Новые детали
Давайте вспомним, на каком этапе находилась космология в середине XX века. К началу 30-х годов великое открытие — то, что мы живем в огромной расширяющейся Вселенной, состоящей из звездных галактик, разлетающихся на огромных скоростях, — прочно укрепилось в науке, и астрономы занимались тем, что дополняли эту картину новыми деталями. Самым мощным телескопом в мире оставался 100-дюймовый рефлектор из обсерватории «Маунт-Вилсон», начавший работать в 1908 году. Он сохранял за собой это звание в течение 40 лет, пока наконец в 1948 году не уступил 200-дюймовому рефлектору из Паломарской обсерватории. Разумеется, это были не единственные телескопы, существовало множество других, спроектированных специально для отдельных видов наблюдений.
Используя это оборудование, астрономы начали детально исследовать небо, занося галактики в каталоги. Этот процесс будет продолжаться много лет и принесет множество неожиданных и впечатляющих результатов. Одним из наиболее плодотворных составителей каталогов был выдающийся астрофизик Фриц Цвикки, уже упомянутый в связи с его неудачной гипотезой утомленного света, призванной объяснить причины красного смещения галактик, а также как человек, открывший массу доселе скрытых галактик. Он также предполагал, что высокоэнергетические космические лучи приходят из-за пределов Солнечной системы и возникают при взрывах крайне массивных звезд. Он назвал такие звезды сверхновыми. Для поиска сверхновых Цвикки использовал установленный в Паломарской обсерватории 18-дюймовый телескоп Шмидта, изобретенный немецким оптиком Бернхардом Шмидтом в 1930 году. Телескоп Шмидта позволяет детально изучать большие участки неба. С момента его запуска в 1936 году Цвикки обнаружил около десятка сверхновых.
В 1948 году более крупный 48-дюймовый телескоп Шмидта использовали при проведении Паломарского обзора неба. В его ходе подтвердилось упомянутое в главе 8 предположение Цвикки о том, что галактики образуют скопления. В 1958 году Джордж Эйбелл, профессор астрономии из Калифорнийского университета, что в Лос-Анджелесе, составил каталог из 2712 скоплений Северного полушария, а к 1989 году каталогизировал 4073 богатых звездами галактических скопления, которые можно наблюдать в обоих полушариях. К 70-м годам XX века астрономы стали замечать, что скопления, в свою очередь, формируют ячеистые структуры с нитями, отверстиями и стенами.
Горячее и плотное прошлое
Тем временем центр внимания космической физики сместился с общей теории относительности на ядерную физику. Ученые начали осознавать, что, если Вселенная расширяется, в прошлом она должна была представлять собой очень маленький, горячий и плотный объект, где главенствующую роль играли ядерные реакции. Жорж Леметр, возможно, был первым, кто понял это. Однако его предположение, что первичное сверхъядро распалось в ходе ядерных реакций, образовав Вселенную, какой мы ее знаем сегодня, было чистой воды спекуляцией и не имело под собой каких-либо эмпирических или теоретических оснований.
Как следствие, мало кто из ученых того времени принял эту идею всерьез. В чем заключается настоящий вклад Леметра, так это в предложенном им космологическом решении общей теории относительности для расширяющейся Вселенной. Теперь его называют решением Фридмана — Леметра, поскольку оно содержалось также в уравнениях Фридмана. Сама модель получила название модели Эддингтона — Леметра, поскольку Эддингтон усовершенствовал ее.
В любом случае Леметр представлял Вселенную конечной, зародившейся в определенный момент. Хотя не исключено, что такое представление было продиктовано его религиозной верой в Творца, как уже упоминалось ранее, он никогда не основывал свою аргументацию на богословии и, более того, противился такой трактовке.
В то же время, как мы узнали из главы 8, Эддингтон находил мысль о начале Вселенной невыносимой. В его представлении Вселенная расширялась, однако была вечной, и большинство физиков тех времен были склонны согласиться с этим. Что же касается астрономов-наблюдателей, то они особо не отвлекались от телескопов.
Леметр продолжал развивать свою модель, осознавая, что ее нужно сделать экспериментально проверяемой. Он понимал, что, если Вселенная когда-то была горячей, плотной и радиоактивной, должны были сохраниться следы этого излучения, которые, вероятно, можно увидеть и сегодня. Однако он не считал, что это излучение должно быть электромагнитным, то есть потоком фотонов, предполагая, что оно должно состоять из заряженных частиц. Большинство физиков опять-таки сомневались в этом, хотя Эйнштейн высказал к его идее легкий интерес. Но у них просто не было данных, подтверждающих это.
Более того, одна из основных проблем гипотезы конечной Вселенной заключалась в том временном сроке, на который указывали данные. Согласно закону Хаббла, возраст Вселенной обратно пропорционален постоянной Хаббла. В результате получалось, что он составляет 2 млрд. лет — меньше, чем возраст Земли, рассчитанный на основании данных геологии и ядерной физики. Это может показаться удивительным, но Хаббл сам ставил под сомнение расширение Вселенной, которое в итоге принесло ему мировую славу. Он писал: «Не удается обнаружить каких-либо явлений — факторов разбегания галактик, — свидетельствующих о расширении Вселенной. Имеющиеся данные все еще склоняют нас скорее в сторону статической, нежели быстро расширяющейся модели Вселенной».
Однако предположение, что возраст Вселенной Т = 1/Н, основано на нулевой космологической постоянной. Модель Леметра включала космологическую постоянную и допускала более солидный возраст Вселенной. К сожалению, Эйнштейн отрекся от своей космологической постоянной и не стал продолжать работу над ней.
Вплоть до этого периода, до конца 1930-х годов, физика фигурировала в теоретической космологии только на уровне общей теории относительности. Первозданный атом Леметра был преимущественно спекулятивной гипотезой с осторожными попытками разработать количественную модель. Но в 1938–1939 годах произошел великий прорыв, когда немецкие физики Ханс Бете (работавший в США) и Карл Фридрих фон Вайцзеккер независимо друг от друга предположили, что энергия звезд вырабатывается путем ядерного синтеза. Процесс, предложенный Бете, был чрезвычайно простым. Четыре протона объединяются в атом гелия вследствие серии парных столкновений, включающих только фундаментальные частицы: протоны, нейтроны, электроны, фотоны и, как мы знаем теперь, нейтрино. Механизм, предложенный Вайцзеккером, был значительно сложнее и включал изотопы углерода, кислорода и азота.
Вайцзеккер также предположил, что с помощью этой теории можно объяснить формирование химических элементов. Однако его модель не давала приемлемого объяснения распространенности элементов в космосе. Но все же физики-ядерщики были достаточно заинтригованы для того, чтобы подключиться к работе по исследованию космоса.
Илем
Большой шаг в сторону укрепления позиций модели Большого взрыва сделал Георгий Гамов, российско-украинский физик, эмигрировавший в США. В 1924 году Гамов прослушал курс лекций Александра Фридмана под названием «Математические основы теории относительности», который тот читал в Ленинграде. Гамов хотел обучаться под руководством Фридмана, но, к сожалению, ученый умер всего год спустя, будучи совсем молодым.
Получив в Геттингене докторскую степень по квантовой теории (он защитил работу по теории атомного ядра), Гамов работал в Копенгагене с Нильсом Бором, затем в Кембридже с Эрнестом Резерфордом, а в 1931 году, в возрасте 28 лет, стал членом-корреспондентом Академии наук СССР. Среди множества его достижений в ядерной физике — количественное доказательство того, что альфа-распад (поток ядер гелия, называемых альфа-частицами) объясняется туннельным эффектом. Этот процесс важен также для реакций термоядерного синтеза, протекающих в звездах. Как мы выясним позже, космологи признали, что этот сугубо квантово-механический процесс мог лежать в основе возникновения нашей Вселенной.
В 1934 году Гамов уехал в США, где работал с Эдвардом Теллером в Университете Джорджа Вашингтона, в городе Вашингтоне. Во время Второй мировой войны Теллер переключился на работу в Манхэттенском проекте. Однако Гамова к работе над атомной бомбой не допустили, поскольку в СССР он получил офицерское звание, необходимое, чтобы преподавать в военной академии. Он остался в Вашингтоне и стал консультантом Военно-морского ведомства США. После войны Гамова допустили к ядерным исследованиям, проводимым в Лос-Аламосе.
Гамов, который продолжал работу в области ядерной физики, проявляя все возрастающий интерес к астрофизике, получил известность также как автор научно-популярных бестселлеров, в том числе «Раз, два, три… бесконечность», «Рождение и смерть Солнца», «Мистер Томпкинс в стране чудес» (в шести томах) и многих других. Будучи подростком, я с жадностью глотал эти книги, и они, без сомнения, повлияли на мое решение стать физиком. Вот еще одно подтверждение невероятной гениальности Гамова: до аспирантуры он даже не говорил по-английски.
В 1948 году Гамов, Ральф Альфер и Ханс Бете опубликовали в журнале Physical Review короткое письмо под названием «Происхождение химических элементов», в котором вернулись к идее о том, что ядра элементов таблицы Менделеева возникли на начальных этапах формирования Вселенной. Бете включили в соавторы, чтобы статью можно было называть «Альфер, Бете и Гамов». Однако Бете, не будучи непосредственным автором работы, все же внес в ее создание существенный вклад. На Леметра и Вайцзеккера авторы статьи не ссылаются.
Альфер, Бете и Гамов предположили, что вначале существовало компактное ядро первичной, очень плотной и горячей субстанции, состоящей из нейтронов, которую они назвали «илем» (ylem). В ходе бета-распада часть нейтронов превратилась в протоны, испустив при этом электроны и, как мы теперь знаем, антинейтрино электронные, устремившиеся прочь из этого сплава частиц.
Затем в процессе воссоединения протонов и нейтронов, называемом нейтронным захватом, образуются химические элементы. В результате этой реакции к смеси добавляются фотоны. Таким образом, протон и нейтрон соединяются, образуя дейтрон (ядро атома водорода с двумя нейтронами). Если добавить к нему еще один нейтрон, получится тритон (ядро водорода с тремя нейтронами). Тритон и протон или два дейтрона могут объединиться в ядро гелия, высвободив при этом большое количество энергии.
Попутно замечу, что попытки осуществить управляемый ядерный синтез основываются именно на этих реакциях, которые требуют более низких температур, нежели процессы, происходящие в недрах звезд. Но даже в этом случае температура невероятно высока, порядка 100 млн. градусов, и, несмотря на более чем 50 лет попыток, этот источник энергии все еще недоступен для нас.
Гамов и его коллеги полагали, что на ранних этапах жизни Вселенной в ходе серии ядерных реакций образовалась вся периодическая таблица химических элементов. Но, несмотря на все их усилия, выходило, что этот процесс не будет идти дальше. Если добавить нейтрон к ядру гелия, стабильного ядра из пяти нуклонов не образуется. Соединение двух ядер гелия также не дает в результате стабильного ядра из восьми нуклонов.
Как мы вскоре узнаем, позже Фред Хойл с коллегами смогли доказать, что более тяжелые ядра образуются в недрах звезд в процессе так называемого звездного нуклеосинтеза. Первым высказал догадку о существовании этого процесса Артур Эддингтон, его изучал также Ханс Бете. Когда выяснилось, что первичный нуклеосинтез Гамова не объясняет формирование всех элементов периодической таблицы, теорию Большого взрыва вновь стали воспринимать скептически.
Однако модель Альфера — Бете — Гамова, в которую внес вклад и Ральф Герман, имела другие последствия, описанные в примечательной работе Альфера и Германа, опубликованной в 1949 году. Скорость реакций, о которых идет речь, превышает скорость расширения Вселенной, заданной параметром Хаббла, Н, в степени, достаточной для того, чтобы в плазме взаимодействующих частиц установилось квазитепловое равновесие с медленно понижающейся температурой. По оценке Альфера и Германа температура Вселенной во время, «когда процессы нейтронного захвата стали иметь значение», достигала порядка 600 млн. градусов. Фотоны в то время входили в смесь частиц. Исходя из теории расширяющейся Вселенной, они рассчитали, что к настоящему времени эта температура должна опуститься до «порядка 5 К», то есть 5 Кельвинов.
Хоть и не совсем явно, Альфер и Герман высказали прогноз, который потряс весь мир: Вселенная должна быть наполнена тепловым излучением, то есть излучением, соответствующим спектру черного тела при 5 К, которое лежит в микроволновом диапазоне. Это касается только фотонов, которые, в отличие от материи, сохраняли состояние теплового равновесия по мере расширения Вселенной. Пик спектра излучения черного тела при температуре 5 К приходится на длину волны примерно 1 м. Для сравнения: пик оптического спектра Солнца (5000 К) приходится на длину волны 550 миллиардных метра.
Этот прогноз не вызвал никакого интереса у физиков и астрономов, вероятно, потому, что был тесно связан с механизмом первичного нуклеосинтеза, который мог объяснить появление только первых двух элементов таблицы Менделеева.
Кроме того, все еще стояла проблема парадокса возраста Вселенной. Поэтому о Большом взрыве снова забыли. Вопреки энтузиазму папы Пия XII за 10 лет, прошедших после 1953 года, была опубликована только одна работа по теории Большого взрыва. Ее место заняла модель вечной и неизменной Вселенной, привлекавшая куда больше внимания, чем следовало бы, возможно, из-за большого авторитета ее создателей.
Проблема стационарной модели
Как уже упоминалось, термин «Большой взрыв» был предложен Фредом Хойлом в 1948 году в интервью «Би-би-си» и был употреблен с иронией. В том же году Хойл вместе с Германом Бонди и Томасом Голдом разработали альтернативную Большому взрыву теорию стационарной Вселенной. Первым космологию стационарного состояния предложил Джеймс Джинс в 1928 году. С помощью Маргарет и Джефри Бербиджей, а также Джайанта Нарликара Хойл продолжал продвигать стационарную модель даже после того, как эмпирических данных в пользу Большого взрыва накопилось в избытке.
Эти исследователи были твердо уверены, что Вселенная должна подчиняться так называемому идеальному космологическому принципу, который они трактовали таким образом, что Вселенная должна выглядеть одинаково везде и всегда, то есть в любом месте и в любое время. Нет не только особого участка пространства, который можно считать центром Вселенной, не существует и определенного момента времени, в который она появилась.
Далее, если общая масса расширяющейся Вселенной остается постоянной, то плотность Вселенной должна уменьшаться со временем. Поскольку, по мнению авторов стационарной модели, средняя массовая плотность Вселенной должна оставаться постоянной, иначе Вселенная выглядела бы иначе, все время должна создаваться новая однородная материя. Скорость ее формирования, однако, должна быть очень мала, всего 10-43 г/см3∙с.
Авторы понимали, что при этом нарушится закон сохранения энергии. Однако различные версии этой модели, предложенные в течение последующих лет, добавляли в нее поле с отрицательным давлением, обеспечивая тем самым соблюдение закона сохранения энергии. Ученые отметили, что это особое поле, по сути, равнозначно космологической постоянной. Положительная космологическая постоянная создает постоянное отрицательное давление расширяющегося газа, вследствие чего внутренняя энергия растет в полном соответствии с законом сохранения энергии. Энергия на создание новой массы берется из работы, совершаемой над системой ее собственным отрицательным давлением. Однако такая трактовка, похоже, не устроила сторонников стационарной модели.
В любом случае вскоре появилось множество экспериментальных данных, подтверждающих, что Вселенная в разное время выглядит немного по-разному. В 1950-х годах радиоастроном Мартин Райл из Кембриджа и его исследовательская группа, проведя дебаты (Хойл работал по соседству), доказали, что плотность астрономических радиоисточников, находящихся на больших расстояниях, а следовательно, в прошлом, была выше, чем сейчас. После открытия квазаров и некоторых других форм активных галактик, о которых мы поговорим в этой главе чуть позже, стало ясно, что в далеком прошлом они также были намного плотнее.
В 1974 году Райл разделил Нобелевскую премию по физике с коллегой по Кембриджу Энтони Хьюишем, чья студентка Джоселин Белл открыла первый пульсар (подробности чуть позже). Это была первая Нобелевская премия, присужденная за достижения в астрономии. Но не последняя.
Тот факт, что Вселенная за миллиарды лет изменила свой облик, указывал на ошибочность идеального космологического принципа в определении Хойла. Однако вместо того, чтобы утверждать, что Вселенная должна выглядеть одинаково в любом месте и времени, можно ввести космологический принцип, который служит той же цели, что и предложенный Хойлом, то есть распространению принципа Коперника с пространства на время. Нам просто нужно, чтобы модели, создаваемые учеными для описания Вселенной, можно было применять везде и всегда. Спектральные линии и другие базовые физические свойства квазаров — наиболее удаленных объектов, которые мы к тому же наблюдаем в их глубоком прошлом, — ничем не отличаются от тех, что можно наблюдать в современных лабораториях, подтверждая тем самым такой вариант космологического принципа.
Звездный нуклеосинтез
Идеи Хойла получили огромную поддержку, когда он и его коллеги смогли разработать успешную теорию формирования химических элементов в звездах, названную звездным нуклеосинтезом и опубликованную в 1957 году. Это пошатнуло позиции модели Большого взрыва, поскольку механизм первичного нуклеосинтеза не подтвердился.
В 1952 году физик Эдвин Солпитер обнаружил новый способ преодолеть область нестабильности между 5-м и 8-м нуклонами при формировании элементов тяжелее гелия. В открытой им так называемой тройной гелиевой реакции две альфа-частицы, то есть ядра гелия-4 (Не4), сначала объединяются в ядро бериллия-8 (Be8), состоящее из четырех протонов и четырех нейтронов. Однако ядро бериллия нестабильно, что, как мы уже знаем, стало важным ограничением, не позволяющим первичному нуклеосинтезу продолжаться. Солпитер доказал, что при достаточно высокой температуре и плотности ядро Be8 может захватить еще одно ядро Не4, успевая до распада образовать стабильное ядро углерода-12 (С12). Вот как выглядит эта реакция:
Не 4 + Не 4 → Be 8 ;
Не 4 + Ве 8 → С 12 .
Разумеется, углерод — ведущий элемент в возникновении жизни, какой мы ее знаем. Ядра других элементов, также необходимых для жизни, таких как кислород и кальций, тоже могут образовываться из Не4, соединяясь с другими ядрами:
Не 4 + С 12 → О 16 ;
Не 4 + O 16 →Са 20 .
Теоретически такие процессы могли протекать во время Большого взрыва. Однако температура должна была упасть ниже 1 млрд. градусов, поскольку при более высокой температуре ядра распадаются вследствие фотоядерных реакций с той же скоростью, с которой образуются. При такой температуре плотность ранней Вселенной упала до 10-4 г/см3, а этого слишком мало для процессов, описанных Солпитером.
В 1954 году Хойл доказал, что, когда звезда сжигает все свои запасы водорода и схлопывается под воздействием гравитации, ее ядро достигает температуры порядка 100 млн. градусов и плотности около 10 000 г/см3, позволяя тройной гелиевой реакции произойти.
Стационарная вселенная и Бог
Одно из серьезных возражений против модели Большого взрыва, которое высказывали Хойл, Бонди, Голд и другие сторонники стационарной модели Вселенной, носило, по выражению Хойла, эстетический характер. Любое объяснение внезапного появления Вселенной должно опираться на «неизвестные науке причины». Под этим он имел в виду метафизику. Хойл был атеистом, не скрывающим своих убеждений, и даже в 1982 году продолжал нападать на ученых, придерживавшихся теории Большого взрыва, которых к тому моменту было уже большинство, незаслуженно приписывая им религиозные мотивы:
«Меня всегда удивляло то, что, хотя большинство ученых заявляют об отказе от религии, на деле она владеет их сознанием больше, чем сознанием представителей духовенства. Маниакальное неистовство, с которым коллективное сознательное современной науки вцепилось в космологию Большого взрыва, очевидно, следует из глубоко укоренившейся привязанности к первой главе Книги Бытия — религиозный фундаментализм чистой воды» {180} .
В автобиографии, написанной в 1994 году, он заявляет: «Космология Большого взрыва — это разновидность религиозного фундаментализма».
Однако, как мы знаем теперь, модель Большого взрыва одержала победу, в то время как стационарная модель Вселенной канула в небытие — и на то была лучшая причина из всех возможных. Модель Большого взрыва согласовывалась со всеми имеющимися данными, а стационарная модель — нет. Однако Хойл и его коллеги все равно снискали вечную славу, так как теория звездного нуклеосинтеза тоже подтвердилась. Однако она не имеет никакого отношения к стационарной модели Вселенной, и ее успех никак не противоречит модели Большого взрыва.
Возможно, именно из-за своих атеистических взглядов Хойл с предубеждением относился к Большому взрыву и был настроен на поиск другого объяснения синтеза атомных ядер, нежели формирование этих элементов на ранних этапах развития Вселенной. В любом случае сегодня звездный нуклеосинтез стал неотъемлемой частью космологии, первичный же нуклеосинтез обеспечил формирование лишь довольно большого количества сравнительно легких элементов, возместив недостающие звенья звездного нуклеосинтеза. В науке, как и в футболе, не всегда все происходит так, как можно ожидать.
Активные галактики
Возможно, самым важным с точки зрения космологии открытием до обнаружения в 1964 году реликтового излучения, о котором мы поговорим в следующей главе, стало наблюдение квазизвездных объектов, теперь широко известных как квазары. В 1960 году радиоастрономия переживала расцвет и было обнаружено около сотни любопытных объектов, излучающих в радиодиапазоне, которые, казалось, имели очень небольшие угловые размеры. Один из них, 3С48, астроном Джон Болтон отождествил с видимым астрономическим объектом. В 1963 году Мартен Шмидт, используя 200-дюймовый телескоп Хейла, установленный в Паломарской обсерватории, нашел источник видимого излучения, соответствующий радиоисточнику 3С273. На самом деле 3С273 можно увидеть с помощью сравнительно небольших любительских телескопов — он выглядит как обычная звезда, хоть и называется квазизвездным объектом.
Измеряя оптический спектр объекта, Шмидт обнаружил, что спектральные линии водорода смещались со скоростью 47 400 км/с, что составляет 15,8% от скорости света. Если на основании скорости, рассчитанной из красного смещения, определить по закону Хаббла расстояние до 3С273, выяснится, что он находился на расстоянии 2 млрд. световых лет от нас, когда испустил наблюдаемый теперь свет. Заметьте, что сейчас он находится намного дальше, так как Вселенная с тех пор все время расширялась. Это определенно была не отдельная звезда.
По оценке Шмидта, этот объект, судя по расстоянию, рассчитанному по закону Хаббла, должен был быть в 100 раз ярче, чем любая галактика, которую до сих пор отождествляли с радиоисточником, а свет его исходил от ядра размерами менее 3 световых лет в поперечнике. Работая в Паломарской обсерватории и имея на вооружении более серьезное оборудование, чем любительский телескоп, Шмидт также увидел оптический джет (полярный струйный выброс) длиной приблизительно 150 световых лет и связал его с соответствующим радиосигналом. Из этого он сделал вывод, что объект имеет галактические масштабы.
В статье, вышедшей вскоре после публикации работы Шмидта в журнале Nature, Джесси Гринстейн и Томас Мэтьюз сообщили о том, что красное смещение объекта 3С48 соответствует скорости 110200 км/с, то есть 37% от скорости света, из чего следовало, что расстояние до объекта составляет почти 5 млрд. световых лет.
Некоторое время обсуждались альтернативные объяснения свойств квазаров, что позволяло бы расположить их намного ближе к Земле, но вскоре стало совершенно ясно, что они на самом деле находятся очень далеко и испускают излучение гигантской, беспрецедентной мощности.
В итоге квазары отнесли к классу астрономических объектов, называемых активными галактиками. Это галактики, светимость которых намного выше, чем светимость обычных галактик, для них характерны крупные спектральные линии, ассоциируемые, как правило, с центральным ядром, а также мощное радио- и рентгеновское излучение. Они зачастую имеют джеты в тысячи световых лет длиной, направленные от центра к периферии. Для них также характерна переменная светимость, которая может за несколько дней измениться в два раза, что весьма необычно для объекта галактических размеров. Из этого следует, что источник невероятной энергии активной галактики сосредоточен на участке всего в несколько световых лет, совсем крошечном по сравнению с размерами галактики, подобной Млечному Пути, которые достигают 100 тыс. световых лет в диаметре. Теперь стало ясно, что эти объекты представляют собой черные дыры сверхвысокой массы. Активные галактики делятся на три подкласса.
1. Сейфертовские галактики. Названы в честь астронома Карла Сейферта, который первым обратил на них внимание в 1943 году. Сейфертовские галактики имеют очень яркое ядро, спектр которого содержит широкие эмиссионные линии водорода, гелия, азота и кислорода. Расширение линий связывают с доплеровским смещением в атомных ядрах газов, движущихся со скоростями 500–4000 км/с.
2. Радиогалактики. Это очень мощные радиоисточники, испускающие гигантские двухлепестковые радиоволновые структуры, как правило, выбрасываемые в противоположные от оптического ядра стороны. Если джет направлен в сторону Земли, так что мы не можем увидеть галактику, такой объект называется блазаром. Объекты, называемые BL Ящерицы, представляют собой подкласс блазаров. Как мы скоро узнаем, блазары посылают в сторону Земли высокоэнергетические гамма-лучи и, возможно, потоки нейтрино.
3. Квазары. Как известно, они представляют собой активные галактики, находящиеся так далеко, что кажутся точечными источниками.
Все галактики, образующие нашу Местную группу, — это типичные галактики. Ближайшая к нам активная галактика, Центавр А, находится на расстоянии 10 млн. световых лет. На самом деле примерно через 2 млрд. лет после Большого взрыва активные галактики преобладали. За 6 млрд. лет их количество уменьшилось — их стало менее 10%.
Если и существует действительно убедительное свидетельство против стационарной модели Вселенной, то вот оно. Вселенная, которую мы видим, изучая активные галактики, выглядит несколько иначе, чем Вселенная, наполненная более близкими галактиками. Когда галактики только формировались, они проходили через этап развития, известный как яркая фаза, когда их светимость была намного выше, чем у сегодняшних галактик. Эти ранние галактики погибли одна за другой, в то время как сформировались поздние, более спокойные галактики. Это объясняется очень просто. Ранние галактики содержали намного больше звезд-гигантов, чем нынешние. Такие звезды испускают больше света, но живут намного меньше.
Пульсары
В 1960 году произошло еще одно неожиданное открытие. В 1967 году Джоселин Белл, аспирантка, работавшая в Кембридже под руководством Энтони Хьюиша, открыла первый пульсар — астрономический объект, испускающий радиоимпульсы с интервалом 1,33 с. Вскоре было обнаружено множество подобных объектов, некоторые из них пульсировали с периодичностью всего в несколько миллисекунд. В итоге их отождествили с нейтронными звездами.
Нейтронная звезда представляет собой остаток сверхновой, которая потеряла большую часть своей массы, превратившись в сферу очень высокой плотности, состоящую из нейтронов, образовавшихся в ходе гравитационного коллапса. Ее плотность сопоставима с плотностью атомного ядра. Если нейтронная звезда имеет сильное магнитное поле и быстро вращается, она испускает электромагнитные импульсы с короткими промежутками, что мы и можем наблюдать.