании, Швеции, Соединенного Королевства и США. Они анализировали данные, полученные в ходе обзора сверхновых Calan/Tololo, проведенного на базе Межамериканской обсерватории «Серро-Тололо», также расположенной в Чили.

В сентябре 1998 года группа High-Z опубликовала свидетельства в пользу того, что на больших расстояниях кривая Хаббла изгибается вверх. Первого июня 1999 года исследователи из проекта Supernova Cosmology опубликовали свои результаты, которые трактовали как доказательство положительного значения космологической постоянной с 99%-ной достоверностью.

Результаты, полученные группой High-Z, продемонстрированы на рис. 13.4. В верхней части показана зависимость используемой в астрономии единицы измерения, называемой модулем, расстояния (она основана на соотношении видимой и абсолютной светимости), от красного смещения z (мера скорости разбегания). Данные сравнили с тремя моделями, предполагающими различные значения ΩM — энергетической плотности материи и ΩL — энергетической плотности вакуума, каждая из которых является частью критической плотности. В нижней части показана разница между экспериментально определенным модулем расстояния и его ожидаемым значением в модели, где ΩM = 0,2, ΩL = 0. Хотя величина ошибки в каждой отдельной точке велика, данные в целом ясно свидетельствуют в пользу модели, в которой энергия вакуума преобладает над энергией материи. В случае преобладания материи кривая графика данных изогнулась бы вниз, поскольку взаимное гравитационное притяжение галактик на больших расстояниях замедлило бы скорость их разбегания. Вместо этого мы наблюдаем ускорение, свидетельствующее о гравитационном отталкивании. То есть скорость расширения Вселенной увеличивается. Источник этого отталкивания был назван темной энергией, согласно этим данным, ее плотность составляет порядка 70% от критической.

Рис. 13.4. Результаты экспериментов исследовательской группы High-Z Supernova. Изображение взято из статьи: Riess Adam G. et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant//Astronomical Journal, 116, 1998. — №3:1009. © AAS. Используется с разрешения правообладателя 

Может показаться, что при этом нарушается закон сохранения энергии, но это не так. Вспомните, в главе 5 мы говорили о том, что первый закон термодинамики, по сути, представляет собой обобщенную форму закона сохранения энергии, которую можно применить к любой материальной системе — газу, жидкости, твердому телу или плазме. Как правило, расширяющийся газ совершает работу, как это происходит в цилиндрах автомобиля (при условии, что он имеет двигатель внутреннего сгорания). Это происходит благодаря тому, что большинство газов имеют положительное давление вследствие движения составляющих их молекул и их столкновений со стенками сосуда.

Однако, согласно общей теории относительности, давление, вызываемое положительной космологической постоянной, имеет отрицательное значение. Это значит, что по мере расширения объема это давление выполняет отрицательную работу. В отличие от хорошо знакомых нам расширяющихся газов расширяющаяся Вселенная с отрицательным давлением работает сама на себя. Поскольку количество работы равняется увеличению внутренней энергии, закон сохранения энергии соблюдается.

В 2011 году Перлмуттер, Рисе и Шмидт разделили Нобелевскую премию по физике за сенсационное доказательство того, что Вселенная падает вверх.

Как уже упоминалось, это открытие не стало полной неожиданностью. Космологам было хорошо известно, что положительная космологическая постоянная, введенная Эйнштейном в рамках его общей теории относительности, вызывает гравитационное отталкивание. В самом деле, мы уже знаем, что де-ситтеровская Вселенная, которая не содержит ни материи, ни излучения, а только положительную космологическую постоянную, расширяется экспоненциально и является простой инфляционной моделью ранней Вселенной. Теперь, похоже, инфляционное расширение продолжается и в наши дни, хотя происходит значительно медленнее.

Давайте коротко рассмотрим задействованные в нем физические процессы. Космологическая постоянная (см. главу 6) равносильна скалярному полю постоянной энергетической плотности, равномерно заполняющему Вселенную. Поэтому, так как Вселенная расширяется, ее общая внутренняя энергия увеличивается по мере увеличения объема.

Хотя ускоряющееся расширение Вселенной может быть следствием действия космологической постоянной, это не обязательное условие. Другая возможность заключается в том, что Вселенная может быть заполнена квантовым полем, имеющим отрицательное давление. Это поле ученые назвали квинтэссенцией. В других областях физики отрицательное давление тоже не является чем-то неслыханным. В некоторых диапазонах давления и температуры газ Ван-дер-Ваальса имеет отрицательное давление. При этом его молекулы расположены настолько близко друг к другу, что их электронные облака отталкиваются и молекулы испытывают результирующее действие сил притяжения.

Кванты поля квинтэссенции должны представлять собой бозоны, вероятнее всего, с нулевым спином. Ожидаемое отрицательное давление этого поля обусловлено квантово-механической тенденцией бозонов к конденсации. Большинство наиболее передовых космологических моделей включают возможность существования квинтэссенции, не предполагая по умолчанию, что источником ускорения Вселенной является космологическая постоянная.

 

Проблема космологической постоянной

В 1989 году Стивен Вайнберг указал на существование так называемой проблемы космологической постоянной. Из-за принципа неопределенности минимальная энергия квантового гармонического осциллятора не равна нулю, поскольку он никогда не находится в состоянии абсолютного покоя. Минимальный уровень энергии соответствует энергии нулевых колебаний.

С точки зрения математики квантовое поле эквивалентно квантовому гармоническому осциллятору. Итак, если взять, к примеру, квантовое электромагнитное поле и удалить из него все его кванты (фотоны), в нем все же останется энергия, несмотря на полное отсутствие фотонов. Вайнберг связал плотность энергии вакуума, обусловленную космологической постоянной, с квантовой энергией нулевых колебаний. Когда он провел соответствующие расчеты, оказалось, что она на 120 порядков больше, чем максимальное возможное значение, которое она может иметь, согласующееся со всеми данными наблюдений.

На самом деле Вайнберг рассматривал только фотоны, которые относятся к бозонам. Фермионы имеют отрицательную энергию нулевых колебаний, которая частично компенсирует положительную энергию бозонов. Это взаимное погашение было бы полным, если бы Вселенная обладала суперсимметрией. Но это не так — во всяком случае, на низких уровнях энергии. Итак, мы все еще имеем расхождение на 50 порядков — в этом и заключается проблема космологической постоянной.

Любые расчеты, которые слишком далеко отходят от данных наблюдений, определенно ошибочны. Ученые предложили множество вариантов решений этой проблемы. Некоторые из них я рассматриваю в своей книге «Заблуждение о точной настройке» (The Fallacy of Fine-Tuning), но ни одно из них не заслужило всеобщего одобрения со стороны физиков. Тем не менее для меня очевидно, почему эти расчеты ошибочны.

Расчет плотности энергии вакуума включает в себя сумму плотности по всем квантовым состояниям в некотором объеме пространства. Но максимальное количество квантовых состояний в единице объема равно числу состояний черной дыры того же объема. Легко доказать, что число квантовых состояний черной дыры пропорционально площади ее поверхности, а не объему. Если провести расчеты, суммируя квантовые состояния поверхности, а не объема, то получится значение, согласующееся с данными наблюдений.

 

Назад к истоку

Как мы уже знаем, наблюдаемое нами реликтовое излучение появилось в тот момент, когда через 380 000 лет после Большого взрыва сформировались атомы, а фотоны рассеялись в стороны от оставшейся части вещества. В то время поверхность Вселенной имела участки неоднородной плотности, сформировавшиеся из первоначального источника за этот период времени. С тех пор Вселенная расширилась в 1100 раз и температура излучения упала с 3000 K до 2,725 K.

В ходе наблюдений анизотропии реликтового излучения исследователи измеряют различия в температуре в двух направлениях, разделенных углом θ. Когда они исследуют реликтовое излучение в двух областях неба, разделенных углом θ = 180°, и обнаруживают различие в температуре, это называется дипольной анизотропией. Вспомните, что этот конкретный вид анизотропии, появляющийся вследствие нашего движения относительно реликтового фона, был обнаружен Смутом и его группой, когда они отправили свой новый дифференциальный микроволновой радиометр в полет на борту самолета-разведчика У-2 в 1976 году. При исследовании ранней Вселенной этот эффект вычитается.

Когда наблюдатели смотрят на четыре области, разделенные углом 90°, и видят различие в температуре, они говорят о квадрупольной анизотропии. Это фоновый эффект движения Млечного Пути, и его также игнорируют. В общем случае для угла θl в градусах имеется порядок мультиполя l = 180/ θl, и, как мы увидим, чем выше этот порядок, то есть чем меньше угол, тем важнее он для нас.

Если мы построим график зависимости квадрата относительного перепада температур от l, то получим так называемый угловой спектр мощности. На основании этих измерений с помощью теоретического анализа и компьютерной симуляции можно сделать реконструкцию спектральной плотности мощности звука, вызванного первичными флуктуациями. Обсерватория СОВЕ, ограниченная угловой разрешающей способностью 7°, имела предельное значение порядка мультиполя l = 20. Однако этого было достаточно, чтобы подтвердить, что флуктуациям хотя бы приблизительно была свойственна масштабная инвариантность, предсказанная инфляционной моделью. Согласно расчетам, при углах менее 1°или l > 200 в угловых спектрах должны появиться пики, соответствующие гармоникам изначальных акустических колебаний (см. главу 11).

 

Переходя на сторону победителей

Еще до объявления результатов СОВЕ исследовательские группы со всего мира поспешили примкнуть к побеждающей стороне, к тому, что было признано одной из величайших научных возможностей, существовавших когда-либо, — возможности оглянуться назад, на первые моменты жизни Вселенной. На своем веб-сайте Lambda, посвященном исследованиям реликтового излучения, НАСА перечисляет 20 экспериментов, которые проводились на протяжении 1990-х годов с использованием либо наземных телескопов, либо высотных аэростатов, разработанных специально для измерения анизотропии.

Большинство этих приборов имели большую угловую разрешающую способность, нежели была у обсерватории СОВЕ (7°), хотя с их помощью и нельзя было получить такое же количество данных, как с помощью орбитального спутника. Канадский телескоп SK, установленный в городе Саскатуне, провинция Саскачеван, имеет угловую разрешающую способность 0,2–2° в шестичастотных полосах между 26 и 46 ГГц, покрывая таким образом диапазон значений l от 54 до 404.

Еще большее впечатление производит Австралийский компактный массив радиотелескопов (Australia Telescope Compact Array, ATCA), состоящий из пяти антенн диаметром 22 м каждая, расположенных на расстоянии 30,6 м друг от друга в направлении с востока на запад. Угловая разрешающая способность этого массива составляет впечатляющие 2' (угловые минуты) (0,03°) при частоте 8,7 ГГц, и он покрывает значения l от 3350 до 6050. Результаты этих экспериментов дали первые намеки на то, что нам еще многое предстоит узнать о РИ, в частности, что при меньших углах его спектр не плоский.

Хотя теперь быстрее всего было бы перейти к последним результатам, в этой и следующей главах я собираюсь представить в хронологической последовательности серию графиков все увеличивающейся точности, для того чтобы продемонстрировать, как работает наука, и для того, чтобы отдать дань уважения первопроходцам этого впечатляющего пути новых научных открытий.

На рис. 13.5 изображен угловой спектр вплоть до l = 1000, полученный в результате 17 экспериментов, по состоянию на 1998 год. На этом графике можно увидеть первые (существенные) акустические пики.

Рис. 13.5. Обобщенные данные по угловой анизотропии РИ по состоянию на 1998 год. Изображение из работы: HancockS. et al. Constraints on Cosmological Parameters from Recent Measurements of Cosmic Microwave Background Anisotropy // Monthly Notices of the Royal Astronomical Society, 294, 1998. — № 1 (February 11): L1-L6. Использовано с согласия издательства Оксфордского университета 

В тот же период проводились два выдающихся эксперимента, BOOMERANG и MAXIMA, с использованием высотных аэростатов. Собранные при этом данные позволили значительно усовершенствовать график спектральной плотности. Об этих результатах, а также о работе еще более впечатляющего аппарата под названием «Микроволновый анизотропный анализатор Уилкинсона» (Wilkinson Microwave Anisotropy Probe, WMAP) и о космической обсерватории «Планк» мы поговорим в следующей главе.

Итак, в конце второго тысячелетия нашей эры мы получили убедительные свидетельства в пользу того, что в первые моменты жизни нашей Вселенной происходило экспоненциальное расширение, называемой инфляцией, которое завершилось примерно на 10-32 доле секунды. Спустя несколько миллиардов лет более спокойного расширения наша Вселенная снова начала раздуваться экспоненциально, хотя и со значительно меньшей скоростью, и это, вероятно, будет продолжаться вечно. В какой-то момент далеко в будущем обитатели планеты, все еще согреваемой Солнцем, не смогут увидеть во Вселенной ничего, кроме Млечного Пути и гало галактики Андромеда, когда две эти галактики сольются, поскольку все остальное будет находиться за пределами видимости.

 

Глава 14.

МОДЕЛИРУЯ ВСЕЛЕННУЮ

 

Обозревая небо

В главе 12 я описал, как благодаря обзорам красных смещений галактик была открыта невероятная паутиноподобная структура видимой части Вселенной: скопления галактик, формирующих нити, разделенные практически пустыми войдами. Начиная с 2000 года проводились и проводятся десятки новых обзоров, благодаря которым имеющаяся база данных существенно расширилась.

В ходе наиболее обширного из них, Слоановского цифрового небесного обзора (Sloan Digital Sky Survey, SDSS), использовался оптический телескоп с широкоугольным 2,5-метровым объективом, установленный в обсерватории «Апачи-Пойнт», штат Нью-Мексико. Обзор SDSS начался в 2000 году и продолжается до сих пор. За это время накопились результаты наблюдений 500 млн. объектов, включая спектры 500 тыс. новых объектов, свет от которых шел к нам 7 млрд. лет.

Одна из составных частей проекта SDSS — спектроскопический обзор барионных колебаний (Baryon Oscillation Spectrographic Survey, BOSS) — особенно важен с точки зрения космологии. В ходе этого исследования ученые нанесли на карту Вселенной пространственное распределение ярких красных галактик (LRG), а также квазаров. Цель этого обзора — получить акустический сигнал, идущий от барионов (атомного вещества) ранней Вселенной. В распределении ранних галактик заключен след, подобный тому отпечатку, который звуковые волны, вызванные первичными флуктуациями, оставили на узоре реликтового излучения. Хотя из-за этих флуктуации неоднородные участки появились не только в атомной, но и в темной материи, последняя не сопротивляется гравитационному коллапсу участков высокой плотности, в то время как атомное вещество имеет давление, которое противится гравитации. Вследствие действия этих двух противоположных сил возникают колебания, влияющие на распределение галактик в пространстве.

В 2005 году, используя данные наблюдений 46 748 ярких красных галактик с красным смещением от 0,16 до 0,47, исследовательская группа из Гарвард-Смитсоновского центра астрофизики под руководством Дэниела Эйзенштейна сообщила об участке с несколько избыточным количеством галактик. Этот участок отделен от нас расстоянием 500 млн. световых лет и соответствует по форме и расположению ожидаемому отпечатку звуковых колебаний, образовавшихся во время рекомбинации согласно предсказанию стандартной космологической модели.

 

Слушая Большой взрыв

В предыдущей главе мы завершили обзор последнего десятилетия второго тысячелетия нашей эры иллюстрацией угловых спектров, полученных обсерваторией СОВЕ, а также в процессе 16 наземных и аэростатных экспериментов по исследованию реликтового излучения, последовавших вскоре. Последние имели лучшее угловое разрешение, но меньшую статистическую точность (см. рис. 13.5). В ходе этих экспериментов были обнаружены первые признаки ожидаемого основного акустического пика, чего не удалось достичь проекту СОВЕ. В первый год нового десятилетия в ходе наблюдений с помощью двух высотных аэростатов и двух более мощных космических телескопов наличие этого пика в спектре было убедительно подтверждено, а кроме того, обнаружены еще два пика.

Две крупные международные коллаборации организовали аэростатные эксперименты под названиями BOOMERANG (Balloon Observations of Millimetric Extragalactic Radiation and Geophysics) и MAXIMA (Millimeter Anisotropy Experiment Imaging Array). Аэростат BOOMERANG пролетел над Южным полюсом в 1998 и 2003 годах на высоте более 42 км. Аэростат MAXIMA совершил полеты на высоте 40 км над Палестайном, штат Техас, в 1998 и 1999 годах. Объединенные результаты этих исследований, представленные на рис. 14.1, были опубликованы в совместной работе в 2001 году. Эти данные подтвердили наличие не только основного пика при l = 220, но также меньших вторичных пиков при l = 500 и 750.

Полученные данные требовалось сопоставить с двумя моделями. В той из них, которая лучше соответствовала эмпирическим данным, 70% плотности составляла темная энергия, 20% — холодная темная материя и 10% — барионы, при этом общая плотность Вселенной равнялась критической с точностью до 4%.

Рис. 14.1. Угловые спектры реликтового излучения, согласно данным аппаратов BOOMERANG и MAXIMA. Рисунок из работы: Jaffe Andrew H., Ade P. A. R., Balbi A., Bock J. J., Bond J. R., Borrill J., Boscaleri A. et al. Cosmology from MAXIMA-1, BOOMERANG, and СОВЕ DMR Cosmic Microwave Background Observations // Physical Review Letters, 86,2001. — № 16:3475–3479. © 2001 by the American Physical Society. Использован с разрешения правообладателя

Но все же нет для нас ничего дороже космоса (во всех отношениях). 30 декабря 2001 года с мыса Канаверал был запущен микроволновый анизотропный зонд НАСА (NASA Microwave Anisotropy Probe). Позже его переименовали в микроволновый анизотропный зонд Уилкинсона (Wilkinson Microwave Anisotropy Probe — WMAP) в честь пионера микроволновой астрономии Дэвида Уилкинсона, умершего в 2002 году. 

Космическая обсерватория WMAP собирала данные в течение девяти лет. Окончательные результаты были опубликованы в 2013 году.

На рис. 14.2 изображен график углового спектра мощности реликтового излучения, полученный на основании данных, собранных за первые семь лет наблюдений. На нем хорошо различимы вторичные акустические пики. Кривая получена путем аппроксимации этих данных, помещенных в модель с шестью параметрами, которую я кратко опишу в дальнейшем.

Как и солнечный свет, микроволновое излучение поляризуется. Результаты исследования этой поляризации, также показанные на рисунке, были опубликованы в отчетах по проекту WMAP и другим экспериментам.

Но важно помнить, что не следует ожидать от звукового спектра, изображенного здесь, точного сходства со спектром звучания музыкального инструмента. На самом деле, если значения частоты и интенсивности этого звука сместить в диапазон, доступный человеческому уху, получится нечто, на слух неотличимое от обычного шума. Посмотрите и послушайте лекции 15 и 16 Марка Уиттла из серии Great Courses. Лектор не только демонстрирует эти прелестные звуки, но и пытается выделить различные гармоники и сделать «музыку сфер» более музыкальной. Также рекомендую посетить его веб-сайт «Космическая акустика».

В расширяющемся шаре из фотонов и других частиц, вибрации которых произвели этот звук, присутствовал ряд «искажений». Благодаря этому заполнились пробелы и частично снизилась мощность более высоких гармоник в угловом спектре. Но, что удивительно, эти искажения предоставляют нам информацию о природе породившей их среды, которую мы не получили бы из одного только чистого спектра.

Программа-симулятор Большого взрыва под названием CMBFAST, написанная Урошем Сельяком и Матиасом Зальдарриагой, широко используется для совмещения данных по анизотропии и поляризации реликтового излучения с различными моделями. Давайте же посмотрим на модель, которая все еще впечатляюще хорошо описывает все имеющиеся данные, хотя по мере совершенствования базы данных будут появляться все более сложные и глубокие модели.

 

LCDM

По мере того как благодаря сотрудничеству астрономов-наблюдателей и астрофизиков появлялись все более точные данные измерений угловых спектров мощности и поляризации реликтового излучения, а также другие выдающиеся астрономические наблюдения, такие как ускоренное расширение Вселенной и паутинная галактическая структура, физики-теоретики и космологи занимались разработкой моделей, призванных описать полученные данные на языке фундаментальной физической науки.

Рис. 14.2. Спектры температуры и температуры-поляризации реликтового излучения, согласно данным, собранным зондом WMAP за семь лет. Аппроксимация данных с помощью модели LCDM с шестью параметрами, описанной далее. Изображение из статьи: Jarosik N. et al. Seven-Year Wilkinson Microwave Anisotrophy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results // Astrophysical Journal Supplement Series, 192, 2011. — №2:14. © AAS. Используется с разрешения правообладателя 

Сравнительно простая модель, которую использовали для описания данных, полученных обсерваторией WMAP на 2005 год, называется моделью LCDM с шестью параметрами. Эта модель предполагает, что Вселенная состоит из барионной (атомной) материи, холодной темной материи (CDM) и темной энергии (L), являющейся результатом действия космологической постоянной. Параметры модели таковы:

♦ Ωb — плотность барионной материи по отношению к критической плотности;

♦ Ωc — плотность холодной темной материи по отношению к критической плотности;

♦ ΩL — плотность темной энергии по отношению к критической плотности;

♦ n — спектральный индекс, характеризующий первичную флуктуацию спектральной плотности (см. главу 11);

♦ А — амплитуда первичной флуктуации;

♦ τ — оптическая толща на момент реионизации.

Явление реионизации до сих пор не упоминалось. Чтобы описать его, мне придется подробнее рассказать о развитии Вселенной от момента последнего рассеяния до формирования первых звезд, которое станет важной частью этой истории.

 

Первые звезды

Сразу после рассеяния фотонов, на 380 000-м году своего существования, Вселенная представляла собой шар горячего газа, состоящего из атомов (в основном водорода и гелия), наряду с газом из фотонов, более не вступающим во взаимодействие, и все это имело одну и ту же температуру — 3000 К. Эта температура соответствует пиковой длине волны около 1 мкм, лежащей в околоинфракрасной части спектра черного тела. Однако, поскольку этот спектр довольно широк, во Вселенной все еще остается много видимого света и небеса имеют яркооранжевый цвет.

По мере того как газовый шар расширялся, обе его составляющие синхронно остывали, их спектральные пики приходились на все более и более длинные волны и небо становилось все краснее, пока примерно через 6 млн. лет после своего рождения Вселенная почти не перестала испускать видимый свет. Последовавший за этим период, названный Темными веками, длился несколько сотен миллионов лет, пока не сформировались первые звезды и во Вселенной снова не появился видимый свет.

Темная материя тоже расширялась. Когда она остыла, то стала формировать сгустки, вследствие чего менее массивная атомная материя также начала сгущаться вместе с ней. Поскольку темная материя слабо взаимодействует с остальным веществом, ее сгущение не привело к какой-либо потере энергии. Атомы же чаще сталкивались друг с другом, вследствие чего энергия рассеивалась и они остывали быстрее, чем это происходило бы вследствие одного только расширения Вселенной. Благодаря этому собственной гравитации атомов вместе с гравитацией темной материи стало еще проще сжимать атомное вещество все сильнее. Таким образом, внутри более холодной окружающей среды формировались горячие плотные ядра. В итоге температура и давление этих ядер достигли уровня, достаточного для того, чтобы запустилась реакция термоядерного синтеза и начался процесс формирования звезд.

Однако они были не очень похожи на звезды в современной Вселенной. Самые первые звезды были примерно в 100 раз массивнее сегодняшних и практически полностью состояли из водорода и гелия. Как следствие, они имели очень высокую температуру и излучали ультрафиолетовый свет, который ионизировал окружающую среду. Этот процесс называется реионизацией.

Первые галактики, образовавшиеся, когда эти звезды сформировали скопления, представляли собой квазары и другие формы активных галактик со сверхмассивными черными дырами в центре, интенсивное излучение которых также вносило свой вклад в реионизацию.

Итак, в некогда темной электрически нейтральной Вселенной снова появились заряженные частицы. Хотя их плотность была намного меньше, чем до момента последнего рассеяния, ее было достаточно для того, чтобы пространство частично утратило прозрачность, которую приобрело вместе с потерей заряда. Благодаря этому туману, образовавшемуся вследствие реионизации, интенсивность реликтового излучения, которое мы в конечном итоге наблюдаем на Земле, снизилась. В модели LCDM этот процесс описывается параметром, называемым оптической толщей на момент реионизации т, который характеризует густоту тумана. На основании этого параметра ученые смогли рассчитать, когда произошла реионизация. Это случилось примерно через 400 млн. лет после Большого взрыва.

 

Космическая обсерватория «Планк»

Четырнадцатого мая 2009 года с космодрома Гвианского космического центра, расположенного во Французской Гвиане, был запущен «Планк» — астрономический спутник Европейского космического агентства. Эта космическая обсерватория начала собирать данные в феврале 2010 года. Первые результаты были опубликованы в марте 2013 года. Угловой спектр мощности реликтового излучения по данным обсерватории «Планк» изображен на рис. 14.3.

СМИ подняли шумиху вокруг того факта, что значения некоторых параметров отличались от ранее принятых, в частности, несколько увеличился предполагаемый возраст Вселенной. На самом деле статистически значимых различий в числах не было. Особенно прошлись журналисты по «противоречиям» между данными, полученными обсерваторией «Планк» и космическим телескопом «Хаббл», а также другими аппаратами, исследовавшими галактики, сформировавшиеся спустя долгое время после образования РИ, в момент последнего рассеяния. В частности, согласно модели, описанной ранее и согласующейся с данными, полученными спутником «Планк», масса галактических скоплений составляет порядка 80% от значения, полученного в результате их панорамного обзора. Мы вскоре вернемся к этому.

Рис. 14.3. Угловой спектр мощности РИ, согласно данным обсерватории «Планк», опубликован в 2013 году. На этом графике можно увидеть полную гармоническую структуру, определенную с впечатляющей точностью. Обратите внимание на семь выпуклых участков этой кривой. В табл. 14.1 перечислены избранные параметры, полученные путем аппроксимации данных обсерватории «Планк» и космического аппарата WMAP, а также других наблюдений, которые нет нужды перечислять. Модель LCDM с шестью параметрами, описанная ранее, хорошо согласуется с данными, однако уже проводятся испытания расширенных моделей, содержащих большее количество переменных параметров. Изображение предоставлено: Planck Collaboration, Ade P. A. R. etal. Planck 2013 Results. I. Overview of Products and Scientific Results // arXiv preprint arXiv: 1303.5062 (2013) 

Таблица 14.1.

Избранные параметры, полученные путем аппроксимации данных обсерватории «Планк» и космического аппарата WMAP, а также других наблюдений

t0 … Возраст Вселенной, млрд. лет … 13,798 ± 0,037

H0 … Постоянная Хаббла, км/с/Мпк … 67,80 ± 0,77

Ωb … Относительная барионная плотность … 0,04816 ±0,00052

Ωc … Относительная плотность холодной темной материи … 0,2582 ± 0,0037

ΩL … Относительная плотность темной энергии … 0,692 ± 0,010

n … Спектральный индекс первичных флуктуации … 0,9608 ±0,0054

τ … Оптическая толща реионизации … 0,092 ± 0,013

Ωk …Плотность энергии пространственной кривизны, доверительная вероятность 95% … -0,0005 ± 0,0066

Σmν … Сумма масс нейтрино, эВ, доверительная вероятность 95% … <0,23

Neff … Эффективное число нейтрино, доверительная вероятность 95% … 3,30 ± 0,53

Yp … Массовая доля гелия, доверительная вероятность 95% … 0,267 ±0,039

ω … Параметр уравнения состояния темной энергии, доверительная вероятность 95% … -1,13 ±0,24

Значения параметров определены путем аппроксимации данных 2013 года, полученных обсерваторией «Планк», аппаратом WMAP, и в других экспериментах. Обратите внимание: это не более чем последние из имеющихся значений на момент настоящей публикации и они наверняка будут изменяться со временем по мере поступления новых данных

СМИ любят трубить о новых теориях, которые якобы опровергли расширение Вселенной, Большой взрыв или инфляцию. Но до тех пор, пока какой-то из этих теорий не удастся воспроизвести данные наблюдений, изображенные на рис. 10.4 и 14.3, так же точно и экономно, как это делается в рамках описанной здесь инфляционной модели Большого взрыва, не обращайте на них внимания. Кроме того, как мы вскоре увидим, благодаря последним наблюдениям инфляционная модель утвердилась почти настолько же прочно, как модель Большого взрыва.

С высокой степенью статистической значимости спектральный индекс первичных флуктуации теперь несколько меньше единицы, что подтверждает прогнозы инфляционной модели. Итак, инфляционная модель прошла еще одну фальсификационную проверку. Стоит отдельно отметить, что параметр уравнения состояния темной энергии все еще равен -1 (ω = -1), тем самым продолжая подтверждать гипотезу, согласно которой источником темной энергии является космологическая постоянная. Однако погрешность в 21% все же довольно велика, таким образом, еще остается вероятность существования некоторой формы квинтэссенции. В самом деле, если темная энергия представляет собой квинтэссенцию со значением ω, очень близким к -1, будет очень сложно отличить ее от космологической постоянной и точно определить ее природу.

Космологи-теоретики продолжают предлагать другие модели, одна из которых, а то и несколько, может оказаться лучше той, которую я здесь описал. Тем не менее на момент написания этих строк ни одна из них не приблизилась к тому, чтобы заменить модель LCDM.

Рабочая группа «Планк» сравнила полученные данные с несколькими моделями функции потенциальной энергии, которая запустила процесс инфляции. Хотя несколько моделей были исключены, остальные вполне имеют право на существование. В частности, не сдает позиций хаотическая модель Линде, которую я использовал в качестве примера, поскольку она наиболее проста и естественна. Она даже в какой-то мере укрепилась благодаря последним данным, касающимся первичных гравитационных волн, о которых мы вскоре поговорим.

Работа обсерватории «Планк» была остановлена 23 октября 2013 года, после того как установка истощила запасы жидкого гелия, использовавшегося в качестве охладителя.

 

Гравитационные волны

Среди прогнозов общей теории относительности было и существование гравитационных волн. Точно также, как электромагнитные волны возникают вследствие колебаний заряда, вызывающих колебания другого заряда на некотором расстоянии, гравитационные волны появляются благодаря колебаниям массы, которая вызывает колебания другой массы на некотором расстоянии. Но гравитационный эффект намного слабее электромагнитного.

В течение многих лет делались попытки непосредственно зафиксировать колебания массы, вызванные гравитационными волнами. Самым последним таким проектом стала лазерно-интерферометрическая гравитационно-волновая обсерватория LIGO (Laser Interferometer Gravitational Wave Observatory). Она состоит из двух обсерваторий, расположенных на расстоянии 3002 км друг от друга, в Хэнфорде, штат Вашингтон, и Ливингстоне, штат Луизиана, что позволяет определять местоположение источника волн методом триангуляции. Основной элемент каждой обсерватории — Г-образная высоковакуумная трубка длиной 5 км с каждой стороны, по которой проходит лазерный пучок, отражаясь от зеркал, установленных на обоих концах трубки. По принципу действия устройство подобно интерферометру Майкельсона: гравитационную волну можно обнаружить благодаря тому, что, проходя между двумя установками, она вызовет небольшое изменение длины одного пучка по сравнению с другим по причине их интерференции. С 2002 года и до сих пор положительных результатов зафиксировано не было. В настоящее время проводится модернизация этих обсерваторий.

Но реликтовое излучение вновь подсказывает нам альтернативный подход к фундаментальному явлению. На момент написания этих строк благодаря реликтовому излучению не только были получены первые значимые доказательства существования гравитационных волн, но и появились наиболее убедительные на сегодняшний день данные в пользу инфляционной модели.

Вспомните, в главе 11, в разделе, посвященном гравитационному линзированию, мы говорили о В-моде поляризации реликтового излучения. В-мода поляризации реликтового излучения не могла появиться вследствие возмущений нормального скалярного инфлятонного поля. Однако ее обнаружение в энергетическом спектре реликтового излучения в диапазоне мультиполей 30 < l < 150 почти наверняка свидетельствует о том, что флуктуации в тензорном гравитационном поле ранней Вселенной существенно увеличились вследствие инфляции.

В своей книге «Бесконечная Вселенная: за гранью Большого взрыва» Пол Стейнхардт и Нил Тьюрок назвали обнаружение В-моды поляризации «шестым краеугольным испытанием инфляционного сценария». В 2001 году Стейнхардт, Тьюрок и двое их соавторов предложили альтернативу инфляционной космологии, названную экпиротическим сценарием, согласно которому Вселенная возникла в результате столкновения бран. Браны — это двухмерные объекты М-теории (см. главу 11). Слово «экпиротический» происходит от греческого ekpyrosis, которое стоики использовали в значении «воспламенение и очищение космоса».

Семнадцатого марта 2014 года открытие статистически значимой В-моды поляризации реликтового излучения наряду с ожидаемым спектром мощности, имеющим пики на уровне l ~ 80, с большой помпой было преподнесено еще одной исследовательской группой, работавшей над проектом BICEP2 (Background Imaging of Cosmic Extragalactic Polarization). Нулевая гипотеза была в силу статистической маловероятности, составляющей по меньшей мере 1/3,5 млн. Данные, показанные на рис. 14.4, согласуются с моделью LCDM с тензорно-скалярным отношением, равным 0,20 ± 0,06. Космологи предостерегают от поспешных выводов, дожидаясь независимого повторения результатов и полного исключения всех других возможных источников этого эффекта. Но если это произойдет, мы станем свидетелями одного из важнейших открытий в истории науки.

Заметьте, что эффект линзирования, обнаруженный ранее другими исследователями, вносит очень незначительный вклад в случае мультиполей низкого порядка.

Рис. 14.4. Результаты эксперимента BICEP2 по исследованию В-моды поляризации в сравнении с предыдущими более низкими пределами, полученными на основании множества различных наблюдений. Кружками обозначены точки измерений при мультиполях I разных порядков с обозначенной величиной погрешности. Пунктирная кривая r = 0,2 — это предсказанное моделью LCDM тензорно-скалярное соотношение, равное 0,2. Сплошная кривая — ожидаемый эффект гравитационного линзирования. Изображение взято из статьи: Ade P. A. R. et al. Detection of B-Mode Polarization at Degree Angular Scales by BICEP2 // Physical Review Letters, 112, 2014. — №24: 241101

Обнаружение этого вида поляризации реликтового излучения исключает большую часть моделей, которые пытаются решить космологические проблемы плоскости, горизонта и однородности Вселенной, не прибегая к инфляции, включая экпиротический сценарий, как отметил сам Стейнхардт*.

 

В поисках темной материи

В главе 11 я упомянул феномен гравитационного линзирования, при котором объект с высокой массой, такой как скопление галактик, может вызвать отклонение лучей света от источника таким образом, что образуются его множественные изображения. Благодаря гравитационному линзированию удалось весьма эффективно подтвердить существование темной материи и нанести на карту ее распространенность во Вселенной. Можно ожидать, что в будущем нас ждет намного больше примеров.

Множественные изображения образуются, когда масса линзы очень высока. Это называется сильным линзированием. Если масса несколько меньше, происходит слабое линзирование, при котором не образуются множественные изображения, а просто происходит искажение внешнего вида источника. Он может выглядеть растянутым, увеличенным или и тем и другим сразу. Наряду с тем, что отдельная галактика может иметь вытянутую форму, иногда мы видим, что целый ряд таких вытянутых галактик выстраиваются в линию в каком-либо направлении — это верный признак того, что некая невидимая масса искажает их внешний вид, выступая в роли гравитационной линзы. На основании степени искажения и распределения искаженных галактик в пространстве можно определить массу и распределение этой гравитационнойлинзы. Проделав эту работу, мы получаем явное доказательство существования темной материи.

Однако гравитационное линзирование ничего не говорит нам о том, какова может быть природа частиц темной материи. За предшествующие написанию этих строк 20 лет было проведено или проводится до сих пор около 30 экспериментов, целью которых являются обнаружение и идентификация темной материи. Последние результаты вызывают мучительную надежду, но они пока еще не подтверждены.

В основном используются два метода: прямые поиски, в ходе которых ученые пытаются обнаружить прохождение частиц темной материи через детекторы, и непрямые поиски, во время которых ищут вторичные частицы, возникающие при аннигиляции частиц темной материи. До сих пор оба метода были нацелены в основном на поиски вимп-частиц, а именно нейтралино, существование которых предсказывает теория суперсимметрии. Также проводилось несколько прямых поисков, непосредственно нацеленных на обнаружение аксионов. Однако, поскольку попытки обнаружить суперчастицы на БАК до сих пор оканчиваются провалом, ученые стали больше внимания уделять возможной альтернативе — стерильным нейтрино (как уже упоминалось в главе 13).

Большинство прямых поисков проводится глубоко под землей — таким образом снижается фоновое влияние космических лучей, в то время как непрямые поиски ведутся с помощью высотных аэростатов и космических спутников. Тридцатого октября 2013 года появились первые результаты работы так называемого самого чувствительного детектора темной материи в мире — эксперимента LUX (Large Underground Xenonexperiment, «Большой подземный ксеноновый эксперимент»), проводившегося в Лиде, штат Южная Дакота. В ходе этого эксперимента не удалось подтвердить предыдущие сообщения о «намеках» на обнаружение искомых сигналов, выявленных в ходе нескольких менее чувствительных экспериментов, в достаточной мере исключив возможность существования вимпчастиц в диапазоне 5–20 ГэВ.

Намеки на обнаружение сигналов темной материи присутствовали также в отчетах о нескольких непрямых экспериментах. Акцент в них вновь-таки делается на вимп-частицах, в особенности на их разновидности, предсказанной теорией суперсимметрии.

Ожидается, что нейтралино должны выступать античастицами для самих себя, поэтому они будут аннигилировать, превращаясь в высокоэнергетические гамма-лучи, электрон-позитронные или протон-антипротонные пары. Три эксперимента, которые я здесь опишу, представляли собой непрямые поиски продуктов аннигиляции нейтралино.

Эксперимент PAMELA (Payload for Antimatter Exploration and Lightnuclei Astrophysics — «Нагрузка по исследованию антиматерии и астрофизики легких ядер») был организован коллаборацией из России, Италии, Германии и Швеции. Аппарат PAMELA был установлен на базе российского космического спутника «Ресурс-ДК1», запущенного 15 июня 2006 года. Его работа все еще продолжается. В августе 2008 года сотрудничество объявило, что им удалось обнаружить избыток позитронов в космических лучах на уровне свыше 10 ГэВ.

В ноябре 2008 года из Антарктики был запущен высотный аэростат ATIC (Advanced Thin Ionization Calorimeter — «Улучшенный тонкий ионизационный калориметр»). Он обнаружил избыток электронов в энергетическом диапазоне 300–800 ГэВ, хотя ему было не под силу отличить электроны от позитронов.

Орбитальный гамма-телескоп «Ферми» (Fermi Gamma-Ray Space Telescope, FGST) — совместный проект НАСА и космических агентств Франции, Германии, Италии, Японии и Швеции. Он был запущен с помощью ракеты «Дельта» с мыса Канаверал 11 июня 2006 года. В 2009 году сотрудничество сообщило об обнаружении избыточного количества позитронов, результаты согласовывались с данными эксперимента PAMELA. Еще более значимые данные поступили от рабочей группы PAMELA в феврале 2014 года. Ученые сообщили об «убедительном случае аннигиляции частиц темной материи».

Они наблюдали избыток гамма-лучей энергией 1–3 ГэВ, идущих из области, удаленной от центра Млечного Пути примерно на 10°. Сигнал соответствовал частице темной материи массой 31–40 ГэВ. Это, возможно, наиболее убедительное свидетельство существования нейтралинной темной материи, имеющееся на данный момент. Существование скоплений темной материи, масса которых может составлять порядка нескольких тераэлектрон-вольт, оказалось гораздо вероятнее, чем ожидалось.

Еще одним крупным проектом по поиску темной материи стал принадлежащий HACA аппарат AMS-02 (Alpha Magnetic Spectrometer, «Альфа-магнитный спектрометр»), установленный на борту Международной космической станции. Научным руководителем этого международного проекта стал лауреат Нобелевской премии по физике Сэмюэл Тинг из Массачусетского технологического института. Аппарат AMS-02 был доставлен на орбиту 19 мая 2011 года космическим шаттлом «Индевор».

В статье, опубликованной в 2013 году, Тинг с соавторами представили результаты (рис. 14.5), демонстрирующие резкое увеличение доли позитронов в промежутке 10–250 ГэВ, основанные на 6,8∙106 позитронных и электронных превращениях. Тонкая структура среди позитронов не наблюдалась, и не было обнаружено существенных изменений во времени или предпочитаемом направлении, что ожидалось в случае, если бы их источником была темная материя. Полученные результаты согласуются с результатами эксперимента PAMELA, но не с упомянутыми ранее последними данными, полученными телескопом «Ферми».

Заметьте, что на этом уровне энергии пик как будто несколько уплощается. Если по мере накопления данных пик начнет загибаться в противоположную сторону, это станет надежным подтверждением аннигиляции частицы с массой в несколько сотен гигаэлектрон-вольт. Тем не менее пока это только предварительный результат и нам придется подождать. В любом случае, отмечают авторы, характеристики полученных ими данных указывают на существование некоего нового феномена.

Рис. 14.5. Доля позитронов, согласно измерениям AMS-02. Данные были помещены в модель, которая параметризует потоки позитронов и электронов в виде суммы отдельных рассеянных степенных спектров и вклада отдельного источника. Рисунок взят с разрешения правообладателя из: Aguilar M. et al. First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350 GeV // Physical Review Letters, 110, 2013. — № 14. © 2013 by the American Physical Society

 

Последние признаки существования нейтринной темной материи

В главе 13 я упомянул, что, возможно, темная материя состоит из стерильных нейтрино. Это три вида нейтрино, которые очень слабо взаимодействуют с остальной материей и еще слабее — с тремя лучше изученными типами нейтрино — νe, νμ и ντ. Ожидается, что для их описания требуется минимальное расширение стандартной модели. В изначальной форме стандартная модель предполагала отсутствие массы у нейтрино, но не требовала его. Позже ее изменили таким образом, чтобы она допускала наличие массы у нейтрино, открытие которой произошло в 1998 году.

Когда эту книгу уже отправили в печать, две исследовательские группы, рассмотрев данные спутниковых наблюдений перекрывающихся скоплений галактик, сообщили об обнаружении сигнала энергией 3,5 КэВ — чуть выше фонового значения. Предполагается, что это результат распада стерильного нейтрино энергией 7 КэВ на два фотона, хотя до подтвержденного открытия пока еще далеко. Галактические скопления представляют собой центры особенной концентрации темной материи, и этой массы вполне достаточно для составляющих ее частиц. В момент последнего рассеяния эти нейтрино должны были быть «холодными».

Поскольку вероятно, что стерильные нейтрино сопровождаются двумя другими видами стерильных нейтрино, масса которых лежит в диапазоне нескольких электрон-вольт, также можно объяснить и упомянутое ранее эмпирическое несоответствие, существующее между предсказаниями модели, использованной для описания данных реликтового излучения, и наблюдениями галактических скоплений в телескоп. В момент последнего рассеяния эти нейтрино все еще были «горячими», в этом случае они не сгруппировались бы так охотно. Поскольку они бы все еще представляли собой часть темной материи, это привело бы к меньшему образованию скоплений в период формирования галактик, наступивший позднее.

 

Самые высокоэнергетические нейтрино всех времен

В предыдущей главе я упоминал, что много лет проработал над проектом под названием DUMAND, в ходе которого планировалось разместить на дне океана в районе Большого острова Гавайи огромный нейтринный детектор с целью поиска сверхвысокоэнергетических нейтрино из внеземных источников. В других местах, таких как озеро Байкал в Сибири и Средиземное море, также проводились подобные эксперименты. Проект DUMAND в конечном итоге остановили, поскольку сочли работу глубоко на дне океана слишком сложной и дорогой. Другая команда ученых, чья штаб-квартира располагалась в Висконсинском университете, нашла более гостеприимную среду, нежели океан у побережья Гавайев, — Южный полюс.

Используемый ими метод опять-таки включал обнаружение излучения Вавилова — Черенкова у заряженных частиц, испускаемого во время столкновения сверхвысокоэнергетических нейтрино с ядрами атомов в прозрачной среде — в данном случае такой средой послужил антарктический лед. В 1990-хгодахвходе проекта AMANDA (Antarctic Muon and Neutrino Detector Array, «Антарктическая мюонная и нейтринная детекторная решетка») струны фотоэлектронных умножителей погрузили глубоко в лед возле антарктической станции «Амундсен-Скотт». В 2005 году ее расширили до кубического километра на глубине между 1450-ми 2450-м метрами и переименовали в IceCube («Ледяной куб»). Установка завершилась в декабре 2010 года. IceCube, безусловно, представляет собой самый высокочувствительный эксперимент из существующих.

Двадцать первого ноября 2013 года группа IceCube заявила об обнаружении 28 нейтрино энергией более 30 ТэВ, причем в двух случаях их энергия превышала 1 ПэВ (1015 эВ). Если полученные в будущем данные позволят точно установить их источники, благодаря проекту IceCube наконец откроется новое нейтринное окно во Вселенную. Когда эта книга уже была отправлена в издательство, появилось сообщение о третьем нейтрино энергией свыше 1 ПэВ.

Астрофизик Флойд Стекер из Центра космических полетов Годдарда, с которым мы в прошлом вместе работали, доказал, что нейтрино энергией порядка пикаэлектрон-вольт согласуются с прогнозом, который он и три его соавтора сделали в 1991 году: ультравысокоэнергетические нейтрино могут образовываться в недрах активных галактик.

 

Предостережение

Как и в предыдущем разделе, некоторые новые результаты, которые я описываю в этой главе (а также в главе 11), были добавлены в книгу уже после того, как ее отправили в издательство. Некоторые источники до сих пор существуют только в форме препринтов. Очевидно, что физика частиц и космология развиваются очень быстро, поэтому приведенную информацию не следует считать окончательной. Я могу представить только моментальный снимок, отражающий ситуацию на момент издания этой книги.

 

Глава 15.

ВЕЧНАЯ МУЛЬТИВСЕЛЕННАЯ

 

От Большого взрыва до наших дней

Давайте отметим на временной шкале все, что на момент написания этой книги известно об истории нашей Вселенной, от Большого взрыва до настоящего времени. Под нашей Вселенной я понимаю то, что мы сегодня можем увидеть в телескоп, и то, что мы можем заключить из этих наблюдений о прошлом этой Вселенной. Мы рассмотрим будущее в следующем разделе и возможность существования других вселенных — в следующей главе.

Поскольку наши нынешние знания из области физики, основанные на экспериментах с ускорителями, доходят «всего лишь» до момента 10-12 с после Большого взрыва, мы можем в лучшем случае гадать о более ранних временах. Впрочем, наши предположения вовсе не будут пустыми домыслами, если мы выстроим их на надежном фундаменте существующих знаний.

Читатель должен помнить, что я не претендую на описание того, что действительно существует в некой абсолютной метафизической реальности. Как я уже подчеркивал, моя философская позиция такова, что мы не можем достичь точного знания об этой реальности. Все, что мы можем, — это делать как можно больше наблюдений и описывать их с помощью математических моделей. Они основываются на близких человеку понятиях, определенных операционально, таких как время, пространство и температура. Далее приводится именно такое описание, где температуры приведены в электрон-вольтах. Не забывайте, что это упрощенная модель и наверняка не окончательная ее версия.

10 -43 с, 10 28 эВ. Планковское время . В планковское время наша Вселенная была пустой сферой планковских размеров — 10-35 м. Любая модель, которая стремится описать пустую вселенную в понятных человеку терминах пространства и времени, максимально симметрична. Она заведомо будет содержать неявные принципы сохранения, которые люди называют законами, а я обозначил как метазаконы. Не было никакого законодателя, ни естественного, ни сверхъестественного. Эти модели автоматически следуют правилам квантовой механики и относительности, которые сами вытекают из симметрии. В частности, к ним относятся принцип неопределенности и уравнения Фридмана, с помощью которых мы моделируем то, что случилось дальше.

В отсутствие частиц квантовые флуктуации плотности энергии вакуума, или, если вам угодно, кривизна пространства-времени, заставили сферу расширяться и сжиматься. В неизвестный момент времени, который обычно принимают за примерно 10м с, положительная флуктуация оказалась достаточно большой для того, чтобы вызвать инфляцию. Трение в расширяющейся Вселенной, предсказанное моделью, значительно замедлило возвращение к равновесному состоянию, и наша Вселенная экспоненциально расширилась на много порядков.

~10 -34 с, 10 24 эВ. Конец инфляции (точное время неизвестно) . Подобно затуханию колебаний гармонического осциллятора, то же трение остановило инфляцию, и вслед за ней началось почти линейное хаббловское расширение. Первые частицы были образованы из потерянной энергии. Все они были безмассовыми.

В условиях максимальной симметрии силы, посредством которых частицы взаимодействовали, были унифицированы как единая сила. Максимальная симметрия включает в себя суперсимметрию, при которой каждая частица и ее суперпартнер идентичны и имеют нулевую массу.

По мере того как расширяющаяся Вселенная охлаждалась, произошла серия спонтанных (случайных, нерукотворных, непреднамеренных) фазовых переходов, которые нарушили симметрию и дифференцировали разные типы частиц и сил друг от друга. Это был первый этап развития асимметричной структуры во Вселенной. Частицы отделились от античастиц и получили легкое преимущество. Или, точнее говоря, те из них, которые получили преимущество, мы называем частицами, а прочие — «античастицами». Бозоны обособились от фермионов, поскольку суперсимметрия нарушилась. Лептоны дифференцировались от барионов (кварков). Гравитация отделилась от сил, описываемых моделью теории великого объединения (ТВО). Частицы оставались безмассовыми.

Далее, по мере дальнейшего охлаждения, симметрия ТВО нарушилась и сильное взаимодействие отделилось от электрослабого взаимодействия. Глюоны отделились от прочих бозонов. К тому моменту Вселенная состояла из всех частиц и античастиц стандартной модели, причем кварки и глюоны формировали сильно взаимодействующую кварк-глюонную плазму, а остальные частицы свободно перемещались вокруг, разбегаясь друг от друга в весьма плотной среде. 

ПРИМЕЧАНИЕ

На большей части временных шкал, которые можно встретить в более ранних книгах и статьях, нарушающие симметрию фазовые переходы изображаются перед инфляцией, поскольку авторы предполагают, что инфлятонное поле представляет собой хиггсовское поле в ТВО (ТВОХ?). Однако это не обязательно так, и эпоха великого объединения и фазовые переходы вполне могли произойти после инфляции, когда уже были частицы, с которыми можно работать. 

10 -10 с, 100 ГэВ. Нарушение электрослабой симметрии . С этого момента мы можем делать более точные утверждения, поскольку благодаря экспериментам на ускорителях мы уже понимаем физику, действующую в данных условиях. Примерно в это время электрослабое единство стандартной модели было разрушено, а электромагнитное взаимодействие отделились от слабого ядерного взаимодействия. В результате получились четыре различные силы, которые мы можем наблюдать сейчас: гравитация, электромагнетизм, слабое и сильное взаимодействия. Возник бозон Хиггса и придал массу слабым бозонам и лептонам, тогда как массы фотона и глюона остались нулевыми. Таким образом, слабые силы оказались ограничены радиусом около 10–18 м, а электромагнитные силы по-прежнему действовали на бесконечно больших расстояниях. Кварки также приобрели массу по хиггсовскому механизму, но только частично и в основном благодаря сильным взаимодействиям с глюонами, которые сами по себе оставались безмассовыми и были погребены в кварк-глюонной плазме.

Суперчастицы, отошедшие на второй план после нарушения суперсимметрии, приобрели значительные массы, а самая легкая нейтральная суперчастица, возможно, стала темной материей. Но, как мы видим, в этом сценарии еще не появились суперсимметричные частицы, которые ожидалось обнаружить в БАК, так что остается некоторая неопределенность. Видимо, масса суперчастиц слишком велика, чтобы их можно было зафиксировать в этом коллайдере. Придется подождать, чтобы узнать наверняка.

10 -6 с, 1 ГэВ. Кварковый конфайнмент . Когда температура Вселенной понизилась примерно до 1 млрд. эВ, кварки и глюоны сформировали нуклоны и множество составных адронов, которые были открыты на ускорителях частиц в 1960–1970-х. Большинство из них оказались очень короткоживущими и распались, остались только протоны и нейтроны со своими античастицами, наряду с электронами, позитронами и фотонами. Все это находилось в квазиравновесном состоянии.

Примерно в то же время антинуклоны и нуклоны аннигилировали, оставив лишь одну миллиардную от первоначального числа протонов и нейтронов. Фотоны и лептоны преобладали.

1 с, 1 МэВ. Синтез легких ядер. Нейтрино рассеялись, образовав космический нейтринный фон. Начали формироваться легкие ядра. Все свободные нейтроны были включены в ядра или разложились на протоны, антинейтрино и электроны.

10 с, 100 кэВ. Аннигиляция позитронов. Позитроны и электроны аннигилировали, оставив лишь один из миллиарда электронов.

3 мин, 25 кэВ. Господство излучений. Ядерный синтез прекратился. Энергетическая плотность фотонов превысила таковую плотность у ядер, и излучения стали преобладать. Вселенная была непрозрачной, поскольку фотоны плавали в заряженной плазме из ядер и электронов, с которыми они взаимодействовали, как это происходит в плотном тумане.

60000 лет, 1 кэВ. Господство материи. Плотность ядер превысила плотность фотонов, и преобладание перешло от излучений к материи. Вселенная остается непрозрачной.

380 000 лет, 700 эВ. Рассеяние фотонов. Формируются атомы (рекомбинация), фотоны рассеиваются, и Вселенная становится прозрачной. Небо ярко-оранжевое и становится краснее по мере того, как Вселенная охлаждается. Начинает накапливаться атомное вещество, а также темная материя.

5 млн. лет, 0,01 эВ. Начинаются Темные века. Вселенная охладилась настолько, что фоновое излучение находится далеко за границами видимого спектра, и небо становится темным.

200 млн. лет, 0,002 эВ. Начинается образование звезд. Формируются первые звезды, и Темные века заканчиваются. Звезды намного больше Солнца и не содержат тяжелых элементов, поэтому они быстро сгорают и получается много сверхновых, которые синтезируют более тяжелые элементы. Излучение сверхновых заново ионизирует пространство и делает его слегка туманным, но даже и близко не настолько, как в Темные века. Свет все еще может проходить насквозь, хотя и несколько приглушается. Активные галактики, например квазары, тоже могли начать формироваться, усиливая ионизирующее излучение.

~1 млрд. лет, 0,001 эВ. Образование галактик. Формируются галактики. В них часто происходят столкновения и есть сверхновые, которые продолжают распространять в космосе тяжелые элементы, которые, в свою очередь, становятся ингредиентами для следующего поколения звезд. Эти звезды менее массивны и горят медленнее, подобно современным звездам. Образование активных галактик замедляется.

~6 млрд. лет, 4∙10 -4 эВ. Образование кластеров . Более плотные области начинают сжиматься и образуют всевозможные структуры галактических скоплений и сверхскоплений.

~7 млрд. лет, 4∙10 -4 эВ. Начинается ускорение . До этого времени расширение Вселенной замедлялось из-за преобладания материи и излучения, подверженных гравитационному притяжению. Однако их плотность падала, в то время как плотность темной энергии оставалась постоянной. Теперь ее плотность больше остальных, и поскольку ей свойственно отрицательное давление, то расширение Вселенной понемногу начинает ускоряться.

~8 млрд. лет, 3∙10 -4 эВ. Появляется привычная Вселенная . Формируются первые спиральные галактики.

9,1 млрд. лет, 3,2∙10 -4 эВ. Образуется Солнечная система . Формируются наше Солнце и планеты.

13,8 млрд. лет, 2,6∙10 -4 эВ. Настоящее время .

 

Будущее

Пусть предсказание будущего всегда рискованная задача, мы все же можем задаться вопросом, каким окажется наше будущее, если исходить из имеющихся знаний.

5 млрд. лет спустя. Прощай, Земля. Наше Солнце расходует последнее водородное топливо и становится красным гигантом, испепеляя Землю. В течение следующего миллиарда лет Солнце сжимается до белого карлика.

17 млрд. лет. Слияние. Млечный Путь и туманность Андромеды сливаются.

~40 млрд. лет. Заканчивается формирование структур. Экспоненциальное расширение, вызываемое темной энергией, перекрывает все оставшиеся гравитационные группирующие силы, и формирование структур прекращается.

~100 млрд. лет. Прощайте, другие галактики. Все остальные галактики вышли из зоны видимости Млечного Пути/туманности Андромеды, оставив эту галактику одинокой во Вселенной. В конце концов все оказывается вне зоны видимости всего остального.

~1 трлн. лет. Прощайте, звезды. Оставшиеся звезды начинают вымирать, оставляя после себя черные дыры, нейтронные звезды, бурые карлики и планеты.

10 33 –10 37 лет. Прощай, материя . Протоны и другие тяжелые частицы распадаются, оставляя после себя газ из фотонов, электронов и нейтрино, который продолжает разжижаться вечно.

Никакой тепловой смерти. В главе 5 мы выяснили, что физики XIX века разработали концепцию тепловой смерти, при которой Вселенная должна непременно достичь равновесного состояния максимальной энтропии. Однако они все еще исходили из предположения, что Вселенная представляет собой небесную твердь, тела на которой сохраняют постоянную среднюю удаленность друг от друга. В этом случае энтропия Вселенной имеет свой максимум, который, как нам известно (а им известно не было), равен энтропии черной дыры того же размера.

Но тепловая смерть никогда не наступит. Вместо этого Вселенная продолжит неограниченно расширяться и разовьется до пространства де Ситтера в чистом виде, где любой произвольно взятый участок никогда не достигнет максимальной энтропии. Далее остается возможность, что Вселенная абсолютно замкнута, то есть параметр кривизны k = 1. Разумеется, инфляция предполагает, что Вселенная все еще очень плоская, более чем одна часть 1060, но это возможно и при k = 1, когда Вселенная имеет небольшую положительную кривизну.

В любом случае, мы не можем надеяться на большое сжатие, при котором расширение останавливается, Вселенная сжимается обратно до планковской сферы и все начинается сначала. Это осциллирующая Вселенная, теория о которой в свое время была очень популярна, но это было до открытия темной энергии. Как было отмечено ранее, около 7 млрд. лет назад (на полпути до Большого взрыва) энергетическая плотность вещества и излучения упала ниже плотности темной энергии и расширение Вселенной начало ускоряться. Если источник темной энергии представляет собой космологическую постоянную или что-то очень похожее, то энергетическая плотность останется постоянной, тогда как излучение и материя исчезнут и Вселенная продолжит расширяться вечно.

 

Было ли у Вселенной начало

В 1970-е Стивен Хокинг и Роджер Пенроуз показали, что в рамках общей теории относительности наша Вселенная начала свое существование как бесконечно малая точка бесконечной энергетической плотности в месте, называемом сингулярностью {315} . Теологи, в частности Уильям Лейн Крейг, вырвали это из контекста и использовали, чтобы заявить, что пространство и время должны были быть созданы в этот момент, из чего следует, что у Вселенной было начало. Вслед за этим они развивают свою аргументацию — без всякого теоретического обоснования или эмпирического подтверждения — до того, что все, что начинается, имеет свою причину. В случае же Вселенной, при всей огромной куче несоответствий, этой причиной должен быть персонифицированный христианский Бог. Однако, как отметил Хокинг в своем бестселлере 1988 года «Краткая история времени», «на самом деле при зарождении Вселенной никакой особой точки не было… при учете квантовых эффектов сингулярность может исчезнуть [из теории]». Пенроуз с этим согласился. Общая теория относительности — это не квантовая теория, и она неприменима там, где важны квантовые эффекты. Это относится, в частности, и к зарождению Вселенной.

Но Крейг и его правоверные коллеги никогда не сдаются. В споре с философом Алексом Розенбергом, который состоялся в университете Пердью 1 февраля 2013 года, и в других дискуссиях и публикациях Крейг ссылается на работу 2003 года Арвинда Борде, Алана Гута и Александра Виленкина (далее — БГВ), которая, по мнению Крейга, доказывает, что у Вселенной должно было быть начало. Следует отметить, что эта работа также основывается исключительно на общей теории относительности и не принимает во внимание квантовую механику.

Я спросил Виленкина, с которым много лет был знаком по работе: «Доказывает ли ваша теорема, что у Вселенной должно было быть начало?» Он ответил: «Нет. Но она доказывает, что у расширения Вселенной должно было быть начало. Теорему можно обойти, если принять, что до какого-то момента Вселенная сжималась». То же отмечали Энтони Агирре и Стивен Граттон, а также Шон Кэрролл и Дженнифер Чен. Кэрролл мастерски вовлек Крейга в спор о космологии в Нью-Орлеане 21 февраля 2014 года.

На рис. 15.1 мы видим схему пространства-времени, изображающую мировые линии, которые представляют собой пути в пространстве-времени частиц, вылетающих из первоисточника расширяющейся Вселенной.

Рис. 15.1. Диаграмма пространства-времени, показывающая мировые линии частиц, которые исходят из первоисточника нашей Вселенной. Они могут быть продолжены в отрицательном направлении временной оси. Авторская иллюстрация

Теорема БГВ доказала, что все мировые линии должны были исходить из точки, которую мы можем интерпретировать как начало нашей Вселенной, то есть той, в которой мы живем. Другие авторы показали, что мировые линии можно продолжить через первоисточник по отрицательную сторону временной оси.

Короче говоря, у нашей Вселенной было начало, но это не обязательно было начало всего.

Крейг предложил очередной аргумент в пользу того, что у всего было начало и, следовательно, создатель. Если бы это было не так, заявил Крейг, то все бы началось бесконечное время назад, а в этом случае мы бы никогда не достигли настоящего момента.

Вспомните, как тот же аргумент использовал в VI веке Иоанн Филопон, а в IX веке — Якуб ибн Исхак аль-Кинди (см. главу 2). Теологические аргументы не умирают. Правда, и в тень они не уходят.

В связи с этим стоит отметить, что большинство физиков и космологов (и даже многие математики) употребляют термин бесконечность не только тогда, когда они действительно имеют в виду «бесконечный» или «неограниченный», но часто просто в смысле «очень большое число». Однако, как показала блестящая работа математика Георга.

В 1925 году знаменитый математик Давид Гильберт (1862–1943) произнес речь, в которой сказал: «Бесконечное нигде не реализуется. Его нет в природе, и оно недопустимо как основа нашего разумного мышления».

Я предполагаю, что под реализацией он подразумевал измерения наблюдаемых явлений, которые мы получаем из мира нашими научными инструментами. Кроме того, я не совсем понимаю, что Гильберт имел в виду, говоря, что понятие бесконечности недопустимо как основа для разумного мышления. Определенно его и Кантора работа с бесконечностью была в высшей степени разумной. И физики-теоретики не становятся неразумными, когда используют хорошо определенное математическое понятие бесконечности в своих теориях при условии, что не позволяют себе оплошности применять его к каким-то числам, измеренным нами, физиками-экспериментаторами, или же придавать ему онтологический, платоновский смысл.

Крейг цитирует Гильберта, чтобы подкрепить свой аргумент о начале всего. Если бесконечности на самом деле не существует, то все не может быть вечным, а значит, не могло и начаться бесконечное время назад. В противном случае потребовалось бы бесконечное время, чтобы достичь настоящего момента. Однако, как я подчеркнул в главе 2 при обсуждении того же аргумента, выдвинутого Филопоном, вечная Вселенная не началась бы бесконечное время назад. У нее не было бы начала. Если вы будете крутить часы назад и отсчитывать деления: -1, -2, -3… вы никогда не доберетесь до -∞. Временной промежуток от настоящего времени до любого момента в прошлом всегда будет конечным числом делений.

Кроме того, легко увидеть, что все не обязательно должно начинаться, если обратить внимание на то, что нет никаких оснований, чтобы оно заканчивалось. Космология свидетельствует, что наша нынешняя Вселенная просто продолжит расширяться вечно. Следовательно, поскольку время абсолютно симметрично (а общепринятое направление времени — это просто определение, основанное на бытовом опыте), то, даже если мы можем идентифицировать точку в прошлом как начало Большого взрыва, это не обязательно будет начало всего. Если нет конца, то не должно быть и начала.

 

В планковское время

На рис. 15.1 показаны мировые линии, проходящие через точку в первоисточнике схемы пространства-времени. Однако следует вспомнить, что согласно квантовой механике первоисточник должен представлять собой конечную область пространства и времени, а не бесконечно малую точку. Если эта область настолько мала, насколько возможно, она должна иметь планковские измерения, то есть представлять собой четырехмерную сферу с пространственным радиусом порядка планковской длины и временным измерением порядка планковского времени — малую, но не бесконечно малую точку. Вследствие принципа квантовой неопределенности такая сфера будет иметь массу, равную планковской массе, 1028 эВ, а значит, соответствует основному критерию черной дыры, который описан в главе 6.

Поскольку мы не можем заглянуть внутрь черной дыры, у нас нет никакой информации о том, что происходило до планковского времени. Таким образом, самое раннее время, которое имеет какой-либо инструментальный смысл в нашей Вселенной, — это планковское время, 10-43 с. Здесь нам снова следует провести границу между теорией и наблюдениями. Мы всегда можем записать уравнение, считая время непрерывной переменной, которая принимает сколь угодно малые значения, но мы в принципе не можем измерить временной интервал короче планковского времени. Именно поэтому я не удивляюсь, когда в какой-то теории, основанной на непрерывном пространстве-времени, возникают проблемы с бесконечностями. Эта теория всего лишь ошибочна и требует корректировки.

Как уже упоминалось, максимальная энтропия сферического тела равна энтропии черной дыры того же радиуса. Таким образом, в планковское время Вселенная находилась в состоянии полного беспорядка, или максимальной энтропии. Отсюда вытекает, что все, что могло происходить раньше, не оставило на нашей Вселенной ни малейшего следа — все, что могло сохраниться, является совершенно бессистемным. Поэтому даже если и было некое сотворение, божественное или естественное, то у нашей Вселенной не осталось об этом никаких «воспоминаний». Это исключает не только Бога большинства религий, но и деистического бога-творца эпохи Просвещения (см. главу 2). Единственный возможный бог — это «квантовый деистический» бог, который запустил Вселенную броском кости, а потом телепортировался в другую реальность. Но кому нужен такой бог, который никак ни на что не влияет?

Теперь вы можете спросить: если Вселенная начала свое существование с максимальной энтропией, не нарушает ли это второй закон термодинамики, гласящий, что энтропия в прошлом должна была быть меньше, чем сейчас? Нет, поскольку энтропия в прошлом и была меньше. Но тогда, спросите вы, как она могла быть меньше в прошлом, если в прошлом она была максимальной?

Очень просто. В планковское время энтропия была максимальной для сферы планковских размеров. По мере того как Вселенная расширялась в большом взрыве, увеличивалась и ее максимально возможная энтропия. Так что с планковского времени в ней появилось достаточно места, чтобы могли сформироваться локальные структуры, а потеря локальной энтропии при формировании структур компенсируется ростом энтропии среды, то есть всей остальной Вселенной.

 

Квантовая гравитация

Принято считать, что мы даже в теории не сможем описать события, происходившие до планковского времени, пока не разработаем квантовую теорию гравитации, которая вместит в себя все преимущества как квантовой механики, так и общей теории относительности. В настоящий момент квантовая теория поля включает специальную теорию относительности, но не общую.

Первые шаги в квантовой гравитации, сделанные Ричардом Фейнманом и другими в 1950-е, следовали образцу весьма удачной квантовой электродинамики. На место фотона со спином 1, который является носителем электромагнитного взаимодействия, был предложен безмассовый гравитон со спином 2, который должен был выполнять функцию носителя гравитационного взаимодействия между двумя массами.

Но этот математический аппарат просто не сработал, требуя других подходов, которым еще предстоит принести плоды. Большая их часть сильно зависит от суперсимметрии и может рассыпаться в прах, если суперсимметрия не подтвердится на БАК. В их числе теория струн, на которой практически целое поколение физиков-теоретиков построило собственную научную карьеру.

Гравитация определенно совсем не похожа на две остальные силы. Вы часто можете услышать даже от именитых физиков: «Гравитация в 10м раз слабее электрических сил». Но это число представляет собой всего лишь отношение сил взаимодействий между протоном и электроном и не во всех случаях верно. Если вместо них вы возьмете две частицы с теми же электрическими зарядами, но с массами, равными, скажем, планковскои массе (величине более естественной, чем масса протона или электрона), то гравитация окажется в 137 раз сильнее, чем электрическая сила! Просто не существует никакого способа определить абсолютную силу гравитации так же, как это возможно для других взаимодействий.

Однако я могу предложить простое объяснение тому, что гравитация в масштабе элементарных частиц настолько слаба по сравнению с электромагнетизмом. Их собственные массы малы, они рождаются с нулевой массой и приобретают небольшую массу благодаря хиггсовскому механизму, описанному в главе 11. Я объясню это более подробно в главе 16.

Также следует вспомнить, что в общей теории относительности Эйнштейна явление гравитации происходит из кривизны пространства и в уравнениях не участвует никакая явная гравитационная сила. В данной модели Земля находится на орбите вокруг Солнца не потому, что сила гравитации Солнца притягивает ее посредством обмена гравитонами или чем бы то ни было, — она просто следует естественному пути, которому должна следовать в отсутствие всяких сил, — геодезической линии через пространство-время, которая как раз закругляется вокруг Солнца. Позже было высказано предположение, что гравитация может быть описана как «производное» явление, которое вытекает из стремления систем двигаться в сторону большей энтропии (см. обсуждение производности в главе 5).

Даже если бы у нас была квантовая теория гравитации, похоже, что у нас не было бы возможности проверить ее предсказания в планковском состоянии, в котором она предположительно применима. Тем не менее квантовая гравитация вполне может иметь измеримые эффекты. Например, на расстояниях, близких к планковским, пространство-время должно быть «бугристым», то есть вместо гладкого континуума мы должны увидеть знаменитую квантовую пену, предложенную Джоном Уилером в 1955 году.

Как ни удивительно, оказывается, что эта пенистость, в принципе, обнаружима. Вспомните пассаж о гамма-всплесках в главе 13. Они происходят в далеких галактиках, на расстоянии миллиардов световых лет, и излучают фотоны высоких энергий. Считается, что это происходит в результате столкновения двух нейтронных звезд. Эти фотоны могут взаимодействовать с квантовой пеной и задерживаться на пути к Земле. Данный эффект можно наблюдать, если измерить время прибытия двух или более фотонов, которые были испущены одновременно в одном всплеске.

Используя данные о гамма-всплесках, полученные космическим гамма-телескопом Ферми, астроном Роберт Немирофф и его соавторы сравнили время прибытия гамма-фотонов разных энергий, излученных из одного источника. В случае гамма-всплеска GRB 090510, зарегистрированного в мае 2009 года на расстоянии 7 млрд. световых лет от нас, прибытие трех фотонов было зафиксировано в пределах 1 мс. Этот результат накладывает ограничения на размер пузырьков пространственно-временной пены — в 525 раз меньше планковской длины. Хотя результат требует независимого подтверждения, похоже, что пространство-время в наблюдаемой Вселенной гладко.

Может возникнуть вопрос, как это значение согласуется с утверждением, которое я высказал в главе 6, что никакое расстояние меньше планковской длины нельзя измерить. Ответ имеет отношение к разнице между теорией и экспериментом, которую я раз за разом подчеркиваю в этой книге. Реально было измерено вовсе не расстояние короче планковской длины. Тем не менее измеренное значение было включено в теоретическую модель, в результате предсказавшую ограничение на размер пузырьков, которые должны быть значительно меньше планковской длины. Но само это число существует только в рамках модели, а не в прямом наблюдении.

 

Бивселенная

Теперь давайте поставим вопрос, что могло существовать по отрицательную сторону нашей временной оси, то есть до t = О в нашем прошлом. Откуда же взялась эта первичная сфера абсолютного хаоса? Хотя у нас нет никакой эмпирической информации о том, что могло происходить до планковского времени, мы все еще можем применить наши наиболее глубокие теоретические знания, то есть общую теорию относительности и квантовую теорию, которые были основаны на эмпирических свидетельствах из более позднего времени.

В книге и статье 2006 года я описал сценарий, который обосновывает естественное происхождение нашей Вселенной и вытекает из общепризнанной физики и космологии. Он строится на модели, предложенной в 1982 году Дэвидом Аткацем и Хайнцем Пейджелсом. Я выработал этот сценарий чисто математически на уровне, доступном для студента-физика, в значительной степени полагаясь на очень приятное учебное пособие, опубликованное Аткацем в 1994 году, «Квантовая космология для пешеходов» {332} . Здесь я только кратко опишу порядок действий.

В 1982 году Аткац и Пейджелс показали, каким образом наша Вселенная могла появиться благодаря квантовому туннелированию. Этот механизм был предложен Виленкиным в 1982 году, а также Джеймсом Хартлом и Стивеном Хокингом в 1983 году.

Начнем с уравнений Фридмана для пустой, гомогенной, изотропной Вселенной с положительной кривизной, то есть с параметром кривизны k = +1. Хотя наша Вселенная очень близка к плоской, из этого не обязательно следует, что глобальный параметр кривизны k = 0; она может иметь k = +1 или k = -1 и все еще быть очень, очень плоской после инфляции. Аткац и Пейджелс показали, что туннелирование работает только при k = +1.

Имея в распоряжении это уравнение, мы следуем стандартным правилам, согласно которым нужно перейти от классического уравнения к квантово-механическому, заменив действительные числа математическими операторами. Результат выглядит неожиданно просто. Вы получаете квантово-механическое, не зависящее от времени уравнение Шрёдингера для нерелятивистской частицы с массой, равной половине планковскои массы, и нулевой полной энергией, которое имеет единственное измерение, представляющее собой космологический масштабный коэффициент Вселенной, который мы можем принять за радиус Вселенной. Следует отметить, что это просто математическое тождество и из него не следует, что такая частица существует.

Выведенное уравнение — это упрощенная форма уравнения Уилера — Девитта, решение которого гордо именуется волновой функцией Вселенной. При стандартном квантово-механическом подходе к интерпретации волновых функций квадрат амплитуды волновой функции Вселенной определяет вероятность нахождения конкретной Вселенной среди ансамбля похожих вселенных.

Итоговый сценарий проиллюстрирован схемой пространства-времени на рис. 15.2. Время t изображено вертикально, а два из трех измерений пространства, x и y, показаны в перспективе. В каждый момент времени расширяющаяся сферическая Вселенная спроецирована на окружность, перпендикулярную временной оси. Она развивается из сферы планковских размеров, расположенной в начальной точке, t=0.

Рис. 15.2. Схема пространства-времени, изображающая нашу Вселенную и зеркальную Вселенную, которые развиваются из одной планковской сферы в противоположных временных направлениях. Одно пространственное измерение скрыто, поэтому сферические вселенные и планковская сфера спроецированы на окружности. Авторская иллюстрация 

Также показана зеркальная Вселенная на противоположной стороне временной оси. Если мы посмотрим на уравнения Фридмана и другие космологические уравнения, то увидим: ничего в них не запрещает отрицательное время. Зеркальная Вселенная развивается из той же планковскои сферы в противоположном временном направлении. Заметьте, что это не противоречит картине временных линий, изображенной на рис. 15.1.

А вот следствие, которое редко отмечают: поскольку зеркальная Вселенная существует в нашем прошлом, ее стрела времени направлена противоположно нашей. Как мы узнали из главы 5, в физических уравнениях не используется направление времени. Привычная, обиходная стрела времени — это исключительно статистическое определение, в котором будущее время — это направление наиболее вероятных событий, в соответствии с ростом энтропии нашей Вселенной. Таким образом, поскольку зеркальная Вселенная расширяется в противоположную сторону от нашей, направление стрелы времени, которое было бы определено наблюдателем в этой вселенной, противоположно нашему.

Поскольку планковская сфера не содержит никакой информации или структуры, она функционально неотличима от ничего, и мы имеем две вселенные, туннелирующие из ничего. Я назову нашу Вселенную и ее зеркальную пару Бивселенной.

Я должен добавить, что мы не предполагаем, что зеркальная Вселенная идентична нашей, поскольку она ровно с такой же вероятностью будет подвержена случайности, как и наша.

Хотя я не могу доказать, что наша Вселенная появилась именно таким образом, никто еще не доказал обратного. То есть мы имеем правдоподобный сценарий естественного, нерукотворного происхождения Вселенной, основанный на общепризнанных физике и космологии. Это только один из нескольких предложенных сценариев, но он впечатляет меня своей явной простотой по сравнению с остальными, поскольку он не требует никаких новых допущений, используя только общепризнанные физику и космологию. По меньшей мере Бивселенная позволяет опровергнуть любое заявление о том, что наша Вселенная могла появиться только в результате сверхъестественного творческого акта.

Здесь читатель может спросить, откуда взялись общепризнанная физика и космология. Пожалуйста, запаситесь терпением. Скоро мы доберемся до этого вопроса.

 

Мультивселенная

Если возможны две вселенные, то почему не три, или четыре, или любое другое количество? В 1980-е ученые осознали возможность того, что наша Вселенная может быть лишь одной из неограниченного числа похожих, но не идентичных вселенных. Эта совокупность была названа Мультивселенной. Как мы узнали из главы 12, вскоре после того, как физики предложили идею инфляции, ученые поняли, что если наша Вселенная образовалась из пузырька, то таким же образом вполне могли появиться и многие другие вселенные.

С самого начала теисты яростно возражали против самого понятия множественных вселенных. Практически все мировые религии проповедуют Божественное сотворение единственной Вселенной, центральное место в которой отведено человечеству. Мультивселенная ставит эту веру под сомнение.

Седьмого июля 2005 года кардинал Кристоф Шенборн, архиепископ Вены, написал в «Нью-Йорк таймс»: «Космологическая гипотеза о Мультивселенной была придумана, чтобы обойти несомненные свидетельства целенаправленного творческого замысла, найденные современной наукой».

Естественно, церковь возражала и тогда, когда Коперник переместил Землю из центра Солнечной системы. А когда Джордано Бруно сказал, что наша планета — всего лишь одна из многих планет, вращающихся вокруг многих солнц, они сожгли его на костре. Теисты говорят о смирении, но им вовсе не нравится, когда наука требует от них смириться.

Уильям Лейн Крейг высказался аналогично Шенборну. В ходе дискуссии в университете Пердью Крейг сказал: «Поборники случайного возникновения мира были вынуждены заявить о множественности миров других вселенных, желательно бесконечно многочисленных и неупорядоченных, чтобы подходящие для жизни вселенные могли случайно появиться где-нибудь в этом множестве».

Эти заявления не только неверны, но и оскорбительны для серьезных ученых. Гипотеза о множественности миров, или Мультивселенная, была выработана академической наукой без какой бы то ни было мысли о теологии. Это суммарный итог наших лучших современных космологических моделей, основанных на исключительно точных наблюдениях астрономии и доступных нам знаниях о фундаментальной физике.

Вдобавок достаточно сказать, что ни одно из заявленных научных свидетельств целенаправленного творческого замысла во Вселенной не может быть беспристрастно оценено как несомненное.

Противники концепции множественных вселенных любят использовать тот аргумент, что она добавляет лишние сущности там, где достаточно единственной Вселенной. В 1986 году астроном Эдвард Гаррисон написал: «Сделайте ваш выбор: слепой случай, который требует множества вселенных, или замысел, для которого нужна только одна».

Чтобы упростить себе выбор, мы можем воспользоваться бритвой Оккама, которая отдает предпочтение самой простой из гипотез. На первый взгляд может показаться, что одна Вселенная экономнее, чем множественные вселенные. Однако бритва Оккама касается не количества объектов в теории, а количества гипотез. Атомная теория материи умножила количество объектов, с которыми приходится работать физикам, в триллионы триллионов раз. Тем не менее она оказалась проще и мощнее, чем макроскопическая термодинамика, которая использовалась до нее и может быть полностью выведена из атомной теории. Аналогично, поскольку современная эмпирическая наука указывает на существование множественных вселенных, нам, чтобы обосновать существование всего одной Вселенной, потребуется дополнительная гипотеза, которая не следует из данных. Таким образом, именно гипотеза о единственной Вселенной нарушает принцип бритвы Оккама.

В другом возражении многие неверующие ученые присоединились к теистам: они считают, что Мультивселенная ненаучна, поскольку у нас нет возможности наблюдать вселенную вне нашей. На самом деле это неправда. Мультивселенная — это вполне научная гипотеза, поскольку, судя по всему, она неизбежно вытекает из вечной инфляции. Эта модель ранней Вселенной основана на имеющихся эмпирических данных; мы обсудим ее в следующем разделе.

Наши теории часто содержат не поддающиеся наблюдению вещи, такие как кварки и черные дыры. И, как мы вскоре увидим, эмпирическое свидетельство существования других вселенных вовсе не находится за гранью возможного. Любое явление, которое вписывается в жизнеспособную гипотезу и в принципе обнаружимо, полноправно считается частью науки.

Сама идея о том, что может существовать много вселенных, имеет настолько ошеломляющие последствия, что за последние 30 лет или более ей была посвящена масса литературы в области науки, философии и теологии. Я не буду пытаться охватить все, что было написано по этому вопросу, а ограничусь лишь самыми свежими выводами, которые мы можем сделать из наиболее простых допущений.

 

Вечная инфляция

В 1983 году космолог Александр Виленкин с некоторым трепетом предложил гипотезу так называемой вечной инфляции {341} . Согласно теории вечной инфляции, если расширение начинается, оно никогда не заканчивается, и все это время создаются новые вселенные. В 1986 году Андрей Линде развил эту идею и показал, как может быть так, что Вселенная неограниченно воспроизводит себя и «может не иметь ни начала, ни конца».

Согласно Виленкину и Линде, вечная инфляция приводит к постоянному появлению вселенных внутри других вселенных с образованием фракталоподобной структуры. По сути, в то время, как пузырь вселенной экспоненциально расширяется до значительно большего размера, другие пузыри могут зарождаться в постоянно растущем пространстве де Ситтера, окружающем исходный пузырь. Этот процесс продолжается вечно вплоть до далекого будущего.

В модели, предложенной Энтони Агирре из Института перспективных исследований в Принстоне и Стивеном Граттоном из Принстонского университета, зародышевые пузырьки представляют собой бивселенные, подобные описанным выше, с противоположными друг другу стрелами времени.

Как насчет прошлого? Уильям Лейн Крейг продолжил попытки найти подтверждения творению в космологии, отрицая, что время бесконечно продолжается в прошлое так же, как и в будущее. Наконец признав, что наша Вселенная может быть не единственной, он говорит: «Даже если наша Вселенная — это всего лишь крохотная часть так называемой Мультивселенной, состоящей из множества вселенных, все равно из теоремы БГВ следует, что у самой Мультивселенной должно быть абсолютное начало».

Как мы уже узнали, из теоремы БГВ следует только то, что у инфляции было начало. Она ничего не говорит о начале Мультивселенной. Более того, в случае бивселенной две вселенные имеют общее начало и расширяются в противоположных временных направлениях. В картине вечной инфляции новые вселенные постоянно формируются в каждом из этих расширяющихся пространств с противоположными стрелами времени.

Я думаю, Крейг может заявить без каких-либо доводов и доказательств, что вся эта штука, которую мы можем назвать Большой штукой [26]Непереводимая игра слов: в оригинале Big Shebang — по аналогии с Big Bang — «Большой взрыв». — Примеч. пер.
, была сотворена Богом. Но давайте отложим обсуждение теологических выводов на закуску и сначала рассмотрим некоторые из оставшихся научных вопросов.

 

Разрешение проблемы энтропии

В своей книге «От вечности до наших дней» Шон Кэрролл рассматривает популярный вопрос: почему энтропия Вселенной вначале была такой низкой? Этот вопрос называется проблемой энтропии. Вообще, я бы упрощенно ответил, что она была низкой вначале, потому что именно так мы определяем начало — как момент, когда энтропия была минимальной. На самом же деле, как объясняет Кэрролл, вопрос заключается в том, почему это крайне маловероятное состояние в принципе возникло в какое бы то ни было время. Если Вселенная появилась благодаря случайным процессам, то она должна была начаться с гораздо большей энтропией. Это все равно что бросить миллиард игральных костей и получить все шестерки.

Разумеется, если Мультивселенная безгранична, то все возможные комбинации выпадут неограниченное число раз. Но этот ответ слишком прост и столь же неинформативен, как если бы мы сказали, что это сделал Бог.

После внимательного рассмотрения всех этих вариантов Кэрролл показывает, что вечная Мультивселенная предоставляет убедительное решение проблемы энтропии. Он задает ключевой вопрос: как должна выглядеть Вселенная, если она абсолютно естественна? Его ответ: «Естественная Вселенная — которая бы не полагалась на тонко настроенные контрольные условия низкой энтропии в любой точке в прошлом, настоящем или будущем — по сути, представляла бы собой пустое пространство».

Далее, как мы уже знаем, пустое пространство описывается решением уравнений Фридмана, которое предложил де Ситтер, и такое пространство может иметь положительную космологическую постоянную Λ, которая эквивалентна постоянной плотности энергии вакуума и приводит к экспоненциальной инфляции. Можно показать, что энтропия обратно пропорциональна порядку Λ. Поэтому если космологическая постоянная велика, то энтропия будет мала.

В главе 12 я описал, каким образом, согласно Линде, квантовые флуктуации в пространстве де Ситтера могут поднять потенциальную энергию инфлятонного поля, подобно тому как отец подталкивает свою дочь, сидящую на качелях. Это эквивалентно зарождению космологической постоянной. В данном случае мы можем представить себе область пространства, которая испытывает такую флуктуацию и превращается в расширяющийся пузырек. В большинстве случаев этот пузырек сожмется обратно в ничто.

Однако изредка эта флуктуация случайно может оказаться очень большой. Тогда из-за трения один пузырек останется в состоянии высокой энергии достаточно долго, что позволяет ему увеличиться на много порядков. Тогда он может выделиться из исходного фонового пространства и превратиться в отдельный пузырь Вселенной.

Поскольку у этого пузыря Вселенной будет большая космологическая постоянная, у него будет низкая энтропия. Это разрешает проблему энтропии: чтобы расширяющийся пузырь Вселенной мог возникнуть от квантовой флуктуации, у него должна быть низкая энтропия. Это не нарушает второй закон термодинамики, поскольку мы можем рассматривать пузырь Вселенной и фоновое пространство как единую систему, в которой общая энтропия все еще возрастает, а фон восполняет энтропию, потерянную при создании пузыря Вселенной (или больше).

Заметьте, что все это может происходить без всякой внутренней движущей силы, то есть посредством чисто случайной, хаотичной инфляции. Поскольку все симметрично, то не требуется никаких специально созданных законов физики, только метазаконы и внутренние законы. Модели, которые мы используем для описания происходящего, по логике вынуждены заключать в своих формулировках те принципы, которые вытекают из симметрии, — метазаконы. К ним относятся все законы сохранения, специальная и общая теории относительности, а также квантовая механика. Они вытекают из симметрии пустоты. В дальнейшем спонтанное нарушение симметрии порождает внутренние законы, которые необходимы для развития сложности.

 

Обнаружение других вселенных

Распространенный аргумент против других вселенных — мы не можем даже наблюдать их. Однако вполне вероятно, что можем. На заре существования нашей Вселенной другая вселенная могла оказаться достаточно близко для того, чтобы ее гравитация повлияла на изотропию реликтового излучения. Или пузыри могли столкнуться, оставив друг на друге вмятины. Обнаружение крупномасштабной анизотропии в реликтовом излучении может свидетельствовать о существовании вселенной вне нашей. Космический телескоп «Планк» подтвердил несколько необъясненных аномалий такого рода, которые были отмечены при более ранних наблюдениях на WMAP.

Поскольку наблюдение другой вселенной вне нашей стало бы величайшим научным открытием в истории, не ждите, что какие-либо космологи станут заявлять подобное, пока не исключат все остальные возможности до высочайшей степени уверенности и не дождутся неоднократной независимой проверки данных. В случае с «Планком» команда исследователей не сочла это свидетельство достаточно значимым, чтобы публиковать какое-либо заявление.

Проще говоря, гипотеза единственной Вселенной требует, чтобы Вселенная была сферически симметрична. Любое значимое отклонение от этого доказало бы, что вне Вселенной что-то есть. В какой-то момент наши теории, возможно, смогут предсказать количественное отклонение от сферической симметрии, ожидаемое в модели Мультивселенной. И в какой-то момент данные о реликтовом излучении, полученные в ходе экспериментов будущего, могут стать достаточно точными для того, чтобы проверить это предсказание. Это сделает гипотезу Мультивселенной фальсифицируемой. Уже одной этой перспективы должно быть достаточно, чтобы понятие множественных вселенных могло оставаться частью академического научного дискурса.

 

Множественные миры квантовой механики

Традиционно в современной космологии Мультивселенная рассматривалась вне связи с многомировой интерпретацией квантовой механики. Однако недавно некоторые авторы предложили связать их. Давайте посмотрим, какой может быть эта связь.

Для нас важно провести четкое различие между математической моделью, которая позволяет использовать квантовую теорию в вычислениях, и онтологической интерпретацией, которая объясняет, что эта теория может сказать нам о реальном мире. Первое — это физика. Второе — метафизика.

Квантовая модель, которая была в значительной степени разработана уже в 1930-е, чрезвычайно преуспела в описании поведения материи в экстремальных условиях — на близких расстояниях, при низких температурах и высоких плотностях. Но из-за того, что методология квантовой механики радикально отличается от методологии классической физики, которая до сих пор отлично работает в других областях, не прекращается вечная дискуссия о том, что все это значит.

В отличие от классических моделей, таких как ньютоновская механика или теория относительности Эйнштейна (которую в данном контексте можно считать классической), квантовая модель не может предсказать, где будет находиться частица через какое-то время, а может только определить вероятность того, что она окажется в определенной области пространства. Вероятность на единицу объема считается равной квадрату амплитуды математического объекта, называемого волновой функцией, или, в более общем смысле, вектором состояния (см. главу 6).

В 1920-е Нильс Бор и Вернер Гейзенберг сформулировали то, что сейчас называется копенгагенской интерпретацией квантовой механики. Хотя за многие годы теория претерпела бесчисленные изменения и принимала многие формы, долгое время копенгагенская интерпретация лучше всего подходила на роль общепринятого философского представления о смысле квантовой механики. Поскольку она имеет множество вариаций, часть из которых получили другие имена, я не буду пытаться представить исчерпывающий обзор, а лучше остановлюсь на нескольких основных идеях, общих для большинства интерпретаций, которые более или менее совпадают с копенгагенской.

В основе этих интерпретаций лежит фундаментальная предпосылка, что отдельные физические события не предопределяются законами физики, как в ньютоновской механике, а происходят спонтанно. Однако статистическое поведение групп похожих событий предопределено, и именно это описывает математическая модель.

Например, если атом в возбужденном состоянии переходит в более низкое энергетическое состояние и испускает фотон, это конкретное событие не предопределено, что на практике значит, что оно непредсказуемо. Однако интенсивность конкретной линии спектра, которая образуется от большого количества фотонов, участвующих в таком же переходе, может быть вычислена точно.

Аналогично ни одна существующая теория не может предсказать, что конкретное радиоактивное ядро распадется в определенный момент, но гипотеза о том, что такой распад может с равной вероятностью произойти в любой момент заданного временного интервала, дает «закон» экспоненциального радиоактивного распада, который соблюдается с исключительной точностью, По сути, и этот результат, и описанный ранее случай изомерного перехода обеспечивают строгие эмпирические свидетельства того, что эти процессы не предопределены. То есть эти события случайны не из-за нашего невежества. Они действительно случайны.

Для нашего разговора о множественных мирах принципиально, что копенгагенская интерпретация считает измерительные приборы классическими системами, поэтому акт измерения представляет собой переход от квантовой физики к классической, который не описывается теорией, но подразумевается при акте измерения. До того как измерено положение частицы, волновая функция дает вероятности для области пространства, о которой известно, что в ней находится частица. Если ничего не известно, частица может быть где угодно во Вселенной. После измерения становится известно, что частица находится в пределах детектора, и говорят, что волновая функция мгновенно схлопывается, давая новую вероятность. Это проиллюстрировано на рис. 15.3.

Эйнштейн возражал против самой идеи мгновенного схлопывания волновой функции, называя его «жутким дальнодействием». Схлопывание волновой функции должно происходить быстрее скорости света, по сути, с бесконечной скоростью.

Большинство распространенных интерпретаций квантовой механики обычно называют детерминистическими в том смысле, что статистические вероятности, которые даются волновой функцией или вектором состояния, предопределены в теории подобно тому, как движение частицы предопределено в ньютоновской механике. Однако в данном случае статистически определено коллективное поведение ансамбля идентичных систем, а не поведение отдельной системы. Я предпочитаю называть квантовую механику недетерминистической.

 Рис. 15.3. Иллюстрация коллапса волновой функции электрона. После прохождения через большое отверстие в экране волновая функция распределена по области пространства размером примерно с отверстие. После измерения она схлопывается до размера детектора. Следует отметить, что в данном примере электрон имел равную априорную вероятность обнаружения на А и на Б. Авторская иллюстрация 

Теперь давайте рассмотрим некоторые альтернативные точки зрения. В 1950-е Дэвид Бом предложил интерпретацию квантовой механики, основанную на значительно более ранней идее Луи де Бройля, в которой движение частиц предопределено. Это движение управляется скрытыми субквантовыми силами, которые де Бройль назвал «волнами-пилотами». Хотя модель, основанная на этой интерпретации, в принципе детерминистична, она не предсказывает движение отдельных частиц. Она дает все те же статистические предсказания, что и все остальные интерпретации.

В своей докторской диссертации 1957 года, защищенной в Принстонском университете, Хью Эверетт III представил блестящую новую математическую формулировку квантовой механики. В ней он исключил искусственное разграничение между сферами действия квантовой и классической физики, которое существовало в копенгагенской интерпретации, а также отделался от коллапса волновой функции. И то и другое было значительным улучшением. Формулы Эверетта включали детектор вместе с наблюдаемым объектом в полную квантовую систему и заключали в себе все возможные результаты эксперимента.

В то время как математика Эверетта была безукоризненна, другие авторы попытались придать модели философскую интерпретацию, в которой при каждом акте измерения Вселенная (на самом деле) разделяется на две отдельные несвязанные вселенные. Она получила известность как многомировая интерпретация квантовой механики.

Рассмотрим ситуацию, показанную на рис. 153. Электрон может быть с равной вероятностью обнаружен на А или на Б. Вместо коллапса волновой функции математические формулы Эверетта считают обе возможности реализованными. В онтологической многомировой интерпретации эти два события происходят в отдельных вселенных, или мирах. В одном мире электрон сталкивается с А. В другом мире он сталкивается с Б. Если вероятность столкновения с А равна 3/4, а с Б — 1/4, то мы имеем четыре мира, в трех из которых электрон сталкивается с А, а в одном — с Б. Таким образом объясняется статистическая природа квантовой механики.

Действительно, при каждом измерении можно представить себе, как Вселенная расщепляется на много вселенных, по одной на каждый возможный результат эксперимента. Тем не менее мы снова получаем онтологическую установку, которая предсказывает те же эмпирические и статистические результаты, что и все остальные интерпретации квантовой механики.

Еще будучи студентом магистратуры Принстонского университета в 1940-х, Ричард Фейнман предложил математическую формулировку квантовой механики, названную суммированием по путям. Она заметно отличалась от моделей, которые в то время считались стандартными. (Разве это не чудесно, что в физике студенты магистратуры могут решить задачи, с которыми не справляются их более опытные и куда более высокооплачиваемые преподаватели?) В модели Фейнмана волновая функция и вектор состояния вообще отсутствуют, хотя они и могут быть выведены из нее.

В традиционной классической процедуре путь частицы вычисляется с помощью какого-нибудь уравнения движения, или, что то же самое, принципа (например, принципа наименьшего действия). В квантовой картине мира, предложенной Фейнманом, предполагается, что частица проходит все возможные пути между источником и детектором. В этом случае вероятность определенного акта наблюдения составляется из всех возможных путей, которые могли привести к наблюдению. Хотя суммирование по путям оказалось очень практичным и приобрело популярность среди специалистов в области элементарных частиц, оно опять же давало те же эмпирические результаты.

Фейнман никогда не пытался дать своей модели онтологическую интерпретацию. В книге «Вневременная реальность» я показал, как это понятие можно овеществить при помощи обращения времени. Хотя Эверетт не ссылается на Фейнмана и их математические аппараты различаются, идеи Эверетта и Фейнмана тождественны, а именно: включить в формулу все, что может произойти. Но обратите внимание: если существуют эмпирически непротиворечивые модели, в которых происходит все, что может произойти, это еще не значит, что все действительно происходит в объективной реальности.

Существуют и другие интерпретации квантовой механики, в том числе варианты идеи Фейнмана, которые не настолько экстравагантны, как многомировая. Проблема разных интерпретаций в том, что некоторые из них, в частности многомировая, находятся на грани метафизики. Все они согласуются с данными (иначе от них быстро отказываются), но ни одна не дает уникальных прогнозов. Поэтому мы никак не можем использовать главный принцип научного метода, эмпирическую проверку интерпретаций, чтобы выбрать лучшую из них. Поскольку методология вычислений, которую мы называем квантовой теорией, по-прежнему согласуется со всеми наблюдениями, многие мои коллеги-экспериментаторы устали от всей этой дискуссии и спрашивают: «Так что в этом нового?»

Авторы недавних публикаций отметили возможное применение многомировой интерпретации в космологии. Вспомните раздел о Бивселенной ранее в этой главе. Я писал, что так называемая волновая функция Вселенной дает вероятность обнаружения Вселенной с определенными свойствами. Если применить многомировую интерпретацию квантовой механики, то волновая функция Вселенной представляет собой множество параллельных вселенных. Выдающийся специалист в теории струн Леонард Сасскинд и другие предположили, что этот ансамбль вселенных можно связать с множественными вселенными космологической Мультивселенной, которую Сасскинд называет мегавселенной {354} .

 

Вневременная реальность

Одна из загадок уравнения Уилера — Девитта, которое дает нам волновую функцию Вселенной, — это отсутствие в нем переменной времени. Как было упомянуто ранее в разделе о бивселенной, в простейшей форме уравнение Уилера — Девитта математически сводится к квантовомеханическому независимому от времени уравнению Шрёдингера для нерелятивистской частицы с массой, равной половине планковской массы, и нулевой полной энергией, которое имеет единственное измерение, представляющее собой космологический масштабный коэффициент. Процесс его решения аналогичен одному из самых известных приложений квантовой механики — вычислению стационарных состояний атома водорода через уравнение Шрёдингера. Так можно получить энергетические уровни стабильного атома. Схожим образом волновая функция Вселенной описывает стационарное состояние Вселенной с нулевой полной энергией.

Так где же к этой картине добавляется время? Как может существовать такая модель Вселенной, в которой нет даже этого простейшего человеческого понятия — течения времени?

В 1983 году физики Дон Пейдж и Уильям Вутерс написали, что замкнутая система, в частности Вселенная, должна быть в стационарном состоянии, и поэтому время не является обязательным элементом в описании мира. Они показали, что «наблюдаемая динамическая эволюция системы может быть полностью описана в терминах стационарных объектов наблюдения».

Во второй публикации 1984 года Вутерс объяснил это более подробно:

«Любое утверждение, в котором мы упоминаем зависимость системы от времени, можно без потери эмпирического смысла переформулировать в виде: “Если часы находятся в состоянии… тогда вероятность обнаружения системы в состоянии… составляет…”» {356} .

Позже появилась масса публикаций, и с физической, и с философской точки зрения описывающих время как «производное явление». Все они очень специализированные, но я, пожалуй, смогу упрощенно передать основную идею.

В книге 2000 года «Вневременная реальность» {358} я продемонстрировал, что квантовое состояние частицы в определенном месте пространства на самом деле является линейной суперпозицией двух состояний, противоположно направленных во времени. В итоге состояние частицы вневременно. Измерение частицы разрушает связь между двумя состояниями, и время «возникает», хотя я и не упоминал этого слова. Заметьте, этот процесс симметричен относительно времени, так что Бивселенная является естественным следствием из этого.

Также следует отметить, что, как я объяснял в главе 6, пространство и время тесно связаны. По сути, и то и другое определяется операционально на основе того, что мы видим на часах. Так что если время производно, то и пространство тоже. Вутерс заметил это и предположил, что рабочая квантовая теория гравитации может быть основана на идее вневременности (и внепространственности). Об этой возможности и раньше упоминали другие авторы, но плодов она пока не принесла.

Ничто из этого не следует понимать в мистическом смысле, будто бы сознание наблюдателя-человека создает время и пространство как некую внутреннюю реалию. Время и пространство — это названия, которые мы даем количественным значениям, которые регистрируются механизмом часов и не имеют смысла без часов. Для измерения не требуется человек или еще какое-то разумное существо.

И снова мы обнаруживаем, насколько тщетны попытки придать метафизический смысл числам в физических моделях. Если вы не можете прочитать все эти публикации о производном времени (и производной гравитации), не беспокойтесь об этом. Это просто очередной пример того, как авторы пытаются логически встроить операционально определенную величину, которую мы называем временем, во всеобъемлющую модель Мультивселенной, описанную вневременным уравнением Уилера — Девитта.

 

Реальны ли множественные миры? Что вообще реально?

Космолог Макс Тегмарк уверенно заявил, что множественные вселенные и в космологии, и в квантовой механике составляют часть некой абсолютной реальности, математической по сути. Он представил так называемую гипотезу математической Вселенной (ГМВ): «Наша внешняя физическая реальность является математической структурой».

Тегмарк определяет математическую структуру как «абстрактные сущности и связи между ними». Он утверждает, что ГМВ описывает внешнюю реальность, независимую от людей и не несущую «никакой нагрузки». Под этим он имеет в виду следующее: «Наши описания сущностей во внешней реальности и связей между ними совершенно абстрактны, а слова и прочие символы, которыми они обозначаются, — всего лишь ярлыки без какого-либо предопределенного смысла».

Неожиданно для себя я соглашаюсь с Тегмарком во всем, за исключением того, чтобы называть эту схему реальностью. На основании своего опыта наблюдателя и экспериментатора я считаю уравнения теоретиков вроде Тегмарка не более чем красивым и полезным описанием того, что мы можем наблюдать своими глазами и при помощи инструментов, примерно как фотографию заката на пляже в Вайкики. При всей своей красоте фотография остается грубым творением человека, которое в лучшем случае только изображает реальность. Я верю, что картина Тегмарка соответствует этой интерпретации: описание объектов теоретической физики в виде математических соотношений между наблюдениями. Он называет это реальностью. Я называю это математическими соотношениями между наблюдениями.

Едва ли я одинок в этом мнении. В популярной книге «Высший замысел», опубликованной в оригинале в 2010 году, Стивен Хокинг и Леонард Млодинов пишут: «Не существует концепции реальности, не зависящей от картины мира или от теории». Вместо этого они продвигают философскую доктрину, которую называют моделезависимым реализмом, — «идею о том, что любая физическая теория или картина мира представляет собой модель (как правило, математической природы) и набор правил, соединяющих элементы этой модели с наблюдениями». Они добавляют: «Не имеет смысла спрашивать, реальна или нет модель мира, важно одно: соответствует ли она наблюдениям».

Я не вполне понимаю, чем моделезависимый реализм отличается от инструментализма, который я пропагандирую в этой и предыдущей книгах. В обоих случаях нас интересуют только наблюдения, и хотя мы не отрицаем, что они вытекают из некой абсолютной реальности, но и не настаиваем, что модели, описывающие наблюдения, точно соответствуют этой реальности.

Уильям Лейн Крейг, видимо, считает, что моделезависимый реализм эквивалентен онтологическому плюрализму, который означает, что существует много различных и независимо истинных реальностей. Я понимаю, как можно прийти к этой онтологической доктрине, если слишком серьезно относиться к нашим удачным теориям, как поступают многие физики-теоретики и экспериментаторы, и считать их истинной реальностью. Но это неразумно. Во-первых, любые теории всегда со временем заменяются лучшими. Во-вторых, часто, как в случае квантовой механики, у нас есть множество интерпретаций. В обоих случаях различные теории и интерпретации часто логически противоречат друг другу, хотя все они соответствуют одним и тем же данным. Если верна одна из них, то верны и все остальные.

В любом случае, я не думаю, что Хокинг и Млодинов имели в виду именно это, как должно быть понятно из цитаты, приведенной ранее. И все же их выбор термина моделезависимый реализм скорее вводит в заблуждение, чем проясняет их позицию.

Вернемся к связи между множественными мирами и Мультивселенной. На данном этапе, пока из этой дискуссии не следует никаких эмпирических результатов, значение связи между этими двумя понятиями становится вопросом личных философских взглядов. «Реальны» ли множественные миры в квантовой механике Эверетта? «Реальна» ли квантовая волновая функция? Меня, как эмпирика, вовсе не смущает, что коллапсирующая волновая функция «жуткая». Призрак Каспер тоже жуткий, но тоже создан человеком. Все миры в модели Эверетта точно так же созданы человеком: они входят в модель, которая удачно описывает наблюдения, но не дает никаких оснований считать, что они существуют в какой бы то ни было абсолютной реальности. Аналогично математическую реальность Тегмарка и моделезависимый реализм Хокинга и Млодинова не стоит принимать за ту самую абсолютную реальность, которая стоит за нашими экспериментальными данными.

 

Мультивселенная мормонов

Как мы уже знаем, христианские теологи, начиная с папы Пия XII в 1950-х и заканчивая нашим современником Уильямом Лейном Крейгом, ухватились за Большой взрыв, чтобы подтвердить сотворение конечной Вселенной конечное время назад в соответствии с общепринятой иудейско-христианско-исламской традицией. Даже теперь, когда в картине мира появилась Мультивселенная, Крейг утверждает, что она тоже была сотворена из ничего. Однако, как мы увидели в этой главе, Мультивселенная теперь считается вечной.

Не сомневаюсь, что изящное искусство христианской апологетики всегда найдет возможность примирить христианскую теологию со всем, что бы ни предложила наука, как они сделали с учениями Платона и Аристотеля: выберите то, что вам нравится, и не обращайте внимания на все остальное. Другие религии могут поступать аналогично.

Тем не менее меня восхищает то, что, по словам мормонских богословов, Мультивселенная не только отлично вписывается в их собственную космологию, но и неотделима от нее, а также помогает разрешить некоторые трудности, которые возникают с теорией Большого взрыва и единственной Вселенной.

Согласно мормонскому богослову Хайраму Андрусу, «откровения Смита о природе и порядке космоса указывают, что в пространстве существует бессчетное количество миров, населенных живыми существами разной степени развития».

И Вселенная вечна. Андрус продолжает:

«Джозеф Смит не разделял господствовавшее в то время заблуждение, что материя была создана из ничего. Напротив, он провозгласил, что материя и разум вечны и что Бог находится во времени и пространстве и является великим Организатором материи и вещей, которые существуют сами по себе. Пророк просветил свою братию о “Вечном бытии материи' утверждая, что “элементы вечны”, что “земля, вода и прочее существовали в элементарном состоянии вечно” и что “ни одна часть или частица великой Вселенной не может быть уничтожена или разрушена”».

В любом случае, так же как космологии Торы, Ветхого Завета и Корана не имеют ни малейшего сходства с современной космологией, его не имеет и космология из мормонской «Книги Авраама», которая, как и «Книга Мормона», считается божественным откровением Джозефу Смиту. Она описывает звезду или планету под названием Колоб у трона Господня, который более поздние мормонские богословы истолковали как центр Вселенной. Не стоит и говорить, что нет никаких эмпирических свидетельств существования Колоба.

 

Мультивселенная в философии и литературе

Идея множественных вселенных и альтернативных миров стала любимой темой спекулятивной философии и научной фантастики на многие годы. В серии «Звездного пути» из 1960-х под названием «Зеркало, зеркало» капитан Кирк встречается с копией самого себя. В рассказе Филиппа Дика 1963 года «Человек в высоком замке» Америка становится марионеточным государством нацистов. В рассказе Филиппа Рота 2004 года «Заговор против Америки» сторонник нацистов Чарльз Линдберг побеждает Франклина Рузвельта на выборах президента в 1940 году. Роберт Коули составил сборник рассказов видных историков под названием «А что, если бы?», в котором они представляют, какой была бы история, если бы определенные важные события произошли иначе.

Как мы знаем из главы 1, множественные миры входили в космологию античных атомистов. В своем труде «Учение академиков» римский философ Цицерон (106–43 годы до н.э.) написал:

«Или ты полагаешь, что… существуют… бесчисленные другие миры… И как сейчас мы, находясь в Бавлах, видим Путеолы, так существует бесчисленное множество “нас” в тех же самых местах, с теми же именами и званиями, с теми же поступками, с теми же характерами, так же выглядящих, в том же возрасте, ведущих спор о том же самом?» {373}

Из главы 3 мы узнали, что великий философ Лейбниц допускал существование множества других миров. Он оправдывал существование милосердного божества в мире, полном зла и страдания, предполагая, что это все равно «лучший из возможных миров». Он изобразил бесконечную пирамиду с местом для каждого возможного мира, расположив наш мир, единственный истинный, на вершине.

Наконец, множественные миры, которые упоминались в предыдущих разделах и о которых говорили всевозможные исторические личности, не стоит слишком буквально расценивать как предвосхищение концепции множественных вселенных научной Мультивселенной. Эти люди скорее представляли себе другие миры типа Земли, чем другие вселенные.

В последней главе мы рассмотрим теологические следствия существования множества планет и вселенных.

 

Глава 16.

ЖИЗНЬ И БОГ

 

Планеты и жизнь

За последнее время появилось немало новых свидетельств того, что Вселенная битком набита планетами. Это еще один гигантский шаг вперед в познании Вселенной, который сыграет важную роль, когда мы будем рассматривать теологическую подоплеку космоса в его современном понимании. Более того, вполне вероятно, что среди этих планет есть большое количество миров, подходящих для поддержания какой-либо формы жизни, имеющей химическую природу. Это даже не учитывая возможности существования нехимических форм жизни.

У нас никогда не было теоретических оснований считать, что планеты немногочисленны. Но найти конкретные свидетельства их изобилия оказалось непросто из-за яркости звезд, вокруг которых они обращаются. Так или иначе, современные технологии в очередной раз справились с этой задачей.

Только около дюжины планет было обнаружено прямым наблюдением, и все они, кроме одной, Фомальгаут b, оказались значительно больше Юпитера. Однако еще тысячи были открыты по косвенным признакам, то есть тому, что движение планеты вызывает видимые изменения в свете родительской звезды. На 6 ноября 2013 года в «Энциклопедии внесолнечных планет» было перечислено 1039 подтвержденных планет.

Космический телескоп «Кеплер» был запущен 7 марта 2009 года специально для поиска планет размером примерно с Землю. По данным на ноябрь 2013 года, «Кеплер» подтвердил обнаружение 167 планет, а еще 3568 кандидатов ожидали подтверждения. 11 мая 2013 года из-за поломки маховиков, которые использовались для управления аппаратом, основную миссию пришлось завершить. Однако остальная часть системы исправна, и сейчас «Кеплер» работает в новом режиме.

Четвертого ноября 2013 года астрономы из Калифорнийского и Гавайского университетов сообщили об итогах анализа уровней яркости 42 тыс. звезд, которые были измерены в миссии «Кеплера». Были обнаружены 603 планеты, включая 10 размером с Землю, то есть с радиусом в 1–2 радиуса Земли, которые к тому же получают сопоставимое количество энергии от своих звезд. Иными словами, эти планеты обращаются в обитаемой зоне и на их поверхности может существовать жидкая вода.

Авторы сделали вывод, что 22% солнцеподобных звезд имеют планеты размером с Землю в своих обитаемых зонах. Более того, они предполагают, что ближайшая такая планета может находиться на расстоянии всего 12 световых лет от нас.

Сет Шостак, старший астроном института SETI (Searchfor Extraterrestrial Intelligence, «Поиск внеземного разума»), смог выжать из этих данных еще больше информации. Поскольку солнцеподобные звезды составляют около 20% из примерно 200 млрд. звезд Млечного Пути, в нашей Галактике имеем 9 млрд. планет, пригодных для жизни. Кроме того, Шостак ссылается на другой анализ данных телескопа «Кеплер», согласно которому 16% красных карликов имеют планеты в обитаемой зоне. Это добавляет еще 24 млрд. кандидатов, что в результате дает 33 млрд. возможно обитаемых миров в нашей Галактике.

Поскольку в видимом космосе около 150 млрд. других галактик, в результате умножения получаем 5 000 000 000 000 000 000 000 (5 секстильонов) планет в пределах нашей зоны видимости, подходящих для жизни в какой-либо форме. Правда, это число может отличаться от реальности на несколько порядков, так что просто запомните: оно очень, очень большое.

Это только планеты в пределах 46 млрд. световых лет от Земли — предела, за которым свет не может достичь нас за 13,8 млрд. лет существования Вселенной. Если теория инфляции верна, то за этой границей находится гораздо большая область пространства, которая, по оценке Алана Гута, содержит как минимум на 23 порядка больше галактик, чем в нашей зоне видимости. А скорее всего, намного больше.

Это не чисто умозрительная оценка. Она основана на эмпирически обоснованной космологии. Заметьте, я не говорю здесь о других вселенных — только о нашей Вселенной, которая появилась в единственном Большом взрыве.

Оценки возможности существования жизни вне Земли более абстрактны. Пока у нас нет доказанной теории зарождения жизни, непременно найдутся любители поспорить, что она могла появиться только благодаря чудесному сотворению. Как мы увидим далее в этой главе, жизнь на других планетах, особенно разумная жизнь, представляет значительные трудности для традиционных религий, которые формулировались людьми, чьи представления о Вселенной ограничивались Землей в центре всего.

Однако на основе современных знаний трудно представить, что в этой необъятной Вселенной не найдется бесчисленного множества планет с какой-либо формой жизни. Эта жизнь, скорее всего, сильно отличается от нашей, учитывая главенствующую роль случайностей в биологической эволюции. Все, что нам известно о нашей разновидности жизни, основанной на углеродной химии, — это то, что она легко и быстро развилась на Земле, как только там появились подходящие условия. Также мы знаем, что химические вещества, необходимые для нашего типа жизни, в том числе аминокислоты, присутствуют в космосе в большом количестве. Мы просто еще не нашли никаких свидетельств внеземной жизни из-за колоссальных расстояний между звездами.

 

Вопрос точной настройки

В последние годы многие теологи и христианские апологеты убедили себя и своих последователей в том, что у них есть сокрушительный и бескомпромиссный научный аргумент в пользу существования Бога. Они утверждают, что параметры физики настолько точно настроены, что если бы хоть один из этих параметров слегка отличался от своего нынешнего значения, то жизнь — а тем более жизнь человека — была бы невозможна нигде во Вселенной.

Разумеется, как и все аргументы в защиту творения, это доказательство от незнания, которое в принципе не может никого убедить, поскольку невозможно последовательно доказать, что значения этих параметров не могут быть естественными. Но они не оставляют своих попыток.

Предполагая без всяких на то оснований, что эти параметры независимы и могли принять любое значение из широкого диапазона, они заключают, что вероятность появления Вселенной с конкретно нашим набором параметров бесконечно мала. Предполагая далее без всяких на то оснований, что вероятность наличия божественного создателя не столь же бесконечно мала, они заключают, что существовал такой создатель, который точно настроил Вселенную для жизни, а конкретно для жизни человека. Заметьте, что к тому же нет никаких оснований полагать, что этим создателем был персонализованный Бог, почитаемый христианами, мусульманами и иудеями, или же бог любой другой распространенной религии. Деистический создатель подходит не лучше. Уильям Лейн Крейг в своем споре с философом Массимо Пиглиуччи в 1998 году (и в других спорах, изложение которых можно найти на его сайте) связал аргументы таким образом:

«За последние 30 лет ученые выяснили, что существование разумной жизни зависит от сложного и тонкого баланса начальных условий, которые установились в самом Большом взрыве. Теперь мы знаем, что неподходящие для жизни вселенные куда более вероятны, чем сколько-нибудь подходящие, как наша. Насколько более вероятны?

Ответ таков: вероятность того, что Вселенная окажется подходящей для жизни, настолько исчезающе мала, что ее невозможно постичь и подсчитать.

По оценке Джона Барроу и Франка Типлера, изменение силы гравитации или слабого взаимодействия лишь на одну часть из 10 100 исключило бы возможность существования жизни во Вселенной {379} *. В Большом взрыве около 50 таких величин и констант, которые должны были быть точно настроены именно так, как это есть сейчас, чтобы Вселенная допускала существование жизни. И не только каждая величина должна быть настроена идеально точно; их соотношения между собой тоже должны быть точно настроены Таким образом, невероятность умножается на невероятность и на невероятность, пока у нас не закружится голова от непостижимых чисел» {380} .

То, что у Крейга кружится голова и он лично не может постичь эти числа, еще не значит, что они действительно непостижимы для всех остальных.

Я много писал на тему точной настройки, но для полноты изложения следует пройтись по некоторым моментам и здесь. Я постараюсь привести эту тему в соответствие с современными данными и по возможности обойтись без лишних повторений. Недавно я подготовил главу с аргументами против точной настройки для антологии, издаваемой в издательстве Оксфордского университета «Дискутируя о христианском теизме» (Debating Christian Theism) и буду ссылаться на этот материал. Христианский философ Робин Коллинз из колледжа Мессиа привел доводы в пользу точной настройки в сопутствующей главе. В ней он критикует многие из моих прошлых аргументов, и здесь я отвечу на его критику. Эти ответы еще нигде не публиковались.

Мультивселенная предлагает очень простое и совершенно естественное решение проблемы точной настройки. Пусть наша Вселенная — лишь одна из неограниченного количества отдельных вселенных, которые простираются на неограниченные расстояния во всех направлениях и на неограниченное время в прошлое и в будущее. В таком случае нам просто случилось жить в такой Вселенной, которая подходит для нашего типа жизни. Не наша конкретная Вселенная точно настроена под нас, а мы точно настроены под нее.

Объяснения о Мультивселенной достаточно, чтобы отмести аргумент о точной настройке. Отметим, что гипотеза о Мультивселенной не обязательно должна быть доказана, чтобы отразить претензии к точной настройке. Она лишь должна быть правдоподобна. На тех, кто спорит с этим, лежит бремя доказательства обратного. Этого они не сделали.

В любом случае гипотеза Мультивселенной пока не проверена, так что нам следует продолжить проверку правдоподобия гипотезы божественной точной настройки для нашей одной-единственной Вселенной.

В своей книге 2011 года под названием «Заблуждение о точной настройке» (The Fallacy of Fine Tuning) я предложил исключительно естественные объяснения значений так называемых точно настроенных параметров, которые чаще всего упоминаются в теистической литературе.

Многие авторы писали о проблеме точной настройки, зачастую употребляя вводящий в заблуждение термин антропный принцип, который предполагает, что она как-то связана с людьми. Они настаивают на том, что определенные параметры настроены с идеальной точностью. И под идеальной точностью они имеют в виду вовсе не погрешность в пределах порядка 10% или даже 1%. Напротив, они утверждают, что некоторые параметры должны быть настроены с точностью до одной части на 50–100 порядков, чтобы было возможно существование жизни.

Прежде чем я перейду к конкретным параметрам, которые, предположительно, настолько точно настроены, позвольте мне сказать пару слов о моей базовой интерпретации их смысла. Физические модели созданы человеком, а значит, и все величины, параметры и законы, которые возникают в этих моделях, тоже в известной степени искусственны. Меня поражает, когда их считают точно настроенными Богом или природой, мне это кажется просто абсурдным. У физиков из другой галактики могли бы быть свои модели с совершенно другим набором параметров.

Таким образом, параметры, которые, предположительно, были точно настроены, не обязаны иметь какую-то особую онтологическую значимость. Естественно, модели должны согласоваться с наблюдениями, и, следовательно, как я уже подчеркивал, они должны как-то соотноситься с объективной реальностью, какой бы она ни была. Они не произвольны, так же как пейзаж не является случайным набором разноцветных пятен (если его написал не Джексон Поллок).

Перейдем к конкретике. Физик и апологет христианства Хью Росс перечисляет 29 «характеристик Вселенной» и 45 характеристик Солнечной системы, «которые должны быть точно настроены, чтобы была возможна какая-либо жизнь». Прежде всего это утверждение неверно. Больше половины параметров Росса относятся не к жизни в целом, а к жизни только на нашей планете, а некоторые даже конкретно к жизни человека.

Самое частое заблуждение, которым грешат Росс и его единомышленники, — то, что они усматривают нечто особенное в углеродной жизни, которая существует на Земле, и предполагают, что это единственно возможный тип жизни. По христианским верованиям, люди созданы по образу и подобию Бога (Бытие 1:26), так что неудивительно, что им затруднительно представить другие формы жизни. Однако, поскольку имеется лишь один пример, у них просто недостаточно данных, чтобы заключить, что все остальные формы жизни невозможны, основаны они на углеродной химии или нет.

Говоря о возможности того, что параметры могут варьироваться случайным образом, Коллинз спрашивает: «Почему они должны были повлечь за собой точно тот набор законов, который необходим для жизни?» Собственно, в этом-то все дело. Они не должны были быть точными, чтобы привести к какой-то форме жизни где-то в этой обширной Вселенной. В книге «Заблуждение о точной настройке» я показал, что широкие диапазоны физических параметров вполне могли привести к таким условиям, как, например, большое время жизни звезд, которые в принципе могли бы подойти для эволюции жизни в той или иной форме.

 

Тривиальные параметры

Вот два параметра, которые встречаются в большинстве списков точно настроенных величин:

♦ скорость света в вакууме c;

♦ постоянная Планка ħ.

Какими бы базовыми эти параметры ни были для физики, их значения произвольны. Фундаментальная единица времени в физике — это секунда. Как мы видели в главе 6, единицы измерения для всех остальных измеримых величин в физике, кроме безразмерных, определены относительно секунды. Значение с выбирается так, чтобы задать единицы, которые будут использоваться для измерения расстояний. Чтобы измерить расстояние в метрах, вы выбираете c = 3∙108. Чтобы измерить расстояние в световых годах, вы выбираете с = 1.

Значение постоянной Планка ħ выбирается так, чтобы задать единицы, которые будут использоваться для измерения энергии. Чтобы измерить энергию в джоулях, вы выбираете ħ = 6,626∙10-34. Чтобы измерить энергию в электрон-вольтах, вы выбираете ħ = 4,136∙10-15. Физики любят работать в так называемых естественных единицах измерения, где ħ = h/2π = с = 1. Среди других произвольных величин, которые часто называют точно настроенными, — постоянная Больцмана kB, которая просто преобразует значение из единиц абсолютной температуры, Кельвинов, в энергию, и гравитационная постоянная Ньютона G, которая тоже зависит от выбора единиц измерения. В планковской системе единиц G = 1.

 

Параметры, необходимые для любой формы жизни

Перейдем к менее тривиальному. Давайте рассмотрим пять параметров, которые теисты считают настолько точно настроенными, что никакая форма жизни не могла бы существовать ни в одной вселенной, где значение любого из них отличалось бы на малейшую долю от значения в нашей Вселенной.

Это:

♦ соотношение между количествами электронов и протонов во Вселенной;

♦ соотношение между электромагнитным взаимодействием и гравитацией;

♦ скорость расширения и массовая плотность Вселенной;

♦ космологическая постоянная.

Соотношение между количествами электронов и протонов во Вселенной. Росс утверждает, что если бы электронов было больше, то химические связи были бы слишком слабыми. А если бы меньше, то электромагнетизм пересилил бы гравитацию, что исключило бы образование галактик, звезд и планет.

Тот факт, что это соотношение равно единице, легко объясним. Количество электронов во Вселенной должно быть равно количеству протонов из-за сохранения заряда исходя из разумного ожидания, что общий электрический заряд Вселенной равен нулю. Хотя в стандартной модели есть и другие заряженные частицы, только протон и электрон стабильны.

Соотношение между электромагнитным взаимодействием и гравитацией. Росс говорит, что если бы электромагнитное взаимодействие было сильнее по отношению к гравитации, то не было бы звезд массой меньше 1,4 массы Солнца, из чего следует короткое и неравномерное горение звезды. Если бы оно было слабее, то не было бы звезд массой больше 0,8 массы Солнца, из чего следует отсутствие синтеза тяжелых элементов.

Соотношение сил взаимодействий между двумя частицами зависит от их зарядов и масс. Как я уже отмечал, вопреки утверждению, которое можно часто услышать в большинстве кабинетов физики (если не во всех), — что гравитация гораздо слабее электромагнетизма, — нет никакого способа определить абсолютное соотношение между силой гравитации и силой любого другого взаимодействия. В самом деле, если бы вам нужно было оценить силу гравитации, используя только естественную массу — планковскую массу, вы бы обнаружили, что гравитация в 137 раз сильнее электромагнетизма.

Причина того, что гравитация в атомах настолько слаба, заключается в малых массах элементарных частиц. Это можно понять как следствие стандартной модели элементарных частиц, в которой частицы сами по себе имеют нулевые массы, а небольшие поправки вносятся благодаря взаимодействиям с другими частицами.

Коллинз неправильно понимает этот момент, говоря: «Попытка Стенджера оправдать эту явную точную настройку [малую массу протона и нейтрона] — это все равно что объяснять малые значения масс протонов и ней.

Это совершенно неверное представление моей позиции. Я нигде не использовал этот аргумент. Коллинз не приводит никакой прямой цитаты или ссылки. На самом деле я сделал весьма разумное предположение, основанное на стандартной модели, что все элементарные частицы (протон и нейтрон не элементарны) были безмассовыми, когда они только возникли в начале существования Вселенной. Все они сейчас имеют малые массы по сравнению с планковскои массой, поскольку эти массы являются всего лишь небольшими поправками, привнесенными хиггсовским механизмом. И прежде, чем Коллинз возразит, что хиггсовский механизм — это очередное произвольное допущение, напомню, что он является частью стандартной модели, которая самопроизвольно возникла из симметрии пустоты и случайных нарушений симметрии.

Скорость расширения и массовая плотность Вселенной. Росс заявляет, что если бы скорость расширения Вселенной, заданная постоянной Хаббла Н, была больше, то не смогли бы сформироваться галактики; а если бы меньше, то Вселенная схлопнулась бы еще до образования звезд. Также он утверждает, что если бы средняя массовая плотность Вселенной была больше, то при Большом взрыве образовалось бы слишком много дейтерия и звезды сгорали бы слишком быстро. Если бы она была меньше, то при Большом взрыве образовалось бы недостаточно гелия и сформировалось бы слишком мало тяжелых элементов.

В главе 12 мы узнали, что из-за инфляции массовая плотность Вселенной оказывается очень близкой к критическому значению ρc. Из этого, в свою очередь, вытекает, что Н тоже имеет критическое значение. Только один из этих двух параметров настраивается. Допустим, это Н.

Далее при приближенно-линейном расширении, согласно закону Хаббла (см. главу 8), возраст Вселенной определяется как Т = 1/Н. Сейчас он составляет 13,8 млрд. лет, и едва ли он точно настроен для жизни. Жизнь могла бы с тем же успехом появиться при T = 12,8 млрд. лет или Т = 14,8 млрд. лет. Вообще возьмем Т = 1,38 млрд. лет. Тогда у нас могло бы не быть жизни сейчас, но она бы появилась через 10 млрд. лет или около того. Или возьмем Т = 138 млрд. лет. Тогда бы жизнь уже возникла около 124 млрд. лет назад.

Космологическая постоянная. Космологическая постоянная равна энергетической плотности вакуума, и она лучше всего подходит на роль темной энергии, которая ответственна за ускорение расширения Вселенной и составляет более 68% общей массы-энергии Вселенной,

В главе 13 мы увидели, что расчеты энергетической плотности вакуума, в которых она приравнивается к энергии нулевых колебаний, дают результаты, которые на 50–120 порядков превышают максимальное значение, допускаемое наблюдениями.

Физики еще не пришли к консенсусу относительно решения проблемы космологической постоянной. Некоторые выдающиеся ученые, в частности Стивен Вайнберг и Леонард Сасскинд, считают, что ответ связан с множественными вселенными. Оба ссылаются на тот факт, что теория струн, как и ее усовершенствованная версия — М-теория, предлагает «ландшафт» из примерно 10500 различных возможных вселенных. Но мы не нуждаемся в подобных допущениях.

Как я подчеркнул в главе 13, в исходных расчетах энергетической плотности содержалась фундаментальная ошибка — суммирование всех состояний в данном объеме. Поскольку энтропия системы определяется количеством доступных состояний системы, то энтропия, вычисленная при помощи суммирования по объему, будет больше энтропии черной дыры того же размера, которая зависит от ее площади, а не от объема. Но поскольку мы не можем заглянуть в черную дыру, то информация о том, что находится внутри нее, настолько мала, насколько возможно, а значит, энтропия максимальна.

Следовательно, было ошибочно рассчитывать количество состояний суммированием по объему. Если заменить эту операцию на суммирование по площади, или, что то же самое, принять количество состояний равным энтропии черной дыры того же объема, мы сможем естественным образом ограничить энергетическую плотность вакуума. В результате этого расчета мы получим, что энергетическая плотность вакуума в пустой Вселенной будет примерно равна критической плотности, то есть как раз тому значению, которое она, судя по всему, имеет.

По техническим причинам космологи не готовы принять это решение проблемы космологической постоянной. Так или иначе, я считаю, что будет честно признать исходный расчет попросту ошибочным — самым ошибочным расчетом в истории физики — и игнорировать его. В любом случае, не стоит отказываться от всех земных благ и уходить в монастырь только из-за того, что космологическая постоянная столь мала.

 

Другие параметры

Мы разобрались с пятью параметрами, которые, предположительно, настолько точно настроены, что даже малейшее отклонение сделало бы жизнь любого рода невозможной. Отмечу, что только четыре из них независимы, вопреки утверждениям теистов. Теперь перейдем к тем параметрам, о которых сторонники тонкой настройки могут сказать только то, что жизнь была бы очень маловероятна, если бы значения этих параметров были хотя бы немного иными.

Прогноз Хойла. В главе 9 мы рассмотрели блестящее достижение астронома Фреда Хойла и его коллег — они смогли показать, каким образом большинство элементов периодической таблицы формируются в звездах во время гравитационного коллапса после выгорания всего водородного топлива. В 1951 году Хойл предсказал, что ядро атома углерода должно иметь возбужденное состояние на уровне примерно 7,7 МэВ относительно основного состояния, чтобы в звездах могло образоваться достаточно углерода для существования жизни. Эта история представляет серьезный исторический интерес, поскольку это единственный пример того, как антропная аргументация привела к эмпирически подтвержденному прогнозу. Вскоре после этого возбужденное состояние было обнаружено при 7,656 МэВ.

Однако более поздние вычисления показали, что то же количество углерода образовалось бы, если бы возбужденное состояние находилось где угодно в промежутке от 7,596 до 7,716 МэВ. Более того, углерода было бы достаточно для жизни при любом возбужденном состоянии от уровня чуть выше основного состояния и до 7,933 МэВ. Возбужденного состояния где-либо в таком широком диапазоне можно ожидать, исходя из стандартной теории ядра. Не говоря уже о том, что углерод — не единственный элемент, на котором может быть основана жизнь.

Относительные массы элементарных частиц. Массы элементарных частиц влияют на многие свойства Вселенной, и большое количество претензий к точной настройке относится к их значениям. Позвольте мне начать с разности между массами нейтрона и протона. Если бы разность масс нейтрона и протона была меньше суммы масс электрона и нейтрино (масса нейтрино в нашей Вселенной пренебрежимо мала для данного расчета, но в какой-то другой вселенной может быть иначе), то не было бы нейтронного распада. В начале существования Вселенной электроны и протоны соединились бы, образуя нейтроны, и протонов осталось бы мало, если не нисколько. Если бы разность масс была больше, чем энергия связи ядер, то нейтроны в ядрах распадались бы и от ядер ничего не осталось.

Для разности масс остается диапазон около 10 МэВ, при котором могла бы сформироваться вся периодическая таблица. Реальная разность масс составляет 1,29 МэВ, так что фактически это значение могло быть гораздо выше. Поскольку массы протона и нейтрона в первом приближении равны и разница появляется благодаря небольшой электромагнитной поправке, то она вряд ли достигла бы 10 МэВ.

Теперь давайте рассмотрим массу электрона, которая тоже влияет на нейтронный распад. Меньшая масса электрона оставляет большее пространство для допущений при расчете параметров для нейтронного распада, тогда как большая масса — меньше.

Соотношение масс электрона и протона помогает определить диапазон параметров, в котором химия не отличается от нашей. Можно показать, что эта область довольно значительна и тоже не свидетельствует в пользу точной настройки.

Относительные силы взаимодействий и другие физические параметры. Безразмерные относительные силы взаимодействий — еще один набор физических параметров, объявляемых точно настроенными по причинам, которые мне кажутся недостаточно вескими. Параметр силы гравитации а является произвольным, так что настраивать в нем нечего. Как мы уже знаем, так называемая слабость гравитации по сравнению с электромагнитным взаимодействием между элементарными частицами обусловлена их малыми массами, а не относительными силами самих взаимодействий.

Теперь давайте рассмотрим безразмерную силу слабого взаимодействия α W . Росс заявляет, что она точно настроена, чтобы получились нужное количество гелия и нужный объем производства тяжелых элементов в Большом взрыве и в звездах. Здесь ключевой момент — это соотношение количеств нейтронов и протонов в начале существования Вселенной, когда по мере ее остывания производящие их реакции вышли из равновесия. Допустимый диапазон параметров довольно широк.

Сила электромагнитного взаимодействия представлена в виде безразмерного параметра α, который по историческим причинам называется «постоянная тонкой структуры» и имеет значение 1/137 при низких энергиях. Росс говорит, что химические связи были бы недостаточно сильными, если бы она была другой. Но, как я доказал в книге «Заблуждение о точной настройке», многоэлектронное уравнение Шрёдингера, которое управляет большей частью химии, может изменяться относительно а и массы электрона. Повторю еще раз: очень широкий диапазон подходит для знакомой нам химии, в частности химии жизни.

Есть много примеров, где задействуется значение а в сравнении с другими параметрами. Я объяснил слабость гравитации по сравнению с электромагнетизмом в веществе низкими реальными массами элементарных частиц. Этот же эффект может быть достигнут при большем значении α, но маловероятно, чтобы оно оказалось на несколько порядков больше.

Отношение значений а и параметра сильного взаимодействия αs тоже важно в некоторых случаях. Если варьируются оба параметра, то не требуется никакой точной настройки, чтобы были возможны и стабильные ядра, и свободные протоны.

Еще два факта, которые игнорирует большинство сторонников точной настройки:

♦ параметры взаимодействий α, αs и αW не являются постоянными, а изменяются в зависимости от энергии;

♦ эти параметры не независимы.

Ожидается, что параметры взаимодействий будут равны при какой-то энергии объединения. Более того, все три связаны в нынешней стандартной модели и, скорее всего, останутся взаимосвязанными в любой удачной модели. Едва ли они когда-нибудь будут различаться на много порядков.

Другие параметры, такие как скорость распада протонов и избыток барионов в начале существования Вселенной, могут изменяться в довольно широких пределах, прежде чем они приведут к возникновению угрожающей жизни радиации.

Космические параметры. Мы уже избавились от космических параметров, которые полагались столь критичными для существования сколько-нибудь пригодной для жизни вселенной: массовой плотности Вселенной, скорости расширения и соотношения количества протонов и электронов. Они не просто неточно настроены — они зафиксированы общепринятой физикой и космологией, а если говорить о постоянной Хаббла, то практически любое ее значение подошло бы для существования жизни.

Аналогично распространенность дейтерия имеет мало отношения к наличию жизни. Количество, необходимое для жизни, невелико, и допустимый диапазон составляет два порядка.

Королевский астроном Великобритании Мартин Рис и другие утверждают, что неоднородность материи во Вселенной, представленная величиной Q, должна была быть точно настроена в пределах порядка, чтобы стало возможно формирование галактик. Порядок — это едва ли тот случай точной настройки, который имеют в виду теисты, они чаще упоминают одну часть на 50–100 порядков. Ктомуже, если менять массу нуклонов вместе с Q, можно опять же расширить диапазон параметров для жизни.

В главе 14 мы обсудили модель LCDM, которая точно соответствует данным об анизотропиях реликтового излучения и согласуется с наблюдениями структуры галактик. В этой модели только шесть настраиваемых параметров, ни один из которых не входит в список, вокруг которого Росс и другие приверженцы божественной точной настройки устроили столько шума. Плотность материи не является параметром, а предполагается равной критическому значению. Скорость расширения (постоянная Хаббла) не является настраиваемым параметром, а вычисляется из модели. Единственный параметр — это отношение плотности темной энергии к критической плотности. Параметр Риса Q не входит в число этих шести, но он неявно присутствует в расчете структуры галактик.

Короче говоря, сторонникам божественной точной настройки стоит вернуться к чертежной доске, просчитать модель LCDM при разных наборах параметров и показать, что жизнь в любой форме была бы невозможна, если бы эти шесть параметров не были именно такими, каковы они в нашей Вселенной.

Моделирование вселенных. Совокупные свойства Вселенной в том виде, какой мы знаем ее сейчас, определяются лишь тремя физическими параметрами: силой электромагнитного взаимодействия α и массами протона и электрона m p и m е . Исходя из них, мы можем оценивать такие величины, как максимальное время жизни звезд, минимальные и максимальные массы планет, минимальная длина планетарного дня и максимальная продолжительность года для обитаемой планеты. Сгенерировав 10 тыс. вселенных, в которых параметры варьировались случайно по логарифмической шкале в диапазоне 10 порядков, я обнаружил, что в 61% вселенных время жизни звезд превышало 10 млрд. лет, что допускает развитие какой-нибудь разновидности жизни.

Коллинз ранее возражал против сделанного мной предварительного вывода двадцатилетней давности о том, что длительное время жизни звезд не является точно настроенным. Он полагает, что не все из этих вселенных подходят для жизни и что я не учел свойства, препятствующие жизни. Он ссылается на Джона Барроу и Франка Типлера, которые в своем классическом (хотя и содержащем множество опечаток и математических ошибок) труде «Антропный космологический принцип» (The Anthropic Cosmological Principle) привели оценку, что должно выполняться соотношение α ≤ 11,8αs, чтобы углерод был стабильным.

Поскольку в своем исследовании я варьировал все параметры в пределах 10 порядков, я не ожидал, что такой строгий критерий будет выполняться часто. Тем не менее я проверил это и обнаружил, что условие Барроу — Типлера удовлетворялось в 59% случаев. Я также изучил, что происходит, когда параметры варьируются в пределах всего двух порядков. Тогда в 91% случаев α ≤ 11,8αs. И снова я должен подчеркнуть, что сторонники точной настройки заявляют о куда большей чувствительности, чем изменение в пределах порядка.

Если наложить на все три параметра достаточно жесткие ограничения, чтобы получить жизнь, то 13% вселенных способны поддерживать жизнь какого-либо рода, не слишком отличную от нашей, при изменении параметров в пределах 10 порядков. Если же они варьируются в пределах двух порядков, что более реалистично, поскольку параметры не независимы, а взаимосвязаны, то в 92% вселенных время жизни звезд превышает 10 млрд. лет, а 37% способны поддерживать жизнь какого-либо рода, не слишком отличную от нашей. Жизнь, сильно отличающаяся от нашей, остается возможной в значительной части остальных вселенных, в первую очередь судя по большому времени жизни звезд.

Я не говорю, что объяснил значения всех параметров физики и космологии. В этом нет необходимости, если я хочу опровергнуть заявления оппонентов, что многие параметры настроены с невероятной точностью, такой как 1 часть на 120 порядков. Неточность в 1%, 10% или даже на порядок, как в случае параметра неоднородности Q, не считается точной настройкой.

 

Краткий обзор доводов против точной настройки

Далее приведен список логических и научных ошибок приверженцев точной настройки (не все они делают все эти ошибки), которые я обнаружил при изучении этого вопроса.

♦ Они делают заявления о точной настройке, исходя из параметров нашей Вселенной и нашей формы жизни, игнорируя возможность существования других форм жизни.

♦ Они заявляют о точной настройке физических постоянных, значения которых произвольны, таких как с, ħ и G.

♦ Они называют точно настроенными величины, значения которых строго определены космологической физикой или имеют широкий допустимый диапазон, такие как соотношение количеств электронов и протонов, скорость расширения Вселенной и массовая плотность Вселенной. Они даже не считаются переменными в современной стандартной космологической модели.

♦ Они утверждают, что отношение сил электромагнитного и гравитационного взаимодействий точно настроено, притом что на самом деле эта величина не может быть определена для всех случаев.

♦ Они утверждают, что возбужденное состояние ядра атома углерода должно было быть точно настроено, чтобы звезды могли произвести достаточно углерода для жизни, в то время как расчеты показывают, что при широком диапазоне значений энергетического уровня этого состояния образовалось бы достаточно углерода.

♦ Они заявляют о точной настройке масс элементарных частиц, в то время как ограничения для этих масс заданы общепризнанной физикой и этих ограничений достаточно, чтобы какая-то форма жизни была возможна.

♦ Они предполагают, что силы разных взаимодействий — это постоянные, которые могут независимо изменяться от одной вселенной к другой. На самом деле они зависят друг от друга и различаются при разных энергиях, и их относительные значения и зависимости от энергии уже почти строго определены теорией, по крайней мере находятся в пределах, которые допускают существование какой-либо разновидности жизни.

♦ Большинство из них совершают серьезную аналитическую ошибку, изменяя только один параметр за раз и считая все остальные фиксированными. Таким образом они упускают тот факт, что изменение одного параметра может быть компенсировано изменением другого, благодаря чему расширяется диапазон параметров пригодной для жизни вселенной.

♦ Они неправильно понимают или неправильно используют теорию вероятностей, игнорируя тот факт, что события с «умопомрачительно» низкими вероятностями происходят миллиарды раз в день. Единственный способ использовать малую вероятность как аргумент в пользу того, что нечто вряд ли случится, — это сравнить ее с вероятностями всех альтернативных вариантов. Какова вероятность Бога? В книге «Заблуждение о точной настройке» я сравнил расчеты вероятности Бога, сделанные двумя физиками, одним верующим и одним неверующим, при помощи замысловатой байесовской статистики. Верующий получил результат 0,67, а неверующий — 10-17!

♦ Они заявляют, что многие параметры Земли и Солнечной системы точно настроены для жизни, но не задумываются о том, что среди квадриллиона планет в видимой Вселенной, находящихся в зонах обитаемости своих звезд, и бесчисленного их множества за пределами нашей видимости с большой вероятностью найдется немало планет с подходящими для жизни свойствами. И все-таки едва ли Вселенную можно назвать благоприятной для жизни. Если бы Бог хотел точно настроить ее для жизни, он мог бы сделать ее куда благоприятнее.

♦ Сторонники точной настройки неправы и в том, что отвергают объяснение с использованием мультивселенной как ненаучное. Вовсе не ненаучно строить предположения о невидимых и неподтвержденных явлениях, предсказываемых существующими моделями, которые пока что согласуются со всеми известными данными. Существование нейтрино было предсказано в 1930 году на основе общепринятого принципа сохранения энергии, но зафиксирована частица была только в 1956 году, и то непрямым образом. Если бы физическое сообщество и финансирующие организации руководствовались тем же принципом, что и приверженцы точной настройки, то мой ныне покойный коллега Фред Рейнес и его (тоже покойный) соавтор Клайд Коуэн не смогли бы получить финансирование и поддержку, чтобы приступить к исследованию, в ходе которого наконец были обнаружены нейтрино.

♦ Современная и весьма удачная космологическая модель LCDM содержит только шесть параметров, и никто еще не показал, что какой-либо из них точно настроен.

Как следует из моих рассуждений, то, что кажется точной настройкой, объясняется технически и требуется определенная подготовка, чтобы понять эти объяснения. После выполнения должного анализа оказывается, что нет никаких свидетельств точной настройки Вселенной для жизни, а все, что за них выдается, — это очередной пример доказательства от незнания, которое обречено на провал из-за неявной предпосылки, что существуют явления, которые наука никогда не сможет объяснить без привлечения Бога.

 

Нечто, а не ничто

Поскольку космическим креационистам никак не удается использовать науку, чтобы найти убедительные доводы в пользу существования Бога-творца, они часто прибегают к трем вопросам, которые приведены далее в порядке увеличения философичности.

♦ Как нечто может появиться из ничего?

♦ Откуда взялись законы физики?

♦ Почему есть нечто, а не ничто?

Как нечто может появиться из ничего? Первый вопрос еще можно обсуждать преимущественно с научной точки зрения. Позвольте мне переформулировать его: как вещество может появиться из невещества?

Вселенная имеет массу, которая является мерой количества вещества, и поскольку масса и энергия покоя эквивалентны, может показаться, что закон сохранения энергии должен был нарушиться, чтобы вещество Вселенной создалось из ничего.

Однако мы уже увидели, что если учесть отрицательную потенциальную энергию гравитации, то общая энергия Вселенной равна нулю плюс-минус квантовые неопределенности. Поэтому закон сохранения энергии не нарушился, когда Вселенная появилась из прежнего состояния нулевой энергии и нулевого количества вещества. Определенно никакие законы физики не нарушились при появлении нашей Вселенной. И разумеется, никакие законы физики не нарушились при появлении Мультивселенной, поскольку она существовала всегда.

Следует отметить, что ведется широкая дискуссия о том, можно ли определить общую энергию Вселенной в рамках общей теории относительности. С обеих оппонирующих сторон выступают выдающиеся физики и космологи. Я не буду вдаваться в этот вопрос, поскольку он очень узкоспециализированный.

Однако у меня есть простое наблюдение. Как я уже объяснял, согласно теореме Нётер закон сохранения энергии должен присутствовать в любой модели, которая претендует на применимость во всех случаях. Общая теория относительности Эйнштейна — это модель. Если вы строите модель на основе общей теории относительности, у вас есть два варианта: включить в свою модель энергию и закон сохранения энергии, чтобы попытаться сделать ее пригодной для всех случаев, или исключить энергию и закон сохранения энергии и принять тот факт, что модель не во всех случаях корректна.

Откуда взялись законы физики? Это подводит нас ко второму вопросу: откуда взялись закон сохранения энергии и вообще все законы физики? Робин Коллинз утверждает, что любое объяснение для Вселенной без Бога работает только в том случае, если «объяснение не переносит точную настройку лишь на уровень выше, на новые законы, принципы и параметры.

Мне не кажется, что перенос точной настройки на уровень выше — к Богу — чем-то лучше. По сути, это менее информативно, поскольку мы не представляем, каким образом Бог сделал свою точную настройку, в то время как космологическая наука дает нам некое представление о том, как Вселенная могла появиться из ничего. В первом случае мы не можем извлечь из этого предположения ничего полезного. Во втором случае мы можем делать определенные предсказания, которые возможно проверить эмпирически. Например, мы можем предсказать, что энергетическая плотность Вселенной всегда останется равной критическому значению, хотя точность измерений будет улучшаться.

В любом случае, мы уже увидели, что закон сохранения энергии вытекает из того, что во времени нет никакого особого момента. Этот закон не был завещан Богом. Он первичнее Бога.

Как я объяснил в главе 11, физики в XX веке открыли набор принципов, которые я называю метазаконами и которые должны присутствовать во всех физических моделях. Чтобы описать Вселенную объективно, физики должны формулировать свои модели так, чтобы они описывали наблюдения способом, независимым от точки зрения конкретных наблюдателей. Я называю это инвариантностью точки зрения. Это не оставляет создателям моделей иного выбора, кроме как включить в них великие принципы или метазаконы сохранения энергии, импульса, момента импульса и электрического заряда. Из инвариантности точки зрения следует вся классическая физика, включая законы Ньютона о механике и гравитации, уравнения Максвелла об электромагнетизме, термодинамику, гидромеханику и специальную теорию относительности Эйнштейна. Также из нее следует большая часть общей теории относительности и квантовой механики (если не обе они целиком), включая принцип неопределенности Гейзенберга.

Когда я говорю, что некий параметр находится в диапазоне, соответствующем известной физике, апологеты парируют: «Откуда взялась физика?» Мой ответ: физика появилась благодаря физикам, которые формулируют модели для описания наблюдений; эти модели должны включать метазаконы, которые составляют базовые законы физики. Метазаконы не задают все параметры физики. Многие из них случайны. Однако, как мы уже увидели, значения параметров в моделях, которые успешно описывают все наблюдения в нашей Вселенной, находятся в пределах, заданных метазаконами.

Почему есть нечто, а не ничто? Третий вопрос скорее философский, поскольку он относится больше к значению слов, чем к самой физике. В книге 2012 года под названием «Вселенная из ничего: почему есть нечто, а не ничто» (A Universe from Nothing: Why There Is Something Rather Than Nothing) космолог Лоуренс Краусс описывает, каким образом наша Вселенная могла естественно возникнуть из предшествующей бесструктурной пустоты, которую он называет «ничто». Я не думаю, что что-то из того, что он говорит, противоречит этой книге, которая была написана независимо от его работы.

В обзоре книги Краусса, опубликованном в «Нью Йорк таймс», философ Дэвид Альберт спрашивает: «Почему мир должен был состоять именно из тех элементарных штук, из которых он состоит, а не из чего-то еще или вообще из ничего?» Краусс признает, что он не знает, но предполагает, что так могло выйти случайно и в таком случае Вселенная вроде нашей могла бы появиться без какой-либо предустановленной причины.

Несомненно, нет единого мнения в том, как определить ничто. Это может быть невозможно. Чтобы определить ничто, вам придется придать ему некое определяющее свойство, но если у него есть свойство, то это не ничто!

Альберт не был удовлетворен ответом Краусса на фундаментальный вопрос: почему есть нечто, а не ничто, то есть почему есть бытие, а не небытие? И вновь у меня есть встречный вопрос для Альберта: почему состоянием существования по умолчанию должно быть небытие, как бы оно ни было определено, а не бытие? Почему требуется некий творческий акт, чтобы превратить небытие в бытие? Возможно, такой акт нужен, чтобы превратить бытие в небытие.

Если небытие — это естественное состояние, то почему должен существовать Бог? Как только теологи заявляют, что есть Бог как противоположность небытию, то они не могут развернуть свой аргумент в обратную сторону и потребовать от космологов объяснения, почему есть Вселенная как противоположность небытию. Они утверждают, что Бог — необходимая сущность. Почему безбожная Мультивселенная не может быть необходимой сущностью?

Как однажды сказал мой покойный друг и коллега математик Норм Левитт: «Что здесь есть? Все. Так чего здесь нет? Ничего».

Но мы можем зайти даже дальше этого пата и аргументировать, что нечто является более естественным состоянием, чем ничто. Мы можем привести веские доводы в пользу этого на основании существующих физических знаний.

Распространено мнение, что сложная физическая система может появиться только благодаря намеренным действиям разумного конструктора, который непременно должен быть еще более сложным. Далее эта цепочка творения ведет к Богу как к Перводвигателю Аристотеля и Беспричинной Первопричине Фомы Аквинского, самому сложному творцу из всех.

Нам даже не нужно полагаться на сложные научные аргументы, чтобы увидеть, исходя из общего опыта, что Аристотель и Фома Аквинский, а также все остальные, кто использовал теологический аргумент, перевернули все с ног на голову. В природе сложность развивается из простоты. Подумайте о фазовых переходах, которые можно наблюдать в привычных вещах. В отсутствие внешнего источника тепла водяной пар обычно конденсируется в жидкую воду, которая затем замерзает в твердый лед. С каждым переходом мы перемещаемся из состояния более высокой симметрии в состояние более низкой симметрии — от простоты к сложности. Сложность — это нарушенная симметрия, и переход от простого к сложному происходит спонтанно. Простота порождает сложность, а не наоборот. Конкретная кристаллическая структура, которая получается в результате перехода жидкой воды в лед, непредсказуема, то есть случайна. Никакие две снежинки, которые получаются при прямом переходе пара в твердое состояние, не одинаковы.

Физические системы естественным образом переходят от простого к сложному, и для этого не требуется никакого замысла. Более того, тот факт, что определенные события, например изомерные переходы атомов, случайны, может считаться убедительным свидетельством против любого замысла, разумного или глупого.

Так как же мы получаем нечто из ничего? Поскольку ничто не может быть более симметрично, чем ничто, то мы ожидаем, что ничто естественным образом претерпит фазовый переход в нечто. Как это выразил лауреат Нобелевской премии Фрэнк Вильчек в своей статье в журнале Scientific American еще в 1980 году: «Ничто нестабильно».

Также следует отметить, что хотя Вселенная — это нечто, а не ничто, она недалеко ушла от ничего в том смысле, что только на 30% состоит из вещества, то есть на 70% является ничем.

Я представил материал этого раздела в той или иной форме в нескольких книгах. Однако, если вы хотите прочитать блестящее разъяснение этих идей на любительском уровне от профессионального популяризатора науки, обратите внимание на главу 7 книги «Бесконечная жизнь покойника» (The Never-Ending Days of Being Dead) Маркуса Чоуна.

 

Высший случай

Стивен Хокинг и Леонард Млодинов рассмотрели проблему «нечто из ничего» в своей книге 2010 года «Высший замысел» (The Grand Design), упомянутой в предыдущей главе. Они сделали такое заключение: «Самопроизвольное рождение и есть причина того, что Вселенная существует. Нет необходимости призывать на помощь Бога, чтобы он поджег фитиль и дал начало развитию Вселенной».

Книгу стоило бы назвать «Высший случай», потому что именно об этом говорит слово «самопроизвольное» — о беспричинной случайности. Авторы соглашаются с тем, что не было никакого замысла, высшего или нет. Я подозреваю, что издатель выбрал этот заголовок, чтобы продать побольше книг.

Хокинг и Млодинов описывают картину самопроизвольного рождения, которая вытекает из фейнмановской интерпретации квантовой механики — суммирования по путям, которая упоминалась в главе 15.

Как мы уже знаем, М-теория допускает возможность существования 10500 вселенных с различными свойствами. Хокинг и Млодинов выдвигают предположение, что это и есть альтернативные истории, к которым можно применить модель Фейнмана. Суммируя по всем путям, мы получаем вероятность наблюдаемой Вселенной.

При этом подходе Вселенная берется такой, какая она есть в настоящее время, и вычисляется наиболее вероятный путь обратно до момента ее зарождения. По выражению авторов, «Вселенная появилась самопроизвольно и начала развиваться всеми возможными путями». 10500 вселенных сошлись в одну, имеющую подходящую структуру, чтобы породить ту жизнь, которая нам известна. При таком огромном количестве вариантов можно ожидать, что многие из них окажутся подходящими для какой-то другой формы жизни, непохожей на нашу. Впрочем, и для нашей тоже.

Также Хокинг и Млодинов подчеркивают: «Идея о Мультивселенной не была изобретена специально для объяснения чуда точной настройки». Наоборот, «она, подобно множеству других теорий современной космологии, проистекает из условия безграничности». А где получилась одна случайная Вселенная, там будет и много.

 

Гипотеза Бога

Итак, остается ли во всем этом место для гипотезы Бога? Я часто слышу аргумент, что Бог не является научной гипотезой, поскольку он представляет собой дух, который в принципе не может быть зафиксирован наблюдением. Более того, религия и наука — это две отдельные сферы и не следует использовать одну из них для описания другой. Однако, если Бог играет какую-то роль во Вселенной, результаты некоторых его действий должны быть наблюдаемы, даже если он сам ненаблюдаем, и мы можем обратиться к науке, чтобы попытаться проверить, не имеют ли эти наблюдения сверхъестественной причины.

Следуя духу бритвы Оккама, мы должны признать, что на данный момент Бог является дополнительной гипотезой, которая не требуется для объяснения данных. Если бы он был, он оказался бы включен в набор предпосылок, которые лежат в основе научных теорий. Но это не так. Хотя мы определенно не знаем всего, мы не знаем ни одного эмпирического факта, который требует существования Бога. Более того, многие эмпирические факты, которые не согласуются с гипотезой Бога, позволяют утверждать вне пределов разумного сомнения, что Бога, играющего активную роль во Вселенной и в человеческих жизнях, не существует.

Зимним утром я могу взглянуть из окна на поле, покрытое свежим снегом. В редких случаях я увижу следы диких животных. Я редко вижу самих животных, но я знаю, что они существуют, поскольку оставили следы. Бог не оставил следов на снегах времени.

Конечно, есть много мнимых фактов, которые представляют как свидетельство существования Бога или богов. Обычно их называют чудесами, то есть событиями, которые не вписываются в бытовые и научные объяснения, но имеют моральную значимость для тех, кто их наблюдает. Но каждый раз, когда заявление о подобном событии тщательно исследуется, его чудесная природа развеивается. Слезы статуи Марии оказываются маслом из кухни священника. Женщина, которая встала и пошла в евангельском исцелении, села в инвалидную коляску, только когда вошла в зал. Чудесный отпечаток на плащанице Иисуса был нарисован мошенником в XIII веке.

Верующие ученые и научно грамотные христианские теологи героически пытались найти модель активного теистического Бога в противоположность неактивному деистическому богу, которая согласовалась бы и с наукой, и с христианством. Большинство из них с помощью квантовой механики и теории хаоса пытаются выделить для Бога такое место, чтобы он мог действовать, не проявляя свои действия в виде чудес в наших научных инструментах. Но как я показал в книге «Квантовые боги» (Quantum Gods), а позже Роберт Прайс и Эдвин Суоминен подтвердили в книге «Эволюционируя из Эдема» (Evolving out of Eden), это не работает. Бог всего лишь не прячется в электронных облаках.

В этой книге мы проследили историю представлений человечества о космосе от далекого прошлого до настоящего времени. Подведем итоги: мы увидели, что существуют правдоподобные сценарии естественного происхождения нашей Вселенной — многие из них полностью разработаны математически и опубликованы в рецензируемых научных журналах. Сейчас у нас есть удивительно простая модель космологии, которая в сочетании со стандартной моделью элементарных частиц не только описывает физический мир, согласуясь со всеми наблюдениями, но и во многих случаях дает верные количественные предсказания исключительной точности. Разумеется, ничто из этого не следует считать истиной в последней инстанции.

Более спорно, но все же основано на существующих знаниях предположение космологов, что наша Вселенная — лишь одна из бесконечного числа вселенных, составляющих безграничную и вечную Мультивселенную. Хотя это еще не подтверждается наблюдениями, есть вероятность, что другая вселенная могла оставить на нашей заметный отпечаток. Пусть гипотезу Мультивселенной едва ли можно считать подтвержденной, она достаточно научно обоснована, чтобы принять ее всерьез и рассмотреть ее философские и теологические последствия.

Теологи и апологеты религии, которые в рамках дискуссии соглашаются признать возможность существования множественных вселенных, настаивают на том, что для их существования все-таки требуется некая первичная, высшая причина. Если Мультивселенная прямо обусловлена известными законами физики, как я утверждаю, то откуда, спрашивают они, взялись эти законы, если не от сверхъестественного законодателя?

Большинство физиков и космологов просто принимают законы физики как данность и предпочитают не вступать в теологические споры. Я попытался показать, что сценарий Мультивселенной можно описать, не ссылаясь ни на какие особые динамические принципы или законы, которые нужно принять как данность.

Чтобы понять это, придется кардинально пересмотреть общепринятое представление о законах природы как о «постановлениях», данных неким высшим законодательным органом на небесах. Как мы увидели, то, что мы называем базовыми принципами и законами физики, например законы сохранения, представляет собой всего лишь утверждения, которые сами собой появляются в математических моделях физики, если эти модели разрабатываются как не зависящие от точки зрения любого отдельного наблюдателя. Отсюда следует, что эти модели включают в себя определенные симметрии и некоторые из этих симметрии могут самопроизвольно нарушиться, создавая крошечную асимметрию величиной в одну стотысячную. Эта асимметрия и приводит к появлению сложных структур, таких как галактики, звезды и планеты.

Немногие люди, даже среди ученых, вплотную сталкиваются с тем фактом, что Вселенная в основном представляет собой случайно движущиеся частицы и что чудо, которым мы так восторгаемся, — это всего лишь незначительная статистическая флуктуация.

Прекрасные галактические структуры, которыми мы так часто восхищаемся, составляют лишь 0,5% от массы Вселенной и миллиардную долю общего числа ее элементарных частиц. Большая часть Вселенной состоит из частиц, движущихся преимущественно случайно. То есть наша Вселенная выглядит очень похоже на то, как она должна была бы выглядеть, если бы появилась из абсолютно симметричного бесструктурного состояния, которое мы можем за неимением лучшего обозначить как ничто.

Распространенное утверждение, что наша Вселенная точно настроена для жизни, в значительной степени надуманно, и современная физика в нем не нуждается. Наше существование на Земле — всего лишь вопрос естественного отбора. В Мультивселенной возможны все типы планет, и мы естественным образом развились на той из них, свойства которой подошли для разумной жизни.

Короче говоря, никакие наши наблюдения Вселенной не требуют наличия Бога. Более того, отсутствие должных свидетельств деятельности Бога исключает, вне пределов разумного сомнения, того Бога, которого почитает большая часть человечества.

Видимая с Земли Вселенная включает примерно 150 млрд. галактик, каждая из которых содержит порядка 100 млрд. звезд. Ее возраст оценивается в 13,8 млрд. лет с погрешностью менее 100 млн. лет. Самый удаленный объект, который мы в принципе можем увидеть, сейчас находится на расстоянии 46 млрд. световых лет от нас, учитывая расширение Вселенной за то время, пока фотоны, несущие его изображение, летели к нашим телескопам. Таков горизонт, за который мы не можем заглянуть, поскольку свету не хватило времени, чтобы добраться до нас с момента рождения Вселенной.

Как было сказано в главе 14, общепринятая инфляционная космология предполагает, что по другую сторону этого горизонта находится по меньшей мере на 23 порядка больше галактик, чем в зоне нашей видимости, и все они произошли из того же первичного зерна, из которого появилась наша Вселенная. Скорее всего, их на много порядков больше. Нашу видимую Вселенную можно сравнить с горстью песка в пустыне Сахаре.

И это только наша Вселенная. Помимо того, есть веские основания утверждать, что мы живем в вечной Мультивселенной, содержащей бесчисленное множество других вселенных. Однако в рамках этого раздела я буду игнорировать возможность существования других вселенных и остановлюсь на одной, которая бесспорно существует, — на нашей собственной.

Давайте рассмотрим две альтернативные возможности, которые согласуются с современными знаниями.

1. Разумная жизнь существует только на одной планете — Земле.

2. Жизнь встречается редко, а разумная жизнь — еще реже. Но Вселенная столь обширна, что, несмотря на это, в ней обитает бессчетное множество разумных существ.

Мы одиноки. Верующим говорят, что они — неповторимое творение единственного божества, которое сотворило все сущее. Их Бог незаметно для нас следит за тем, чтобы каждый фотон и электрон во Вселенной вел себя как положено, а между делом еще и слушает все их мысли и помогает им поступать правильно — как он это понимает.

В том числе Бог контролирует знаковые события, например указывая президенту Соединенных Штатов вступить в войну — именно это, по словам Джорджа Буша, Бог и сделал, или направляя теннисный мяч с ракетки христианки таким образом, чтобы она выиграла очко и закричала: «Спасибо тебе, Иисусе!»

Разумеется, всесильный Бог был бы способен на все это. Но зачем бы он стал ждать до момента, наступившего 150000 лет назад, чтобы создать людей? И зачем бы он приковал нас к этой крохотной пылинке в бескрайнем океане космоса без всякой надежды, по крайней мере при нынешней модели физики, когда-либо выбраться дальше ближайших окрестностей Земли? Если он так сильно желал, чтобы люди ему поклонялись, тогда, надо думать, ему следовало сделать возможными путешествия в любые времена и места.

Как видим, защитники веры приводят нелогичный аргумент, который кажется им решающим доводом в пользу существования Бога. Они утверждают, что жизнь во Вселенной критически зависит от значений большого количества физических параметров. Согласно этому мнению, поскольку определенные значения параметров, необходимые для жизни, не могли появиться случайно (этого они не могут доказать), они должны были быть «точно настроены» Богом с целью создать нас.

Несомненно, всякий Бог, достойный этого имени, не мог бы быть настолько некомпетентен, чтобы построить огромную расстроенную Вселенную, а потом аккуратно вращать все эти вентили таким образом, чтобы на одной планете могли появиться человеческие существа. Для него было бы куда логичнее дать нам возможность жить где угодно во Вселенной, даже в открытом космосе. Но факты таковы: он этого не сделал.

На сегодняшний день мы не знаем о существовании какой-либо формы жизни во Вселенной вне Земли. В лучшем случае мы можем однажды обнаружить примитивную жизнь на Марсе или где-то еще в Солнечной системе; любая другая разумная жизнь должна находиться на огромном расстоянии от нас. С 1979 года программа SETI занимается поиском возможных радиосообщений от инопланетных цивилизаций, пока безуспешно. Давайте признаем: Вселенная неблагоприятна для жизни. Но она и не препятствует жизни, иначе нас здесь не было бы.

Мы не одиноки. По новым оценкам, которые основываются на вариациях яркости тысяч звезд, измеренных космическим телескопом «Кеплер», в пределах нашей видимости может быть вплоть до 5∙1021 планет, подходящих для биологической жизни в той или иной форме. Мы уже знаем, что за пределами нашей зоны видимости находится куда более обширная область пространства. Существует оценка, что эта область содержит как минимум на 23 порядка больше галактик, чем внутри нашего горизонта видимости, а скорее всего, гораздо больше. Отсюда получается по крайней мере 1044 возможно обитаемых планет в нашей Вселенной.

Это не пустые догадки. Оценки основаны на наблюдениях и теории космической инфляции, которая уже хорошо обоснована эмпирически. Поэтому даже если вероятность появления разумной жизни на обитаемой планете мизерна и составляет, скажем, одну часть из миллиарда миллиардов (10-24), то остается 1020 планет с какой-либо формой разумной жизни.

Разумеется, фундаменталисты до сих пор буквально верят в космологию Библии и считают ученых шайкой мошенников, так что они не испытывают никаких внутренних противоречий. Наука просто ошибочна. Есть лишь одна Вселенная, сотворенная 6000 лет назад, а эволюция и изменение климата — это просто фальсификации.

В то же время умеренные протестанты и католики получают еще одно противоречие между наукой и религией вдобавок ко многим другим, которые им нужно примирить, чтобы одновременно признавать достижения науки и сохранять видимость христианской веры.

Иудейско-христианско-исламский Бог кажется могущественным Богом с точки зрения племен, обитавших в пустынях Ближнего Востока, которые его измыслили. Но этот Бог недостаточно могущественен с точки зрения современной науки.

Религия заявляет, что учит нас скромности. Но она променяла эту скромность на гордыню, говоря людям, что они — дети Бога, что они являются центром Вселенной и причиной ее существования, что они будут жить вечно, если будут всего лишь следовать предписаниям. Но это незаслуженная гордость. Так что, когда наука показывает, что мы занимаем лишь крохотную пылинку в пространстве и времени, верующие шарахаются от этого урока скромности.

И все же тот факт, что за короткий период времени в несколько тысяч лет люди смогли узнать так много о Вселенной, всего лишь глядя на небо и на мир вокруг и обдумывая увиденное, свидетельствует, что мы уникальны среди миллионов видов на этой планете. Мы все еще не можем сравнить себя с какой бы то ни было разумной формой жизни. Но мы особенные, по крайней мере на Земле и в Солнечной системе. Пусть даже магическое мышление и высокомерие еще могут уничтожить нас, можно надеяться, что наши уникальные способности приведут нас к лучшему будущему.

* * * 

Об авторе

Виктор Дж. Стенджер — специалист по физике частиц и автор 12 книг (не считая этой), среди которых бестселлер 2007 года, по версии «Нью-Йорк таймс», — книга «Бог: неудачная гипотеза. Как наука доказывает нам, что Бога не существует».

Доктор Стенджер вырос в рабочей семье католического вероисповедания в американском городе Бейонн, штат Нью-Джерси. Его отец был литовским иммигрантом, а мать — дочерью иммигрантов из Венгрии. Он посещал общественную школу и в 1956 году получил степень бакалавра в области электротехники в Ньюаркском инженерном колледже (теперь Технологический институт в Нью-Джерси). Во время обучения в колледже был редактором студенческой газеты и получил несколько наград в области журналистики.

Получив стипендию компании «Хьюз Эйркрафт», Стенджер поступил в Калифорнийский университет в Лос-Анджелесе, где в 1959 году стал магистром, ав 1963 — доктором физических наук. После этого он работал в Гавайском университете, а в 2000 году ушелв Колорадский университет. В последние годы он занимал должность почетного профессора физики в Гавайском университете и адъюнкт-профессора философии в Колорадском университете. Доктор Стенджер также работал в качестве приглашенного профессора на факультетах Гейдельбергского университета в Германии и Оксфордского университета в Англии, а также приглашенного исследователя в Лаборатории Резерфорда в Англии, Флорентийском университете и Национальной лаборатории ядерной физики в итальянском городе Фраскати.

Его исследовательская карьера охватывает период, ознаменовавшийся огромным прогрессом физики элементарных частиц, который в конечном итоге привел к появлению Стандартной модели в ее современном виде. Стенджер участвовал в ряде экспериментов, которые помогли установить свойства странных частиц, очарованных кварков, глюонов и нейтрино. Он также был среди первопроходцев зарождающихся научных областей физики гамма-лучей сверхвысоких энергий и нейтринной астрономии. В ходе своего последнего исследовательского проекта до выхода на пенсию Стенджер принимал участие в подземном эксперименте в Японии, который впервые позволил доказать, что нейтрино имеют массу. Научный руководитель проекта Масатоси Косиба в 2002 году получил Нобелевскую премию по физике за это открытие.

Параллельно Виктор Стенджер занимался написанием научно-популярных книг (хорошо воспринятых критиками) на стыке физики и космологии с философией, религией и лженаукой.

Виктор и его жена Филисс жили в счастливом браке с 1962 года, у них двое детей и четверо внуков.

У доктора Стенджера есть свой сайт, на котором можно найти множество его работ: http://www.colorado.edu/philosophy/vstenger/.

К сожалению, Виктор Стенджер скончался 27 августа 2014 года, вскоре после выхода этой книги.

Ссылки

[1] Стив Веллс отмечает 462 противоречия в Ветхом и Новом Заветах в своей книге: Wells Steve. The Skeptics Annotated Bible. — Moscow, 2012.

[2] В русскоязычной литературе ее принято называть милетской. — Примеч. пер.

[3] Многие христианские авторы пытались подорвать авторитет Уайта, заявляя, будто он утверждал, что церковь официально противилась идее сферической Земли. Как вы можете убедиться, это не так.

[4] Могила Гизе находится рядом с могилой Коперника в соборе Фромборка (Фрауенбурга).

[5] Я следую здесь своему обычному правилу употреблять слово «Бог» с большой буквы в отношении высшего божества иудеев, христиан и мусульман, во всех остальных случаях используя слово «бог» с маленькой буквы. Я также полагаю, что, согласно традиции, Бог имеет мужской пол и персонализирован, в то время как бог безличен и беспол.

[6] Здесь содержится авторская ошибка: самым крупным спутником в Солнечной системе является не Титан, а Ганимед. — Примеч. науч. ред.

[7] Часто можно услышать, что энергия Е = mс 2 , содержащаяся в теле массой m, огромна, поскольку с = 3∙10 8 м/с, что очень много. На самом деле числовое значение c выбирается произвольно и в этом случае оно велико только потому, что вы выбрали для с большое число. Энергия покоя равна массе всегда, за исключением некоторых систем единиц измерения.

[8] В 2011 году ЦЕРН сообщил, что им удалось измерить скорость нейтрино, которая превысила скорость света. СМИ раструбили, будто ученые доказали, что Эйнштейн ошибался. Но оказалось, что эти результаты были следствием неполадок в электроснабжении. Однако, даже если бы это оказалось правдой, эйнштейновский предел скорости не был бы нарушен. Просто эти частицы были бы признаны тахионами, существование которых теория относительности допускает.

[9] Комплексное число c представляет собой набор из двух реальных чисел a и b в форме с = а + ib, где i = √-1, то есть i 2 = -1.

[10] В квантовой механике момент импульса относительно заданной оси Z вычисляется как J Z = j Z ħ, где j Z — это полуцелое или целое число, включая ноль.

[11] Несколько лет назад, когда мы с женой останавливались в отеле «Метрополь» в Брюсселе, где проходил конгресс 1927 года, я обнаружил, что фотография его участников висит в холле на самом видном месте. См. http://www.dauy-mail.co.uk/sciencetech/article-2002163/1927-Solvay-Conference-Electrons-Photons-Is-greatest-meeting-minds-ever.html (accessed January 28,2013).

[12] Астрономы все еще используют парсек — устаревшую единицу измерения расстояний. 1 парсек равен расстоянию, для которого годичный звездный параллакс при наблюдении с Земли равен 1". Я в большинстве случаев буду применять более привычную единицу — световой год, за исключением случаев, когда это будет затруднять понимание.

[13] Оригинальный термин bigbang можно перевести как «большой бабах». — Примеч. пер.

[14] Обратите внимание: когда мы говорим о температуре порядка миллиона градусов, уточнять единицы измерения не обязательно.

[15] Спин — это момент импульса, обычно он выражается в единицах ħ = h/π, где ħ — постоянная Планка.

[16] В моей книге «Вневременная реальность» (Timeless Reality) я делаю предположение, что диаграммы Фейнмана можно воспринимать буквальнее, чем принято считать.

[17] Заметьте, «раздувание» по латыни — inflatio. — Примеч. пер.

[18] За эту аналогию спасибо Марку Уиттлу.

[19] Этот термин взят из химии. К примеру, если ионизировать атомы водорода, превратив их в протоны и электроны, они рекомбинируют в атомы.

[20] Как цитируется на обложке книги Смута и Дэвидсона «Морщины времени».

[21] National Enquirer относится к таблоидам, желтой прессе. — Примеч. пер.

[22] По-английски newwindow — «новое окно», на слух неотличимо от nuwindow — «нейтринное окно». — Примеч. пер.

[23] Поскольку три типа нейтрино стандартной модели находятся не в стационарном состоянии, но постоянно переходят друг в друга, они не имеют определенных масс и представляют собой скорее комбинации из трех нейтринных состояний: ν 1 , ν 2 и ν 3 , которые являются стационарными. Формально этим трем состояниям соответствуют определенные массы.

[24] Отсылка к словам генерала Дугласа Макартура: « Старые солдаты не умирают. Они просто уходят в тень». — Примеч. пер.

[25] Для тех, кто знаком с дифференциальным исчислением в частных производных: в волновой механике Шрёдингера x-компонента импульса px заменяется дифференциалом, который не коммутирует с x, из чего вытекает принцип неопределенности. В квантовой механике Гейзенберга наблюдаемые объекты представлены в виде матриц. В квантовой механике Дирака наблюдаемые объекты представлены в виде операторов в линейном векторном пространстве.

[26] Непереводимая игра слов: в оригинале Big Shebang — по аналогии с Big Bang — «Большой взрыв». — Примеч. пер.

[27] Знаменитый художник-авангардист, называвший свои картины «Пятна». — Примеч. пер.

[28] Эксперты отметят, что технически мы не можем определить обитую энергию Вселенной для всех геометрий, хотя это возможно для плоской Вселенной. В любом случае мы можем утверждать, что средняя энергетическая плотность равна нулю, если считать гравитацию со знаком «минус». Это позволяет сделать тот же вывод: Вселенная появилась из состояния нулевой энергии.

Содержание