Видимая Вселенная
Флагманским проектом в астрономии 1970-х годов стал первый пилотируемый полет на Луну на корабле «Аполлон-11», состоявшийся 20 июля 1969 года. Затем было еще пять полетов, последний — на корабле «Аполлон-17» 11 декабря 1972 года. Беспилотные космические аппараты «Вояджер-1» и «Вояджер-2», запущенные в 1977 году, исследовали Юпитер и Сатурн, после чего отправились к границам Солнечной системы, а теперь выходят в межзвездное пространство. В 1974 году «Маринер-10» прошел около Венеры и исследовал Меркурий. В 1976 году космический аппарат «Викинг» приземлился на Марсе.
Космический телескоп «Эксплорер-57» был запущен в 1978 году, чтобы исследовать астрономические объекты в ультрафиолетовом (УФ) диапазоне, что невозможно сделать с Земли из-за поглощения УФ-лучей атмосферой. Проработав почти 18 лет, он провел более 104000 наблюдений объектов всех видов, от планет до квазаров.
Три спутника Астрономической обсерватории высоких энергий НАСА (НЕАО) исследовали космос еще в трех дополнительных диапазонах: в рентгеновских, гамма- и космических лучах. Обсерватория НЕАО 1, запущенная в 1977 году, исследовала небо в рентгеновском диапазоне и открыла 1500 источников этого излучения. НЕАО 2, переименованная в Обсерваторию имени Эйнштейна, была запущена в следующем году. Ее рентгеновский телескоп обнаружил на несколько тысяч источников больше, точно установив их местоположение. Ведущий эксперт проекта Обсерватории имени Эйнштейна Риккардо Джаккони ранее возглавлял исследовательскую группу, которая в 1962 году открыла мощный источник рентгеновского излучения Скорпион Х-1. Позже ученые определили, что он является нейтронной звездой. Его рентгеновское излучение в 10 тыс. раз мощнее видимого. В 2002 году Джаккони получил Нобелевскую премию по физике. Обсерватория НЕАО 3, запущенная в 1979 году, измеряла спектральные характеристики и изотропию рентгеновских и гамма-источников и определяла изотопный состав космических лучей.
Что же касается земных обсерваторий, то новые гигантские телескопырефлекторы появились на вершинах гор в Аризоне, Чили, Австралии, на Гавайях и в России. Приборы с зарядовой связью постепенно вытеснили фотопластинки в роли главного детектора, что существенно улучшило чувствительность телескопов к фотонам и повысило эффективность работы, одновременно обеспечивая автоматический цифровой вывод данных. Новые высокоскоростные цифровые компьютеры могли быстро обрабатывать большие объемы данных и позволяли автоматически управлять зеркалами. Астрономам больше не нужно было проводить долгие часы в холодных кабинах телескопов, вручную наводя их на цель.
К концу десятилетия возможности телескопов по сбору данных увеличились — прошли те времена, когда в телескопе использовалось одно-единственное зеркало. Теперь их стали оснащать системой из множества зеркал с компьютерной синхронизацией улавливаемого пучка света. Первое такое устройство, названное многозеркальным телескопом, работало в обсерватории имени Уипла (тогда называвшейся «Маунт Хопкинс») в Аризоне в то время, когда я работал в этом же месте над другим проектом, измеряя характеристики высокоэнергетических гамма-лучей.
Во время работы в Гавайском университете я наблюдал установку международных телескопов на Мауна-Кеа, горе высотой 4205 м, расположенной на острове Гавайи. В результате эта гора стала лучшим местом для астрономических наблюдений из имеющихся на Земле. Из-за большой высоты и уникально сухого воздуха над вершиной Мауна-Кеа — не только превосходное место для наблюдений в видимом диапазоне, но и хорошо подходит для изучения неба в инфракрасном спектре.
Нет нужды перечислять впечатляющие наблюдения, проведенные с помощью этих удивительных инструментов, и мне едва ли удастся отдать им здесь должное. Фотографии, которыми заполнены книги по астрономии и веб-сайты НАСА, демонстрируют, что природа может состязаться с любым человеческим видом искусства и любой религией в способности создавать красоту и вызывать священный трепет. Для моих целей на данном этапе достаточно сказать, что контраст между светящимся веществом во Вселенной и реликтовым излучением трудно продемонстрировать еще ярче. Видимая человеческим глазом Вселенная сложна, изменчива и непостоянна. Условно говоря, в масштабе 1:100 000 реликтовое излучение просто, однородно и постоянно. При таком уровне точности для его описания требуется всего один показатель — температура, равная 2,725 К. Однако оказалось, что небольшие отклонения от однородности в РИ смогут рассказать нам о том, как возникла вся эта невероятная сложность.
Проблема структуры
Задолго до открытия РИ астрономы ломали головы над тем, как сформировалась структура Вселенной. Выдающийся британский физик и астроном Джеймс Джинс вычислил механизм, благодаря которому однородное облако газа под воздействием гравитации сжимается, образуя плотный ком. Он вывел выражение для минимальной массы, при которой гравитационный коллапс пересилит давление газа, направленное вовне. Она называется массой Джинса и зависит от скорости звука в газе и плотности этого газа.
Механизм Джинса неплохо объясняет механизм формирования звезд, но не работает в случае галактик. В 1946 году российский физик Евгений Лифшиц применил вычисления Джинса к расширяющейся модели Вселенной и доказал, что гравитационная нестабильность сама по себе не способна объяснить формирование галактик из окружающей среды. На деле выходит, что расширение Вселенной в совокупности с давлением излучения преодолевает гравитационные силы. Неспособность понять, как образовались галактики, пугала астрономов вплоть до 80-х годов XX века.
В начале 1970-х ряд авторов выдвинул предположение, что галактики сформировались вследствие флуктуации плотности первичной материи в ранней Вселенной. Поскольку отношение давления среды к ее плотности описывается уравнением состояния, флуктуации плотности создают флуктуации давления, которые есть не что иное, как звук. Часто можно услышать, что Большой взрыв (англ. big bang — «большой бабах») — ошибочное название, поскольку взрывы в космосе беззвучны. Но Большой взрыв на самом деле породил звуковые волны, которые можно услышать.
Как заметил еще Пифагор, звуки, издаваемые музыкальными инструментами, можно разложить на гармонические составляющие, где каждая гармоника — это чистый звук определенной частоты или высоты. То же самое верно для любого звука, хотя их гармоники обычно не так чисты, как гармоники звуков, издаваемых музыкальными инструментами. Распределение мощности звука по разным частотам задается функцией, называемой спектральной плотностью мощности.
Математический метод, называемый преобразованием Фурье, разработанный французским математиком Жаном Батистом Фурье (1768–1830), широко используется физиками и инженерами во многих областях помимо акустики. Преобразование Фурье позволяет превратить любую пространственную или временную функцию в функцию длины волны или частоты. Если функция имеет периоды во времени или пространстве, пиковые значения спектрального графика будут соответствовать определенным частотам или длинам волн.
В 70-х годах ХХ века Эдвард Харрисон и Яков Зельдович независимо предсказали, что спектр звука, порожденного флуктуациями плотности во Вселенной, должен характеризоваться так называемой масштабной инвариантностью. В общем случае масштабная инвариантность — это принцип, который применяется во многих областях, от физики до экономики. Он касается любой характеристики системы, которая не изменяется при изменении ее переменных в одинаковое число раз. К примеру, законы механики Ньютона не изменятся, если единицы измерения пространства перевести из метров в футы. Масштабная инвариантность — это еще один принцип симметрии.
Но масштабная инвариантность соблюдается не всегда. При условии одинакового биологического строения высота, на которую может прыгнуть животное, практически не зависит от его размеров. То есть она не масштабируется. Этот принцип, известный как закон Борелли, был предложен Джованни Альфонсо Борелли (1608–1679). В своей классической работе 1917 года «О росте и форме» Д’Арси Вентворт Томпсон пишет: «Кажется, что кузнечик так же приспособлен для прыжков, как и блоха… однако блоха прыгает на высоту примерно в 200 раз больше своего роста, в то время как кузнечик — в лучшем случае в 20–30 раз».
Хотя Харрисон и Зельдович в своих работах изложили эту идею в более сложных терминах, по сути, они указали на то, что флуктуации плотности в пределах Вселенной не должны зависеть от масштаба Вселенной, увеличивающегося по мере ее расширения. Если бы колебания плотности были сильнее в прошлом или будущем, отдельные участки Вселенной схлопнулись бы, превратившись в черные дыры.
Спектр мощности Харрисона — Зельдовича выражается через волновое число (также называемое пространственной частотой) k = 2π/λ, где λ — длина волны. (Не следует путать эту k с коэффициентом кривизны k.) Предполагается, что спектральная плотность излучения должна быть пропорциональна kn, где n — спектральный индекс. Масштабная инвариантность предполагает, что n = 1.
Итак, как же мы рассчитываем «услышать» эти первозданные звуки? В 1966 году, после открытия реликтового излучения, Райнер Сакс и Артур Вольфе доказали, что неоднородность плотности Вселенной может вызвать флуктуации температуры РИ, так как фотоны, переходящие в область с более высоким гравитационным потенциалом, смещаются в красную сторону, а те, что переходят в область с более низким потенциалом, — в синюю.
Сакс и Вольфе не думали о первичных флуктуациях. Однако оказалось, что благодаря РИ, которое само по себе стало одним из важнейших достижений в истории науки, можно будет проследить эти первичные флуктуации до того момента, когда Вселенной было всего 10-35 с, и увидеть, как галактики и другие сгустки материи сформировались миллиарды лет спустя в результате этих флуктуации. Чтобы объяснить возникновение галактик, относительное изменение температуры излучения, наблюдаемого сегодня, должно составлять не менее ΔT/T = 10-5 — такова оценка ученых.
Гравитационное линзирование
Одно из самых впечатляющих предсказаний общей теории относительности было таким: лучи света отклоняются под воздействием гравитационного поля Солнца. В 1936 году Эйнштейн указал на то, что свет, изогнутый под воздействием астрономических тел, может образовывать множественные изображения. В 1937 году Фриц Цвикки предположил, что скопление галактик может создавать эффект гравитационной линзы. Однако это явление было обнаружено только в 1979 году астрономами из Национальной обсерватории «Китт-Пик» в штате Аризона. Они сфотографировали два объекта, оказавшихся квазарами, расположенные необычайно близко друг к другу, с одинаковыми красным смещением и спектром, что свидетельствовало: на самом деле это один и тот же объект. С тех пор было обнаружено множество случаев линзирования.
В 2013 году с помощью телескопа, установленного на Южном полюсе и получившего довольно очевидное название «Телескоп Южного полюса», в поляризации РИ был обнаружен статистически значимый вихревой паттерн, названный В-модой, вызванный линзированием от вмешивающихся структур Вселенной. Эти наблюдения подтвердились в 2013 и 2014 годах в ходе проведенного в Чили эксперимента, названного Polarbear («Полярный медведь»). В главе 14 мы вернемся к гравитационному линзированию, а также обсудим последние результаты исследования гравитационных волн на Южном полюсе, в число которых входит обнаружение В-моды поляризации реликтового излучения.
Невидимая Вселенная
Мы уже знаем, каким образом астрономы 1930-х годов обнаружили, что во Вселенной присутствует намного больше материи, чем та, которая представлена светящимся веществом в галактиках — звездами и горячим газом. Данные наблюдений просто не укладывались в ньютоновские законы механики и всемирного тяготения, но мало кто стал бы утверждать, что их в каком-либо смысле опровергли. Фриц Цвикки окрестил этот невидимый источник гравитации duncklematerie — темная материя.
Никаких серьезных результатов в этой области не было получено до 1970-х годов, когда радиоастрономы в нидерландском Гронингене занялись исследованием 21-сантиметровой сверхтонкой линии в спектрах нейтральных молекул водорода из разных галактик. Согласно их измерениям, для большой выборки галактик была характерна плоская кривая вращения. Кривая вращения представляет собой график зависимости вращательной скорости звезды, которая вызывает доплеровское смещение наблюдаемой спектральной линии, от расстояния между этой звездой и центром галактики. Согласно законам Ньютона у звезд, находящихся дальше от центра, этот показатель должен быть ниже, так же как скорости планет Солнечной системы снижаются с увеличением расстояния до Солнца, где находится большая часть общей массы Солнечной системы. Но вместо этого скорости оставались по большей части постоянными.
Это наблюдение объясняется тем, что галактики имеют гало, состоящие из невидимой темной материи, которое распространяется за пределы плотной светящейся области в центре. Невидимой материей едва ли можно пренебречь. Теперь нам известно, что она составляет 90% массы изученных галактик. Как мы выясним в дальнейшем, благодаря гравитационному линзированию, описанному в предыдущем разделе, были получены прямые доказательства существования темной материи.
Тем временем американский астроном Вера Рубин и ее коллеги провели систематическое исследование вращения спиральных галактик в оптическом спектре и обнаружили тот же эффект. Ученым было хорошо известно, что многие астрономические тела, к примеру планеты, коричневые карлики, черные дыры, нейтронные звезды, не излучают свет напрямую или излучают крайне мало. Однако было понятно, что для того, чтобы объяснить значение общей массы, вычисленное методом ньютоновской динамики, этого вряд ли достаточно.
Более того, существовали независимые данные, указывающие на то, что большая часть темной материи не может состоять из известных нам атомов, но должна представлять собой нечто до сей поры неизвестное. Эти данные появились благодаря тому же источнику, который, как мы узнали из главы 10, обеспечил надежное подтверждение Большого взрыва, — первичному нуклеосинтезу.
На рис. 10.4 сравнивается теоретическая и экспериментально измеренная распространенность легких ядер в зависимости от ΩB — отношения барионной плотности к критической плотности. Хотя числовые значения все еще уточняются, последние измерения указывают на то, что ΩB меньше 5%, а 26% от общей массы Вселенной представлены темной материей, которая не может состоять из известных нам атомов.
Расцвет физики частиц
Одновременно с открытием РИ в 1964 году произошел расцвет новой области — физики элементарных частиц. В этой деятельности довелось принять участие и мне. Будучи аспирантом, я работал в Калифорнийском университете в Лос-Анджелесе, а после защиты докторской в 1963 году в течение 37 лет занимал должность преподавателя физики в Гавайском университете, периодически читая лекции в университетах Гейдельберга, Оксфорда, Рима и Флоренции. В итоге оказалось, что физика частиц играет важную роль в космологии, поэтому позвольте мне на время переключить ваше внимание с очень больших объектов на очень маленькие.
Использование все более мощных ускорителей и все более чувствительных детекторов частиц открыло дверь в огромный новый мир субатомной материи. Кульминацией стало создание в 1970-х годах стандартной модели элементарных частиц и взаимодействий. В этой модели нашлось место всем обнаруженным частицам, и она успешно описывает их взаимодействие.
10 апреля 2014 года, когда эта книга еще была в процессе написания, сотрудники лаборатории ЦЕРН (Европейского центра ядерных исследований) в Женеве подтвердили с высокой степенью статистической значимости существование «экзотической» отрицательно заряженной частицы, названной Z(4430), о существовании которой ранее заявляла другая исследовательская группа. Журналисты предположили, что это пошатнуло стандартную модель. Но это не так. Частица Z(4430) определенно состоит из четырех кварков, она первая в своем роде. Однако ее существование опровергает стандартную модель не более, чем существование ядра гелия с четырьмя нуклонами противоречит ядерной модели.
В табл. 11.1 приведены элементарные частицы и их массы согласно стандартной модели. Масса каждой частицы дана в единицах измерения энергии — миллионах электрон-вольт (МэВ) или миллиардах электронвольт (ГэВ), которые равны энергии покоя частицы, эквивалентной ее массе согласно формуле Е = mc 2 , поскольку c — не более чем произвольная постоянная.
Таблица 11.1.
Частицы в стандартной модели. Масса дана в единицах измерения энергии. Античастицы и бозон Хиггса не представлены
Фермионы (антиастицы не показаны) | Бозоны | |||
Кварки | u | c | t | γ |
2,3 МэВ | 1,27 ГэВ | 173 ГэВ | 0 | |
d | s | b | g | |
4,8 МэВ | 95 МэВ | 4,18 ГэВ | 0 | |
Лептоны | ν e | ν μ | ν τ | Z |
см. в тексте | см. в тексте | см. в тексте | 90,8 ГэВ | |
e | μ | τ | W | |
0,511 МэВ | 106 МэВ | 1,78 ГэВ | 80,4 ГэВ |
Рассмотрим группу частиц, называемых фермионами. Все они имеют собственный момент импульса, или спин, равный 1/2. Существует три «поколения» фермионов, им соответствуют столбцы, обозначенные «u», «c» и «t». Каждое поколение состоит из двух кварков и двух лептонов. Первое поколение слева состоит из u-кварка с зарядом +2е/3, где e — элементарный электрический заряд, и d-кварка с зарядом -e/3. Ниже расположены лептоны первого поколения: нейтрино электронное νe с нулевым зарядом и электрон e с отрицательным зарядом -e. Каждый фермион сопровождает противоположно заряженная античастица, не показанная в таблице (антинейтрино, как и нейтрино, имеют нулевой электрический заряд).
О массе нейтрино мы поговорим в главе 13. Пока достаточно сказать, что одно нейтрино имеет массу порядка 0,1 эВ. Для сравнения масса электрона следующей по порядку возрастания частицы с ненулевой массой равна 511 000 эВ.
Второе и третье поколения имеют схожий состав кварков и электронов, за исключением того, что все они более тяжелые, нестабильные и быстро распадаются на более легкие частицы. К примеру, мюон, μ, средняя продолжительность жизни которого составляет 2,2 мкс, по сути, представляет собой просто более тяжелый электрон массой 106 МэВ. Основной процесс распада этой частицы выглядит так:
μ - → e - + ν - e + ν μ ,
где ν-e — антинейтрино электронное. Антимюон μ+ распадается сходным образом:
μ + → e + + ν e + ν - μ ,
Заметьте, что t-кварк в 184 раза массивнее протона (938 МэВ).
В стандартной модели действуют три взаимодействия: электромагнитное, слабое ядерное и сильное ядерное. Гравитация, воздействием которой на субатомном уровне можно пренебречь и которая уже довольно хорошо описывается на макроуровне общей теорией относительности, не включена в эту модель. Общая теория относительности перестает действовать только тогда, когда мы спускаемся до масштаба шкалы Планка, 10 35 м. Об этом мы побеседуем позже.
Частицы в правом столбце табл. 11.1 — так называемые носители взаимодействий. Это бозоны, частицы с целым спином. В этом случае все они имеют спин, равный 1. Бозоны в стандартной модели иногда называют частицами взаимодействий, поскольку в квантополевых теориях взаимодействий, лежащих в основе стандартной модели, эти частицы — кванты, соответствующие различным силовым полям. К примеру, фотон, обозначаемый у (потому что это носитель гамма-излучения), представляет собой квант электромагнитного поля.
В рамках стандартной модели частицы взаимодействий обычно изображают в роли переносчиков импульса и энергии, курсирующих между взаимодействующими кварками и лептонами. На рис. 11.1 показано взаимодействие двух электронов, обменивающихся фотоном. Это канонический пример диаграммы Фейнмана (были предложены Ричардом Фейнманом в 1948 году). Диаграммы Фейнмана, по сути, являются вычислительными инструментами, и их не следует воспринимать слишком буквально.
Рис. 11.1. Диаграмма Фейнмана, демонстрирующая взаимодействие двух электронов, обменивающихся фотоном. Авторская иллюстрация
Итак, в стандартной модели фотон является носителем электромагнитного взаимодействия. Такому взаимодействию подвержены все элементарные частицы, кроме нейтрино. Квантовая теория поля, называемая квантовой электродинамикой, успешно описывающая электромагнитное взаимодействие, была разработана в конце 1940-х учеными Синьитиро Томонагой, Джулианом Швингером, Ричардом Фейнманом и Фрименом Дайсоном. Первые трое разделили в 1965 году Нобелевскую премию по физике, которую не дают более чем троим людям одновременно.
На рис. 11.2 показано столкновение электрона и позитрона, аннигилирующих с образованием Z-бозона, который затем воссоздает эту пару. Это только два примера из множества диаграмм, иллюстрирующих взаимодействия частиц.
W-бозон встречается в двух электрически заряженных состояниях, +e и -e. Вместе с Z-бозоном, не имеющим заряда, он относится к слабым бозонам — носителям слабого ядерного взаимодействия, которому подвержены все элементарные частицы, кроме фотонов и глюонов. О глюонах мы вскоре поговорим.
Самая известная реакция слабого взаимодействия — бета-распад ядра, при котором испускаются электрон и антинейтрино. В стандартной модели в этот фундаментальный процесс вовлечены кварки внутри нуклонов (протонов и нейтронов), которые, в свою очередь, взаимодействуют внутри ядра:
d → u + e - + ν - e .
Рис. 11.2. Электрон и позитрон сталкиваются и аннигилируют, образуя Z-бозон, который затем воссоздает эту пару. Авторская иллюстрация
Чтобы понять, какую роль в этом играет W-бозон, обратитесь к рис. 11.3.
Рис. 11.3. Бета-распад d -кварка. Здесь d- кварк распадается на бозон W - и u -кварк. W - пролетает небольшое расстояние (около 10 -18 м), а затем распадается на электрон и антинейтрино электронное. Авторская иллюстрация
Частица, обозначенная в табл. 11.1 буквой g, — это глюон. Было обнаружено восемь различных состояний так называемого цветового заряда глюона, который аналогичен электрическому, но имеет восемь вариантов, метафорически называемых цветами. 1люон является посредником в сильном ядерном взаимодействии, ответственном за удержание нуклонов в ядре. Только кварки взаимодействуют посредством этой силы. В стандартной модели сильное взаимодействие описывается квантовой теорией поля, которую Фейнман назвал квантовой хромодинамикой.
Из сотен новых частиц, открытых в 1960-е, большинство были подвержены сильному ядерному взаимодействию. Этим частицам соответствует родовое понятие адроны. Было обнаружено два типа адронов: барионы, с полуцелым спином, и мезоны, имеющие целый спин. Протон и нейтрон являются барионами. Самый легкий мезон — это пион, или π-мезон, имеющий три варианта заряженного состояния: π + , π 0 и π. Свою докторскую работу я посвятил К-мезонам, или каонам, имеющим четыре разновидности: К+, К-, К0, К-0. Они состоят из пар «кварк — антикварк», один из которых — это s-кварк или его античастица. Рассматривать эту тему подробнее нужды нет.
Все адроны, кроме нуклонов, очень нестабильны, некоторые имеют настолько короткое время жизни, что едва успевают пересечь ядро атома, прежде чем распасться. Нейтрон нестабилен, поскольку подвержен бета-распаду, его среднее время жизни составляет порядка 15 минут. Хотя большинство ядер имеет в составе нейтроны, они стабильны, поскольку закон сохранения энергии предохраняет их от распада. В открытом космосе сейчас можно обнаружить не так уж много свободных нейтронов (или других адронов, за исключением фотонов), лишь небольшое количество, которое на мгновение появляется в ходе высокоэнергетических столкновений частиц в космических лучах.
Очевидно, что протон очень стабилен, иначе мы бы не наблюдали столько водорода во Вселенной через 13,8 млрд. лет после ее рождения. Однако, как мы вскоре увидим, потенциальная способность протонов распадаться, хоть и спустя большое количество времени, имеет огромные космологические последствия.
Стандартная модель элементарных частиц и взаимодействий появилась отчасти благодаря попытке уложить все эти новые частицы в простую схему. Ее ожидал впечатляющий успех. Вот эта схема: барион состоит из трех кварков, антибарион состоит из трех антикварков, мезон состоит из кварка и антикварка. Пока не было обнаружено ни одного адрона, который нельзя было бы составить из кварков, перечисленных в табл. 11.1, и их антикварков.
Ядра атомов, образующих знакомую нам материю, состоят из u- и d-кварков. Протон имеет кварковый состав uud, а нейтрон — udd. Любой физический объект, с которым мы имеем дело в повседневной жизни, и любой объект, с которым работают ученые всех специальностей, кроме физики частиц и астрофизики частиц, состоит всего из трех элементарных частиц. Это u- d-кварки, образующие ядра атомов, и электроны, облака которых летают вокруг, формируя атомы.
Открытие в 2012 году частицы, которая почти наверняка является долгожданным бозоном Хиггса, стало «вишенкой на торте» стандартной модели. Бозон Хиггса — частица с нулевым спином, обозначаемая Н, — придает массу лептонам и слабым бозонам. Кварки получают небольшую долю своей массы таким же образом, но большая ее часть возникает благодаря другому механизму, в котором участвует сильное взаимодействие, подробнее описывать которое излишне. Фотон и глюон — безмассовые частицы.
Теперь давайте рассмотрим теоретические построения, лежащие в основе стандартной модели. Мы увидим, что они распространяются далеко за пределы этого отдельного случая, охватывая все наши представления о смысле физических законов.
Симметрия и инвариантность
Центральными понятиями современной физики, от теории относительности и квантовой механики до стандартной модели, являются принципы симметрии и то, каким образом эти принципы нарушаются. Принципы симметрии очень помогли нам в понимании Вселенной — как ранней, так и современной.
Симметрия тесно связана с еще одним понятием — инвариантностью. Идеальная сфера инвариантна в отношении вращения по любой оси. То есть она выглядит одинаково под любым углом. Поэтому мы говорим, что она обладает сферической симметрией.
Если взять сферический шар, состоящий из мягкого и податливого вещества (подобно земле), и начать быстро вращать его, он начнет раздуваться в области экватора и его сферическая симметрия нарушится. Однако мяч все еще будет сохранять вращательную симметрию относительно оси вращения.
Но здесь нас больше интересуют не симметрии геометрических фигур, а симметрии, заключенные в математических принципах, называемых «законами физики». Это принципы, возникающие в моделях, которые физики разрабатывают, чтобы описывать свои наблюдения.
Если наблюдение инвариантно в отношении какого-то действия, скажем изменения угла обзора, под которым проводится наблюдение, то модель, должным образом описывающая это действие, должна заключать в себе соответствующую симметрию. В частности, в этой модели не может действовать трехмерная система координат, в которой оси X, Y, Z соответствуют определенным направлениям.
В 50-х годах XX века ученые доказали, что слабое ядерное взаимодействие нарушает зеркальную симметрию, которую специалисты называют четностью. Это значит, что слабые ядерные взаимодействия не инвариантны относительно перемены слева направо и наоборот, в точности как ваши руки (или лицо, если уж на то пошло). С точки зрения математики оператор P, называемый оператором четности, изменяет состояние системы на его зеркальное отражение.
Физика частиц выделяет также оператор С, который заменяет частицу ее античастицей, и оператор T, запускающий время в обратном направлении. В 1960-х ученые открыли, что комбинированная СР-симметрия слегка нарушается при распаде нейтральных каонов. Комбинированная СРТ-симметрия считается фундаментальной. В этом случае нарушение СР-симметрии предполагает нарушение Т-симметрии. Прямое нарушение Т-симметрии эмпирически подтвердилось; однако нарушение СРT-инвариантности до сих пор не наблюдалось ни в одном физическом процессе.
Заметьте, что нарушение Т-симметрии не стоит трактовать как обоснование для концепции стрелы времени, поскольку этот эффект очень мал — порядка 0,1% и не препятствует обращению направления времени. Оно просто делает одно временное направление несколько более вероятным, чем второе.
СРТ-инвариантность означает, в частности, что, если взять любую реакцию, заменить все частицы в ней античастицами, запустить ее в обратном направлении и наблюдать ее в зеркало, вы не сможете отличить эту реакцию от изначальной. Сейчас похоже, что это так.
Кратко говоря, законы физики не только подчиняются определенным симметриям, некоторые из них (но не все) могут также нарушать какие-то виды симметрии, как правило, спонтанным образом, то есть случайно.
Это можно сравнить с подростковой игрой «в бутылочку». Мальчик раскручивает на полу бутылку, сидя в центре круга из девочек. Бутылка имеет вращательную симметрию относительно вертикальной оси. Но, когда сила трения заставляет ее остановиться, симметрия спонтанным образом нарушается и горлышко бутылки случайным образом указывает на конкретную девочку, которую мальчик должен поцеловать.
Симметрии и законы физики
Как мы знаем из главы 6, в 1915 году Эмми Нётер доказала, что три великих физических закона сохранения: линейного момента, момента импульса и энергии — автоматически подчиняют себе любую теорию, которая включает трансляционную симметрию пространства, вращательную симметрию пространства или трансляционную симметрию времени соответственно. Законы сохранения не ограничивают возможности поведения вещества в том виде, в каком эти законы обычно описываются на уроках и в учебниках по физике. Они ограничивают возможности физиков. Бели физик хочет создать модель, которая будет работать в любой точке времени и пространства и под любым углом, у него нет выбора. Такая модель автоматически будет заключать в себе три закона сохранения.
Хотя стандартная модель элементарных частиц далеко ушла от оригинальной работы Нётер, она подтвердила общую идею о том, что важнейшая составляющая известных нам законов физики заключается просто в требованиях логики, накладываемых на наши модели, чтобы сделать их объективными, то есть независимыми от точки зрения какого-либо наблюдателя. В моей книге «Постижимый космос» (The Comprehensible Cosmos) я назвал этот принцип инвариантностью точки зрения и доказал, что практически всю классическую и квантовую механику можно вывести из него.
Подзаголовок этой книги звучит так: «Откуда появились законы физики?» Ответ: они не появились ниоткуда. Они представляют собой либо метазаконы — необходимые требования симметрии, которые сохраняют инвариантность точки зрения, либо внутренние законы — случайности, происходящие, когда какая-нибудь симметрия спонтанно нарушается при определенных условиях. Заметьте, если существует множество вселенных, все они должны иметь общие метазаконы, но внутренние законы могут быть разными.
Хоть это и не общепризнанный факт, обнаруженную Нётер связь между симметриями и законами можно распространить с пространства-времени на абстрактное внутреннее пространство квантовой теории поля. Теории, основанные на этой концепции, называются калибровочными теориями. В начале XX века ученые доказали, что закон сохранения электрического заряда и уравнения Максвелла для электромагнитного поля можно напрямую вывести из одной и той же калибровочной симметрии.
В конце 1940-х калибровочную теорию применили в квантовой электродинамике — квантовой теории электромагнитного поля, описанной ранее. Впечатляющий успех этого подхода, благодаря которому удалось сделать самые точные прогнозы в истории науки, позволял предположить, что другие силы также можно вывести из симметрии. В 1970-х годах Абдус Салам, Шелдон Глэшоу и Стивен Вайнберг, работая преимущественно независимо друг от друга (они, должно быть, читали одни и те же работы), открыли калибровочную симметрию, которая позволяла объединить электромагнитное и слабое взаимодействия в единое электрослабое взаимодействие. Это стало первым шагом к разработке теоретической стороны стандартной модели. В 1979 году эти трое разделили Нобелевскую премию по физике.
Позвольте мне объяснить, что имеется в виду под объединением двух взаимодействий (двух сил). До Ньютона считалось (говоря современным языком), что существует один закон тяготения для Земли, а другой — для небес. Ньютон объединил их, доказав, что в основе лежит одна и та же сила, которая описывает движение как яблок, так и планет в рамках единого закона всемирного тяготения. В XIX веке считалось, что электричество и магнетизм — это две разные силы, пока Майкл Фарадей и Джеймс Клерк Максвелл не объединили их в одну силу, названную электромагнитной.
Однако электромагнитное и слабое ядерное взаимодействия едва ли походили на единую силу на том уровне энергии, который был доступен нам на ускорителях частиц до совсем недавнего времени. Электромагнитная сила способна пересечь Вселенную, о чем свидетельствует тот факт, что мы можем увидеть галактики, которые находились в более чем 13 млрд. световых лет от Земли, когда испустили наблюдаемый нами свет. Максимальное расстояние, которое способно преодолеть слабое взаимодействие, составляет всего около 1/1000 диаметра ядра. Нужно недюжинное воображение, чтобы предположить, что они могут представлять собой одну и ту же силу! Помнится, Фейнман особенно сомневался в этом.
На диаграмме Фейнмана взаимодействие происходит путем обмена частицами, чья масса обратно пропорциональна радиусу взаимодействия. Поскольку радиус электромагнитного взаимодействия, похоже, не имеет пределов, его носитель, фотон, должен иметь массу, очень близкую к нулю. На деле же, согласно принципу калибровочной инвариантности, масса фотона в точности равна нулю. В то же время частицы, являющиеся переносчиками слабого взаимодействия, должны иметь массу 80,4 или 90,8 ГэВ. Это значит, они почти на два порядка массивнее протона (0,938 ГэВ).
Согласно модели Салама — Глэшоу — Вайнберга, при энергии, примерно равной 100 ГэВ (теперь известно, что это значение равно 173 ГэВ), электромагнитное и слабое взаимодействие объединяются. При более низкой энергии симметрия спонтанно, то есть случайным образом, разделяется на две разные симметрии: одна соответствует электромагнитному, а вторая — слабому взаимодействию. Фотон все так же не имеет массы, в то время как три слабых бозона — W + и W - , имеющие электрические заряды +е и -e соответственно, и электрически нейтральный Z-бозон — имеют массу, обусловленную коротким радиусом слабого взаимодействия.
При нарушении электрослабой симметрии слабые бозоны, как и лептоны, получают массу благодаря механизму Хиггса, который впервые предложили в 1964 году шесть авторов: Питер Хиггс из Эдинбургского университета, Роберт Браут (ныне покойный) и Франсуа Энглер из Брюссельского свободного университета, Джеральд Гуральник из Брауновского университета, Дик Хаген из Рочестерского университета и Том Киббл из Имперского колледжа Лондона — в трех независимых работах, опубликованных задолго до появления стандартной модели. Процесс был назван в честь лишь одного из шестерых — скромного британского физика Питера Хиггса, к его великому смущению.
Согласно механизму Хиггса безмассовые частицы обретают массу, разбрасывая в стороны частицы с нулевым спином, называемые бозонами Хиггса. Этот механизм стал неотъемлемой частью стандартной модели, которая была разработана спустя 10 лет.
По сути, это можно представить так: Вселенная — это среда, наполненная массивными частицами Хиггса, которые то существуют, то перестают существовать. Когда элементарная частица с нулевой массой пытается пролететь сквозь эту среду на скорости света, она отскакивает от частиц Хиггса, так что ее продвижение через среду замедляется. Таким образом происходит фактическое увеличение инерции, а масса представляет собой меру инерции тела.
Стандартная модель прогнозирует, чему в точности будут равны массы слабых бозонов: 80,4 ГэВ для Ws и 90,8 ГэВ для Z. Она также предсказывает существование слабых нейтральных токов, упомянутых в главе 10 в связи с их ролью во взрывах сверхновых, которые появляются вследствие обмена незаряженными Z-бозонами. В 1983 году эти прогнозы были блестяще подтверждены.
Полная стандартная модель, включающая как сильное, так и слабое взаимодействие, основывается на объединенной группе симметрии. Сильное взаимодействие рассматривается отдельно, а его переносчики, как уже упоминалось, — это восемь безмассовых глюонов. Небольшой радиус сильного взаимодействия — порядка 10-15 м — обусловлен не массами глюонов, которые равны нулю, однако нет нужды углубляться в этот вопрос.
К концу XX века эксперименты на ускорителях частиц обеспечили достаточное эмпирическое подтверждение стандартной модели при энергии меньше 100 ГэВ, а также измерения ее 20 или около того настраиваемых параметров, в некоторых случаях невероятно точные. Модель согласуется с данными всех наблюдений, проведенных в физических лабораториях за десятилетия, прошедшие с момента ее появления.
4 июля 2012 года результаты двух экспериментов стоимостью в миллиарды долларов с участием тысяч физиков, работавших на БАК в ЦЕРНе, показали независимо и с большой степенью статистической значимости, что были обнаружены сигналы в массовом диапазоне 125–126 ГэВ, соответствующие всем условиям, которым должен отвечать бозон Хиггса в стандартной модели. Двое из шести ученых, предположивших его существование, Питер Хиггс и Франсуа Энглер, разделили в 2013 году Нобелевскую премию по физике.
Разумеется, как это всегда бывает с моделями, стандартная модель не ставит точку в физике частиц. Но с подтверждением существования бозона Хиггса и появлением более мощных источников энергии мы окончательно готовы перейти на следующий уровень понимания базовой природы вещества и, как мы вскоре увидим, глубже проникнуть в суть Большого взрыва. В настоящее время мощность БАК повышают до 14 ТэВ, но придется подождать еще год или два, чтобы выяснить, что нового он позволит нам узнать о физике на этом уровне.
На момент написания книги у нас уже имеются и данные, и описывающая их теория, которые предоставляют нам надежную информацию о физических процессах, протекавших во Вселенной на этапе, когда ее температура равнялась 1 ТэВ (1016 градусов), то есть тогда, когда ее возраст был всего 10-12 с (одна триллионная).
Частицы или поля?
Теория относительности, квантовая механика и выведенные из них квантовая теория поля и стандартная модель входят в список наиболее успешных научных теорий всех времен. Они согласуются со всеми эмпирическими данными, во многих случаях с невероятной точностью. Тем не менее, если вы следите за популярными научными СМИ, у вас может появиться впечатление, что эти теории находятся в серьезном кризисе, поскольку никто не может удовлетворительно объяснить, что же они «на самом деле значат».
Этим ощущением кризиса пользуются шарлатаны, убеждая множество простодушных обывателей в том, что «новая реальность» современной физики разрушила старую материалистическую редукционистскую картину мира, а на ее месте возникла холистическая реальность, в которой фундаментальной субстанцией Вселенной является разум — вселенское космическое сознание. Я называю такой подход квантовым мистицизмом {221} . К сожалению, некоторые физики-теоретики непреднамеренно поддерживают эту новую метафизику, воскрешая собственные мистические представления о реальности. Типичный пример приводит Дэвид Тонг в своей статье, вышедшей в декабре 2012 года в журнале Scientific American:
«В физике принято учить, что “кирпичики” природы — это дискретные частицы, такие как электрон или кварк. Но это ложь. Кирпичики наших теорий — не частицы, а поля: непрерывные, похожие на жидкость объекты, разливающиеся в пространстве» {222} .
Такой подход сильно сбивает с толку. Никому до сих пор не удавалось наблюдать квантовое поле. Однако мы наблюдаем то, что всегда получается просто и точно описать как точечные частицы.
Квантовые поля — это чистая абстракция, математические построения в рамках квантовой теории поля. В этой теории каждое квантовое поле имеет связанную с ним частицу, которая называется квантом поля. Фотон представляет собой квант электромагнитного поля. Электрон — это квант поля Дирака. Бозон Хиггса — квант поля Хиггса. Другими словами, как в любви и браке, один не может существовать без другого. Кирпичики наших теорий — и частицы, и поля.
Но, заметьте, Тонг называет ложью представление о том, что кирпичики природы представлены дискретными частицами, утверждая, что настоящими кирпичиками наших теорий являются поля. То есть он приравнивает окончательную реальность к математической абстракции в рамках наиболее модной современной теории. Это значит, что, когда сменится мода, реальность тоже изменится.
Тонг открывает нам свое понимание популярного среди современных физиков-теоретиков мнения. Физики считают, что символы их математических формул отражают истинную реальность, в то время как наблюдаемые нами феномены, всегда выглядящие как локализованные частицы, — это всего лишь способ, которым реальность проявляет себя. В общем, это современные платоники. Важно отметить, что такие великие ученые XX века, как Поль Дирак и Ричард Фейнман, не принадлежали к этой школе. Да и не все современные теоретики являются сторонниками «полевого платонизма».
В своей книге «Скрытая реальность», вышедшей в 2011 году, физик и знаменитый автор научно-популярной литературы Брайан Грин так высказался по поводу частиц и реальности:
«Я считаю, что физическая система полностью определяется тем, как скомпонованы частицы, из которых она состоит. Скажите мне, какие возможные конфигурации допустимы для частиц, составляющих нашу планету, Солнце, галактику и все остальное, и вы совершенно отчетливо опишете окружающую действительность. Такой редукционистский подход довольно широко распространен среди физиков, но тем не менее, конечно же, есть люди, думающие иначе» {223} .
Никто не утверждает, что нужно представлять частицы стандартной модели в виде классического миллиарда шариков. Но, как отмечает философ Майнард Кульман, квантовые поля также не стоит рассматривать как классические поля, такие как поля, описывающие плотность газа. Он пишет:
«Почему столь фундаментальная полемика может вестись по вопросам столь успешной эмпирически проверенной теории, как квантовая теория поля? Ответ лежит на поверхности. Хотя теория говорит нам, что мы можем измерить, она кажется туманной, когда дело касается природы любых сущностей, порождающих результат наших наблюдений. Теория объясняет наши наблюдения на языке кварков, мюонов, фотонов и различных квантовых полей, но она не говорит нам, что такое в действительности фотон или квантовое поле Она и не должна, поскольку физические теории могут быть эмпирически справедливыми в большинстве случаев без постановки таких метафизических вопросов».
Кульман описывает распространенную среди наиболее упрямых экспериментаторов позицию, хотя и не утверждает, что сам придерживается такого мнения. Он представляет все альтернативные точки зрения, со всеми «за» и «против».
Для многих ученых этого достаточно. Они занимают так называемую инструменталистскую позицию, отрицая, что научные теории предназначены прежде всего для того, чтобы отображать мироустройство. Для них теории — всего лишь инструмент для предсказания результатов экспериментов.
Другие же проявляют несколько большую гибкость.
Однако большинство ученых в глубине души полагают, что их теории все же описывают по крайней мере некоторые аспекты природы как таковой до тех пор, пока не будет проведено измерение. В конце концов, ради чего еще заниматься наукой, если не для познания мира?
Я добавлю только, что, если теория хотя бы в принципе не подразумевает какой-либо наблюдаемый эффект, она не может быть проверена и нам нет особого смысла считать, что она правильно моделирует действительность. Такая теория может представлять интерес с математической или философской точки зрения, однако ее положения будут не очень хорошими кандидатами на роль «аспектов природы».
Хоть я и не могу доказать, что частицы являются элементами окончательной реальности, по крайней мере то, что мы наблюдаем при проведении экспериментов, выглядит скорее как локализованные частицы, и это намного доступнее для понимания, чем трансцендентные квантовые поля. В конце концов, астрономические тела похожи на частицы, если смотреть на них с достаточно большого расстояния, но мы не подвергаем сомнению их реальность. Итак, с чисто практической точки зрения можно считать, что частицы реальны, пока данные наблюдений не скажут нам обратное.
Более того, как мы узнали из главы 6, волноподобные феномены, связанные с частицами в квантовой механике и квантовой теории поля, — это свойства не отдельных частиц, а их групп. Выражение «корпускулярно-волновой дуализм» неточно описывает данные наблюдений. Отдельная частица никогда не ведет себя как волна.
Часто можно услышать, что квантовая механика свергла редукционизм и заменила его новым холистическим подходом, в котором все вещи взаимосвязаны. Это не так. Физики, да и вообще все ученые, в частности врачи, продолжают делить материю на части, которые можно исследовать независимо. После короткого увлечения холизмом в 1960-е годы физики, впечатленные успехом стандартной модели, вернулись к редукционистскому методу, который так хорошо служил им в течение всей истории науки, от Фалеса и Демокрита до наших дней.
Рождение астрофизики частиц
Как мы узнали из главы 10, к 90-м годам XX века ядерная астрофизика с помощью модели первичного нуклеосинтеза успешно описывала процесс образования легких ядер в период, когда возраст Вселенной составлял 1 с. Рассчитанная распространенность ядер химических элементов точно согласовывалась с данными наблюдений, в том числе это касалось очень тесной связи между распространенностью дейтронов и барионной плотностью. Глядя на эти результаты, любому пришлось бы согласиться с тем, что Большой взрыв действительно произошел.
А пока этот процесс продолжался, астрофизики частиц (по большей части все те же люди во главе с Дэвидом Шраммом) с помощью новой стандартной модели элементарных частиц начали описывать то, что могло происходить, пока возраст Вселенной еще не достиг 1 с. Они приняли концепцию нарушения симметрии, которая стала фундаментальной составляющей физики, чтобы охарактеризовать серию фазовых переходов, происходивших, начиная с самого первого определимого момента Вселенной. При достижении критических значений температуры Вселенная совершала фазовый переход — подобно тому, как вода замерзает, становясь льдом, — от более высокой к более низкой симметрии с различными наборами частиц и сил, появляющимися вместе с новой симметрией.
Вспомним, что до истечения 1 с, когда температура составляла порядка 1 МэВ, Вселенная находилась в квазиравновесном состоянии, представляя собой смесь из примерно равного количества электронов, нейтрино, антинейтрино и фотонов, а также протонов и нейтронов, которых было в миллиард раз меньше. Из последних позже, когда Вселенная остыла и равновесие больше не могло поддерживаться, сформировались ядра легких элементов.
Давайте вернемся еще дальше во времени, до 10-6 с, когда температура равнялась 1 ГэВ. Этот период все еще относится к эпохе, которую мы можем описать с позиции известных нам физических процессов как теоретически, так и эмпирически, так что это не просто спекуляция. Перед самым этим моментом Вселенная состояла из элементарных частиц, перечисленных в табл. 11.1, тогда не было ни протонов, ни нейтронов, ни вообще составных адронов какого-либо типа. Однако кварки не были свободными (в квантовой хромодинамике они и не бывают свободными), их наряду с глюонами удерживал заполняющий Вселенную густой «суп», называемый кварк-глюонной плазмой. Когда температура опустилась примерно до 1 ГэВ, произошел спонтанный фазовый переход, при котором образовались адроны с нулевым цветовым зарядом. В 1960-е годы мы с коллегами изучали их на ускорителях частиц. В ранней Вселенной было мало адронов, кроме протонов и нейтронов, но только потому, что они имели очень короткое время жизни.
Хотя с тех пор мы продвинулись в своих измерениях физических параметров примерно до уровня 1 ТэВ, ниже которого различимы сильное, слабое и электромагнитное взаимодействия, в основе стандартной модели лежит предположение, что свыше этого энергетического предела, то есть до одной триллионной доли секунды после начала Большого взрыва, слабое и электромагнитное взаимодействия были едины.
БАК позволит нам впервые экспериментально исследовать область высокой симметрии, предоставляя данные о состоянии физических процессов во Вселенной до 10-12 с от начала Большого взрыва.
Асимметрия материи и антиматерии
Несмотря на свой успех, стандартная модель не объясняет довольно важную характеристику нашей Вселенной — преобладание материи над антиматерией.
Один из принципов, заключенных в стандартной модели, — это закон сохранения барионного заряда. Каждый барион имеет барионный заряд (или барионное число) B = +1. У антибарионов B = -1. Кварки имеют B = +1/3, антикварки — B = -1/3. Лептоны, калибровочные бозоны (то есть носители взаимодействий) и бозон Хиггса имеют нулевое барионное число. Закон сохранения барионного заряда говорит о том, что общий барионный заряд частиц, участвующих во взаимодействии, после реакции остается таким же, каким был до нее. Не было обнаружено ни одной реакции в физике частиц, ядерной физике или химии, которая бы нарушала этот закон.
Если разумно предположить, что, когда Вселенная только возникла, ее общий барионный заряд равнялся нулю, то выйдет, что число барионов в ней должно было равняться числу антибарионов. К настоящему моменту они бы полностью аннигилировали друг с другом и не было бы протонов и нейтронов, из которых могли бы образоваться ядра атомов.
Стандартная модель включает также закон сохранения лептонного заряда. Лептоны имеют L = +1, у антилептонов L = -1. Барионы и калибровочные бозоны имеют нулевой лептонный заряд. Итак, аналогично все лептоны и антилептоны аннигилировали бы и во Вселенной не осталось бы ни одного электрона. То есть стандартная модель утверждает, что во Вселенной не осталось бы ничего, кроме фотонов и нейтрино. Это значит, никаких атомов, никакой химии, никакой биологии, ни меня, ни вас, ни вашего кота.
Однако мы все существуем. Число протонов и электронов превышает число антипротонов и позитронов в соотношении 1 млрд/1. В какой-то момент на самых ранних этапах жизни Вселенной, до того как сформировались ядра и атомы, законы сохранения барионного и лептонного зарядов были нарушены и образовалась огромная асимметрия между материей и антиматерией.
Если закон сохранения барионного заряда нарушается, протоны в конечном счете должны оказаться нестабильными. Насчет нестабильности электронов волноваться нечего из-за их маленькой массы: нет более легких заряженных частиц, на которые они могут распасться. От распада на фотоны и нейтрино их предохраняет закон сохранения электрического заряда. В противоположность этому существует множество заряженных лептонов, на которые могут распадаться протоны. В таблицах элементарных частиц, в которых перечисляются все их свойства, представлены также дюжины возможных типов распада частиц. Вот только один пример:
p → e + + γ,
где e + — позитрон. Обратите внимание на нарушение законов сохранения лептонного и барионного зарядов.
Еще до завершения работы над стандартной моделью, в 1970-х годах, теоретики искали способы ее расширения. Один из классов моделей, о которых идет речь, называется теориями великого объединения (ТВО). Стандартная модель объединила электромагнитное и слабое ядерное взаимодействия в единое электрослабое взаимодействие, однако сильное ядерное взаимодействие осталось независимым. В рамках ТВО делаются попытки объединить сильное взаимодействие с другими силами.
Большинство ТВО предусматривают бариогенезис — формирование барионной асимметрии наряду с лептогенезисом — образованием лептонной асимметрии. Возможный механизм этих процессов, основанный на оригинальном предположении, которое выдвинул в 1967 году известный советский физик и диссидент Андрей Сахаров, показан на рис. 11.4. В нем задействованы новый калибровочный бозон, называемый Х-бозоном, и его античастица.
Рис. 11.4. Механизм нарушения законов сохранения лептонного и барионного зарядов: а — два антикварка аннигилируют с образованием Х-бозона, превращаясь в кварк и электрон. Барионный и лептонный заряды каждого из них равны 1; б — та же реакция, но с античастицами вместо частиц с соответствующим снижением барионного и лептонного зарядов на единицу. Вследствие нарушения СР-симметрии скорость реакции а выше, чем реакции б, поэтому барионов и лептонов образуется больше, чем их античастиц. Авторская иллюстрация
Простейшая из ранних ТВО была предложена Говардом Джорджи и Шелдоном Глэшоу в 1974 году. Я буду называть ее ГГ-ТВО (в научном мире она называется минимальной SU(5)-моделью). Ее достоинство заключалось в возможности предсказать время жизни протона, составляющее, согласно этой модели, 1032 лет.
В поисках распада протона
Существующих научно-технических возможностей было вполне достаточно, чтобы проверить предсказанное в рамках ГГ-ТВО время жизни протона, и вскоре были проведены четыре эксперимента по регистрации его распада. Эти эксперименты проводились в шахтах глубоко под землей, чтобы минимизировать фоновое излучение, в особенности от летящих из космоса высокоэнергетических мюонов, способных проникнуть глубоко под землю. По меньшей мере два из этих экспериментов вполне позволили бы обнаружить распад протона в случае, если время его жизни составляет 1032 лет или меньше. Один из них проводился в соляной шахте около Кливленда и получил название 1MB в честь трех основных учреждений, задействованных в нем (Калифорнийский университет в Ирвайне, Мичиганский университет и Брукхейвенская национальная лаборатория). В эксперименте участвовали мои коллеги из Гавайского университета. Еще один высокочувствительный эксперимент проводился в цинковой шахте японского поселка Камиоки и получил название Kamiokande — Камиоканский эксперимент по поиску нуклонного распада (Kamioka Nucleon Decay Experiment).
К 1982 году ученые, проводившие все четыре эксперимента, сообщили, что на уровне, предсказанном ГГ-ТВО, распад протона обнаружить не удалось. Таким образом, модель была опровергнута (что бы ни утверждали некоторые философы, научные теории действительно иногда опровергаются). К сожалению, ни одна из оставшихся ТВО не предусматривала доступного измерению срока жизни протона или каких-либо иных осуществимых вариантов экспериментальной проверки.
Чувствительность экспериментов продолжает повышаться, лучшим является усовершенствованный эксперимент в Камиоки, названный Super-Kamiokande (Super-K). Мне удалось немного поучаствовать в этом эксперименте, прежде чем я оставил исследовательскую деятельность в 2000 году. В 2011 году в эксперименте Super-K было найдено наиболее точное на сегодня значение нижнего предела времени распада протона, составляющее 1,01∙1034 лет, что на два порядка выше, чем прогноз ГГ-ТВО.
Иногда отрицательные результаты не менее важны, чем положительные. Знание нижнего предела времени жизни протона при распаде по различным каналам вносит бесценный вклад в работу теоретиков, занимающихся поиском физических процессов, лежащих за пределами стандартной модели. Теперь они могут исключить модели, которые предсказывают нарушение этого предела. Когда и если ученым удастся наблюдать распад протона, скорость, с которой он распадается по различным каналам, поможет им познать строение физического мира, лежащего за пределами стандартной модели.
Благодаря подземным экспериментам были совершены также некоторые полезные побочные открытия, значимость которых приближается к значимости провала попытки обнаружить распад протона. Как уже упоминалось в главе 10, в 1987 году в ходе экспериментов в Кливленде и Камиоки были обнаружены нейтрино, источником которых являлась сверхновая SN 1987A в Большом Магеллановом Облаке. Впервые ученые наблюдали нейтрино, прилетевшие из-за пределов Солнечной системы.
Фазовый переход ТВО
Учитывая успех стандартной модели, разумно предположить, что до электрослабого фазового перехода, произошедшего, по современной оценке, при температуре 173 ГэВ, что соответствует возрасту примерно 10-11 с, Вселенная описывалась стандартной моделью с электрослабым объединением. Это значит, что сильное взаимодействие все еще представляет отдельную силу, но электрическое и слабое взаимодействия едины. Вселенная на этом этапе все еще состоит из кварков,
лептонов и калибровочных бозонов, перечисленных в табл. 11.1, однако они не имеют массы, а бозоны Хиггса еще не появились. Частицы все еще превосходят античастицы в соотношении 1 млрд/1. При некотором более высоком уровне энергии в более ранний момент времени определенно должен был произойти фазовый переход из состояния более высокой симметрии, которая, в свою очередь, была результатом фазового перехода из еще более высокосимметричного состояния.
Лучший кандидат на эту роль — все еще одна из ТВО, в которой сильное и электрослабое взаимодействия объединены, а законы сохранения барионного и лептонного зарядов нарушаются. Эта ТВО, в свою очередь, появляется из другой симметрии, существовавшей на более высоком уровне энергии, при которой эти законы сохранения выполняются.
Большинство предложенных учеными ТВО обладают этими свойствами. При этом симметрия проявляется в отсутствии различия между кварками и лептонами, вследствие чего могут происходить реакции, подобные показанным на рис. 11.4. Х-частицу, которой обмениваются другие частицы на рисунке, можно считать лептокварком — комбинацией кварка и лептона. Нарушение законов сохранения барионного и лептонного зарядов произошло, согласно идее Сахарова, из-за различия в скорости реакций, вызванного нарушением СР-симметрии.
В более симметричном состоянии, предшествующем фазовому переходу ТВО, соблюдается СР-инвариантность и законы сохранения барионного и лептонного зарядов снова действуют. Итак, вначале во Вселенной соблюдаются все симметрии, а число частиц равно числу античастиц. Асимметрия материи и антиматерии формируется после фазового перехода из более раннего состояния в состояние ТВО.
Итак, все, что нам остается, — это продолжать строить все более и более мощные ускорители частиц, чтобы все дальше и дальше продвигаться в своих исследованиях назад во времени, пока мы не достигнем условий, соответствующих ТВО. Проблема состоит в том, что мы и близко не подошли к требуемому количеству энергии. Фазовый переход ТВО, согласно оценке ученых, произошел при энергии, равной примерно 1025 эВ, что на 12 порядков больше, чем энергия БАК. Между ТВО и электрослабым фазовым переходом может находиться широкая «пустыня», во время существования которой Вселенная непрерывно сохраняла фазу электрослабого объединенного состояния.
По меньшей мере, БАК позволит нам исследовать эту непрерывную фазу. Но сможем ли мы когда-нибудь продвинуться за ее пределы? Крайне маловероятно, чтобы нам удалось сделать это при помощи ускорителей частиц, по крайней мере в обозримом будущем. Однако у нас есть еще один способ взглянуть на первые мгновения Вселенной — это распад протона. Возможно, эксперимент Super-K приближается к точке, в которой распад протона можно будет наблюдать. Некоторые ТВО предсказывают модели распада, доступные детектору Super-K или его более мощному аналогу.
Суперсимметрия
Многообещающий подход к физике, лежащей за пределами стандартной модели, который привлек внимание целого поколения теоретиков, работающих в области физики частиц, — это суперсимметрия (название часто сокращается как SUSY, «сьюзи»). Это принцип симметрии, при котором в физической модели не проводится различие между фермионами и бозонами. Вспомним, что фермионы имеют полуцелый спин, в то время как спин бозонов равен либо целому числу, либо нулю.
Согласно SUSY каждая элементарная частица сопровождается частицей-суперпартнером, или «счастицей», с противоположным спином. Таким образом, электрон со спином 1/2 сопровождается сэлектроном со спином, равным нулю, фотон со спином 1 — фотино со спином 1/2, кварк, чей спин равен 1/2, — скварком с нулевым спином.
Если бы SUSY была идеальной симметрией, счастицы имели бы такие же массы, как и их партнеры, и они не только были бы наблюдаемы, но и не подчинялись бы таким правилам, как принцип исключения Паули, который отделяет бозоны от фермионов. В таком случае химии бы не существовало. Поскольку до сих пор нам не удалось наблюдать ни одной счастицы, а химия существует, эта симметрия нарушается при низком уровне энергии (в сравнении с характерным для ранней Вселенной), при котором мы можем существовать. Если счастицы существуют, их массы должны быть огромными.
Как мы увидим в главе 13, в экспериментах на Большом адронном коллайдере до сих пор не удалось обнаружить ни одной из предполагаемых частиц-суперпартнеров, а значит, сама эта идея все еще под большим вопросом.
М-теория
Суперсимметрия предполагает возможность найти теорию, объединяющую гравитацию с другими силами природы, описанными в этой главе, — ее часто называют теорией всего (ТВ). Изначально она называлась теорией струн. Предполагалось, что Вселенная имеет больше трех пространственных измерений, при этом дополнительные измерения закручены так плотно, что их невозможно обнаружить. Теория струн заменила нуль-мерные частицы одномерными струнами.
Со временем было предложено дальнейшее обобщение этой идеи, названное М-теорией, в которую включили объекты более высокой мерности, называемые вранами. Двухмерная брана называется мембраной. P-мерная брана, что достаточно очевидно, называется p-браной. Частица — это 0-брана, струна — 1-брана, а мембрана — это 2-брана. М-теория допускает количество измерений до p = 9. Хотя сторонники М-теории в ходе поиска теории всего совершили множество значимых математических открытий, они до сих пор не смогли предложить эмпирического прогноза, который можно было бы проверить экспериментально. Более того, из-за только что упомянутого фактора теория суперсимметрии до сих пор не была подтверждена, как ожидалось, в экспериментах на БАК. Хотя ей уделяется много внимания в СМИ, из-за чего обыватели считают, что теория всего уже на подходе, М-теория еще далека от подтверждения и, возможно, вскоре будет опровергнута.