Бог и Мультивселенная. Расширенное понятие космоса

Стенджер Виктор

Глава 7.

ОСТРОВНЫЕ ВСЕЛЕННЫЕ

 

 

Шкала расстояний по цефеидам

К концу XIX века астрономы начали осознавать, что Вселенная простирается далеко за пределы Солнечной системы. Планеты находятся на огромных расстояниях от Земли, но звезды расположены намного дальше. Однако астрономы не представляли, насколько на самом деле велики расстояния до звезд. Измерительное оборудование тех времен позволяло при помощи параллакса вычислять расстояния не более нескольких десятков световых лет.

Несмотря на произведенную Коперником революцию, астрономы все еще представляли Землю находящейся недалеко от центра Вселенной. Виной тому не только традиционный человеческий эгоизм. При подсчете звезд астрономы обнаружили, что их количество сокращается во всех направлениях довольно равномерно, так что было похоже, что мы и правда близки к центру мира. Они не знали о существовании межзвездного газа, равномерно во всех направлениях задерживающего свет от расположенных за ним объектов, что создает видимость изотропности пространства.

В 1908 году в небольшой группе девушек-вычислителей, помогавших Чарлзу Пикерингу в обсерватории Гарвардского колледжа, работала сотрудница по имени Генриетта Ливитт. Пикеринг понимал, что для выполнения кропотливой работы, связанной с методичным просмотром огромного количества фотопластинок со снимками с телескопов обсерваторий Гарварда, профессиональные астрономы не нужны. И действительно, молодые женщины, которым можно было платить намного меньше, хорошо справлялись с анализом изображений на пластинках, регистрируя блеск, спектральный класс и точное положение звезд и других астрономических объектов. Естественно, в силу своей «деликатной природы» непосредственных наблюдений женщины не проводили.

Пикеринг поручил Ливитт просматривать фотоснимки переменных звезд, называемых так потому, что их яркость периодически изменяется. У Гарварда была обсерватория в Перу, и Ливитт просматривала полученные оттуда фотоснимки с образцами звезд Малого Магелланова Облака (ММО), которые, наряду со звездами Большого Магелланова Облака (БМО), можно наблюдать только в Южном полушарии.

Сравнивая фотопластинки с изображениями 16 звезд-гигантов, называемых цефеидами (или переменными звездами), Ливитт сделала открытие, значимость которого впоследствии оказалась огромной. Она заметила, что длительность периода изменения блеска, то есть времени, которое проходит между пиками светимости, прямо пропорциональна светимости звезды. Поскольку эти звезды находятся примерно на одинаковом расстоянии от Земли, она рассудила, что наблюдаемая светимость цефеид ММО должна напрямую зависеть от их истинной светимости. Ливитт обнаружила связь между периодом и пиковой светимостью, благодаря чему стало возможно измерять расстояния, значительно большие, чем те, которые можно измерить, используя параллакс.

Ливитт пришлось отложить свою работу из-за хронической болезни. Однако к 1912 году ее коллекция пополнилась еще девятью цефеидами из ММО, и она опубликовала статью на три страницы в № 173 Циркуляра Гарвардской обсерватории. В статье содержался график, на котором в логарифмическом масштабе отображалась связь между периодом и яркостью цефеид. Этот график стал известен как зависимость «период — светимость» {105} .

 

Вдали от центра

В 1908 году Джордж Эллери Хейл установил в калифорнийской обсерватории «Маунт-Вилсон» самый мощный телескоп тех времен — 60-дюймовый рефлектор, направленный в кристально чистое ночное небо над Лос-Анджелесом. В 1912 году новым сотрудником обсерватории стал Харлоу Шепли. Родом из сельской местности штата Миссури, он в прошлом работал криминальным репортером, но впоследствии окончил Принстонский университет, получив докторскую степень по астрономии. Шепли интересовали шаровые скопления — сферические звездные системы, содержащие сотни, а иногда и тысячи звезд.

Ему (или его жене Марте, астроному-любителю) удалось обнаружить в этих скоплениях множество тусклых голубых гигантов. Сравнивая их наблюдаемую светимость со светимостью звезд того же типа, находящихся недалеко от Солнца, он определил, что они расположены на расстоянии не менее 50 тыс. световых лет от нас — на два порядка дальше, чем наиболее удаленные звезды, расстояние до которых было рассчитано с помощью параллакса.

К сожалению, в шаровых скоплениях либо совсем не было цефеид, либо их было очень мало. Более того, Шепли обнаружил, что периоды некоторых цефеид намного короче, чем периоды цефеид из ММО, о которых писала Ливитт. Из-за этого Шепли вначале колебался, стоит ли применять открытую Ливитт зависимость «период — светимость» к цефеидам с более короткими периодами. Однако он был ученым не робкого десятка и все же рискнул. Он измерил расстояния до цефеид, которые обнаружил на фотографиях своих шаровых скоплений, применив выявленную Ливитт зависимость «период — светимость».

Это делается так: вначале измеряется период цефеиды. Из зависимости «период — светимость» выводится истинная светимость звезды. Звезда излучает свет в направлении поверхности воображаемой сферы с увеличивающимся радиусом г, при этом количество энергии на единицу площади снижается с увеличением площади сферы по формуле 1/r2 согласно закону сохранения энергии. Таким образом, сравнивая измеренное значение светимости с наблюдаемым, можно определить расстояние до звезды.

Расстояния до скоплений, в которых не было цефеид или они были слишком тусклыми, чтобы измерить их светимость, Шепли оценивал, используя в качестве ориентира наиболее яркие звезды. Если нельзя было различить отдельные звезды в скоплении, он измерял расстояние, исходя из размеров скоплений.

Используя эти методы, Шепли определил, что Млечный Путь имеет форму эллипса и простирается примерно на 300 тыс. световых лет в ширину. Он сделал вывод, что это, должно быть, и есть вся Вселенная. Все его воображение не смогло помочь ему представить Вселенную больше этих размеров.

Шепли обратил внимание на то, что центр распределения шаровых скоплений находится не в районе Земли. Центр оказался ближе к созвездию Стрельца. (Он был не первым, кому это пришло в голову.) По оценкам Шепли, Солнце располагалось на расстоянии 65 тыс. световых лет от центра Галактики.

На самом деле Шепли несколько переоценил эти расстояния. Согласно последним данным, диаметр Млечного Пути составляет 100–120 тыс. световых лет, а наше Солнце лежит в 27 тыс. световых лет от центра Галактики.

 

Астрономия высоких скоростей

Персиваль Лоуэлл был выходцем из знатной массачусетской семьи колонистов, высадившихся в Бостоне в 1639 году. Он всю жизнь увлекался Марсом и построил в Аризоне обсерваторию, чтобы проверить возможность существования на Красной планете искусственных водных путей, или каналов, построенных древней марсианской цивилизацией. В 1877 году итальянский астроном Джованни Скиапарелли (1835–1910) сообщил о темных полосах на поверхности Марса, которые он назвал каналами (имея в виду природные, а не искусственные каналы). В отличие от большинства астрономов, Лоуэлл отнесся к этому сообщению серьезно и написал на эту тему три книги, популяризовавшие идею о жизни на Марсе. Обсерваторию построили на Марсианском холме высотой 7250 футов, что было на 3 тыс. футов (1000 м) выше горы Гамильтон и на 1,5 тыс. футов (500 м) — горы Вилсон.

Лоуэлл приобрел спектроскоп, который был несколько совершеннее модели, используемой в Ликской обсерватории. Однако у него на вооружении был всего лишь 24-дюймовый телескоп-рефрактор — не самое подходящее приспособление для исследования спектров.

В 1909 году Лоуэлл нанял молодого Весто Слайфера, недавнего выпускника университета штата Индиана. Слайфер проработал в обсерватории до самого ухода на пенсию в 1954 году, в течение 38 лет занимая должность ее директора.

Благодаря настойчивости и мастерству Слайфера ненадежное оборудование стало работать намного лучше. Слайфер делал преимущественно то, что просил Лоуэлл, то есть занимался в основном планетарной астрономией. Однако в 1909 году Лоуэлл поручил Слайферу составить спектрограмму объекта, который он называл белой туманностью, подразумевая спиральную туманность. У Слайфера нашлось на это время только в 1912 году, и он начал делать серию снимков галактики Андромеды, крупнейшей спиральной туманности, видимой в небе, используя четыре разные фотопластинки. В январе 1913 года он получил следующие результаты: спектр Андромеды характеризуется фиолетовым смещением, то есть смещением в сторону коротких волн. Предполагая, что в основе этого эффекта лежит доплеровское смещение, Слайфер рассчитал, что Андромеда приближается к нам со скоростью, а точнее, лучевой скоростью 300 км/с. Он был близок к истине — современные астрономы оценивают эту скорость в 301 км/с.

В те времена это была наибольшая скорость, измеренная в природе. Лучевая скорость Андромеды в 10 раз выше скорости вращения Земли вокруг Солнца, равной 30 км/с, примерно такая же скорость характерна для звезд галактики Млечный Путь.

Результаты Слайфера были экстраординарными, и другие астрономы, в особенности из конкурирующей Ликской обсерватории, расположенной по соседству, отнеслись к ним весьма скептически. Не утратив решимости, Слайфер продолжил измерения, ставшие намного более сложными, когда он перешел к туманностям меньшего размера. Он обнаружил, что для спектра галактики М87 (по каталогу Мессье) характерно красное смещение, указывающее на то, что эта галактика удаляется от Земли с лучевой скоростью 1000 км/с — в три раза быстрее М31, галактики Андромеды, которая продолжает приближаться к нам и однажды сольется с Млечным Путем. Клету 1914 года Слайфер измерил скорости 14 спиральных туманностей и обнаружил, что большая их часть удаляется от нас. В августе он представил доклад об этом на собрании Американского астрономического общества в Северо-Западном университете. Среди слушателей был высокий молодой человек приятной наружности, совсем недавно принятый в ряды общества, его звали Эдвин Хаббл (1889–1953).

В своем докладе Слайфер сообщил, что спиральные туманности движутся со средней скоростью, в 25 раз превышающей среднюю скорость звезды в нашей Галактике. Коллеги из Ликской обсерватории аплодировали стоя и поздравляли его. Однако данных, подтверждающих, что спиральные туманности представляют собой отдельные «островные вселенные», все еще было недостаточно. Нужно было найти способ измерить расстояние до них.

Как известно из главы 4, в современной астрономии выделяют величину z, называемую красным смещением, которое определяется как отношение сдвига наблюдаемой длины волны спектральной линии к длине волны того же излучения, определенной экспериментально. Если это число отрицательное, речь идет о фиолетовом смещении. По формуле эффекта Доплера z = v/c, где v — скорость удаления. Эта зависимость действует только для v << с; в случае релятивистских скоростей требуется более сложная формула.

 

Спор о природе спиральных туманностей

Как мы узнали из главы 4, в конце XIX века Джеймс Килер с помощью телескопа Кросли, установленного на горе Гамильтон, сделал восхитительные снимки сотен спиральных туманностей. Девять лет спустя после смерти Килера, наступившей в 1900 году, Гебер Кёртис (1872–1942) продолжил его работу с телескопом Кросли. К 1913 году у него накопилось две сотни снимков спиральных туманностей.

19 июля 1917 года Джордж Ричи (1864–1945), наблюдая небо в 60-дюймовый зеркальный телескоп обсерватории «Маунт-Вилсон», расположенной в 480 км от горы Гамильтон, сфотографировал на большой выдержке спиральную туманность NGC 6946 (аббревиатура NGC означает «новый общий каталог» — New General Catalogue, составленный в 1888 году). Сравнивая этот снимок с тремя более ранними, Ричи увидел у его края яркую точку. Он заключил, что это должна быть новая звезда, одна из тех точек света, которые порой вспыхивают на небе, а затем быстро исчезают.

Кёртис отметил это явление в трех различных туманностях. Просматривая фотопластинки, он обнаружил, что в спиральной туманности NGC 4321 новые звезды появлялись в 1901 и 1914 годах. Ему показалось странным, что в спиральной туманности возникает так много новых звезд.

Более того, Кёртис заметил, что в некоторых туманностях иногда, хоть и довольно редко, появляются относительно яркие вспышки. К примеру, такая вспышка наблюдалась в 1885 году в Андромеде, а в 1895 — в созвездии Кентавра. Кёртис отнес эти вспышки к отдельному классу, теперь их называют сверхновыми звездами.

Другие астрономы были заинтригованы и начали искать нечто подобное на своих фотопластинках. Продолжая собственные исследования, Кёртис обнаружил, что большинство новых звезд в спиральных туманностях напоминали новые в других местах, но были менее яркими. Пытаясь найти объяснение их тусклости, он заключил, что они должны находиться на расстоянии в миллионы световых лет от Земли.

Кёртис был сторонником мнения, что спиральные туманности представляют собой «островные вселенные» — звездные галактики, расположенные на огромном расстоянии от Млечного Пути. Но большинство астрономов продолжали скептически относиться к этой версии. Тем временем началась Первая мировая война и большинство астрономов, включая Кёртиса (но не Шепли), ушли на фронт.

После войны дебаты о природе спиральных туманностей продолжились. Харлоу Шепли строго придерживался мнения, что они находятся в пределах нашей Галактики. Серьезную поддержку в этом ему оказывал астроном голландского происхождения Адриан ван Маанен, работавший в обсерватории «Маунт-Вилсон». Маанен, имевший репутацию педантичного исследователя, утверждал, что измерил периоды вращения спиральных галактик и из этих данных следует, что если они представляют собой отдельные галактики, подобные Млечному Пути, то их спиральные рукава движутся быстрее скорости света. Предположительно, его результаты подтвердили другие исследователи из обсерватории «Маунт-Вилсон», обсерватории Лоуэлла, а также из России и Нидерландов.

26 апреля 1920 года Шепли и Кёртис вступили в так называемый большой спор, состоявшийся на вечерней Открытой встрече во время трехдневного собрания Национальной академии наук США в городе Вашингтоне. Днем ранее в газете «Вашингтон пост» было написано: «Доктор Харлоу Шепли из солнечной обсерватории “Маунт-Вилсон” представит данные, которые, по-видимому, свидетельствуют о том, что размеры [Млечного Пути] могут быть намного больше, чем считается… Доктор Гебер Д. Кёртис изЛикской обсерватории будет защищать старую (курсив мой. — В. С.) теорию, согласно которой существует, возможно, огромное число вселенных, подобных нашей, в каждой из которых может насчитываться до трех миллиардов звезд».

Если судить по тексту газетной статьи, что вообще-то всегда рискованно, общепринятое мнение в то время, похоже, склонялось к тому, что «старая» идея о существовании других галактик за пределами нашей вытесняется новыми открытиями Шепли.

На самом деле это был не совсем спор. Скорее это были две последовательные лекции, которые выступающие не адресовали друг другу и которые не предполагали обмена контраргументами по окончании.

Шепли большую часть дебатов посвятил своей оценке размеров нашей Галактики, согласно которой она в 10 раз больше, чем считалось в то время. Он обращался в первую очередь к публике и приводил мало научных подробностей. Лекция Кёртиса была более специализированной, он сосредоточился на спиральных туманностях, делая особенный акцент на том, что новая Андромеда была слишком яркой, чтобы находиться в нашей Галактике, и что спиральные туманности движутся с очень большой скоростью.

Кёртис также поставил под сомнение оценку размеров Млечного Пути, данную Шепли, утверждая, что он в 10 раз меньше. Он ошибся в меньшую сторону в три раза, в то время как Шепли ошибся в три раза в большую сторону, так что здесь они квиты.

Кёртису пришлось признать, что, если спиральные туманности — это отдельные галактики и, предположительно, имеют тот же порядок величин, что и Млечный Путь, они должны находиться на расстоянии не менее 300 тыс. световых лет от нас.

Конспекта самих дебатов не сохранилось. Однако лекторы, как настоящие ученые, согласились написать статьи в Бюллетень Национального совета по научным исследованиям в поддержку своих точек зрения. Эти статьи вышли через год, в них по сравнению с устными докладами были внесены существенные правки.

Общество начало обращать внимание на их работы. 31 мая 1921 года на первой полосе «Нью-Йорк тайме» сообщалось, будто Шепли доказал, что «маленькая светящаяся точка, вокруг которой вращается крохотная тень, называемая Землей, находится на расстоянии 60 000 световых лет от центра Вселенной». В том же году Шепли сменил Пикеринга на должности директора Гарвардской обсерватории. В статье приводились его слова: «Лично мне приятно видеть, как люди теряются в этой физической пустоте, человеку полезно осознавать, насколько ничтожно его существование в масштабах Вселенной».

В 1925 году Шведская королевская академия наук связалась с Гарвардской обсерваторией, чтобы узнать о возможности присуждения Нобелевской премии по физике Генриетте Ливитт. Они не знали, что она умерла от рака желудка четырьмя годами ранее, 21 декабря 1921 года, в возрасте 53 лет. Посмертно премия не присуждается.

 

Реальность, созданная Хабблом

Одиннадцатого сентября 1919 года благодаря неустанным усилиям Джорджа Эллери Хейла на горе Вилсон заработал 100-дюймовый телескоп-рефлектор. Неделю спустя в обсерватории появился новый сотрудник, Эдвин Хаббл, во время Первой мировой войны служивший капитаном, но не участвовавший в боях. В 1923 году он занимался исследованием туманностей при помощи обоих телескопов, имеющихся в его распоряжении (60- и 100-дюймового), и обратил особое внимание на NGC 6822, туманность в созвездии Скорпиона, которая напоминает Большое Магелланово Облако.

Хаббл обнаружил в NGC 6822 пять переменных звезд и попросил Шепли из Гарварда проверить этот объект на пластинках из своей коллекции. Исходя из наблюдаемой светимости ярчайших звезд NGC 6822, Шепли определил, что она находится примерно в 1 млн. световых лет от нас. Он признал, что это «вероятно, находится за пределами Галактики», однако эта туманность не была спиральной, так что Шепли продолжал настаивать на том, что спиральные туманности «не состоят из звезд и по размеру не соответствуют галактикам».

Хаббл обнаружил в NGC 6822 одиннадцать цефеид и с их помощью определил, что расстояние до этой галактики — 700 тыс. световых лет. Однако величайшее открытие, принесшее ему мировую славу, он сделал в начале 1924 года, когда обнаружил цефеиду в галактике Андромеды и определил, что она находится на расстоянии 900 тыс. световых лет от нас. Хаббл написал Шепли письмо, а тот, получив его, сказал коллеге: «Вот письмо, разрушившее мою Вселенную».

На самом деле в 1922 году эстонский астроном Эрнст Эпик опубликовал более точное значение расстояния до Андромеды, полученное новым методом: он использовал вращательную скорость галактики, которая зависит от ее массы, и предположил, что светимость галактики пропорциональна ее массе. Его оценка составила 1,5 млн. световых лет, в то время как Хаббл получил результат 900 тыс. световых лет. Это было несколько ближе к современному значению, равному 2,5 млн. световых лет.

Однако Шепли какое-то время играл роль адвоката дьявола, причем такая позиция идеально подходила главному эксперту, поддерживающему противоположную теорию. Когда совершаются новые научные открытия, для людей, работающих на передовой науки, они не всегда очевидны, и Хаббл вел себя таким же образом, проявляя большую осторожность и консерватизм.

Тем временем Хаббл женился на дочери богатого банкира из Лос-Анджелеса, и молодая пара отправилась в трехмесячное свадебное путешествие, включающее тур по Европе.

По возвращении Хаббл занялся исследованием других туманностей, в частности прекрасной спиральной туманности М33 в созвездии Треугольника, расположенной плашмя по отношению к наблюдателю. В ней он обнаружил 22 цефеиды, благодаря которым установил, что эта туманность находится на расстоянии не менее 1 млн. световых лет от нас. Измерение периодов всех этих переменных звезд во времена, когда не было не то что компьютеров, но даже обычных карманных калькуляторов, было утомительно и сложно. Кроме того, Хаббла беспокоили результаты измерений спиральных туманностей, полученные его старшим коллегой ван Мааненом в обсерватории «Маунт-Вилсон». Если бы они были верны, спиральные туманности не могли бы находиться за пределами нашей Галактики. Поэтому Хаббл не очень стремился оглашать свои результаты публично или высказывать сомнения касательно выводов ван Маанена.

Однако результаты Хаббла скоро стали известны всему миру благодаря развитой системе связи между астрономами, уже тогда весьма эффективной (сегодня они могут обмениваться сообщениями мгновенно). Даже в «Нью-Йорк таймс» что-то прослышали, и 23 ноября 1924 года она вышла с заголовком: «Доктор Хаббелл [sic] подтверждает — существуют “островные вселенные”, подобные нашей».

Несмотря на сомнения Хаббла, астрономическое сообщество серьезно отнеслось к полученным им результатам, поскольку они основывались на методе, имевшем к тому моменту серьезный базис, — на шкале расстояний по цефеидам. Ошибку ван Маанена в конце концов установили, в его методах расчета были найдены изъяны. Хаббл получил премию 1000 долларов от Американского общества содействия развитию науки, разделив ее с паразитологом Сэмюэлом Кливлендом, который обнаружил простейших в пищеварительном тракте термитов. Хаббл опубликовал свои результаты в 1925 году в «Публикациях Американского астрономического общества».

Шепли сожалел о своем уходе в Гарвард. Он считал, что мог бы сделать то же открытие, что и Хаббл, если бы только остался в обсерватории «Маунт-Вилсон». Но в конце концов он великодушно заметил, что Хаббл заслужил свою славу и был «великолепным исследователем, лучшим, чем я».

Хаббл, однако же, считал результаты ван Маанена пятном на своем великом открытии и испытывал к нему все нарастающую личную неприязнь, поскольку они продолжали работать в одной обсерватории. Ван Маанен ограничился тем, что неохотно признал существование некоторых ошибок в расчетах, и пообещал довести работу до конца. Но так этого и не сделал.