Курс истории физики

Степанович Кудрявцев Павел

Часть первая. Возникновение физики (от древности до Ньютона)

 

 

Глава первая. Физика древности

 

Зарождение научных знаний

Человек добывал знания об окружающем его мире в суровой борьбе за существование. В этой борьбе обособились от животного мира его далекие предки, развились его руки и интеллект. От случайных и неосознанных применений палок и камней для защиты и добывания пищи он перешел к изготовлению орудий, сначала в виде грубо и примитивно обработанных кусков камня, затем ко все более совершенным каменным орудиям, к луку и стрелам, рыболовным снастям, охотничьим ловушкам — этим первым программирующим устройствам. Величайшим завоеванием человека было получение и использование огня. В этой занявшей тысячи и тысячи лет эволюции формировалось сознание человека, развивалась речь, накапливались знания и представления о мире, возникли первые антропоморфные объяснения окружающих явлений, остатки которых сохранились и в нашем языке. Как и у первобытного человека, у нас солнце «ходит», месяц «смотрит» и т. д.

Другого способа понять природу, как уподоблять ее себе, живому существу, наделить ее чувствами и сознанием, У первобытного человека не было. Из этого источника развились и научные знания, и религиозные представления.

В библейском мифе о сотворении мира, записанном уже в эпоху развитого рабовладельческого общества, очень ярко выражены эти антропоморфные представления о боге, который поступает подобно человеку-земледельцу; проводит мелиоративные работы (отделил воду от земли), зажигает огонь («да будет свет»), создает все окружающие вещи и после трудов отдыхает.

Наряду с этими фантастическими представлениями о природе человек обогащался реальными знаниями о небесных светилах, растениях и животных, о движении и силах, метеорологических явлениях и т. д. Накопленные знания и практические навыки, передаваясь от поколения к поколению, образовывали первоначальный фон будущей науки. По мере развития общества и общественного труда накапливались предпосылки для создания устойчивой цивилизации. Решающую роль здесь сыграло возникновение земледелия. Там, где сложились условия для получения устойчивых урожаев на одном и том же месте и из года в год, создавались поселения, города, а затем и государства.

Такие условия возникли в Северной Африке в долине Нила, ежегодные разливы которого оставляли на полях плодородный ил, в двуречье между реками Тигр и Евфрат, где уже в IV тысячелетии до н. э. стали складываться древнейшие рабовладельческие государства, ставшие колыбелью современной науки. Система орошаемого земледелия, добыча металла (меди) и его обработка, развитие техники и изготовление орудий создали предпосылки для возникновения сложного общественного организма с развитой экономикой. Общественные потребности привели к появлению письменности: иероглифов в Египтe, клинописи в Вавилонии, к возникновению астрономических и математических знаний.

Сохранившиеся до наших дней великие пирамиды Египта свидетельствуют о том, что уже в III тысячелетии до н. э. государство могло организовывать большие массы людей, вести учет материалов, рабочей силы, затраченного труда. Для этой цели необходимы были специальные люди, работники умственного труда. Хозяйственные записи в Египте вели писцы, которым принадлежит заслуга фиксации научных знаний своего времени. Известные памятники II тысячелетия: папирус Ринда, хранящийся в Британском музее, и Московский папирус—содержат решение различных задач, встречающихся в практике, математические вычисления, вычисления площадей и объемов. В Московском папирусе дана формула для вычисления объема усеченной пирамиды. Площадь круга египтяне вычислили, возводя в квадрат восемь девятых диаметра, что дает для к достаточно хорошее приближенное значение — 3,16.

Определение времени начала разлива Нила требовало тщательных астрономических наблюдений. Египтяне разработали календарь, состоявший из двенадцати месяцев по 30 дней и пяти дополнительных дней в году. Месяц был разделен на три десятидневки, сутки — на двадцать четыре часа, двенадцать дневных, двенадцать ночных. Поскольку продолжительность дня и ночи менялась со временем года, величина часа была не постоянной, а менялась со временем года.

Высокого уровня достигли вавилонская математика и астрономия. Вавилоняне знали теорему Пифагора, вычисляли квадраты и квадратные корни, кубы и кубичные корни, умели решать системы уравнений и квадратные уравнения. Им принадлежит также разделение эклиптики на двенадцать созвездий зодиака.

Следует подчеркнуть, что математика египтян и вавилонян носила практический характер и выросла из потребностей хозяйственной и строительной практики. По мнению историков математики, вавилонская математика находилась на более высоком научном уровне, чем египетская. Но в области геометрии египтяне ушли дальше вавилонян.

Астрономия была первой из естественных наук, с которой началось развитие естествознания, ф. Энгельс в «Диалектике природы» набросал схему развития естествознания, согласно которой сначала возникла астрономия из наблюдения смены дня и ночи, времен года и потому абсолютно необходимая для пастушеских и земледельческих народов. Для развития астрономии нужна была математика, а строительная практика стимулировала развитие механики.

Бесспорно, грандиозные сооружения древних государств (храмы, крепости, пирамиды, обелиски) требовали, по крайней мере, эмпирических знаний строительной механики и статики. При строительных работах находили применение простые машины: рычаги, катки, наклонные плоскости. Таким образом, практические потребности вызвали к жизни начатки научных знаний арифметики, геометрии, алгебры, астрономии, механики и других естественных наук.

Этими краткими замечаниями мы и ограничимся. Отметим в заключение, что значение начального периода в истории науки и культуры чрезвычайно велико Не случайно историки математики уделяют большое внимание египетской и вавилонской математике. Здесь зародились начатки математических знаний, и прежде всего сформировалась фундаментальная идея числа, и основные операции с числами. Здесь были заложены основы геометрии. Здесь человек впервые описал звездное небо, движения Солнца, Луны и планет, научился наблюдать небесные светила и создал основы измерения времени, заложил основы алфавитного письма.

Особенно велико было значение письменности — основы науки и культуры. Недаром Галилей в «Диалоге» воздал восторженную хвалу создателю письменности.

 

Начальный этап античной науки

Несмотря на огромные заслуги науки Древнего Востока, подлинной родиной современной науки стала Древняя Греция. Именно здесь возникла теоретическая наука, разрабатывающая научные представления о мире, не сводящиеся к сумме практических рецептов, именно здесь развивался научный метод. Если египетский или вавилонский писец, формулируя правило вычисления, писал: «поступай так», не поясняя, почему надо «поступать так», то греческий ученый требова. доказательства. Основатель атомистикти Демокрит высказал по этому повод, замечательные слова: «Найти одно научное доказательство для меня значит больше, чем овладеть всем персидский Царством». Современная наука хорошо) запомнила, кому она обязана своим Рождением. Об этом свидетельствует названия наук: математика, механика, физика, биология, география и т. д, взятые из греческого языка научные термины греческого происхождения (масса, атом, электрон, изотоп и т. д.), употребление греческих букв в формулах и, наконец, имена греческих ученых: фалеса, Пифагора, Демокрита, Аристотеля, Архимеда, Евклида, Птолемея и других, сохранившиеся в научной литературе.

Вавилонская и египетская наука, как было сказано, возникли из потребностей практики. Что касается теоретического мышления египтян и вавилонян, то оно не выходило за рамки анимизма и мифологии; монополия на объяснение тайн принадлежала жрецам. Древние греки сумели возвыситься над этим уровнем и поставить задачу понимания природы без привлечения таинственных, божественных сил, такой, какова она есть.

В Древней Греции человеческий разум впервые осознал свою силу и люди стали заниматься наукой не только потому, что это нужно, но и потому, что это интересно, ощутили «радость познания», по выражению Аристотеля Первые ученые стали называться философами, т. е. «любителями мудрости», и в греческом обществе возникла потребность в учителях мудрости, для удовлетворения которой появилась профессия ученого и учителя.

Академия Платона и лицей Аристотеля были первыми в мире учебно-научными учреждениями, предшественниками современной высшей школы. Постепенно в Древней Греции появились специалисты и более узкого профиля: инженеры, врачи, астрономы, математики, географы и историки, а также научные учреждения типа Александрийского музея, предшественника современных научно-исследовательских институтов. Вместе с тем здесь зародилась научная информация в виде научных сочинений, лекций, диспутов и переписки ученых.

Итак, в Древней Греции возникли систематические научные исследования, научное преподавание, появились специалисты-ученые и научная информация.

Древняя Греция стала родиной и истории науки. Сведения о многих научных достижениях древнегреческих ученых нередко доходили до наё из текстов других ученых и греческих историков науки.

Возникновение греческой науки обычно относят к эпохе расцвета городов в Малой Азии (VII—VI вв. до н. э.). Ионические города Милет и Эфес, острова Средиземноморья, греческие колонии в Южной Италии — вот арена деятельности первых греческих ученых.

Греческая наука зарождалась в обстановке интенсивной политической и экономической жизни, бурных выступлений демоса (народа) против господства аристократических родов; она возникла на торговых путях, идущих из стран Востока. Динамическая социальная обстановка, быстрые общественные перемены рождали представления об изменениях в окружающем мире. «Все течет!» — утверждал философ Гераклит из Эфеса (около 530-470 гг. до н. э.). «Нельзя дважды войти в одну и ту же реку».

Родоначальник греческой науки фалес Милетский (около 624—547 гг. до н. э.) и другие представители Ионийской школы: Анаксимандр (около 610—546 гг. до н. э.) и Анаксимен (около 585-525 гг. до н. э.)-выдвинули идею о материальной первооснове всех вещей, об их развитии из этой первоосновы. Так, фалес считал, что такой основой является вода, Анаксимандр — некое бесконечное и неопределенное начало «алейрон», Анаксимен— воздух. Развивая эти воззрения, Гераклит создал представление о мире как о вечно вспыхивающем и вечно угасающем огне. «Мир, — утверждал Гераклит,—единый из всего, не создан никем из богов и никем из людей, а был, есть и будет вечно живым огнем, закономерно воспламеняющимся и закономерно угасающим...»

Таким образом, в противовес религиозным представлениям о сотворении мира божественной силой из ничего первые греческие мыслители выдвинули идею вечности и несотворимости мира, идею диалектического развития. Недаром К. Маркс и ф. Энгельс считали греков «прирожденными диалектиками», а В. И. Ленин называл приведенный выше отрывок из высказываний Гераклита «очень хорошим изложением начал диалектического материализма».

Почти одновременно с материалистическими представлениями ионийцев возникло идеалистическое направление в философии, развитое Пифагором (около 580—500 гг. до н. э.) и его учениками. Личность Пифагора окутана туманом легенд, и многие историки науки и философии считали самого Пифагора мифической личностью. Однако именно о Пифагоре сохранилось достаточное количество сведений биографического характера. Пифагор происходил из аристократического рода, ведущего свою родословную от мифического Геракла. Уроженец острова Самос, он принимал участие в политической борьбе аристократов и демократии на стороне аристократии и вынужден был бежать в Италию, где основал тайный союз. В политической борьбе союз был разгромлен, а Пифагор, по одним сведениям, был убит, по другим — умер в новом изгнании. Однако пифагорейская школа продолжала существовать и после смерти учителя. С ней связаны имена филолая (конец V — начало IV в. до н. э.), знаменитого философа Сократа и астронома Аристарха Самосского, жившего в конце IV и первой половине III в. до нашей эры.

Влияние пифагорейской школы было весьма значительным, и в эпоху Галилея учение о движении Земли именовалось «пифагорейским учением», философия и идеология пифагорейцев была реакционной, идеалистической. Центральным пунктом этой философии было учение о божественной роли чисел, которые, якобы, управляют миром. Пифагорейцы, приписывая числам мистические свойства, интерпретировали отдельные числа как совершенные символы: один — всеобщее первоначало, два — начало противоположности, три — символ природы и т. д. Они полагали, что любую вещь, любое явление мира можно выразить числами. Но так как они знали только рациональные числа, то, по преданию, открытие несоизмеримости диагонали квадрата с его стороной вызвало у них смятение.

Мистика чисел оказалась очень живучей. Она фигурирует в религиозных воззрениях, в магии, астрологии, в идеалистических системах. Вместе с тем в идее пифагорейцев о важности числовых отношений в природе имеется и рациональное зерно: количественный анализ, математические соотношения сегодня составляют основу научного описания природы. Первый пример такого описания дали сами пифагорейцы, открыв, что длины струн, звучания которых дают гармонические интервалы, относятся как простые целые числа (2:1, 3:2, 4:3). Важнейшей заслугой пифагорейцев является представление о шарообразности Земли и о ее движении.

Пифагорейцы выдвинули так называемую пироцентрическую систему, в которой Земля, Солнце, Луна и планеты движутся вокруг центрального огня. Считая десять священным числом, пифагорейцы ввели десять подвижных сфер, вращающихся вокруг центрального огня. Так как древние знали лишь пять планет, кроме Земли, то пифагорейцам для получения священного числа десять пришлось ввести дополнительное небесное тело «проти-воземлю» (предвзятая догма приводила к ложным гипотезам).

Таким образом, сферы Земли и противоземли, Солнца, Луны, пяти планет и неподвижных звезд вращались вокруг центрального огня. Расстояния этих сфер от центра, по учению пифагорейцев, подчиняются простым числовым соотношениям. Вращающиеся сферы издают неслышимые гармонические звуки (музыка сфер).

В дальнейшем Аристарх Самосский выбросил центральный огонь и противоземлю и, поместив в центре Вселенной Солнце, построил первую модель гелиоцентрической системы. По-видимому, эта модель не была известна Копернику. В посвящении к своей книге он ссылается на учение о движении сфер вокруг центрального огня, изложенное пифагорейцем филолаем.

Отметим, что наука Древней Греции с самого начала опиралась на знания, добытые в странах Древнего Востока. Но также с самого начала проявились в этой науке новые черты. Мыслитель Древней Греции стремился обсуждать проблему, логически обосновать то или иное положение. Эта черта особенно ярко проявилась в воззрениях последующих ученых: известных из истории философии элеатов, атомистов и Аристотеля.

Таким образом, уже на первом этапе возникновения науки были поставлены глубокие вопросы о строении и происхождении мира, о причине движения, о роли количественных отношений в природе и т. д. Пытаясь ответить на эти вопросы, ионийцы, пифагорейцы и элеаты положили начало теоретическому анализу природы, разработке научной картины мира. В этих первых попытках много наивного, фантастического, ложного, еще отсутствует проверка гипотез и представлений опытом и математическим анализом. Но уже высказана четкая идея о вечности материи, о развитии мира в силу естественных причин, построены первые модели Вселенной. На смену религиозным и мифическим представлениям о возникновении и строении мира пришла наука.

 

Возникнивение атомистики

Идея первичной материи (праматерии) ионийцев была очень привлекательной и неоднократно в той или иной форме возрождалась в физике. Однако всякий раз возникала трудность объяснения разнообразия вещей и происхождения изменений в мире. Элеаты обошли эту трудность допущением однородности и неизменности мира. Они, таким образом, сняли этот трудный вопрос и объяснили разнообразие мира и движения иллюзией, вызванной обманом чувств. Однако такой ответ находился в резком противоречии с повседневным опытом и не мог удержаться в науке. По существу он был враждебен науке, по самой своей природе призванной выдвигать вопросы и искать на них ответы.

Пытливое мышление древних греков отказалось от этой идеи элеатов, равно как и от идеи праматерии, и выдвинуло концепцию элементов, из которых построена Вселенная. Впервые эта концепция была выдвинута Эмпедоклом (около 490—430 гг. до н. э.), жившим в городе Акраганте (Агригенте) на острове Сицилия, «Эмпедокл, — говорил греческий философ и историк науки Тесь фраст, — предполагает четыре материальных элемента, а именно: огонь, воздух, воду и землю; эти элементы, будучи вечными, изменяются по числу и величине путем соединения и разделения. Существуют два начала в современном смысле этого слова, при помощи которых элементы приводятся в движение; эти начала— Любовь и Вражда, ибо элементы должны подвергаться двоякому движению, а именно: то соединению путем Любви, то разделению путем Вражды».

Таким образом, все разнообразие вещей, по Эмпедоклу, обусловлено сочетанием четырех различных элементов, а причиной изменения в природе является действие притягательных и отталкивательных сил, которые у Эмпедокла носят названия — Любовь и Вражда.

Чрезвычайно существенно, что Эмпедокл со всей ясностью утверждал всеобщее начало сохранения. Его элементы вечны и неразрушимы: «они остаются сами собой», «если бы они совсем погибли и их не было бы более, как бы возникла Вселенная? Откуда она бы явилась?»—спрашивает Эмпедокл. Они не могут и исчезнуть, «нет пространства, не наполненного ими». Вечность элементов и, следовательно, Вселенной обусловлена всеобщим началом сохранения: «Ничто не может произойти из ничего, и никак не может то, что есть, уничтожиться». С этого принципа Эмпедокла и начинается история законов сохранения, играющих такую фундаментальную роль в современной физике.

С V в. до н. э. центр греческой науки переместился в Афины. Здесь появились учителя мудрости — первые научные школы. В Афинах высокого уровня достигли искусство, литература. В эпоху Перикла был создан знаменитый Акрополь, великим скульптором фидием воздвигнуты статуи, греческий драматург Софокл писал трагедии, ставившиеся на сцене греческого театра, Аристофан сочинял комедии. В Афины приезжали выдающиеся представители греческой науки. Здесь учил математик Гиппократ, философ и физик Анаксагор (около 500—428 гг. до н. э.), создавший учение о «семенах» всех вещей и движущем начале «нус» (дух), сообщившем элементам материи вращательное движение, в результате которого образовалась Земля и все вещи.

Анаксагор учил, что Луна, Солнце, планеты и звезды, которым египтяне и греки приписывали божественную природу, являются раскаленными камнями.

За это смелое учение о материальности небесных светил он подвергся изгнанию из Афин и окончил свою жизнь в Малой Азии.

Анаксагор был современником основателей атомистики Левкиппа и Демокрита (около 460—370 гг. до н. э.).

Демокрит был родом из фракийского города Абдера. Сохранились сведения о том, что он много путешествовал, был в Египте, Вавилоне, Персии, написал множество произведений по различным отраслям науки: математике, физике, философии и др. Но его сочинения не дошли до нашего времени, и о них мы знаем только из книг других авторов, по фрагментам, приведенным этими авторами. Тем не менее основные положения теории Демокрита воспроизводятся во многих современных книгах по физике и философии почти одними и теми же словами. Вот эти принципы Демокрита:

1. Из ничего не происходит ничего. Ничто существующее не может быть разрушено. Все изменения происходят благодаря соединению и разложению частей.

2. Ничто не совершается случайно, но все совершается по какому-нибудь основанию и с необходимостью.

3. Не существует ничего, кроме атомов и чистого пространства, все другое только воззрение.

4. Атомы бесконечны по числу и бесконечно разнообразны по форме. В вечном падении через бесконечное пространство большие, которые падают скорее, ударяются о меньшие; возникающие из этого боковые движения и вихри служат началом образования мира. Бесчисленные миры образуются и снова исчезают одни рядом с другими и одни после других.

5. Различие между вещами происходит от различия их атомов в числе, величине, форме и порядке; качественного различия между атомами не существует. В атоме нет никаких «внутренних состояний»; они действуют друг на друга только путем давления и удара.

6. Душа состоит из тонких, гладких и круглых атомов, подобных атомам огня. Эти атомы наиболее подвижны, и движения их, проникающие в тело, производят все жизненные явления.

Атомное учение, пройдя через века, выдержало ожесточенную борьбу с идеализмом и поповщиной (еще Платон приказывал своим ученикам истреблять сочинения Демокрита) и, развиваясь, стало основой всего современного естествознания.

В учении атомистов играет существенную роль принцип сохранения, который, как мы видим, был уже у ионийцев. Новым моментом является допущение пустоты. Ни у ионийцев, ни у пифагорейцев, ни у элеа-тов пустоте нет места. С точки зрения элеатов, пустота— это небытие, а небытия нет, и его даже мыслить нельзя. У пифагорейцев мировое пространство заполнено «пустым и холодным эфиром». Эфир принимает и Анаксагор, с которым Демокрит встречался в Афинах, но, по-видимому, во взглядах с ним решительно разошелся. В системе Демокрита нет места для какого-то «разума», производящего движение частиц, движение атомов вечно и не нуждается в особом начале. Движущиеся в пустом бесконечном пространстве атомы, сталкиваясь друг с другом, производят все веши и бесчисленные миры. Пустое бесконечное пространство Демокрита — это совершенно новый элемент картины мира, и его появление вызвано успехами геометрии.

Сам Демокрит был крупным математиком. Одним из фундаментальных результатов его математических работ было доказательство, что объем пирамиды равен одной третьей объема призмы, а объем конуса— одной третьей объема цилиндра. В математических доказательствах Демокрита огромную роль играла атомистика. Атомами линии были точки, атомами поверхности —линии, атомами объемов — тонкие листки.

Успехи геометрии шаг за шагом формировали представление о пустом пространстве, лишенном каких-либо чувственно осязаемых свойств. Линии, поверхности, геометрические тела становились абстрактными образами, чистой формой. Пространство, свойства которого в дальнейшем описал Евклид, является чистой протяженностью, лишенной материального содержания, и ареной движения атомов, вместилищем всех тел природы. Согласно учению атомистов бесконечно пустого пространства и атомов достаточно для описания разнообразных явлений мира, в том, числе социальных и психических. Учение атомистов — монистическое учение, по которому материя и движение — основы бытия.

 

Аристотель

Пелопоннесская война (431—404 гг. до н. э.) привела к упадку Афин и афинской демократии. Происходили глубокие изменения и в идеологии. Материалистическая система ионийцев и атомистов вытеснилась идеалистической философией Сократа (469—399 гг. до н. э.) и его ученика Платона (427—347 гг. до н. э.). Появились учителя беспринципной диалектики — софисты, на которых был большой спрос в обострившейся политической борьбе внутри господствующего класса. Вместе с тем развивалось искусство диалога, умение логически мыслить, повышался интерес к строгим математическим доказательствам, философ Платон, основавший свою школу, так называемую «Академию Платона», высоко ценил математику, хотя сам, не был даровитым математиком. По преданию, над входом в Академию была надпись: «Пусть не входит никто, не знающий математики». В трудах Платона содержался и ряд интересных физических идей, однако в историю науки он вошел по преимуществу как философ-идеалист. Общество ощущало потребность в систематизированном научном знании, и на долю ученика Платона, знаменитого мыслителя древности Аристотеля выпала задача составить систематический свод научных знаний своего времени.

Аристотель родился в 384 г. до н. э. в городе Стагире, в северо-восточной области Греции. Город находился недалеко от границы с Македонией, и отец Аристотеля Никомах был придворным врачом македонского царя Аминты II. Сын Аминты Филипп, отец Александра Македонского, был другом детства Аристотеля, впоследствии, будучи царем, он пригласил Аристотеля в наставники к своему сыну Александру, будущему знаменитому полководцу.

Македония далеко уступала Афинам в экономическом и культурном развитии. Афиняне презрительно называли македонцев варварами. Однако при Аминте и особенно Филиппе Македония превратилась в грозную в военном отношении державу, а политические распри в Афинах были искусно использованы Филиппом. Несмотря на сопротивление антимакедонской партии, возглавляемой знаменитым оратором Древней Греции Демосфеном, речи которого против Филиппа вошли в историю под названием «филиппики», Афины не устояли в военном столкновении с Македонией. В 338 г. до н. э. в битве при Херонее греческие войска были разбиты македонскими, а состоявшийся в следующем, 337 г. до н. э. Коринфский конгресс закрепил гегемонию Македонии над Афинами и Грецией. Сам Филипп стал готовиться к военному походу на Персию, но в 366 г. до н. э. был убит, и этот поход начался под предводительством его сына Александра Македонского. Александр в результате многолетних победоносных походов в Азию и Африку создал огромную империю, подчинив Персию, Египет, среднеазиатские государства, дойдя со своими войсками до Индии.

Наступала новая эпоха в развитии древнего мира.

Но эти события были еще впереди, когда восемнадцатилетний Аристотель прибыл в Афины в Академию Платона. Однако Платона он там не застал, тот был в Сицилии. Академией руководил математик и астроном Евдокс Книдский (около 408—355 гг. до н. э.), впервые разработавший теорию движения планет вокруг Земли с помощью систем вращающихся сфер.

Около двух лет Аристотель пробыл в Академии до встречи с ее основателем и около двадцати лет вместе с Платоном до самой смерти своего учителя. После смерти Платона Аристотель с 343 по 339 гг. до н. э. жил в столице Македонии Пелле в качестве наставника Александра. В 336 г. до н. э. Аристотель вернулся в Афины, где основал свой Лицей.

Александр Македонский умер во время походов в 323 г. до н. э. После его смерти в Афинах взяла верх анти-македонская партия. Демосфен вернулся из изгнания, а Аристотель был изгнан на остров Эвбею, где и умер осенью 322 г. до н. э., пережив своего знаменитого ученика на один год. Но противники Македонии торжествовали недолго. В год смерти Аристотеля антимакедонские силы были разбиты, Демосфен покончил жизнь самоубийством. Так личная судьба Аристотеля переплелась с бурным и напряженным периодом политической истории Древней Греции. Научное наследие Аристотеля огромно. Оно образует полную энциклопедию научных знаний своего времени. Правда, в его трудах мы не находим математических и механических исследований. Аристотелю долгое время приписывалось сочинение «Механические проблемы», однако, как выяснилось, оно написано после его смерти, лицом, по-видимому, вышедшим из школы Аристотеля.

Аристотель положил основание и истории науки. В его «Метафизике» мы находим мысли о возникновении науки и искусства, обзор и критический анализ результатов работ его предшественников. О многих античных ученых мы знаем только по сведениям, приводимым Аристотелем. Преемник Аристотеля по руководству Лицеем Тео-фраст (феофраст) был автором исторического сочинения «Мнения физиков», а другой ученик Аристотеля — Евдем Родосский был первым историком математики.

Пожалуй, ни один ученый не оказывал такого длительного и глубокого влияния на развитие человеческой мысли, как Аристотель. Его воззрения принимались за истину в течение ряда столетий. В средневековых европейских университетах естествознание излагалось, по Аристотелю, которого называли предтечей Христа в истолковании природы. Последователей Аристотеля именовали перипатетиками, от греческого слова «перипатос» — место для прогулок (в этом месте находился Лицей).

Новому естествознанию пришлось вступить в борьбу с представителями перипатетической философии, которые, превратив в догмат некоторые положения Аристотеля, стали врагами научного прогресса. В теории Аристотеля были высказывания, за которые ухватилась христианская церковь и объявила их каноническими догмами. «Поповщину — писал по этому поводу В.И.Ленин, — убила в Аристотеле живое и увековечила мертвое».(Ленин В. И. Конспект книги Аристотеля «Метафизика». — Полн. собр. соч., т. 29, с. 325. ) Поэтому борьба против учения Аристотеля была нелегким и опасным делом. Противников Аристотеля легко можно было обвинить в выступлениях против религии, против авторитета церкви, в ереси. Известно, как беспощадно расправлялась церковь с еретиками.

Однако сам Аристотель был далеко не догматиком. «Древнегреческие философы, — писал Энгельс, — были все прирожденными, стихийными диалектиками, и Аристотель, самая универсальная голова среди них, уже исследовал существеннейшие формы диалектического мышления».( Энгельс ф. Анти-Дюринг. — Маркс К., Энгельс ф. Соч., 2-е изд., т. 20, с. 19. ) Он не был и идеалистом, как его учитель Платон. Он признавал объективное существование материального мира и его познаваемость. Но одновременно он верил в существование богов, противопоставлял земной и небесный миры, искал высшую цель природы и т. п. Все это давало возможность церкви ухватиться за мертвое в философии Аристотеля и отбросить все живое — его пытливые искания, его стихийную диалектику и многие глубокие мысли, привлекающие к Аристотелю внимание таких мыслителей, как Маркс, Энгельс, Ленин. Современная физика нередко находит у Аристотеля интересные высказывания, звучащие весьма актуально.

Аристотель был крестным отцом физической науки. Название его книги, посвященной исследованию природы («физика»), стало названием физической науки. Сам Аристотель в начале своей книги определяет цели и задачи этой науки следующим образом: «Так как научное знание возникает при всех иссследованиях, которые простираются на начала, причины или элементы путем их познания (ведь мы тогда уверены в познании всякой вещи, когда узнаем ее первые причины, первые начала и разлагаем ее вплоть до элементов), то ясно, что и в науке о природе надо определить прежде всего то, что относится к началам».( Аристотель, физика. — М.: Соцэкгиз, 1936, с. 5. ) Из этого высказывания Аристотеля вытекает, что наука о природе должна исследовать «первые причины» природы, ее «первые начала» и «элементы». Говоря современным языком, физика должна изучать основные закономерности (первые причины) и принципы («первые начала») природы и ее «элементы» («элементарные частицы») Таким образом, физика является общей теорией природы, основанной на фундаментальных законах и представлениях об основных элементах (частицах и полях в современной физике).

Современный теоретик разделяет этот взгляд Аристотеля на задачи физики и работает над построением такой всеобъемлющей теории природы.

Интересно замечание Аристотеля о пути познания природы: «Естественный путь к этому (к познанию «начал» природы.— П. К.) идет от более известного и явного для нас к более явному и известному с точки зрения природы вещей: ведь не одно и то же, что известно для нас и прямо, само по себе. Поэтому необходимо вести дело именно таким образом: от менее явного по природе, а для нас более явного, к более явному и известному по природе»( Аристотель, физика. — М.: Соцэкгиз, 1936, с. 5. )

В свете истории науки это высказывание Аристотеля приобретает очень глубокое значение. Люди воспринимают вещи сначала такими, какими они им представляются («явными для нас»), а не такими, какими они являются сами по себе («по природе»). Камень в обыденном представлении и камень в понимании современного физика— разные вещи. Путь научного познания и лежит в направлении от обычного чувственного созерцания, весьма далекого от понимания истинной природы вещей, к более глубокому пониманию этой природы, весьма далекому от обычного представления «по здравому смыслу». Так, Земля представлялась плоской и неподвижной.

Открытие шарообразности Земли было крупным шагом в направлении познания к «явному по природе» и «менее явному для нас». Открытие Коперника представляло следующий шаг в том же направлении.

История науки подтверждает правильность высказывания Аристотеля о пути познания природы: от более известного и явного для нас к более явному и известному с точки зрения природы вещей.

Прежде чем изложить физическую картину мира по Аристотелю, остановимся на его методе познания. В аристотелевской «физике», в отличие от современного учебника физики, мы не найдем ни математических формул, ни описаний опытов и приборов. Аристотель приходит к тем или иным выводам путем рассуждений, установления логических противоречий в выводах, следующих из тех или иных предположений. Такой метод, метод диалектики и логики, был в большом ходу у древних мыслителей. Сократ, выдвигая те или иные положения, ставил вопросы, придумывал ответы, сопоставлял эти ответы и показывал логическую противоречивость тех или иных ответов, кажущихся на первый взгляд очевидными. Тем самым он доказывал их неправильность, абсурдность.

Диалог, дискуссия были основным методом Сократа и его ученика Платона, сочинения которого прямо написаны в форме диалога, «физика», «Метафизика» и другие труды Аристотеля, хотя формально и не являются диалогами, носят следы такого метода познания, и, несомненно, идеи Аристотеля вызревали в подобного рода дискуссиях и беседах. Читать его «физику» очень трудно прежде всего потому, что мы не знаем этой первичной основы книги, нам нередко непонятно, откуда берется то или иное положение, тогда как для Аристотеля и его учеников это было совершенно ясным.

Громадная практика дискуссий, научных и политических, составляющих привычную картину духовной и общественной жизни древнего греческого города, послужила основным материалом для научных обобщений Аристотеля, и этот материал нам в своей массе недоступен. Поэтому так многое у Аристотеля кажется непонятным. Комментаторам Аристотеля во все времена было немало работы.

Так или иначе метод эксперимента и математического анализа был отброшен Аристотелем. Конечно, в эпоху рабовладения «ремесленное» искусство экспериментаторов не пользовалось и не могло пользоваться уважением. Рабовладелец ценил тонкую игру мысли, но к искусной работе рук он относился с пренебрежением, что не мешало ему ценить достижения художников и архитекторов. Аристотель был тонким наблюдателем и даже искусным экспериментатором, как это видно в особенности из его биологических работ. Но в своей «физике» он не апеллирует к опыту, полагаясь исключительно на силу логического анализа.

Следует отметить, что Аристотель отличал вещи, существующие «по природе», от вещей, созданных искусственно. «По природе, мы говорим, существуют животные и части их, растения и простые тела, как-то: земля, огонь, вода, воздух». Вещи, существующие по природе, носят в самих себе «начало движения и покоя», в то время как тела, изготовленные искусственно, «не имеют в себе врожденного стремления к изменению», а изменяются постольку, поскольку они состоят из элементов природы.

Аристотелю вряд ли бы понравилось исследование природы с помощью комбинации искусственных вещей. Эксперимент нарушает жизнь природы и искажает ее познание. По тем же причинам Аристотель считал недопустимым применение математики в исследовании природы. Математика, какой она была в Древней Греции, имела дело с постоянными величинами и отношениями, природа же нечто движущееся, непрерывно изменяющееся. Математика имеет дело с абстрактными, не материальными понятиями, природа же конкретна, материальна. «Точность, именно математическую точность, нужно требовать не во всех случаях, но лишь для предметов, у которых нет материи. Таким образом, этот способ не подходит для науки о природе, ибо природа во всех, можно сказать, случаях связана с материей».

Совершенно ясно, что при таких методологических предпосылках «физика» Аристотеля является скорее философским трактатом, чем руководством по естествознанию. В ней Аристотель обсуждает общие понятия науки о природе: понятия материи и движения, пространства и времени, разбирает действующие причины, вопрос о существовании пустоты, о конечном и бесконечном, о первичных качествах.

Аристотель признавал объективное существование материи, которая у него, однако, является своеобразным «текучим» понятием. «Я называю, — говорит Аристотель, — материей первый субстрат каждой вещи, из которого возникает какая-нибудь вещь..» Так, материей статуи является мрамор, из которого она сделана, материей дуба — желудь, из которого он развился, и т. д. «Текучесть» понятия материи видна из того, что по отношению к мрамору, желудю и т. д. можно поставить вопрос об их субстрате и, таким образом, прийти к какой-то первичной субстанции— «первоматерии».

Существенным моментом в представлении Аристотеля о материи является то, что она сама по себе служит только возможностью возникновения реальной вещи, некоторым пассивным началом природы. Для того чтобы вещь стала реальностью, она должна получить форму, которая превращает возможность в действительность. Всякая вещь есть единство материи и формы, в природе происходят постоянные переходы материи в форму, формы в материю. Отсюда возникает учение Аристотеля о четырех действующих причинах: 1) материальной; 2) формальной; 3) производящей; 4) конечной. Активная производящая причина есть движение, конечная — цель.

Учение о четырех причинах получило большое распространение в средние века, став краеугольным камнем схоластики Казалось, что именно в этом пункте и прежде всего в концепции конечной цели Аристотель скатывается на позиции идеализма. Природа у него действует подобно скульптору, который из глыбы мрамора (материи) осуществляет свою цель, придавая этой глыбе форму статуи. Отсюда недалеко и до признания «верховного скульптора» — бога, преследующего в мироздании «высшую цель». Так это и понималось в эпоху средневековья.

Однако развитие науки заставило по-новому оценить идеи Аристотеля о материи как о возможности и цели.

Материя как возможность неожиданно получила свое воплощение в представлениях современной теоретической физики о виртуальных частицах и полях. Что же касается концепции цели, т. е. программирования материальных процессов, то представление Аристотеля о том, что желудь стремится осуществить цель — превратиться в дуб, получило права гражданства в современной биологии. Согласно современным представлениям, в молекулах ДНК (дезокси-рибонуклеиновой кислоты) запрограммировано будущее развитие биологического объекта. Вновь подтверждается справедливость утверждения ф. Энгельса, что «в многообразных формах греческой философии уже имеются в зародыше, в процессе возникновения, почти все позднейшие типы мировоззрений. Поэтому и теоретическое естествознание, если оно хочет проследить историю возникновения и развития своих теперешних общих положений, вынуждено возвращаться к грекам»

Движение Аристотель понимает как общее изменение, как активное превращение возможного в действительное. Механическое движение (греческое «фора», отсюда одно из названий кинематики — «форономия ») — это только один из видов движения, заключающийся в перемене места. Понятие «место» Аристотель разбирает подробно. Оно и неразрывно связано с материальным телом (пространство, лишенное материи, Аристотель категорически отвергает) и образуется из отношения одного тела к другому Место, по Аристотелю, не что иное, как граница объемлющего тела. Например, воздух, окружающий Землю, является местом Земли.

Время Аристотель связывает с движением, оно служит своеобразной мерой движения, «числом движения». Наиболее простым Аристотель считает равномерное круговое движение, «так как число его является самым известным». «Оттого и время кажется движением сферы, что этим движением измеряются прочие движения и время измеряется им же». Так астрономическая практика, давшая основу измерения времени, отразилась в аристотелевской концепции времени.

В своей «физике» Аристотель подробно разбирает взгляды своих предшественников — ионийцев, элеатов, Анаксагора, Левкиппа и Демокрита на первоначала мира. Он критикует воззрения атомистов, признающих пустоту и бесчисленное множество атомов и миров, так как, по его мнению, эта точка зрения приводит к логическим противоречиям. Бесконечное мыслимо только в возможности («потенциальная бесконечность»), реальный мир конечен и ограничен и построен из конечного числа элементов.

Понятие пустоты, по Аристотелю также ведет к противоречиям с действи тельностью. Правильно подметив, что среда оказывает сопротивление движению и тем большее, чем она плотнее, Аристотель приходит к выводу, что бесконечное разреженное пустое пространство приводило бы к бесконечному движению. Это, по его мнению, невозможно. В отсутствие сопротивления скорость тела была бы бесконечной, что также невозможно. Любопытно, что другим аргументом против пустоты является совершенно правильный вывод Аристотеля об одинаковой скорости падения всех тел в пустоте, равно как и вывод о бесконечном инерциальном движении. В реальных условиях движение конечно и тела падают с разной скоростью. Аристотель полагает, что, чем тяжелее тело, тем быстрее оно падает. Только Галилей опроверг это мнение Аристотеля, подтвердив отвергнутое Аристотелем утверждение, что в пустоте все тела падают одинаково. Он же впервые ввел понятие о бесконечном инерциальном движении. Эйнштейн же аристотелевский принцип невозможности бесконечно большой скорости совместил с допущением пустоты, приняв в качестве предельной скорости скорость света в вакууме. физическая картина мира Аристотеля наряду с правильными и интересными мыслями содержит неверные и V реакционные положения. К таким утверждениям относится учение Аристотеля о существовании абсолютного неподвижного центра мира (Земли), о противоположности земного и небесного.

Все эти утверждения, как уже говорилось, были канонизированы церковью и рассматривались в эпоху средневековья как абсолютная догма. Реальное земное тело не могло стать принадлежностью вечного, неразрушимого небесного мира.

Земной мир построен из изменчивых и превратимых друг в друга элементов, в нем происходит непрерывное изменение, разрушение и уничтожение. Четыре основные противоположности: сухость и влажность, тепло и холод—в своих сочетаниях дают начало четырем основным элементам мира: холодная и сухая Земля, холодная и влажная вода, теплый и влажный воздух, теплый и сухой огонь. Эти четыре элемента Аристотеля отличаются от аналогичных элементов Эмпедокла тем, что они могут переходить друг в друга путем изменения первичных качеств. Это учение Аристотеля стало теоретической базой алхимии.

В земном мире действуют также начала тяжести и легкости. Все тела в силу этих качеств стремятся либо к центру мира, либо от центра вверх. Так, дерево в воздухе стремится к центру, в воде же всплывает. Вертикальное падение или стремление вверх, по Аристотелю, является естественным движением, присущим телам в силу основных начал тяжести или легкости. Все прочие движения насильственны и поддерживаются только внешними силами и воздействиями. Само по себе тело придет в движение только в силу тяжести, во всех остальных случаях должна действовать сила. Небесным телам присуще равномерное круговое вращение. Круг вообще Аристотель считает за нечто чудесное и его чудесным свойством объясняет и действие рычага.

Пустота, невесомость, по Аристотелю, неестественны, невозможны. Аристотелевский физик —это человек, живущий в воздушной среде на неподвижной Земле, в поле тяготения этой Земли и не мыслящий мир без этих атрибутов. В соответствии с повседневными представлениями Аристотель принимает геоцентрическую систему мира и концепцию ограниченной Вселенной, расслоенной на сферы движения небесных светил.

Естествознанию предстояло пройти длительный путь поисков и борьбы, чтобы прийти к иному миропониманию.

 

Атомистика в послеаристотелевскую эпоху

Войны Александра Македонского изменили лицо древнего мира и привели в соприкосновение греческую и восточную цивилизации. Из этого контакта возник сплав культуры, играющий большую роль в мировой истории, и в частности в возникновении и развитии христианства. На обломках распавшейся после смерти Александра огромной империи возникли новые государства, новые центры торговли, ремесла и культуры.

Полководцы Александр Селевк и Птолемей Лаг поделили между собой мир. Селевк и его преемники (селев-киды) обосновались в Азии. Птолемей и его преемники —в Африке. В этих государствах возникли новые центры экономической и культурной жизни: Пергам, Антиохия, остров Родос в Азии, Александрия в Африке. Афины превратились в провинцию, хотя пульс философской и научной жизни продолжал еще биться и после смерти Аристотеля. Характер греческой науки и философии, однако, претерпел существенные изменения.

В истории науки и культуры древнего мира начался новый период, получивший название эллинистического (эллин —грек) и продолжавшийся от образования эллинистических государств (конец IV —начало III в. до н. э ) до завоевания Египта Римом (1 в. до н. э.). С этого времени начинается третий период истории науки — греко-римский. В течение этого периода эллинская языческая культура уступает свои позиции новой, христианской культуре, вступившей в резкую оппозицию к язычеству, ярким выражением которой является разгром знаменитой Александрийской библиотеки и убийство женщины-астронома Гипатии (415 г. н. э.). Борьба завершается длительным господством религиозной идеологии в духовной жизни средневековья, подчинившей науку и культуру. Именно этим объясняется тот факт, что замечательные достижения античной науки оказались в значительной степени забытыми, а подавляющее большинство трудов древних авторов — утраченными.

С самого начала религия (не только христианская) была врагом науки и свободной научной мысли. Следы этой вражды видны во всей истории науки, в том числе и в науке древности. Римский поэт и философ Лукреций Кар (около 99-55 гг. до н. э.) в своей знаме* нитой поэме «О природе вещей», ставшей классическим произведением научного естествознания, вдохновенно описал «тягостный гнет религии», под которым «безобразно влачилась» жизнь людей и против которого восстал греческий мыслитель, вступив в бесстрашную борьбу с религиозной идеологией.(Теория Эпикура изложена в поэтической форме в поэме Лукреция «О природе вещей», написанной в I в. до н. э. Эта поэма издана в русском переводе в серии «Классики науки», основанной академиком С. И. Вавиловым, в двух томах. Том второй содержит научные комментарии и отрывки из произведений самого Эпикура. ) Смелый мыслитель, воспетый Лукрецием в первой песне поэмы и изложению учения которого посвящена вся эта поэма, — последний блестящий представитель афинской науки и философии Эпикур (341—270 гг. до н. э.), развивший учение Демокрита о природе.

В творчестве Эпикура уже ясно обозначились интересы новой эпохи. Ученого занимали по преимуществу проблемы этики. Эти проблемы оживленно обсуждались в эллинистическую и греко-римскую эпоху, и значительная часть этического и философского наследия этого периода" вошла в христианскую этику и философию. Однако этика Эпикура была материалистической и земной («эпикурейство») и вызвала злобную реакцию «отцов» церкви.

Учение Эпикура о природе основано на концепции атомов Демокрита, но несколько отличается от демокритовского. Поразителен размах атомной теории. Существованием атомов Эпикур, а за ним и Лукреций пытаются объяснить все естественные, психические и социальные явления. Само представление об атомах выводится из хорошо известных фактов. Так, белье сохнет потому, что под действием солнца и ветра от него отрываются невидимые частицы воды, рука медной статуи у городских ворот, к которой прикасаются в поцелуе губы входящих в город, заметно тоньше по сравнению с другой рукой, так как при поцелуе губы уносят частицы меди.

Атомы находятся в беспорядочном движении, и Лукреций рисует модель движения атомов, уподобляя его движению пылинок в солнечном луче, ворвавшемся в темную комнату. Это первая в истории науки картина молекулярного движения, написанная древним автором. Само хаотическое движение атомов Эпикур объясняет иначе, чем Демокрит, — он отступает от строгого детерминизма Демокрита. Эпикур не признает различия в скорости падения малых и больших атомов; в пустом пространстве все частицы движутся с одинаковой скоростью. Но в некоторые моменты самопроизвольно возникают случайные небольшие отклонения той или иной частицы от прямолинейного пути. Эти отклонения Эпикур считал необходимыми, чтобы объяснить свободную волю людей, так что атомы как бы также обладают некоей «свободой воли».

Эпикур и Лукреций считали, что одна необходимость не в состоянии объяснить разнообразие явлений природы и особенности поведения людей и животных. Следует допускать небольшие случайные отклонения атомов в неопределенных местах, в неопределенные моменты времени («не в положенный срок и на месте, дотоль неизвестном»). Так впервые в истории науки в научный анализ наряду с необходимостью вводится случайность.

Основной принцип материалистической философии «из ничего ничего не бывает» лежит в основе учения Эпикура — Лукреция:

За основанье тут мы берем положенье такое.

Из ничего не творится ничто по божественной воле.

Лукреций прямо восстает против религиозного тезиса о сотворении мира из ничего по божественной воле, он противопоставляет ему воззрение о вечных превращениях неразрушимой материи:

Ты видишь отсюда,

Что из материи все вырастает своей и живет ей

Мир бесконечен в пространстве: Нет никакого конца ни с одной стороны у Вселенной.

Где бы ты ни был, везде с того места, что ты занимаешь,

Все бесконечном она остается во всех направлениях

Этот бесконечный мир не имеет никакого центра.

Учение Аристотеля о естественном центре Вселенной атомисты отвергают. Вместе с тем у Лукреция нет представления о шарообразности Земли. В этом отношении он делает шаг назад по сравнению с Аристотелем. Трудно понять, как это сочетается у него с представлением о множестве миров, с космогонической концепцией о возникновении этих миров из сочетания атомов.

Уже из этого примера видно, что пути к истине далеко не прямолинейны, научные познания не развиваются по непрерывно восходящей линии. Пифагорейцы первыми приняли гипотезу о сферичности Земли, но даже у Анаксагора она плоская лепешка.

В дальнейшем, в эллинистическую эпоху, предпринимаются первые научные попытки определения радиуса Земли, но Лукреций, спустя два века после этих попыток, вновь возвращается к плоской Земле и резко выступает против представления об антиподах, против относительности верха и низа.

Однако эти ошибки не умаляют огромного исторического значения достижений древних атомистов. Они ввели в науку плодотворную идею, прошедшую через века, развившуюся в наши дни в могучую науку об атоме и атомном ядре. Они построили первые научные теории явлений природы, основанные на идее атомов, и современная кинетическая теория материи начинается с картины, нарисованной Лукрецием: Вот посмотри: всякий раз, когда солнечный свет проникает В наши жилища и мрак прорезает своими лучами,

Множество маленьких тел в пустоте ты увидишь, которые

Мечутся взад и вперед в лучистом сиянии света;

Будто бы в вечной борьбе они бьются в сраженьях и битвах,

В схватке бросаются вдруг по отрядам, не зная покоя.

Или сходясь, или врозь беспрерывно опять разлетаясь.

Можешь из этого ты уяснить себе, как неустанно Первоначала вещей (Так Лукреций называет атомы (рrimоrdiа rеrum).) в пустоте необъятной мятутся

Так о великих вещах помогают составить понятие

Малые вещи, пути намечая для их постиженья

Эта модель мятущихся пылинок, нарисованная Лукрецием, аналогична современной картине броуновского движения; видимое движение пылинок возникает от невидимых толчков атомов:

Так, исходя от начал, движенье мало-помалу

Наших касается чувств, и становится видимым также

Нам и в пылинках оно, что движутся в солнечном свете,

Хоть не заметны толчки, от которых оно происходит.

Гениальные догадки древних атомистов предопределили будущий успех атомной теории материи.

Атомистика Эпикура—Лукреция продолжала линию научного развития доаристотелевского периода. В своей поэме Лукреций обсуждает воззрения Гераклита Эфесского, Эмпедокла, Анаксагора, Демокрита, критически оценивая их и предлагая эпикурейский вариант атомистики. Он примыкает к этой линии и по методу диалектического рассуждения. Хотя Лукреций и не прибегает к диалогу, полемический характер многих частей поэмы роднит его с диалектиками предшествующей эпохи. Но атомистика послеаристотелевской эпохи носит и существенно новые черты: она более конкретна, более «физична», чем теория Аристотеля и атомистика Демокрита. Атомы Демокрита по существу чисто геометрические образы, они характеризуются только формой и объемом. У Эпикура и Лукреция атомы обладают весом, плотностью (твердостью) и, наконец, внутренней способностью к самопроизвольным отклонениям от прямолинейного движения. Приведенная выше модель движения атомов в пустоте показывает, как развилось конкретное физическое мышление в послеаристотелевскую эпоху. Естествознание в эту эпоху стало переходить из сферы отвлеченного, философского размышления о природе в сферу конкретных фактов и явлений. В эллинистическую эпоху греческая математика, механика и астрономия наряду с другими отраслями знаний достигли своего наивысшего развития. Греческая наука перешла от рассмотрения мира в целом к дифференцированному знанию, из единой науки выделились и развились отдельные науки, естественные и гуманитарные.

В чем причина такого изменения характера науки? Основная причина заключается в изменении исторических условий, в новых общественных потребностях. Походы Александра Македонского требовали не только полководческого искусства, но и конкретных знаний и умений. Войско сопровождали инженеры и строители. Со времен Александра необычайно развилась военная и строительная техника. Профессия инженера стала пользоваться общественным признанием и уважением.

Новые торговые, политические и экономические связи охватили огромную территорию от Индии и Средней Азии до Пиренеев. Астрономия, география, а с ними и естествознание в целом стали общественно необходимыми. Не случайно наследники империи Александра проявляли большую заботу об ученых, создавали условия, обеспечивающие им возможность спокойной научной работы. Уже первый Птолемей привлекал в Александрию ученых, создавал библиотеку, при втором Птолемее возникло знаменитое научное учреждение древнего мира — Александрийский музей. Если Академия Платона и Лицей Аристотеля были предшественниками современных университетов, в которых сочетается научная и педагогическая работа, то Александрийский музей можно рассматривать как предшественник современных научно-исследовательских институтов. К услугам ученых были библиотека, обсерватории, коллекции, ученые получали полное содержание и могли не заботиться о средствах к существованию. Все это обеспечивало ведущую роль Александрии в научном прогрессе эллинистической эпохи, так что нередко эллинистический период в истории науки называют Александрийским.

Почти каждый ученый эллинистической эпохи был связан с Александрией если не личным контактом, то научной перепиской, которая в этот период получила большое развитие. Знаменитый Архимед сообщал свои результаты в форме писем, направленных из Сиракуз александрийским математикам. В Александрии жили и работали крупные ученые: геометр Евклид, географ и математик Эратосфен, астрономы Конон, Аристарх Самосский и позже Клавдий Птолемей. С Александрией были связаны жившие на острове Родосе математик Аполлоний Пергский, астроном Гиппарх и сиракузянин Архимед. В развитии науки особенно важную роль сыграли Евклид и Архимед.

Евклид (жил в III в. до н. э.) подытожил и систематизировал математические знания своих предшественников, из коих его учителем был знаменитый ученый Евдокс Книдский. «Начала» Евклида представляют собой изложение той геометрии, которая известна и поныне под названием евклидовой геометрии. Она описывает метрические свойства пространства, которое современная наука называет евклидовым пространством. Евклидово пространство является ареной физических явлений классической физики, основы которой были заложены Галилеем и Ньютоном.

Это пространство пустое, безграничное, изотропное, имеющее три измерения. Евклид придал математическую определенность атомистической идее пустого пространства, в котором движутся атомы. Простейшим геометрическим объектом у Евклида является точка, которую он определяет как то, что не имеет частей. Другими словами, точка — это неделимый атом пространства.

Бесконечность пространства характеризуется тремя постулатами: «От всякой точки до всякой точки можно провести прямую линию».

«Ограниченную прямую можно непрерывно продолжить по прямой».

«Из всякого центра и всяким раствором может быть описан круг».

Учение о параллельных и знаменитый пятый постулат («Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные неограниченно эти две прямые встретятся с той стороны, где углы меньше двух прямых») определяют свойства евклидова пространства и его геометрию, отличную от неевклидовых геометрий.

Несколько позже Архимед дал еще одну характеристику евклидова пространства, приняв следующее допущение: «Из всех линий, имеющих одни и те же концы, прямая будет наименьшей». Прямая линия в евклидовой геометрии является геодезической линией, т. е. линией, имеющей наименьшую длину. Евклидово пространство является плоским.

Конечно, все эти особенности евклидова пространства были открыты не сразу, а в результате многовековой работы научной мысли, но отправным пунктом этой работы послужили «Начала» Евклида. Знание основ евклидовой геометрии является ныне необходимым элементом общего образования во всем мире.

Евклид заложил основы геометрической оптики, изложенные им в сочинениях «Оптика» и «Катоптрика». Основное понятие геометрической оптики — прямолинейный световой луч. Евклид принимает, что световой луч исходит из глаза (теория зрительных лучей), что для геометрических построений не имеет существенного значения. Он знает закон отражения и фокусирующее действие вогнутого сферического зеркала, хотя точного положения фокуса определить ещё не может. Во всяком случае в истории физики имя Евклида как основателя геометрической оптики не заняло надлежащее место.

 

Архимед

Архимед родился в 287 г. до н. э. в Сиракузах, на острове Сицилия. Сицилия была дальним западным форпостом греческой культуры. Здесь жил и умер Эмпедокл, сюда приезжал Платон осуществлять свои идеи об идеальной структуре рабовладельческого государства, и еще в годы детства Архимеда эпирский царь Пирр вел здесь войну с римлянами и карфагенянами, пытаясь создать новое греческое государство. В этой войне отличился один из родственников Архимеда—Гиерон, ставший в 270 г. до н. э. правителем Сиракуз. Отец Архимеда, астроном Фидий, был одним из приближенных Гиерона, и это открыло ему возможность дать сыну хорошее образование. Но Архимед не поехал в Афины, а отправился в Александрию, где у него сложились дружеские отношения с астрономом Кононом, математиком и географом Эратосфеном, с которыми он поддерживал в дальнейшем научную переписку.

Архимед вернулся в Сицилию зрелым математиком, однако первые его труды были посвящены механике Интересно отметить, что Архимед в своих математических работах нередко опирается на механику. Он использует принцип рычага при решении ряда геометрических задач. Вообще говоря, Архимед был представителем математической физики, вернее, физической математики.

Принцип рычага и учение о центре тяжести являются важнейшими (наряду с законом Архимеда) научными достижениями Архимеда в области механики.

Архимед был не только математиком и механиком. Он был одним из крупнейших инженеров своего времени, конструктором машин и механических аппаратов. Он изобрел машину для поливки полей («улитку»), водоподъемный винт и особенно успешно разрабатывал конструкции военных машин. Это был первый ученый, уделявший много внимания и сил военным задачам. К этому его побуждало политическое положение Сиракуз. Архимеду было 23 года, когда началась 1-я Пуническая война между Римом и Карфагеном, и 69 лет, когда началась 2-я Пуническая война, во время которой он и погиб (212 г. до н. э.).

В борьбе между Римом и Карфагеном вопрос об обладании Сицилией занимал важное место. Оба могущественных государства прилагали немало усилий, чтобы склонить на свою сторону Сиракузы. Гиерон и его преемники стремились всячески сохранить независимость, но понимали, что военное столкновение с Римом неизбежно, и готовились к грядущей тяжелой военной схватке. В оборонительных планах Сиракуз военная техника занимала видное место, и инженерный гений Архимеда сыграл при этом огромную роль.

Под руководством Архимеда сиракузяне построили множество машин различного назначения. Когда римляне высадили в Сицилии сухопутное войско под предводительством Аппия Клавдия, а под стенами Сиракуз появился римский флот под командованием Марцелла, то наступила очередь Архимеда.

Предоставим слово греческому историку Плутарху, написавшему биографию Марцелла: «При двойной атаке римлян (т е. с суши и с моря. - П. К.) сиракузцы онемели, пораженные ужасом. Что они могли противопоставить таким силам, такой могущественной рати? Архимед пустил в ход свои машины Сухопутная армия была поражена градом метательных снарядов и громадных камней, бросаемых с великой стремительностью. Ничто не могло противостоять их удару, они все низвергали пред собой и вносили смятение в ряды Что касается флота — то вдруг с высоты стен бревна опускались, вследствие своего веса и приданной скорости, на суда и топили их. То железные когти и клювы захватывали суда, поднимали их в воздух носом вверх, кормою вниз и потом погружали в воду А то суда приводились во вращение и, кружась, попадали на подводные камни и утесы у подножия стен. Большая часть находя щихся на судах погибала под ударом Всякую минуту видели какое-нибудь судно поднятым в воздухе над морем Страшное зрелище!...»

Попытка Марцелла противопоставить технике Архимеда римскую военную технику потерпела крах. Архимед разбил громадными камнями осадную машину «самбуку», и Марцеллу пришлось увести флот в безопасное место, дать приказ об отходе сухопутной армии и перейти к длительной осаде. Архимед погиб вместе с родным городом, убитый римским солдатом при взятии Сиракуз. Таким образом, Архимед вошел в историю как один из первых ученых, работавших на войну, и как первая жертва войны среди людей науки.

Остановимся на результатах его исследований в области физики. Основные научные проблемы, выдвинутые развитием техники древнего мира, были в первую очередь проблемами статики. Строительная и военная техника была теснейшим образом связана с вопросами равновесия и подво дила к выработке понятия центра тяжести. В основе строительной и военной техники лежал рычаг Рычаг позволял поднимать большие тяжести, преодолевать значительные сопротивления, затрачивая относительно небольшие усилия Он и основанные на нем машины помогли человеку «перехитрить» природу. Отсюда и пошло название «механика». Греческое слово «механе» означало орудие, приспособление, осадную или театральную машину, а также уловку, ухищрение.

В течение многих веков механика рассматривалась как наука о простых статических машинах. Ее основой была теория рычага, изложенная Архимедом в сочинении «О равновесии плоских фигур». В основе этой теории лежат следующие постулаты:

«1 Равные тяжести на равных длинах уравновешиваются, на неравных же длинах не уравновешиваются, но перевешивают тяжести на большей длине.

2. Если при равновесии тяжестей на каких-нибудь длинах к одной из тяжестей будет что-нибудь прибавлно, то они не будут уравновешиваться, но перевесит та тяжесть, к которой было прибавлено.

3. Точно так же если от одной из тяжестей будет отнято что-нибудь, то они не будут уравновешиваться, но перевесит та тяжесть, от которой не было отнято».

Не подлежит сомнению, что постулаты проверены длительной технической практикой, которая делает их «очевидными». Основываясь на этих постулатах, Архимед доказывает следующие теоремы: «Соизмеримые величины уравновешиваются на длинах, которые будут обратно пропорциональны тяжестям». И далее: «Если величины будут несоизмеримы, то они точно так же уравновесятся на длинах, которые обратно пропорциональны этим величинам». В этих предложениях содержится первая точная формулировка закона рычага. При этом под «величинами» следует понимать модули сил, действующих на рычаг.

Кроме закона рычага, в книге «О равновесии плоских фигур» содержатся определения центров тяжести треугольника, параллелограмма, трапеции, параболического сегмента, трапеции, боковые стороны которой являются дугами парабол. Понятие центра тяжести предполагается известным, и в начале книги приводятся постулаты о центрах тяжести (при совмещении конгруэнтных фигур центры тяжести совмещаются; центры тяжести подобных фигур подобно же расположены; у фигур с выпуклым периметром центр тяжести находится внутри фигуры). Само же определение центра тяжести, данное Архимедом, встречается в сочинении Паппа Александрийского, жившего в конце III в. н. э. Это определение гласит: «Центром тяжести каждого тела является некоторая расположенная внутри его точка —такая, что если за нее мысленно подвесить тело, то оно остается в покое и сохраняет первоначальное положение». Чтобы прийти к этому определению, понадобился длительный практический опыт, обобщением которого и явилась механика Архимеда.

Как мы уже говорили, Архимед использовал полученные им в механике результаты для формулировки математических выводов. Так, он использует закон рычага при вычислении площади параболического сегмента и объем шара. Эти вычисления Архимеда являются начальным этапом интегрального исчисления.

Переходим теперь к знаменитому закону Архимеда. Этот закон изложен в сочинении «О плавающих телах»

Сиракузы были портовым и судостроительным городом. Вопросы плавания тел ежедневно решались практически, и выяснить их научные основы, несомненно, казалось Архимеду актуальной задачей. Правда, существует легенда, что Архимед пришел к своему закону, решая задачу, содержит ли золотая корона, заказанная Гиероном мастеру, посторонние примеси или нет. Но задача, поставленная Гиероном, требовала знания объема короны и объема золота того же веса и, собственно, закона Архимеда для своего решения не требовала.

Вероятно, мотивы работы Архимеда были все же более глубокими. Он разбирает не только условия плавания тел, но и вопрос об устойчивости равновесия плавающих тел различной геометрической формы. Научный гений Архимеда в этом сочинении, оставшемся, по-видимому, незаконченным, проявляется с исключительной силой. Полученные им результаты получили современную формулировку и доказательство только в XIX в.

Сочинение Архимеда начинается описанием природы жидкости, которая, по Архимеду, такова, «что из ее частиц, расположенных на одинаковом уровне и прилегающих друг к другу, менее сдавленные выталкиваются более сдавленными, и что каждая из ее частиц сдавливается жидкостью, находящейся над ней, по отвесу». Это определение позволяет Архимеду сформулировать основное положение: «Поверхность всякой жидкости, установившейся неподвижно, будет иметь форму шара, центр которого совпадает с центром Земли».

Таким образом, Архимед считает Землю шаром и поверхность тяжелой жидкости, находящейся в равновесии в поле тяжести Земли, сферической. Он доказывает далее, что тела одинакового удельного веса с жидкостью (он называет их «равнотяжелыми с жидкостью») погружаются настолько, что их поверхность совпадает с поверхностью жидкости. Более легкое тело погружается настолько, что объем жидкости, соответствующий погруженной части тела, имеет вес, равный весу всего тела. Путем логических рассуждений Архимед приходит к предположениям, содержащим формулировку его закона:

«VI. Тела более легкие, чем жидкость, опущенные в эту жидкость насильственно, будут выталкиваться вверх с силой, равной тому весу, на который жидкость, имеющая равный объем с телом, будет тяжелее этого тела».

«VII. Тела более тяжелые, чем жидкость, опущенные в эту жидкость, будут погружаться, пока не дойдут до самого низа, и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела». В остальных предложениях первой и второй книги Архимед разбирает условия равновесия тел, плавающих в жидкости, причем тела имеют форму сферического или параболического сегмента.

Как было уже сказано, выводы, полученные Архимедом, были подтверждены и развиты математиками и механиками XIX в., установившими такие понятия, как «плоскость плавания», «поверхность сечений», «поверхность центров», «метацентр». Основы гидростатики были заложены Архимедом и лишь в конце XVI и первой половине XVII столетия были развиты Стевиным, Галилеем, Паскалем и другими учеными.

Кроме математики и механики, Архимед занимался оптикой и астрономией. Сохранилась легенда о том, что Архимед использовал в борьбе с римским флотом вогнутые зеркала, поджигая корабли сфокусированными солнечными лучами. Имеются сведения о том, что Архимедом было написано не дошедшее до нас большое сочинение по оптике под названием «Катоптрика». Из дошедших до нас отрывков, цитируемых древними авторами, видно, что Архимед хорошо знал зажигательные действия вогнутых зеркал, проводил опыты по преломлению света, знал свойства изображений в плоских, выпуклых и вогнутых зеркалах.

О занятиях Архимеда астрономией свидетельствуют рассказы о построенной им астрономической сфере, захваченной Марцеллом как военный трофей, и сочинение «Псаммит», в котором Архимед подсчитывает число песчинок во Вселенной. Сама постановка задачи представляет большой исторический интерес: точное естествознание впервые приступило к подсчетам космического масштаба, пользуясь неудобной системой чисел. Результат, полученный Архимедом, выражается в современных обозначениях числом 1063. Кроме того, в сочинении Архимеда впервые в истории науки сопоставляются две системы мира; геоцентрическая и гелиоцентрическая. Архимед указывает, что «большинство астрономов называют миром шар, заключающийся между центрами Солнца и Земли».

Архимед сообщает далее, что Аристарх Самосский предполагает мир гораздо большим. «Действительно, он предполагает, что неподвижные звезды и Солнце находятся в покое, а Земля обращается вокруг Солнца по окружности круга, расположенного посередине между Солнцем и неподвижными звездами...» Архимед интерпретирует мысль Аристарха как равенство отношения размеров мира к размерам Земли, отношению радиуса сферы неподвижных звезд к радиусу земной орбиты. Таким образом, Архимед принимает мир хотя и очень большим, но конечным, что позволяет ему довести свой расчет до конца.

Архимед—вершина научной мысли древнего мира. Последующие ученые — Герон Александрийский (1—11 вв. до н. э.), Папп Александрийский (III в н. э.) — мало что прибавили к наследию Архимеда, и их труды по механике носят компилятивный характер.

Со времен Герона и Паппа механику стали принимать как науку о простых машинах, из которых основными считались пять; ворот, рычаг, блок, клин и винт. Последние две машины основаны на свойствах наклонной плоскости, закон действия которой не был известен ни самому Архимеду, ни последующим древним и средневековым авторам.

Герон прославился как изобретатель остроумных автоматов и эолипила, первого теплового двигателя, представляющего по своей сути модель первой паровой турбины. Правда, эолипил Герона никакой полезной работы не производил и оставался забавной игрушкой. Это показывает, что преждевременные открытия не получают развития до тех пор, пока не созреют условия для их освоения и разработки. История теплового двигателя началась только в XVII в. после открытия атмосферного давления. Любопытно, что многие автоматы Герона по существу были основаны на действии атмосферного давления, хотя сам Герон, конечно, никакого представления о давлении воздуха не имел и действие широко применяемого им сифона объяснял неразрывностью водяной струи.

Следует отметить также, что Герон Александрийский впервые обосновал закон отражения света принципом наименьшего времени: световой луч отражается от зеркала таким образом, что световой путь, соединяющий источник света, зеркало и приемную точку, требует для своего прохождения наименьшего времени. Так началась история важного для оптики вариационного принципа ферма — Гамильтона...

Говоря об оптике древности, следует отметить, что древние ученые, в том числе и Архимед, сделали ряд интересных наблюдений по преломлению света и метеорологической оптике Однако точный закон преломления им не был известен. Великий астроном древнего мира Клавдий Птолемей, с удивительным искусством разработавший теорию движения планет по геоцентрической системе мира, производил довольно точные измерения углов падения и преломления света в воде, в стекле. Однако из своих данных он не вывел закон преломления и считал угол преломления пропорциональным углу падения Такой формулировкой закона преломления пользовался и Кеплер, да и сейчас в элементарных учебниках при выводах формул линз, полагая углы падения небольшими (оптика «нулевых пучков»), заменяют синусы углов самими углами.

Что касается оптических теорий древних, то в таком сложном и тонком физическом явлении, как свет, было трудно нащупать правильный подход.

Теория зрительных лучей широко использовалась Евклидом, Архимедом и Птолемеем. Атомисты выдвинули теорию «образов», отделяющихся от вещей и вызывающих в глазу зрительные ощущения. Аристотель, выступая против теории зрительных лучей, думал и о посредствующей среде, и в его неясной формулировке можно усмотреть намек на волновую теорию. Цвета, по Аристотелю, обусловлены смешением темного и светлого. Вообще физика Аристотеля широко оперирует с противоположными качествами: тепло — холод, сухость — влажность, тьма — свет. Эта «физика качеств» получила широкое распространение в эпоху средневековья.

 

Глава вторая. Физика средневековья

 

Исторические замечания

Процесс распада рабовладельческого Римского государства и переход к феодализму в Западной Европе происходили в сложной обстановке военных столкновений и движений племен и народностей. Рухнувшая под напором «варварских» племен Римская империя оказывала идеологическое воздействие на эти племена сохранившейся в ней прочной и сильной организацией христианской церкви, сумевшей быстро приспособиться к новым историческим условиям и превратившейся в идеологический оплот феодализма. На Востоке, в Китае и Индии переход к феодализму происходил раньше, чем в Западной Европе, и в своем экономическом и культурном развитии эти страны обогнали ее, что сказалось также и на развитии науки.

Интересное и до некоторой степени загадочное историческое явление произошло на Аравийском полуострове в начале VII в. Там кочевые и полукочевые племена объединились под знаменем новой религии — ислама, провозглаше иной купцом Мухаммедом, и в короткое время создали сильное воинственное государство, завоевавшее Иран, страны Среднего Востока, Египет и проникшее в Европу на Пиренейский полустров. В истории науки и культуры арабы сыграли важную роль. Они были связующим звеном между восточной и западной культурой, между античной и средневековой наукой. В результате в период раннего средневековья (VII— XI вв.) ведущую роль в развитии науки играл Восток. Лишь в более позднюю эпоху, начиная с крестовых походов, оживляется европейская наука, возникают университеты, появляются крупные ученые. Вместе с тем эта так называемая эпоха развитого феодализма (XI—XV вв.) характеризуется интенсивным ростом производительных сил, развитием ремесла и торговли, подготовившим почву для перехода к новому способу производства — капиталистическому и новой экономической формации — капитализму.

Разложение феодализма и переход к новым экономическим формам происходит с конца XV в. примерно до первой половины XVII в. Этот период имел в истории науки исключительно важное значение, поскольку именно в этот период возникло новое опытное естествознание. Таким образом, история средневековой науки, в том числе и физики, в соответствии с историей общества разбивается на три хронологических отрезка:

1. Период развития науки на Востоке (VII-ХI вв.).

2. Период развития европейской феодальной науки (XI—XV вв.).

3. Период возникновения опытного естествознания (конец XV — первая половина XVII в.).

К рассмотрению этих периодов мы и переходим.

 

Достижения науки средневекового Востока

Западная Европа в эпоху раннего средневековья представляла унылую картину. Редкие деревушки и еще более редкие помещичьи усадьбы были отдельными мирками, слабо связанными между собой, феодал получал все необходимое от своих крепостных, съестные припасы, одежду, обувь, оружие. Не было городов, подобных древнему Риму, Афинам, Александрии, оживленных гаваней, шумных рынков, театров и цирков. Мир средневекового человека ограничивался узкими рамками его деревушки и усадьбы. Немудрено, что и мировоззрение этого человека было столь же ограниченным и сильно уступало мировоззрению образованного афинянина или александрийца Вся духовная жизнь средневековья, просвещение, искусство, наука — была подчинена церкви.

Средневековый Восток был богаче и культурнее. Столица арабского халифата—Багдад—была украшена роскошными дворцами халифа и его визирей, шумные базары заполняла пестрая разноязычная толпа. Арабские купцы снаряжали караваны и морские суда, в городах выделывались богатые ткани, ковалось замечательное оружие, изготовлялись золотые и серебряные украшения. Восток славился пряностями и сладостями, ароматическими веществами. Это был совсем другой мир, мир роскоши и богатства, построенный на труде рабов и крепостных. В этом мире могла найти приют и дать толчок новым знаниям гонимая христианской церковью наука древности.

Широкая торговля давала богатый материал для математических задач, дальние путешествия стимулировали развитие астрономических и географических знаний, развитие ремесла способствовало развитию экспериментального искусства. Поэтому новая математика, удобная для решения вычислительных задач, берет начало на Востоке. Хорезмиец Абу Абдалла Мухаммед ибн Муса аль-Хорезми (ок 780 —ок. 850), работавший в эпоху просвещенного халифа аль-Мамуна, был автором арифметики и трактата по алгебре. Из арифметического трактата Европа познакомилась с индийской позиционной системой чисел и употреблением нуля, арабскими цифрами, арифметическими действиями с целыми числами и дробями. Алгебраический трактат Хорезми дал имя новому разделу математики — алгебре («Аль-Джабар») В трактате Хорезми решаются линейные и квадратные уравнения.

Последующие за Хорезми ученые развили новые идеи, заимствовав их, в свою очередь, у индийских математиков, и в XII в. в Европе уже появляются переводы трактатов Хорезми и других восточных авторов. К началу научной революции Коперника — Галилея новая нумерация, алгебра и тригонометрия были не только освоены, но и развиты европейскими учеными.

Труды Аристотеля и Птолемея пришли на кафедры средневековых университетов также в арабских пере водах.

Однако задолго до арабов достижения античной науки стали известными в странах Закавказья. Армения и Грузия еще в IV в. установили тесные экономические и культурные связи с Византией. Христианство проникло в эти страны задолго до крещения Руси Уже в 301 г. христианство стало в Армении государственной религией, идеоло-

гической опорой раннего феодализма. В V—VII вв. на армянский язык были переведены труды Аристотеля, Платона и христианских богословов.

Знаменитый армянский ученый начала VII в. Анания Ширакаци путешествовал в Византию, изучал математику и философию и, вернувшись на родину, основал школу, в которой преподавал математику, астрономию, географию Им был составлен армянский учебник арифметики, выпущен трактат по космографии. Этот трактат свидетельствует о глубоком знании Ширакаци трудов греческого ученого Аристотеля. В своем сочинении Ширакаци рассматривает и чисто астрономические вопросы: пытается оценить расстояние до Солнца и Луны, составляет календарь, свидетельствующий об основательном знании им движений Солнца и Луны и трудов древних ученых по этому вопросу.

Ширакаци был разносторонним ученым, связавшим молодую армянскую науку с античным наследием. К сожалению, роль закавказских ученых в развитии естественнонаучных знаний и освоении античного наследия не исследована в достаточной мере. Пример Ширакаци показывает, что Закавказье знало античную науку непосредственно из первоисточника, от самих греков.

Арабы начали культивировать и экспериментальную науку. Мухаммед ибн Ахмед аль-Бируни (Бируни) производил точные определения плотностей металлов и других веществ с помощью изготовленного им «конического прибора». «Конический прибор» Бируни представлял собой сосуд, суживающийся кверху и оканчивающийся Цилиндрической шейкой. Посредине шейки было проделано небольшое круглое отверстие, к которому была припаяна изогнутая трубка соответствующего размера. В сосуд наливали воду. Куски металла, плотность которого определялась, опускали в сосуд, из которого через изогнутую трубку выливалась вода в объеме, равном объему исследуемого металла. Шейка была достаточно узкой («шириной с мизинец»), чтобы «подъем воды был заметен и при опускании того, что по объему равно зерну проса». Сама же трубка после ряда опытов была заменена желобком, чтобы вода по нему стекала без задержки. По измерениям Бируни плотность золота, переведенная на современные единицы измерения, равна 19,5, ртути -13,56.

При сравнении с современными данными результаты Бируни оказываются весьма точными. К сожалению, они стали известны в Европе очень поздно. Русский консул в Америке Н.Ханыков в 1857 г. нашел рукопись аль-Хазини под названием «Книга о весах мудрости» В этой книге приведены извлечения из книги Бируни «Об отношениях между металлами и драгоценными камнями в объеме», содержащие описание прибора Бируни и полученные им результаты.

Сам аль-Хазини продолжал исследования, начатые Бируни, с помощью специально сконструированных им весов, которые он назвал «весами мудрости».

Замечательны практические указания, приведенные Бируни о воде, применяемой при определениях плотности. Он указывает на необходимость пользоваться водой из одного и того же источника, в одних и тех же условиях «в связи с воздействием на ее свойства четырех времен года и зависимостью ее от состояния воздуха». Таким образом, Бируни знал, что плотность воды зависит от содержания в ней примесей и от температуры.

Бируни производил также точные астрономические и географические измерения. Он определил угол наклона эклиптики к экватору и установил его вековые изменения. Для 1020 г. его измерения дали значение 23°34'0" Современные вычисления дают для 1020 г. значение 23°34'45". Во время путешествия в Индию Бируни разработал метод определения радиуса Земли По его измерениям, радиус Земли оказался равным 1081,66 фарсаха, т. е. около 6490 км.

Бируни наблюдал и описал изменение цвета Луны при лунных затмениях, явление солнечной короны при полных затмениях Солнца. Он высказал мысль о движении Земли вокруг Солнца и считал геоцентрическую теорию весьма уязвимой. Им было написано обширное сочинение об Индии и переведены на санскритский язык «Начала» Евклида и «Альмагест» Птолемея.

Приведем краткие биографические сведения об этом выдающемся ученом средневекового Востока. Бируни родился 4 сентября 973 г. в главном городе Хорезма Кяте и вырос в среде ремесленников, к которой, возможно, принадлежали и его родители. Тяга к знаниям у него появилась весьма рано, и он уже в юности был тесно связан с научными кругами древнего Хорезма. По его собственному свидетельству, в возрасте 21—22 лет он «производил астрономические измерения при помощи круга, имевшего в диаметре 15 локтей, и других необходимых для этого инструментов». В это время в Хорезме произошел государственный переворот, плохо отразившийся на судьбе Бируни, который вынужден был уехать из Хорезма, проведя на чужбине около десяти лет. По возвращении Бируни становится одним из государственных деятелей Хорезма. Вероятно, в эти годы он проводил измерения плотностей металлов и драгоценных камней. Тогда же он начинает обширную переписку со знаменитым ученым древнего Хорезма Ибн Синой (Авиценной, 980—1037), с которым он обсуждает ряд естественнонаучных вопросов и физику Аристотеля. Бируни резко критикует многие утверждения Аристотеля, тогда как Ибн Сина выступает в роли защитника Аристотеля.

В 1017 г. властитель Хорасана и Афганистана Махмуд завоевал Хорезм, и Бируни вместе с другими пленными был отправлен в Газни, где прожил 13 лет. Несмотря на тяжелые условия, Бируни продолжал научную работу, написав ряд трудов по географии и астрономии, в том числе и знаменитую «Индию».

К моменту окончания «Индии» положение Бируни изменилось. На прес тол взошел сын Махмуда Масуд. Он благосклонно относился к Бируни и покровительствовал ему. Ученый по святил Масуду большое сочинение по астрономии и сферической триго нометрии, известное под название «Канон Масуда». Им были написаны также «Минералогия», «Книга о лечебных веществах». Умер Бируни 13 декабря 1048 г. (по другим сведе ниям, в 1050 или 1051 г.). По словам известного советского востоковед И.Ю.Крачковского, Бируни был энциклопедистом, охватившим весь круг современных ему наук, в первую очередь математико-физических и почти в такой же мере естественноисторических.

Крупным физиком был современник Бируни египтянин Ибн аль-Хайсам (965—1039), известный в Европе под именем Алхазена. Его основные исследования относятся к оптике. Алхазен развивает научное наследие древних, производя собственные эксперименты и конструируя для них приборы. Он разработал теорию зрения, описал анатомическое строение глаза и высказал предположение, что приемником изображения является хрусталик. Точка зрения Алхазена господствовала до XVII в., когда было выяснено, что изображение появляется на сетчатке.

Отметим, что Алхазен был первым ученым, знавшим действие камер-обскуры, которую он использовал как астрономический прибор для получения изображения Солнца и Луны. Алхазен рассматривал действие, плоских, сферических, цилиндрических и конических зеркал. Он поставил задачу определения положения отражающей точки цилиндрического зеркала по данным положениям источника света и глаза Математически задача Алхазена формулируется так: по данным двум внешним точкам и окружности, расположенным в одной плоскости определить такую точку окружности, чтобы прямые, соединяющие ее с заданными точками, образовывали равные углы с радиусом, проведенным к искомой точке.

Задача сводится к уравнению четвертой степени. Алхазен решил ее геометрически. В дальнейшем задачу Алхазена решали такие крупные ученые XVII в., как Гюйгенс и учитель Ньютона Барроу.

Алхазен занимался исследованием преломления света. Он разработал метод измерения углов преломления и показал экспериментально, что угол преломления не пропорционален углу падения. Хотя Алхазен не нашел точной формулировки закона преломления, он существенно дополнил результаты Птолемея, показав, что падающий и преломленный лучи лежат в одной плоскости с перпендикуляром, восстановленным из точки падения луча. Алхазену было известно увеличивающее действие плоско-выпуклой линзы, понятие угла зрения, его зависимость от расстояния до предмета. По продолжительности сумерек он определил высоту атмосферы, считая ее однородной.

В этих предположениях результат получается неточным (до Алхазену, высота атмосферы 52 000 шагов), но сам принцип определения является большим достижением средневековой оптики.

«Книга оптики» Алхазена была переведена на латинский язык в XII в. Однако считалось, что это сочинение — копия труда Птолемея. Только после того как было найдено и опубликовано сочинение Птолемея, стало ясно, что оптика Алхазена — это оригинальный труд, развивающий достижения древних ученых. То, что Алхазен есть не кто иной, как арабский ученый Ибн аль-Хайсам, выяснилось только в XIX в.

На примере Бируни и Алхазена мы видим, как развивалось экспериментальное естествознание на Востоке. Вместе с такими изобретениями, как механические часы, компас, порох, бумага, перенесенными в Европу арабами, и античным наследием оно сыграло огромную роль в развитии европейской цивилизации.

Отметим, что у арабов дальнейшее развитие получила астрономия. Сооружались обсерватории, велись наблюдения за небесными светилами Мы говорили об астрономических и геодезических измерениях Бируни Крупным астрономом был внук знаменитого завоевателя Тимура Улугбек (1394—1449). Он построил в Самарканде обсерваторию, снабдил ее первоклассными по тому времени инструментами. Им были составлены точный каталог звезд и таблица движения планет. Результаты наблюдений, вынолненных Улугбеком, характеризуют высокий уровень арабской астрономии.

Астрономические исследования средневековых арабских ученых вместе с другими достижениями арабской науки и техники становились позднее известными в Европе и стимулировали развитие европейской астрономии.

Рис. 1. Лаборатория алхимика (средневековый рисунок)

 

Европейская средневековая наука

Восточные государства значительно опережали Европу в экономическом и культурном развитии в течение эпохи раннего средневековья (VII—XI вв.) Если, например, Бируни переводил Птолемея, определял радиус Земли, размышлял о гелиоцентрической системе мира, то в Европе господствовали наивные представления о Земле как о плоской лепешке, накрытой хрустальным колпаком и опоясанной океаном.

Один из столпов католической церкви — блаженный Августин — объявил представления об антиподах нелепостью, другой католический авторитет — фома Аквинский — провозгласил тезис: «философия — служанка богословия».

Однако уже с X в. начинают развиваться экономические и культурные связи Европы и Востока. Большую роль в этом сыграли со второй половины XI в. знаменитые крестовые походы, доставившие европейцам новые сведения: экономические, технические и культурные.

Происходящее в Европе развитие ремесла и торговли способствовало оживлению экономики и культуры. Появляются первые университеты, сначала в Испании, где уже арабами был организован университет в Кордове, затем в Италии, Париже и Англии. Университет средневековой Европы существенно отличался от современного университета, однако до нашего времени сохранились ученые степени доктора и магистра, звания профессора и доцента, лекции как основная форма сообщения знаний, факультеты как подразделения университета. Отмерла такая форма обучения, как диспут, имевшая широкое распространение в средневековых университетах, но научные дискуссии и семинары имеют большое значение и в современной науке, и в высшей школе.

Лекция (буквально — чтение) в средневековом университете по необходимости была основной формой сообщения знаний. Книг было мало, они были дороги, и поэтому чтение и комментирование богословских и научных трудов являлось важной формой информации.

Преподавание велось на латинском языке, равно как и бого&гужение в католических храмах. До XVIII в. латинский язык был международным научным языком, на нем писали Коперник, Ньютон и Ломоносов.

До сих пор в европейских университетах торжественные речи читаются, а дипломы пишутся на латинском языке. На торжественных актах профессора появляются в средневековых докторских мантиях и шапочках. Так современная наука сохраняет память о первых университетах, возникновение которых явилось одной из главных предпосылок научного прогресса.

Другой предпосылкой будущего расцвета науки послужило развитие техники. Механические часы, очки, книгопечатание, производство бумаги сыграли огромную роль в развитии естествознания. Немалую роль в развитии цивилизации сыграл компас, история которого начинается в Древнем Китае, где в рукописи II в. н. э. встречается указание на свойство намагниченной иглы указывать направление. Уже в XI в. китайцам было известно магнитное склонение. Арабские мореплаватели начиная с XII в. пользовались компасом. В Европу он проникает в ХП-ХШ вв.

О значении компаса в истории цивилизации свидетельствует тот факт, что именно наличие компаса позволило Колумбу предпринять свое историческое путешествие. «Компас — инструмент малый, но без него не была бы открыта Америка», — любил говорить известный советский ученый академик А. Н. Крылов. Отметим, что Колумб был первым европейцем, обнаружившим склонение магнитной стрелки.

Третья предпосылка научного прогресса — ознакомление с античным научным наследием. В XII в. появляются латинские переводы «Начал» Евклида, трудов Архимеда, Птолемея и других греческих авторов. Тогда же появились переводы Хорезми и Алхазена.

Основным фактором, определившим революционные изменения в развитии общества и науки, было то, что внутри феодального общества вызревали новые производительные силы, пришедшие в противоречие с феодальными производственными отношениями и потребовавшие как новых форм общественного бытия, так и новой науки. Пока же культивировавшаяся в университетах схоластическая наука базировалась на антинаучном по самой сути принципе — истина уже открыта в священном писании и в трудах богословских авторитетов (к которым причислялся и приспособленный к нуждам церковного мировоззрения Аристотель), и долг ученых—изучать и комментировать эту истину.

В этих условиях науке было трудно развиваться; свободная, самостоятельная мысль беспощадно подавлялась. Эта эпоха вошла в историю науки как «период застоя», как «темная ночь средневековья». Однако и в это время жили и работали люди, возвышавшиеся над общим уровнем, искавшие новых путей познания. Таким был, например, знаменитый монах Роджер Бэкон (1214—1294). Бэкон родился в Англии в графстве Сомерсет, учился в Оксфордском и Парижском университетах, в 1250 г. вступил в монашеский орден францисканцев. В Оксфорде он занимался научными исследованиями.

Независимость в мышлении навлекла на него обвинение в ереси, и он был заключен в тюрьму. Освобожденный папой Климентом IV, он уехал во францию, но там вновь подвергся преследованиям и вышел из тюрьмы только глубоким стариком в 1288 г. Бэкон считал, что ученый не должен сводить науку к толкованию авторитетов. По его мнению, наука должна строиться на строгих аргументах и точном опыте, доказывающем теоретические заключения. Бэкон резко выступал против всеобщего увлечения книгами Аристотеля, вдобавок искаженными невежественными переводчиками. В этом отношении он являлся прямым предшественником Галилея.

Бэкон не ограничивался указанием на большое значение опыта. Он неутомимо экспериментировал и сам производил химические, оптические, физические эксперименты и астрономические наблюдения.

Бэкон знал действие камер-обскуры, увеличивающее действие выпуклых линз, установил, что вогнутые зеркала фокусируют параллельные пучки в точ ку, лежащую между центром и вершиной зеркала, предвидел возможность построения оптических приборов. Он сделал шаг вперед в объяснении явления радуги, сравнивая ее цвета с радужными цветами при преломлении света в хрустале, в каплях росы, в водяных брызгах.

При этом он установил, что угол, образованный направлением падающего на водяные капли луча с лучом, направленным от радуги в глаз, составляет 42°.

Младший современник Бэкона поляк Вителло (родился около 1230 г.) был автором написанной в 70-х годах ХIII в. книги по оптике «Перспектива». Он также исследовал радугу и пришел к выводу, что она образуется от преломления лучей в отдельных водяных каплях.

Ход светового луча в дождевой капле, приводящий к образованию радуги, правильно описал умерший в 1311 г. монах Дитрих (Теодорих) фрейбургский.

Таким образом, вХШ в. радуга привлекала внимание многих исследователей Следует добавить, что в конце XIII в. были изобретены очки.

XIII век вообще характеризуется оживлением духовной жизни. В этом веке, кроме Бэкона, жили и работали такие деятели, как знаменитый богослов фома Аквинский, идеалистическая философия которого («томизм») имеет распространение и в современной западной философии; Вильгельм Оккам, выступивший против идеалистической теории о реальном существовании общих понятий; Роберт Большеголовый, занимавшийся оптикой. Интересную фигуру представляет Петр Перегрин — рыцарь Пьер из Марикура, написавший 8 августа 1269 г. в военном лагере «Послание о магните» («Послание о магните Пьера де Марикур, по прозванию Перегрина, к рыцарю Си геру де фукокур»).

В книге автор указывает, по каким признакам можно отобрать хороший «магнитый камень», как распознать полюса магнита. Все эти практические указания свидетельствуют о хорошем знании Марикуром естественных магнитов, о его большом опыте в обращении с магнитом. Марикур дает инструкцию проведения опыта, показывающего, что разноименные полюса магнита притягиваются, а одноименные — отталкиваются.

Пьер де Марикур описывает подробно свойство плавающего магнита указывать на север «к звезде, которую называют мореходной, оттого, что она находится около полюса; но на самом деле он поворачивается не к упомянутой звезде, а к полюсу...» Далее Перегрин указывает, что если целый продолговатый магнит А О разломить на две части, то получится два магнита АВ и СО с двумя полюсами. Если магниты сблизить, они соединятся в месте разлома ВС.

Во второй части своего послания Марикур описывает конструкцию магнитного инструмента, «при помощи которого определяют на горизонте азимут Солнца, Луны и любой звезды», а также проект вечного двигателя с магнитом. Сочинение Пьера де Марикура представляет собой видную веху в ранней истории магнетизма. На фоне рассказов о фантастических свойствах магнитного камня, которые были в ходу даже спустя столетия после «Послания», сочинение Марикура выглядит как первое серьезное экспериментальное исследование магнетизма, а сам Мари-кур — как ученый-экспериментатор, строящий свои выводы на основе опытов. Роджер Бэкон высоко ценил Марикура, называя его в своих сочинениях «магистр Петр» и превознося его ученые заслуги. В «Послании» Марикур упоминает о своем не дошедшем до нас сочинении «О действиях зеркала», свидетельствующем, что он занимался не только магнетизмом, но и оптикой Прозвище Марикура «Перегрин» — странник — указывает на то, что он много путешествовал и, по-видимому, бывал на Востоке.

В XIV в. начинается реакция. Усиливается со стороны церкви борьба с «ересью», вводится пытка. Было осуждено учение и сожжен труд Николая из Отрикура, который, следуя атомистам, утверждал, что в мире нет ничего, кроме сочетания и разделения атомов Он был вынужден отречься от своего учения. Церковь осудила также учение Вильгельма Оккама, который защищал возможность двух видов познания — научного и божественного откровения — и требовал свободы для научного познания. Тем не менее и в XIV в. жизнь не стояла на месте. Продолжается развитие техники, появляются башенные колесные часы в Париже, в Германии, в Москве В 1440 г. Иоганн Гуттенберг (1400-1468) изобретает книгопечатание отдельными вырезными буквами. Наступала новая эпоха в развитии цивилизации и науки.

Рис. 2. Книгопечатание

 

Глава третья. Борьба за гелиоцентрическую систему

 

Исторические замечания

С середины XV в. в экономическом, политическом и культурном развитии Европы совершенно отчетливо выступают новые черты. Рост городов и отделение ремесленного (промышленного) производства от сельского хозяйства разрушали натуральное хозяйство, развивалась торговля, возрастало значение денег, появились новые общественные силы: купцы, банкиры, богатые ремесленники (буржуазия). Заинтересованная в росте производительности труда, буржуазия поощряла технические и организационные усовершенствования производства, появились первые мануфактуры, феодальные порядки мешали развитию промышленности и торговли, буржуазия нуждалась в крепком государстве, противостоящем удельным притязаниям феодалов, и в Европе начался процесс формирования национальных государств. Одновременно усиливалось недовольство бесправных крестьянских и городских масс, начиналась эпоха народных восстаний, направленных против власти феодалов и притязаний богатых горожан. Принимая религиозную, идеологическую окраску, эти восстания являлись выступлением и против духовной диктатуры церкви. Началось широкое протестантское движение в Германии, Швейцарии, Англии, франции, сломившее диктатуру католицизма.

В этой бурной политической обстановке рождалось новое мировоззрение и новое естествознание. Историческую эпоху, вызвавшую к жизни новую науку, очень ярко и точно обрисовал ф. Энгельс. Характеризуя историческую обстановку, в которой рождалось опытное естествознание, Энгельс, в частности, указал на великие географические открытия, в результате которых «были заложены основы для позднейшей мировой торговли и для перехода ремесла в мануфактуру, которая, в свою очередь, послужила исходным пунктом для современной крупной промышленности ».(Энгельс ф. Диалектика природы. — Маркс К., Энгельс ф. Соч., 2-е изд., т. 20, с. 346.)

После крестовых походов и захвата Византии турками поиски путей к сказочным богатствам Востока занимали умы предприимчивых европейцев, и прежде всего обитателей Пиренеев, раньше всех соприкоснувшихся с восточной культурой. Под эгидой испанского короля генуэзец Колумб предпринял смелый поход в Индию западным путем. Путешествие Колумба в 1492 г. привело к открытию новых земель, которые сам Колумб считал Индией. Позднейшие путешественники доказали, что это Новая Земля, и назвали ее (по имени одного из путешественников Америго Веспуччи) Америкой.

В 1519—1522 гг. экспедиция фердинанда Магеллана совершила первое кругосветное путешествие, доказав экспериментально шарообразность Земли и по существу открыв ее как космическое тело. После Магеллана держаться устаревших средневековых представлений о Земле стало невозможно. Магеллан открыл путь новому пониманию Вселенной, и такое понимание было дано Николаем Коперником. Оно подготовлялось не одними географическими открытиями. Уже в XV в. были люди, провозгласившие новый подход к пониманию природы.

В своем труде «Диалектика природы» ф.Энгельс писал о людях, подготовивших переворот в естествознании и мировоззрении. Начиная со второй половины XV столетия на историческую арену выходят великие художники итальянского Возрождения: Микеланджело, Леонардо да Винчи, Рафаэль и другие; религиозные реформаторы: Лютер и Кальвин; великие гуманисты: Томас Мор, Эразм Роттердамский, Франсуа Рабле и другие; отважные путешественники: Колумб, Васко да Гама, Магеллан и многие другие; ученые: Николай Кузанский, Тарталья, Кардано, Рамус, Коммандино, Телезий, Гвидо Убальди, Порта. Список имен можно было бы значительно расширить. «...Эпоха... нуждалась в титанах и... породила титанов по силе мысли, страсти и характеру, по многосторонности и учености», — писал Энгельс. Среди этих титанов Энгельс называет одним из первых Леонардо да Винчи, который «был не только великим живописцем, но и великим математиком, механиком и инженером, которому обязаны важными открытиями самые разнообразные отрасли физики».(Энгельс ф. Диалектика природы. — Маркс К., Энгельс ф. Соч., 2-е изд., т. 20, с. 346.)

Леонардо да Винчи прожил беспокойную жизнь. Он родился вблизи небольшого городка Винчи 14 апреля 1452 г., обучался живописи и ваянию у флорентийского художника Вероккио. С 1472 по 1482 г. он жил и работал во Флоренции, затем переехал в Милан, где создал свою знаменитую «Тайную вечерю». После захвата Милана французами в 1499 г. Леонардо вернулся во Флоренцию. Однако, не найдя здесь благоприятных условий для осуществления своих замыслов, он в 1506 г. вернулся в Милан. В 1512 г. сын миланского герцога Моро отобрал Милан у французов, но обеспечить порядка не мог, и Леонардо уехал в Рим, где работал при папском дворе. В Риме им была создана знаменитая «Джоконда». В 1516 г. по приглашению французского короля он уехал во францию, где и умер 2 мая 1519 г.

От Леонардо осталось большое количество заметок и проектов. Он записывал их зеркальным письмом, перемежая записи прямым письмом. Многие слова он записывал сокращенно и слитно с другими словами. Это очень затрудняло расшифровку его рукописей. Их начали расшифровывать и издавать в XIX в. В 1881-1891 гг. было издано шесть томов рукописного наследия Леонардо, которые были затем переизданы.

Во время завоевания Италии Бонапарт вывез из Милана 13 рукописей Леонардо. Анализ физико-математических рукописей был сделан профессором Вентури, который доложил о них в 1797 г. в Национальном институте (французская Академия наук в Париже). Вентури высоко оценил научное наследие Леонардо и считал, что его надо «поставить во главе всех тех, кто в новое время занимался физико-математическими науками, придерживаясь правильного метода». Вентури был совершенно прав. Леонардо резко выступает против схоластического метода и бесплодных богословских дискуссий, противопоставляя им знание, основанное на опыте.

«Мне кажется, — пишет он, — что пусты и полны заблуждений те науки, которые не порождены опытом — отцом всякой достоверности — и не завершаются в наглядном опыте...» Он считает сомнительным то, «что восстает против ощущений, каковы вопросы о сущности бога и души и тому подобное, по поводу которых всегда спорят и сражаются». «Истинные науки, — продолжает Леонардо, — те, которые опыт заставил пройти сквозь ощущения и наложил молчание на язык спорщиков».

Леонардо очень точно изложил основы метода нового естествознания: опыт и математический анализ. «Все наше познание начинается с ощущений»,— пишет он. «Мудрость — есть дочь опыта». «Никакой достоверности нет в науках там, где нельзя приложить ни одной из математических наук, и в том, что не имеет связи с математикой».

Говоря специально о механике, Леонардо утверждает: «Механика есть рай математических наук, посредством нее достигают математического плода».

Леонардо, таким образом, действительно является предшественником Галилея, Декарта, Кеплера, Ньютона и других основателей современного естествознания. Он одним из первых начал борьбу со схоластическим методом, провозгласил основы нового метода и начал применять его к решению конкретных задач, в частности к изучению движения. Вопреки Аристотелю, утверждающему, что движение требует для своего сохранения силы, Леонардо писал: «Всякое движение стремится к своему сохранению, или иначе: всякое движущееся тело всегда движется, пока сохраняется в нем сила его двигателя». «Всякое движение будет продолжать путь своего бега по прямой линии, пока в нем будет сохраняться природа насилия, произведенного его двигателем».

Это еще не открытие инерции и не формулировка закона инерции, но уже и не аристотелевский вывод из повседневных наблюдений. Леонардо живет в другое время, существенно отличное от времени Аристотеля. Он знает порох, наблюдал неоднократно полет снарядов и пуль, и число наблюдаемых движений, продолжающихся и после действия толкающей силы, у него больше, чем у Аристотеля. Поэтому он делает следующий шаг в понимании природы движения и фиксирует в природе наличие инерции и инерционного движения, приписывая его сохранению «природы насилия». «Насильствен-ность, — записывает Леонардо, — слагается из четырех вещей: тяжести, силы, движения и удара». И в этом утверждении отражается механический опыт Леонардо.

«Сила есть причина движения, движение есть причина силы... Сила при некоторых своих действиях, разрушая сь, переходит на то тело, которое мчится впереди и при помощи движения рождает удар большей действенности, а после себя оставляет разрушение, как это видно при движении ядра, гонимого силой бомбарды».

По мнению Леонардо, сила рождается двояким образом: «Во-первых, при внезапном увеличении редкого тела в плотном; таково увеличение огня в бомбарде, — не находя в ее полости достаточного вместилища для своего прироста, он бешено мчится к более обширному пространству, гоня всякое препятствие, противостоящее его стремлению». То же, по мнению Леонардо, производит течение воды и ветер.

«Во-вторых, сила создается в телах согнутых и скрученных вопреки их естественному состоянию — таковы самострел или другое подобное орудие, которое неохотно дает себя согнуть и, будучи нагружено, стремится распрямиться; и лишь только им дана свобода, они с бешенством гонят ту вещь, которая противилась их бегу».

В записях Леонардо немало рассуждений о тяжести, легкости, силе как «духовной способности» в духе средневековых схоластов. Но когда он размышляет над конкретными вещами, над действием бомбард, самострелов, течением воды и воздуха, у него возникают те идеи, которые в своем развитии приводят к основным понятиям механики.

Механика Леонардо, Галилея и Ньютона обобщила новую практику артиллеристов, конструкторов оружия, кораблестроителей, мореплавателей. В распоряжении Аристотеля не было такого богатого механического опыта, и он, прекрасно понимая, например, что в пустом однородном пространстве тело будет покоиться или вечно двигаться, считал это невозможным в реальной среде.

Наблюдательность и острота физического мышления Леонардо позволили ему сделать интересные наблюдения и сформулировать ряд положений и задач. Так, он фиксирует важное свойство звуковых и водяных волн распространяться, не мешая друг другу (принцип суперпозиции): «Хотя звуки, проникающие в этот воздух, кругообразно расходятся от своей причины, тем не менее круги, распространяю щиеся от различных исходных точек встречаются друг с другом... и проходя \ один через другой, всегда сохраняя в качестве центра свою причину. Так как во всех случаях движения вода имеет большое сходство с воздухом, я свяжу это ради примера с выше приведенным положением. Я говорю: если бросишь одновременно два камешка на некотором расстоянии друг от друга на гладкую и неподвижную поверхность воды, то увидишь, как вокруг обоих мест удара возникают два независимых друг от друга множества кругов, которые, ростя, наконец встретятся, потом войдут одно в другое, пересекаясь друг с другом и всегда сохраняя в качестве своего центра те места, куда камни ударились».

Вот еще одно важное наблюдение Леонардо: «Можно создать гармоничную музыку из различных каскадов, как я видел у источника в Римини, — как я видел это 8 августа 1502 года».

Пройдет почти 200 лет, и аналогичное наблюдение запишет Гюйгенс. О нем вспомнят в дискуссии о природе белого цвета в конце XIX в., а о более раннем наблюдении Леонардо забудут. Это вполне естественно. Шифрованные записи Леонардо не вошли своевременно в жизнь науки, и его богатое научное наследие не смогло послужить делу научного прогресса. Но то, что Леонардо жил, работал, думал, имело огромное значение. Устои средневековой науки расшатывались, и деятельность Леонардо, художника, инженера, мыслителя, помогала сокрушать старое и создавать новое.

 

Научная революция Коперника

«Революционным актом, которым исследование природы заявило о своей независимости и как бы повторило лютеровское сожжение папской буллы, было издание бессмертного творения, в котором Коперник бросил — хотя и робко и, так сказать, лишь на смертном одре — вызов церковному авторитету в вопросах природы. Отсюда начинает свое летосчисление освобождение естествознания от теологии, хотя выяснение между ними отдельных взаимных претензий затянулось до наших дней и в иных головах далеко еще не завершилось даже и теперь» (Энгельс ф Диалектика природы. - Маркс К., Энгельс ф. Соч., 2-е изд., т. 20 с. 347. ) Так охарактеризовал Энгельс значение великого творения Коперника, сыгравшего огромную роль не только в истории естествознания, но и в истории мировой культуры.

Геоцентрическое мировоззрение опиралось на длительный общечеловеческий опыт. Человек пахал землю, строил города, не подозревая, что Земля с огромной скоростью движется в мировом пространстве. Он ежедневно наблюдал восход и заход Солнца, суточное движение звезд, которые вращались вокруг Земли самым явным образом. Гениальные догадки Аристарха Самосского и пифагорейцев о движении Земли настолько противоречили этому повседневному опыту, что не смогли оставить глубокого следа в сознании людей и, наоборот, только укрепляли позиции сторонников геоцентризма. Вдобавок это укоренившееся мировоззрение было освящено авторитетом церкви. В «Библии» описывалось, как полководец Иисус Навин приказал Солнцу: «Стой, Солнце!» И по воле бога Солнце остановилось и стояло до тех пор, пока полководец не взял город. Это библейское сказание выдвигалось как неопровержимый аргумент в пользу геоцентрического мировоззрения.

Сторонникам нового мировоззрения необходимо было огромное мужество, чтобы выступить против многовековой традиции. Такое выступление носило характер подлинной революции в мировоззрении.

Николай Коперник, человек, сделавший этот революционный шаг, был сыном своей эпохи, одним из титанов, о которых писал ф. Энгельс. Энгельс подчеркивал, что эти люди не кабинетные ученые, а «живут в самой гуще интересов своего времени, принимают живое участие в практической борьбе...».( Энгельс ф. Диалектика природы. - Маркс К., Энгельс ф. Соч., 2-е изд., т. 20, 347) Именно таким человеком и был Коперник.

Николай Коперник, сын краковского купца, родился 19 февраля 1475 г. в польском городе Торуне на Висле. Он учился сначала в Краковском университете, затем в Болонье и Падуе, где изучал право и медицину. Одновременно Коперник с большим увлечением занимался математикой и астрономией, проводил астрономические наблюдения. После десятилетнего пребывания в Италии, получив в ферраре докторскую степень, Коперник вернулся на родину разносторонне образованным ученым, с обширными познаниями в области математики, астрономии, права, медицины, философии, греческих и новых языков. С 1512 г. он занимает должность каноника во фромборке, главном городе Вармии, руководя не только церковными, но и хозяйственными, дипломатическими и военными делами своей епархии. Во время войны с тевтонским орденом он руководил обороной Ольштыня, разрабатывал проект монетной системы, реконструировал водопровод во Фромборке, лечил больных, судил и т. п. В этих условиях он не прекращал научных занятий и напряженно работал над своим трудом.

В 1530 г. он изложил основные положения своей теории в рукописном сочинении «Малый Комментарий». Сведения о новом учении дошли до папских кругов, и в 1536 г. кардинал Шон-берг обратился к Копернику с письмом, в котором просил прислать подробное изложение теории с таблицами для вычисления положения планет. Однако первым адептом нового учения стал профессор математики Виттенбергско-го университета Георг Иоханн Ретик. Виттенберг был протестантским городом, сам Ретик учился в Цюрихе, где жил и учил реформатор Цвингли, и, таким образом, протестанты сыграли видную роль в распространении нового учения, созданного католиком. В 1539 г. в Гданьске было напечатано подробное изложение системы Коперника, сделанное Ретиком. Ретик настойчиво убеждал Коперника опубликовать его работу и в конце концов получил рукопись для издания. Он решил напечатать ее в Нюрнберге, где была большая типография. Весной 1542 г. он приехал в Нюрнберг, чтобы лично проследить за печатанием. Не дождавшись окончания работы, он поручил нюрнбергскому математику и лютеранскому богослову Осиандеру довести дело до конца. Книга была показана Копернику, когда он был тяжело болен, за несколько дней до его смерти, последовавшей 24 мая 1543 г. Великое творение Коперника начало свою бессмертную жизнь после смерти своего создателя.

Коперник хорошо сознавал революционную силу своей теории, посягнувшей на догмы, утвержденные авторитетом священного писания. Этим объясняются его длительные колебания в вопросе об издании сочинения и его «предохранительное» предисловие, с которым он обратился к папе Павлу III. В этом предисловии он писал о своих колебаниях, ссылаясь на побуждения кардинала Шонберга и кульмского епископа Гизе и на то, что учение о движении Земли высказывалось древними: учеником Аристотеля Рикетом (Никетом у Коперника) Сиракузским, пифагорейцами филолаем и Экфантом и другими (Аристарха Коперник не упоминает).

Осиандер также хорошо понимал революционное значение теории Коперника и снабдил книгу защитительным предисловием, носящим, однако, весьма опасный характер. Осиандер объявил теорию Коперника математической гипотезой, служащей лишь для удобства описания движения планет. Он указывал, что совершенно «нет необходимости, чтобы эти гипотезы были верными или даже вероятными, достаточно только одного, чтобы они давали сходящийся с наблюдениями способ расчета...». Оперируя тем, верным для того времени, фактором, что «наука совсем не знает простых и глубоких причин видимых неравномерных движений», Осиандер писал, что астроном прибегает к лучшей и легчайшей гипотезе, философ, вероятно, потребует нечто более вероятное, но оба они без божественного откровения не в состоянии что-либо открывать или что-либо нам передавать. Таким образом, Осиандер в своей «защите» пошел настолько далеко, что отнял у науки право на познание истины, предоставив ей право лишь изобретать гипотезы для удобного описания действительности. Истина же доступна только божественному откровению. Этим предисловием открылась длительная борьба между материалистическим и идеалистическим пониманием природы научного познания.( Конечно, борьба материалистического и идеалистического понимания природы познания велась и в древности, и в средние века. Предисловие Осиандера открыло новую страницу в истории этой борьбы, появившись в момент зарождения нового естествознания. )

Сочинение Коперника «О вращениях небесных сфер» содержит шесть книг. На титульном листе напечатано обращение к читателю, в котором автор указывает, что в сочинении рассмотрены движения звезди планет, «представленные на основании как древних, так и современных наблюдений; развитые на новых и удивительных теориях». Таким образом обращение рекомендует книгу как «расписание» движения планет, составленное как на основе наблюдений, так и на новых теориях.

В обращении к папе Павлу III Коперник критикует теорию эпициклов, не согласующуюся достаточно хорошо с наблюдениями и не дающую целой картины мироздания: «...Они (т. е. авторы геоцентрических теорий. — П. К.) не смогли определить форму мира и точную соразмерность его частей. Таким образом, с ними получилось то же самое, как если бы кто-нибудь набрал из различных мест руки, ноги, голову и другие члены, нарисованные хотя и отлично, но не в масштабе одного и того же тела; ввиду полного несоответствия друг с другом из них, конечно, скорее составилось бы чудовище, а не человек». Коперник пишет, что он «стал досадовать, что у философов не существует никакой более надежной теории движений мирового механизма...». Сравнение системы мира с механизмом, употребленное здесь Коперником, очень ярко выражает сущность его основной идеи: построить простую модель солнечной системы, ее кинематический механизм. Такой механизм он нашел, относя движения всех планет, в том числе и Земли, к Солнцу. Этот шаг Коперника имел поистине революционное значение. Делая Землю рядовым членом семейства планет, он порывал с аристотелевской и церковной доктринами о противоположности земного и небесного и с повседневными житейскими представлениями.

Сделав один революционный шаг, Коперник был вынужден сделать и второй. Так как движение Земли не отражается на видимой картине сферы неподвижных звезд, он принял, что эта сфера чрезвычайно велика по сравнению с размерами орбиты Земли. Расстояние Земли от центра мира «...будет несравненно малым, в особенности по отношению к сфере неподвижных звезд», — утверждает Коперник. Сама Вселенная бесконечно велика по сравнению с Землей: «...Небо неизмеримо велико по сравнению с Землей и представляет бесконечно большую величину; по оценке наших чувств Земля по отношению к небу, как точка к телу, а по величине, как конечное к бесконечному». Но Коперник думает и об измеримости этой бесконечности и сравнивает отношение Земли и Вселенной с отношением атома к телу. Атомы неощутимы для чувств, несколько атомов не составляют видимого тела, «а все же,— пишет Коперник, — эти частицы можно так умножить, что, наконец, их будет достаточно для слияния в заметное тело».

Так новое учение о космосе обращает мысль его основателя к материалистической атомистике. Оно неизбежно подводило также к представлению об относительности движения, к физическому релятивизму. «Всякое представляющееся нам изменение места происходит вследствие движения наблюдаемого предмета или наблюдателя или, наконец, вследствие неодинаковости перемещений того и другого, так как не может быть замечено движение тел, одинаково перемещающихся по отношению к одному и тому же (я подразумеваю движение между наблюдателем и наблюдаемым)».

Вот когда в науке появляется эйнштейновский «наблюдатель»!

В другом месте Коперник, возвращаясь к вопросу об относительности Движения, пишет: «Так при движении корабля в тихую погоду все находящееся вне представляется мореплавателям движущимся, как бы отражая движение корабля, а сами наблюдатели, наоборот, считают себя в покое со всем с ними находящимся. Это же, без сомнения, может происходить и при движении Земли, так что мы думаем, будто вокруг нее вращается вся Вселенная».

Таким образом, кинематически движения наблюдателя и наблюдаемого равноценны, любого из них можно считать неподвижным. Так же равноценны движения Земли и Вселенной, и это объясняет вековую иллюзию неподвижности Земли. Но астрономические и философские соображения заставляют Коперника считать неподвижность Земли только иллюзией, а реальностью — ее движение вокруг Солнца. Позднее эти идеи Коперника с особой основательностью разовьет Галилей, сформулировав классический принцип относительности.

Правда истории заставляет нас в этом месте вспомнить предшественника Коперника в учении об относительности движения и бесконечности Вселенной. Этим предшественником был кардинал Николай Кузанский (Николай из Кузы, 1401—1464), итальянский ученый. Сочинения Кузан-ского были изданы уже после смерти в 1515 г., т. е. при жизни Коперника, и, вероятно, были ему известны. В одном из сочинений мы читаем:

«...Для нас ясно, что Земля находится в движении, хотя нам этого и не кажется, потому что мы замечаем движение по сравнению с чем-нибудь неподвижным. Потому что если бы кто-нибудь сидел в лодке посредине реки, не зная, что вода течет, и не видя берегов, то как бы он узнал, что лодка движется? И таким образом, так как всякий, будет ли он находиться на Земле, или на Солнце, или на другой какой звезде, полагает, что он находится в неподвижном центре, а что все другое движется, то он назначил бы себе различные полюсы — одни, если бы он был на Солнце, другие — на Земле, третьи — на Луне и так далее».

Космическое мышление Николая Кузанского представляет Вселенную бесконечной и все ее точки равноправными точками отсчета. Коперник выбирает из множества этих равноправных точек отсчета одну — Солнце, точнее, центр Солнца и строит модель солнечной системы, представляя планеты движущимися вокруг Солнца по круговым орбитам. Такая конкретная модель могла «работать» и могла быть проверена практическими наблюдениями, философские идеи Николая Кузанского Коперник перевел на язык фактов и чисел. Большая часть его книг содержит таблицы и расчеты, относящиеся к той видимой части Вселенной, которую с древних времен наблюдал и исследовал человек.

 

Борьбв за гелиоцентричекую систему мира. Джордано Бруно. Кеплер

Книга Коперника — и в этом заключается ее огромное стимулирующее значение — поставила перед наукой ряд важных проблем. Перед астрономией она поставила задачу проверить соответствие новой теории фактам. Надо было уточнить наблюдения движения планет и выяснить, соответствуют ли эти наблюдения модели Коперника. В случае расхождения возникала задача выяснения его причин: происходят ли они от неправильности самой теории или от того, что теория, верная в своей основе, должна быть уточнена в деталях.

Решение этой задачи потребовало от астрономов больших усилий при тогдашнем состоянии экспериментальных и математических средств астрономической науки. Астрономы наблюдали светила невооруженным глазом, пользуясь визирами, диоптрами, простыми угломерными инструментами невысокой точности. Для числовой обработки результатов они не располагали не только счетными машинами, но и обычной арифметической техникой, еще не известны были десятичные дроби и логарифмы, которые появились только в начале XVII в. и не сразу вошли во всеобщее употребление. Тогда же были созданы подзорные трубы и телескопы. Для определения долгот астрономы не располагали точными часами. И астрономическая наука, и навигационная практика нуждались в оптических приборах, в точных часах, в новых вычислительных средствах. Этим и определялись задачи науки на ближайшие десятилетия.

Теория Коперника нуждалась также и в физическом обосновании кинематической схемы. Естественно возникал вопрос: что связывает «машину мира» в единое целое, планеты с Солнцем, Землю с Луной? Каковы физические причины движения вообще и движения планет в частности? Астрономия нуждалась в механике, и не в той механике, которая была известна древним и по существу была статикой, а в новой механике, в механике движения — динамике. Для развития этой новой механики нужна была новая, динамичная математика.

Так из великого открытия Коперника возникла научная программа, осуществление которой привело к возникновению экспериментального и математического естествознания, в первую очередь механики и оптики.

Но помимо этих научных задач, приходилось решать и другую задачу: преодоление установившихся традиций, освященных догматами церкви. Нужны были смелые пропагандисты нового учения, способные распространить его, поколебать окаменелые догмы. Теорию Коперника не признавали ведущие люди эпохи: церковный реформатор Лютер, философ-материалист Френсис Бэкон, крупный астроном Тихо Браге. К тому же к ней с самого начала ее зарождения настороженно присматривалась католическая церковь. Обеспокоенная успехами протестантизма, она усилила борьбу с инакомыслящими, укрепила инквизицию, беспощадно преследующую «еретиков». Большую роль в «контрреформации» сыграл утвержденный в 1540 г. орден иезуитов. Основанный испанским дворянином Игнатием Лойолой, он в короткое время превратился в мощную разветвленную организацию. Иезуитские методы борьбы и влияния на массы стали нарицательными, как символ беспринципной подлости и хитрости. Иезуиты проникали всюду, вели интриги при дворах королей и императоров, стремились взять под свой контроль науку и просвещение. Среди членов ордена были и ученые и педагоги. Иезуиты и сыграли большую роль в борьбе с системой Коперника.

Трудность борьбы за систему Коперника привела к тому, что новое учение вошло в науку не сразу и осуществление научной программы, вытекающей из него, затянулось на десятилетия. Борьба была длительной и кровавой. Навеки вошло в историю имя мученика науки Джордано Бруно. Этот замечательный человек, писатель, поэт, ученый, талантливый оратор и лектор, также был одним из тех титанов, которых рождало это бурное время.

Он родился в 1548 г. в небольшом итальянском городе Нола, вблизи Неаполя, и был при крещении назван Филиппе. Получив первоначальное образование в Неаполе в учебном пансионе своего дяди, он в 16-летнем возрасте постригся в монахи под именем Джордано, под которым и вошел в историю.

Молодой монах ревностно предавался научным и литературным занятиям: изучал греческую науку и философию, труды арабских ученых и философов, сочинения фомы Аквинского и Николая Кузанского. Он написал сатирическую комедию «Светильник», сатирический диалог «Ноев ковчег» (в форме диалога написаны все важнейшие произведения Бруно), которые отнюдь не свидетельствовали о монашеских умонастроениях Бруно.

Двадцати четырех лет Бруно становится священником в Кампанье. Здесь он знакомится с сочинениями гуманистов и книгой Коперника. Его образ мыслей вызывает подозрение членов монашеского ордена доминиканцев, к которому принадлежал Бруно. На него был подан донос в Рим, и Бруно отправился туда, чтобы лично защищаться от выдвинутых обвинений. Однако в Риме он узнал, что после его отъезда в монастыре были найдены новые изобличающие его материалы. Бруно бежит в Геную. Начинается длительный период странствий.

Из Генуи Бруно перебрался в Венецию, затем в Милан, Турин, Шамбери, и, наконец, покинув Италию, он едет в Женеву. Неукротимый дух полемиста заставил его выступить против одного из протестантских философов Женевы, и обиженный философ добился заключения Бруно в тюрьму. По освобождении из тюрьмы Бруно покинул Швейцарию, сохранив навеки презрение к «глупой секте педантов», как он называл кальвинистов.

После длительных скитаний он попадает в Тулузу, где становится профессором Тулузского университета и в течение двух лет читает лекции, в которых резко критикует учение Аристотеля. Это вызывает недовольство профессоров университета, и Бруно покидает Тулузу и переезжает в Париж. В Париже Бруно приобрел славу ученого, обладающего огромными познаниями и феноменальной памятью. Сам король заинтересовался Бруно и просил посвятить его в тайны «Великого Искусства». Это «Великое Искусство» представляло собой логическую машину, изобретенную в XIII в. Раймондом Лулла. Машина состояла из нескольких движущихся кругов, на которых были нанесены буквы, обозначающие отдельные логические понятия. Движение кругов с различными скоростями приводило к различным сочетаниям понятий Бруно увлекся идеей Лулла, которую в последующие годы считали несерьезной. Однако сегодня, в век логических машин, мы рассматриваем машину Лулла как их предшественницу. Бруно написал о луллиевом искусстве ряд сочинений, одно из которых посвятил королю Генриху III. Король в благодарность за посвящение утвердил Бруно экстраординарным профессором Парижского университета.

Но странствия ученого на этом не закончились. Из Парижа он едет в Оксфорд, из Оксфорда в Лондон, из Лондона снова в Париж, из Парижа в Германию. Объехав почти всю Германию и побывав в Цюрихе, Бруно в 1591 г. принял приглашение венецианского дворянина Мочениго и прибыл в Венецию, навстречу своей мученической кончине.

Годы странствий Бруно были годами напряженной, кипучей деятельности. Он читает лекции, пишет книги, участвует в диспутах с выдающимися представителями схоластической науки в Оксфорде, Париже и других университетах. Он развивает величественное учение о множественности миров. Восторженно прославляя Коперника, Бруно считает необходимым пойти дальше в развитии его теории.

В 1584 г. им были написаны диалоги «Пир на пепле», «О бесконечности Вселенной и мирах», в которых он излагал свое учение о бесконечной Вселенной, слагающейся из множества миров, подобных нашей солнечной системе. Бруно давал высокую оценку Копернику, считая, что он стоит «много выше Птолемея, Гип-парха и всех других, шедших по их следам». Бруно писал, что Копернику мы обязаны освобождением от некоторых ложных предположений общей вульгарной философии, если не сказать, от слепоты. Говоря об анонимном «сверхпредисловии» к книге Коперника, он называл его автора «невежественным и самонадеянным ослом», «глупцом», который «старается, чтобы другие не поглупели от учения Коперника, а сам вносит в него, быть может, больше недостатков, чем в нем имеется...».

Коперник у Бруно «заря», предвещающая восход солнца «истинной античной философии». Из его диалогов видно, что этой философией является философия Демокрита и Эпикура, которую он развивает дальше, в противовес аристотелевской концепции о конечной Вселенной, о противоположности земного и небесного, о наличии абсолютно неподвижного центра Вселенной. Части и атомы Вселенной «находятся в бесконечном течении и движении, испытывают бесконечные перемены как по форме, так и по месту». Отсутствие покоя, вечное круговращение природы Бруно выражает в стихотворении, начинающемся словами:

Покоя нет — все движется, вращаясь,

На небе иль под небом обретаясь,

И всякой вещи свойственно движенье,

Близка она от нас иль далека,

И тяжела она или легка.

Движение познается только по отношению к другим телам: «Так, люди, находящиеся на середине моря на плывущем корабле, если они не знают, что вода течет, и не видят берегов, не заметят движения корабля».

В учении о бесконечности Вселенной, об относительности движения и покоя Бруно солидаризируется с Ку~ занским, имя которого с уважением неоднократно упоминается на страницах его «Диалогов».

Сущность космической теории Бруно в сжатой форме выразил один из персонажей его диалога «О бесконечности Вселенной и мирах»: «Я заключу следующим: знаменитое общепринятое деление элементов и мировых тел есть сон, пустейшая фантазия, которая не подтверждается ни природою, ни разумом, которая не может и не должна быть. Достаточно знать, что существует бесконечное поле и непрерывное пространство, которое охватывает все и проникает во все. В нем существуют бесчисленные тела, подобные нашему, из которых ни одно не находится в большей степени в центре Вселенной, чем Другие, ибо Вселенная бесконечна, и поэтому она не имеет ни центра, ни края; ими обладают лишь отдельные миры, которые существуют во Вселенной в таком виде, как я уже говорил, в особенности там, где существуют, как я доказал, некоторые определенные центры, каковы суть Солнце и огни, вокруг которых вращаются все планеты, земли, воды, подобно тому как вокруг этого соседнего нам Солнца существуют эти семь планет. Также мы доказали, что каждая из этих звезд или этих миров, вращаясь вокруг собственного центра, кажется своим обитателям прочным и устойчивым миром, вокруг которого вращаются звезды как вокруг центра Вселенной. Так что нет одного только мира, одной только Земли, одного только Солнца, но существует столько миров, сколько мы видим вокруг нас сверкающих светил, которые в неменьшей степени заключаются в этом небе, в едином всеохватывающем месте, чем этот мир, на котором мы обитаем».

Так на смену узкому и реакционному средневековому представлению о мире пришло новое величественное мировоззрение, перед которым церковное учение о земле и небе выглядело ничтожным и жалким. Нетрудно представить себе бешенство, охватившее «князей церкви» при чтении смелых диалогов Бруно.

Мы оставили Бруно в тот момент, когда он принял приглашение венецианского дворянина Мочениго и вернулся в Италию.

Мочениго пригласил Бруно, соблазнившись одной из его книг о «Великом Искусстве», думая, что Бруно владеет тайной делания золота и другими алхимическими знаниями. Он пригласил его давать ему уроки в алхимическом искусстве, предоставив за это кров и содержание. Понятно, что уроки Бруно разочаровали Мочениго, а его свободные и широкие взгляды испугали тупоумного и злобного венецианца. Бруно быстро понял свою ошибку, решил расстаться с Мочениго и вернуться во Франкфурт. Но Мочениго опередил его. Он написал донос в инквизицию и удерживал Бруно до того рокового дня 23 мая 1592 г., когда Бруно был арестован инквизицией. Более семи лет томился Бруно сначала в венецианской, а затем в римской тюрьме, подвергаясь пыткам и истязаниям. 17 февраля 1600 г. он был сожжен в Риме на площади Цветов (Кампо дель фиоре). Ныне на этом месте стоит памятник Бруно.

В одном из своих стихотворений Бруно писал: «Храбро боролся я, думая, что победа достижима. Но телу было отказано в силе, присущей духу, и злой рок вместе с природою подавили мои стремления. Все же во мне было то, в чем мне не откажут будущие века, и потомки скажут: страх смерти был чужд ему, силою характера он обладал более, чем кто-либо, и ставил выше всех наслаждений в жизни борьбу за истину. Силы мои были направлены на то, чтобы заслужить признание будущего».

И Бруно заслужил благодарное признание потомков.

В год, когда начались странствия Бруно, шестилетний сын швабского солдата начал посещать школу. Ничто не предвещало великой судьбы хилому, болезненному мальчику, по существу брошенному своими родителями. Тем не менее этот мальчик стал великим астрономом, обессмертившим свое имя открытием законов движения планет. Это был Иоганн Кеплер.

Кеплер родился 27 декабря 1571 г. в небольшом местечке вблизи швабского города Вейля. Отец его, Генрих Кеплер, был захудалым, разорившимся дворянином, служившим простым солдатом. Г. Кеплер был женат на дочери деревенского трактирщика. Брак был неудачным, родители часто ссорились, отец бросал семью, и мальчик воспитывался у деда, который и поместил Кеплера в школу, когда ему исполнилось шесть лет. Но к этому времени вернулись родители. Для поправки своих материальных дел они решили открыть трактир и взяли мальчика прислуживать посетителям. Так начался тяжелый жизненный путь будущего великого ученого.

В конце концов семья опять распалась, отец ушел в солдаты и не вернулся. Слабый, болезненный мальчик (в четырехлетнем возрасте он перенес оспу) был плохим помощником, и его решено было отдать в монастырскую школу, которую он успешно окончил через два года. Оттуда он был переведен в духовную школу высшего разряда и через три года, как способный ученик, был принят в Тюбингенскую семинарию, по окончании которой 11 августа 1591 г. был оставлен стипендиатом Тюбин-генской академии, впоследствии преобразованной в университет. Перед-Кеплером открылась дорога к богословской карьере. Протестантская церковь должна была получить в лице его своего богослова. Но произошло иное. Астрономию и математику в то время в Тюбингене преподавал выдающийся педагог Местлин, хорошо знавший преподаваемые им науки, один из немногих в то время приверженцев учения Коперника. Он разбудил в Кеплере интерес к астрономии, познакомил его с книгой Коперника, и Кеплер сделался горячим сторонником нового учения. С тех пор богословская карьера Кеплера кончилась. По окончании академии в 1593 г. Кеплер получил блестящий аттестат, удостоверявший его выдающиеся способности и знания, но к богословскому служению был признан непригодным и был назначен преподавателем математики и философии в училище в Граце.

В Граце Кеплеру пришлось заниматься не только преподаванием, но и составлением календарей, гороскопов и научной работой. На астрологию, которой ему приходилось заниматься, он смотрел как на источник средств существования. По его высказыванию, «астрология — дочь астрономии, хотя и незаконная, и должна кормить свою мать, которая иначе умерла бы с голоду» Астроном Кеплер должен был заниматься астрологией, помещать в свои календари астрономические и метеорологические предсказания, иначе он умер бы с голоду. Кеплер к тому времени женился, и его материальное положение было далеко не блестящим.

Уже в эти годы Кеплера занимала идея числовых соотношений между орбитами планет. Число известных в то время планет, включая Землю, равнялось шести, и задача отыскать простые числовые отношения между их расстояниями от Солнца казалась вполне разрешимой. Кеплер, разделяя убеждение пифагорейцев, что число «есть принадлежность всех вещей», пытался найти «числовую гармонию» планетных сфер. Пробуя различные комбинации, Кеплер пришел к геометрической схеме, согласно которой расстояние планет от Солнца находят следующим геометрическим построением: вокруг ближайшей к Солнцу сферы Меркурия описывают правильный восьмигранник, вокруг него — вторую сферу — сферу Венеры. Около этой сферы описывают двадцатигранник, вокруг которого описывают третью сферу—сферу Земли. Около сферы Земли описывают двенадцатигранник, вокруг него — четвертую сферу—сферу Марса; далее описывают тетраэдр, и вокруг него — сферу Юпитера; около сферы Юпитера описывают шестигранник, и вокруг него — сферу Сатурна.

«Работая над этим, —писал Кеплер,—я твердо заучил расстояния и времена обращения планет...» Это пригодилось ему в будущем. Кеплер на всю жизнь сохранил теплое чувство к своему первому детищу, изданному в 1596 г. под интригующим названием «Космографическая тайна». Он послал эту книгу знаменитому датскому астроному Тихо Браге (1546—1601) и итальянскому астроному Галилею. Тихо Браге — искусный и ревностный наблюдатель, к тому же не принявший системы Коперника, холодно отнесся к основной идее Кеплера, которая действительно не выдержала проверки временем, но оценил в Кеплере способного вычислителя и пригласил его к себе в сотрудники. В Галилее же Кеплер приобрел соратника по борьбе за новое мировоззрение, и во взаимной переписке оба великих ученых черпали силы для этой нелегкой борьбы.

Между тем положение Кеплера осложнилось политическими событиями. В Штирии, где находился Грац, усилилась католическая реакция, и протестанту Кеплеру пришлось бежать в Венгрию. На сделанное ему предложение переменить веру он ответил отказом. Через год правительство все же разрешило ему вернуться в Грац при условии вести себя осторожнее. Кеплер вернулся, но увидел, что жизнь в Граце становится невозможной. Тихо Браге, переехавший к тому времени в Прагу, уговорил Кеплера приехать к нему. Кеплер принял это предложение и поехал в Прагу. Тихо Браге был выдающимся астрономом, посвятившим астрономии все свои силы и все свое состояние. В Дании в его распоряжении был остров, на котором он создал целый астрономический городок, названный им Ураниенбургом. Не поладив с приближенными молодого датского короля, Тихо расстался с Ураниенбургом и уехал в Прагу, куда и приехал к нему Кеплер. Долго поработать с Браге Кеплеру не пришлось, так как вскоре Тихо умер. Журналы его тридцатипятилетних наблюдений попали в руки Кеплера, и он начал, не прекращая составления гороскопов, обработку этого гигантского материала.

Прежде всего Кеплер решил внести в результаты Тихо поправки на рефракцию. Это заставило его изучать оптику, но он не ограничился простым изучением трактата Вителло, а разработал самостоятельно целый ряд вопросов, написав сочинение «Дополнения к Вителло». Здесь он дает теорию камер-обскуры, излагает свою теорию зрения, в которой исправляет ошибку Алхазена, показывая, что изображение получается на сетчатке, а хрусталик действует как линза. Кеплер правильно объяснил близорукость и дальнозоркость, а также способность глаза видеть далекие и близкие предметы изменением кривизны хрусталика. Из составленных им таблиц рефракции он определяет плотность воздуха относительно плотности воды. «Созерцание природы научило меня, — писал Кеплер, — что наша атмосфера состоит из вещества тяжелого». Вполне естественно, что еще до открытия давления атмосферы Кеплер полагал, что рефракция зависит от состояния атмосферы.

Эти замечательные результаты были получены Кеплером в самый разгар работы над определением орбиты Марса. Вначале он, как и Коперник, считал орбиту круговой. «Эта ошибка, — писал Кеплер, — была тем более вредной, что она опиралась на единодушное мнение всех философов...»

Потом Кеплер понял, что орбита имеет форму овала, и в конце концов в результате длительных вычислений он находит истинную форму орбиты: эллипс, в фокусе которого расположено Солнце. При этом планета движется по эллипсу неравномерно, быстрее, когда она ближе к Солнцу, и медленнее, когда дальше от него, в соответствии с законом площадей. Все свои расчеты, критику теорий Птолемея и Тихо, все ошибки и неудачи, свои переживания Кеплер изложил в книге «Новая астрономия, или Небесная физика с комментариями на движение планеты Марс по наблюдениям Тихо Браге», вышедшей в Праге в 1609 г.

Великое открытие Кеплера не принесло ему благополучия. Его продолжали преследовать нужда и несчастья. В 1610 г. умерли его жена и сын, и он остался с двумя детьми на руках. В этом же году он узнал об открытии Галилеем четырех спутников Юпитера и изобретении зрительной трубы. Кеплер размышляет в связи с этим о возможности открытия спутников и у других планет. По его мнению, у Марса должно быть два спутника и шесть или восемь у Сатурна. Эти предположения Кеплера оправдались впоследствии.

Мысль Кеплера опять обратилась к оптике, и в 1611 г. вышло его новое сочинение по оптике — «Диоптрика». Здесь он описывает конструкцию телескопа (труба Кеплера), рассматривает ход лучей в линзах и системах линз, приходит к выводу о существовании полного внутреннего отражения при переходе света из среды, оптически более плотной, в среду, оптически менее плотную, находит фокусные расстояния стеклянных плоско-выпуклой и двояко-выпуклой линз.

Нужда заставила Кеплера уехать из Праги. Жалованье ему не платили, и в поисках выхода из тяжелого положения он уехал в Линц, где занял место преподавателя математики. Однако нужда и несчастья продолжали преследовать Кеплера. В 1618 г. началась тридцатилетняя война, императорская казна была пуста, и Кеплеру нечем было платить жалованье. В довершение всего ему пришлось ехать на родину выручать свою мать, обвиненную в колдовстве и приговоренную к сожжению на костре. С большим трудом Кеплеру удалось спасти мать, но по возвращении в Линц его встретили грубыми оскорблениями, обзывая сыном колдуньи и внуком ведьмы.

Рис. 3. титульный лист 'Новой астрономии' Кеплера.

Рис. 4. Титульный лист 'Диоптрики' Кеплера.

И все же в этих труднейших условиях мужественный ученый продолжал свое великое дело. В 1619 г. вышло сочинение «Гармония Мира», в котором содержался третий закон движения планет. Задача, поставленная им в начале научного пути, была успешно решена.

Трудны были последние годы жизни ученого. Оставив место в Линце, он жил случайными заработками, а в 1628 г. поступил на службу к известному полководцу Валленштей-ну. Гороскопы Кеплера "не удовлетворяли честолюбивого и грубого полководца, и Кеплер вернулся в Линц. В хлопотах о получении не выплаченного ему жалованья во время одной из поездок в Регенсбург он простудился, заболел и умер 15 ноября 1630 г.

Бессмертным памятником его трудной жизни остались открытые им законы.

 

Галилей

Следующий решающий шаг в борьбе за систему Коперника и новое мировоззрение был сделан Галилеем Бруно рассматривал и развивал учение Коперника с философских позиций, Кеплер привел систему Коперника в соответствие с последними данными астрономии, Галилей же обосновал систему Коперника физически, и его борьба за нее слилась с выработкой основ новой физики, пришедшей на смену аристотелевской. Существенно, что непригодность аристотелевской физики была осознана еще до Коперника. Великий художник эпохи Возрождения Леонардо да Винчи уже ясно понимал, что наука должна строиться на опыте и на математическом расчете, и сам проводил эксперименты, приходя к результатам, предваряющим последующие выводы Галилея. Леонардо да Винчи пошел также против учения о противоположности земного и небесного. Земля — такое же небесное тело, как и Луна, и держится свободно в пространстве, окруженная своими элементами, как и Луна Но Леонардо не публиковал своих размышлений, они остались в его записных книжках, записанные к тому же в зеркальном изображении. Поэтому современники и потомки не могли воспользоваться его результатами.

Галилео Галилей родился 15 февраля 1564 г. в семье небогатого пизан-ского дворянина. Пиза и Флоренция — города Тосканы, находившиеся в то время под властью богатой фамилии Медичи. Галилей учился в Пизанском университете. Сначала он изучал медицину, однако впоследствии оставил медицинский факультет и стал изучать математику и философию. Одаренный юноша обратил на себя внимание. Уже в двадцатидвухлетнем возрасте он издает небольшое сочинение о сконструированных им гидростатических весах. В 1589 г. его назначают профессором Пизан-ского университета, где он читает лекции по математике и философии. Хотя в эти годы он открыто не выступает против перипатетиков, представители схоластики относятся к нему недоброжелательно. Это обстоятельство, равно как и недостаточность получаемого им содержания, вынуждает Галилея принять предложение правительства Венецианской республики занять место профессора университета в Падуе.

В Падуе Галилей провел 18 лет, с 1592 по 1610 г., сделав здесь ряд важнейших открытий, принесших ему мировую славу. Именно здесь он начал борьбу за систему Коперника, в справедливость которой уверовал, вероятно, еще в Пизе, но защиту которой считал очень трудным делом. В 1597 г. он писал:

«К мнению Коперника я пришел много лет назад и, исходя из него, нашел причины многих явлений природы, далеко не объяснимых с помощью обычных гипотез. Написал многие соображения и опровержения противных аргументов, которые, впрочем, опубликовать не решился, устрашенный судьбой учителя нашего Коперника. У немногих стяжал он бессмертную славу и бесчисленным множеством — ибо таково число глупцов — осмеян и освистан».

Понимая трудность борьбы, Галилей накапливал материал для предстоящей схватки. Он размышлял над вопросами механики и астрономии, обсуждал научные проблемы со своими друзьями, дожидаясь подходящего момента для начала открытой борьбы. Такой момент представился к концу пребывания Галилея в Падуе.

В 1608 г. в Голландии была изобретена зрительная труба. Когда весть об этом дошла до Галилея, он немедленно начал размышлять над возможной конструкцией трубы и в течение года создал трубу, представляющую комбинацию выпуклой и вогнутой линз. Венецианский сенат высоко оценил изобретение Галилея, его земная польза была очевидной. Но Галилей был первым ученым, использовавшим трубу в научных целях. Усовершенствовав трубу, он направил ее на небо и сразу обнаружил несоответствие наблюдаемой картины схеме Аристотеля. Поверхность луны была неровной. Млечный Путь оказался состоящим из множества до того неизвестных звезд. В начале января 1610 г. Галилей открывает спутники Юпитера — наглядную модель системы Коперника, демонстрирующую, как планета со своими лунами движется вокруг Солнца. Волнующий рассказ о своих открытиях Галилей назвал «Звездный вестник». Он посвятил его, по тогдашнему обычаю, великому герцогу Тосканскому Козимо II Медичи, подготовляя тем самым путь для возвращения в Тоскану. Галилей считал, что Флоренция, где он будет находиться под покровительством великого герцога, будет более подходящим местом для работы и борьбы, чем Венеция, выдавшая инквизиции Бруно, и он принял приглашение герцога переехать во Флоренцию.

С 1610 г. начинается новый, напряженный и драматический период в жизни Галилея. Борьба, как он и предполагал, оказалась тяжелой. Сторонники старого не только не сдавались перед лицом новых фактов, но и перешли в открытое наступление. Учения Коперника и Галилея громили в церковных проповедях, объявили несовместимыми со священным писанием. Галилей в письме от 14 декабря 1613 г. своему ученику Кастелли резко возражал против привлечения священного писания к научным спорам. Он писал: «...Разумно, полагаю, было бы, если бы никто не дозволял себе прибегать к местам писания и некоторым образом насиловать их с целью подтвердить то или иное научное заключение, которое позже вследствие наблюдения и бесспорных аргументов придется, быть может, изменить в противоположное. И кто возьмет на себя поставить предел человеческому духу? Кто решится утверждать, что мы знаем все, что может быть познано в мире?».

Это изумительное высказывание Галилея отражает главный дух науки, несовместимый с любой догмой: неустанный поиск, неустанное движение познания. Вполне понятно, что письмо Галилея Кастелли произвело огромное впечатление. Его переписывали и изучали сторонники нового, его изучали и враги. С 1615 г. оно с подчеркнутыми криминальными, по мнению церковников, местами и с доносом на Галилея было направлено в Рим, в инквизицию. Теперь высшему церковному судилищу надлежало высказать свое отношение к системе мира, которая по иронии судьбы была открыта католическим священником. Надо было четко ответить на основной вопрос: совместима ли система мира Коперника с учением церкви или является ересью?

В конце 1615 г. Галилей, услыхав, что в Риме «хотят прийти к некоторому решению» относительно системы Коперника, едет в Рим, чтобы защитить новое учение и, как он хорошо понимал, самого себя от обвинения в ереси. По сохранившимся свидетельствам современников, Галилей защищался с блеском. Так, в одном из писем того времени мы читаем: «Вы испытали бы большое удовольствие, если бы слышали Галилея рассуждающим в кружке 15—20 человек, наседающих на него то в одном, то в другом доме. Он так уверен в своем деле, что всех их высмеивает. И если он не убедит в справедливости своего мнения, то, во всяком случае, докажет ничтожность аргументов, какими противники хотят повергнуть его на землю».

Рис. 5. Титульный лист 'Заветного вестника' Галилея

Но блестящие аргументы производили на церковников противоположное действие, они все больше убеждались в опасности для церковного мировоззрения системы Коперника. 5 марта 1616 г. декретом учрежденной при инквизиции конгрегации книга Коперника была запрещена, а учение о движении Земли было признано противным священному писанию. 6 марта 1616 г. посланник герцога Тосканского доносил герцогу:

«Вчера была созвана конгрегация, чтобы объявить мнение Коперника ложным и еретичным. Коперник и другие авторы, о том писавшие, будут или подвергнуты исправлению или запрещены. Лично Галилей, полагаю, не пострадает, если будет достаточно благоразумен, чтобы хотеть и мыслить гак, как святая церковь хочет и мыслит. Но он слишком горячится, безмерно страстен и слишком мало имеет благоразумия, чтобы побороть себя».

Постановление конгрегации, понятно, не убедило Галилея, и он оставался приверженцем системы Коперника, хотя, конечно, уже не мог ее проповедовать открыто. Но, поскольку формально Галилею не запрещалось критиковать Птолемея и Аристотеля, он продолжал разрушительную критику схоластической науки, одновременно закладывая основы новой науки.

Еще будучи в Пизе, Галилей путем эксперимента опроверг учение перипатетической физики о пропорциональности скорости падения тела силе тяжести. Сброшенные со знаменитой наклонной башни шары, чугунный и деревянный, одинакового размера упали почти одновременно, и Галилей с полным основанием приписал различие в скорости сопротивлению воздуха.

Опыт Галилея имел огромное методологическое значение. Эксперименты с падением тел проводил и Леонардо да Винчи. Но только Галилей ясно указал, что для получения научных выводов из опыта необходимо устранить побочные обстоятельства, мешающие получить ответ на заданный природе вопрос. Надо уметь видеть в опыте главное и отвлечься от несущественных для данного явления фактов. Поэтому Галилей, в отличие от Леонардо, брал тела одинаковой формы и одинакового размера, чтобы сосредоточить внимание на главном — зависимости скорости падения от силы тяжести, и добился успеха. Он отвлекся от бесчисленного множества других обстоятельств: состояния погоды, состояния самого экспериментатора, температуры, химического состава бросаемых тел и т. д. Чтобы эксперимент имел научное значение, он должен быть поставлен так, как первый опыт Галилея. Таким образом, простой опыт Галилея по существу явился подлинным началом экспериментальной науки. Галилей повторял и варьировал его неоднократно. Он изучал падение тел в лабораторных условиях, на наклонной плоскости, на маятнике, искал точное количественное соотношение между скоростью и временем падения, пройденным путем и временем падения и т. д. Результаты этих опытов и их теоретический анализ послужили основой механики, обессмертив имя Галилея как зачинателя нового естествознания. Работы Галилея по механике, астрономии, сопротивлению материалов, акустике, оптике связаны в единое целое, подчинены общей цели—утверждению новой науки и нового мировоззрения.

Рис. 6. Титульный лист 'Диалога'

Спустя 14 лет после запрещения учения Коперника Галилей закончил рукопись своего главного сочинения «Диалог о двух системах мира — Птолемеевой и Коперниковой» и повез ее в Рим, чтобы получить разрешение на публикацию. В Риме в это время папский престол занял Урбан VIII, который в бытность свою кардиналом хорошо относился к Галилею и даже посвятил ему латинские стихи. Галилей рассчитывал на «смягчение климата». Действительно, главный цензор не возражал против печатания книги, но предложил снабдить ее предисловием, в котором отмечалось бы, что теория Коперника является только гипотезой (такое предисловие к книге Коперника было, как мы знаем, написано Осиандером). Галилей написал такое предисловие. В нем он указал и на «спасительный декрет», осуждавший систему Коперника, и на то, что в книге учение Коперника обсуждается как гипотеза. При этом Галилей подчеркнул, что гипотеза Коперника стоит выше, «если и не системы неподвижности Земли, то по крайней мере тех возражений, какие делаются церковными перипатетиками».

В 1632 г. сочинение Галилея вышло из печати во Флоренции. Остро полемичная книга написана в форме диалога, который ведут венецианцы Сагредо и Симпличио и флорентиец Сальвиати.

Сальвиати и Сагредо — имена двух друзей Галилея. Это персонажи диалога, из которых первый выражает взгляды самого Галилея, а второй им сочувствует. Симпличио (по-итальянски означает «простак») защищает взгляды перипатетиков, непрерывно апеллируя к авторитету Аристотеля и Птолемея. Враги Галилея распустили слух, что под маской Симпличио выведен сам папа. Это, понятно, не способствовало радушному отношению к книге со стороны последнего. Но независимо от этого содержание книги не оставляло ни малейшего сомнения, на чьей стороне автор, а блестящая аргументация произвела огромное впечатление не только в Италии, но и за границей. Книга вызвала шум, сделалась подлинной сенсацией. Система Коперника в этой книге получила всестороннее — физическое, астрономическое и философское — обоснование, а концепции схоластиков был нанесен сокрушительный удар, от которого они уже не могли оправиться.

В течение первого дня дискуссия касается общих философских вопросов, рассматривается учение перипатетиков о противоположности земного и небесного, о достоверности познания и его источнике, о трехмерности мира и т. д. Беседа этого дня заканчивается гимном человеческому разуму и прославлением письменности.

Беседа второго дня занимает центральное место в книге. В ней разбираются аргументы против учения о движении Земли, которое якобы должно отразиться на наблюдаемых нами явлениях, например: брошенный с башни камень должен упасть не к подножию башни, а в сторону, противоположную движению Земли, облака и птицы должны отставать от движущейся Земли и т. д. Для опровержения этих аргументов и потребовалась новая механика.

Механика Аристотеля различала три вида движений: естественные, насильственные и круговые. Естественным было движение к центру мира, к центру Земли. Круговые движения были присущи небесным телам и, являясь идеальной формой движения, соответствовали идеальному, вечному миру. Все прочие движения, в том числе и равномерное прямолинейное, были насильственными и требовали силы. Как только сила переставала действовать, движение прекращалось.

Опыт перемещения тел с небольшими скоростями, казалось, подтверждал эту механику. Так, книга, лежащая на столе, не сдвинется с места, если ее не подтолкнуть пальцем, по прекращении действия пальца движение книги прекращается. Казалось, что полет стрелы не соответствует аристотелевской механике, но и здесь был найден выход. Стрела со свистом разрезает воздух, освобождая перед собой пространство, в которое устремляются образовавшиеся сзади стрелы массы воздуха, своим давлением продолжающие насильственно гнать стрелу. Когда давление прекращается, стрела падает. Таким объяснением удовлетворялись в течение многих веков, пока не появилось огнестрельное оружие. Изучение полета пуль и снарядов показывало, что ответ Аристотеля неудовлетворителен и дело обстоит гораздо сложнее. Так, известный математик XVI столетия Николо Тарталья (1500 — 1557) установил, что траектория полета снаряда не имеет изломов, как это должно быть по теории перипатетиков, а является целиком криволинейной. Он нашел также, что наибольшая дальность полета будет при стрельбе под углом 45° к горизонту. Правда, Тарталья еще не мог отрешиться от перипатетических представлений и считал, что установленные им факты объясняются смешением естественного и насильственного движений. Это, вообще говоря, правильно, поскольку полет снаряда обусловлен инерционным движением («естественным», по современным представлениям) и движением по вертикали («насильственным», по современным представлениям, и «естественным», по Аристотелю).

Наибольшая дальность полета, если не принимать в расчет сопротивление воздуха, достигается, действительно, при угле возвышения в 45°.

Другой итальянец — Бенедетти (1530—1590) — пошел дальше, введя представление об «импето» («впечатлении»), сохраняющемся в теле, которому сообщена скорость. Тело продолжает движение с сообщенной ему скоростью. Поэтому камень, выпущенный пращой, продолжает движение по прямой линии.

Таким образом, практика уже подводила ученых к представлению об инерции, и Галилей в «Диалоге» делает новый шаг в выработке этой важнейшей идеи механики. Разбирая движение тела по наклонной плоскости в духе Галилеевского метода, отвлекаясь от трения (плоскость и шар абсолютно твёрдые и гладкие), Сальвиати подводит своих собеседников к выводу, что шар, скатывающийся по плоскости ускоренно, будет подниматься по плоскости замедленно, если ему сообщить начальною скорость. «Теперь скажите, — продолжает обсуждение Сальвиати, — что будет с тем же телом на плоскости, которая ни вниз не опускается, ни вверх не поднимается?» Из ответов собеседников выясняется, что тело будет равномерно двигаться столько времени, «сколько хватит» такой плоскости. «Если, — подытоживает Сальвиати, — длина ее будет бесконечна, то и движение будет продолжаться вечно».

Современный учитель физики так же подводит учащихся к понятию инерции, заставляя двигаться шар по гладкой горизонтальной поверхности, не задумываясь над тем, что шар находится в поле тяготения и взаимодействует со столом, а «не предоставлен самому себе», как этого требует закон инерции, физику мы учим в тех же естественных условиях, в каких ее создавал Галилей.

Галилей не нашел полной и точной формулировки закона инерции, он не смог оторваться от своей плоскости, не имеющей «ни спуска, ни подъема», и, отождествив эту плоскость с поверхностью шара, считал, что движение по такой идеальной сферической поверхности может продолжаться вечно. Однако важно другое, что в путанице земных движений Галилей выявил свойство тел сохранять свою скорость. Ядро, выпущенное из пушки, продолжает лететь с сообщенной ему скоростью, одновременно падая с ускорением на Землю.

Галилей совершенно правильно применил закон инерции в конкретных примерах и, что особенно важно, привлек этот закон к обоснованию системы Коперника. Шар, сброшенный с башни, продолжает двигаться вместе с башней и поэтому упадет к ее подножию. Птицы и облака продолжают двигаться вместе с Землей, как и атмосфера. Поэтому мы и не замечаем движения Земли, и все явления происходят на ней так, как если бы она была неподвижна. Галилей весьма наглядно формулирует это картиной явлений в трюме корабля. Все движения в этом помещении: падение капель из ведра, подвешенного к потолку, в сосуд с узким горлышком, поставленный на полу, полет мух и бабочек, находящихся в трюме, плавание рыбок в аквариуме, бросание мяча наблюдателем своему приятелю — тщательно фиксируется наблюдателем «Наблюдайте хорошенько за всем этим, — говорит Сальвиати, — и заставьте привести в движение корабль с какой угодно быстротой. Если движение будет равномерно, то вы не заметите ни малейшей перемены во всех указанных действиях и ни по одному из них не в состоянии будете судить, движется ли корабль или стоит на месте».

В этом высказывании Сальвиати содержится важнейший физический принцип — принцип относительности Галилея: никаким механическим опытом нельзя установить, покоится система или движется равномерно и прямолинейно, движения в обеих системах протекают совершенно одинаково.

Эйнштейн, развивший спустя 300 лет после Галилея теорию относительности, назвал систему отсчета, центр которой находится в центре солнечной системы, а оси направлены к неподвижным звездам, галилеевой. Эйнштейн утверждал, что все системы отсчета, движущиеся равномерно и прямолинейно относительно галилеевой, равноправны, а постоянная скорость системы отсчета не оказывает никакого влияния на ход механических процессов.

Установление принципа относительности сняло главные возражения противников Коперника.

В беседе третьего дня приводятся астрономические открытия, говорящие в пользу Коперника и против Аристотеля: вид Луны в телескоп, солнечные пятна, фазы Венеры, спутники Юпитера. Все это в разное время было открыто самим Галилеем. Эти факты свидетельствуют в пользу теории Коперника, и Сагредо в «Диалоге» совершенно правильно восклицает: «О Николай Коперник. Как обрадовался бы ты, видя, как подтверждена этими фактами твоя истина!»

Однако Галилею эти доказательства еще казались недостаточными, и он в беседе четвертого дня излагал свою теорию приливов и отливов. Эта теория основана на проявлении инерции. Галилей в пояснение ее приводит пример с баржей, везущей воду: при торможении баржи вода устремляется к носу, при ускорении — отступает к корме.

Явление описано Галилеем совершенно правильно и свидетельствует о его наблюдательности. Правильна также мысль, что суточное вращение Земли должно найти свое отражение в явлениях на земной поверхности (эти явления были впоследствии открыты). Но сама теория приливов и отливов в том виде, в каком ее дал Галилей, неверна. Он считал причиной приливов и отливов изменение скорости воды, которая составляется из скорости вращения Земли и скорости ее орбитального движения. Несмотря на неправильность своей теории, которая противоречит установленному им принципу относительности, Галилей считал ее важнейшим аргументом в защиту системы Коперника.

Богатое содержание «Диалога» далеко не исчерпывается изложенными здесь примерами. Эта живая полнокровная книга хорошо отражает дух самого Галилея С какой язвительностью он говорит о своих противниках и их аргументах, «которые я стыжусь повторять..., чтобы не налагать пятна на род человеческий». С гневом и страстью он бичует слепое преклонение перед Аристотелем! Он говорит, что Аристотеля надо изучать (кстати сказать, в «Диалоге» очень сильны следы аристотелевской физики), но вместе с тем не одобряет, когда каждое слово Аристотеля принимают на веру. Это злоупотребление ведет за собой вредное последствие: «не заботятся убедиться в силе доказательств». «Разве недостойно осмеяния,— продолжает Сальвиати, — когда на диспуте о каком-нибудь предмете, подлежащем доказательству, вдруг кто-нибудь приведет цитату, часто относящуюся совсем к другому предмету, и ею затыкают рот противнику. Если вы хотите так продолжать в деле науки, то не называйтесь философами, зовитесь историками, докторами зубрения. Кто никогда не философствует, не имеет право на почетный титул философа».

Совершенно очевидно, что «доктора зубрения» не остались в долгу и начали травлю Галилея. Вскоре после выхода книги Галилей пишет: «Из верного источника слышу, что отцы-иезуиты наговорили решающей особе, что моя книга ужаснее и для церкви пагубнее писания Лютера и Кальвина». Против Галилея по приказанию папы возбуждается дело, и Галилея вызывают в Рим. Больной старик просит отсрочки, инквизация повторяет вызов с угрозой, что в случае нового отказа Галилей будет доставлен в цепях под конвоем. В феврале 1633 г. Галилея на носилках доставляют в Рим. Процесс Галилея продолжается с 12 апреля 1633 г, когда его подвергли первому допросу, до 21 июня 1633 г., когда был вынесен приговор. На следующий день 22 июня состоялось отречение Галилея по тексту, заготовленному инквизицией.

Не все еще до конца ясно в процессе Галилея. Неизвестно точно, подвергался ли Галилей пыткам, хотя в тексте приговора недвусмысленно сказано, что Галилей подвергался «строгому испытанию», на котором «отвечал католически».

Прошло 350 лет со дня осуждения Галилея, а документы процесса полностью не опубликованы. Но из опубликованных документов видно, что Галилей стойко держался принятой им линии защиты: он не нарушал письменного распоряжения Беллармина и систему Коперника обсуждал в «Диалоге» как одну из научных гипотез. Поэтому инквизиция вынуждена была признать Галилея не еретиком (что автоматически вело за собой сожжение на костре), а лишь «сильно заподозренным в ереси».( Только в 1981 г., т. е. через 339 лет после смерти великого ученого, католическая церковь вынуждена была реабилитировать его. )

Нередко приходится слышать и читать осуждение отречения Галилея и обвинение его в трусости, в измене долгу ученого. Но любители мученических жертв забывают, что Галилей своим хотя и унизительным, но формальным отречением спас для науки, для человечества свое великое произведение «Беседы о двух новых науках». Чтобы оценить значение этого произведения, достаточно сказать, что оно открыло дорогу «Началам» Ньютона и заложило основы науки о сопротивлении материалов. Что же касается научных убеждений Галилея, то они остались неизменными. Об этом свидетельствует и посвящение к «Беседам», и сами «Беседы», и сохранившиеся записи Галилея. Известная легенда о словах Галилея: «А все-таки она вертится!» — неверная фактически, верна по существу.( Подробнее о процессе и отречении Галилея смотрите в кн.: Кудрявцев П. С. История физики. — М.: Учпедгиз, 1956. — Т. 1. )

После отречения Галилей жил вблизи Флоренции в Арчетри под надзором инквизиции. Силы его ослабли, он ослеп. Тем не менее он продолжал работать. В 1638 г., т. е. через пять лет после процесса, вышло его главное произведение—«Беседы о двух новых науках».

Семена, посеянные великим ученым, начали давать всходы еще при его жизни. Ученики Галилея Тор-ричелли и Вивиани, которым принадлежит честь открытия атмосферного давления, стояли у гроба Галилея, скончавшегося 8 января 1642 г., как бы символизируя несокрушимую силу науки.

 

Глава четвёртая. Возникновение экспериментального и математического методов

 

Новая методология и новая организация науки. Бэкон и Декарт

К началу XVII столетия была подготовлена почва для быстрого развития физики. Эта подготовка заключалась прежде всего в осознании того факта, что преподающаяся в университетах физика не в состоянии была дать объяснение новым явлениям, обнаруженным в результате технических и географических открытий. Обращение к наследию античной науки позволило исправить ряд заблуждений и восстановить в правах утра ченные достижения, но этого было далеко не достаточно для дальнейшего движения вперед Самый метод опоры на авторитеты, какими бы высокими они ни казались, был несостоятельным. Нельзя было пойти дальше, не сломив слепое преклонение перед Аристотелем, царившее в университетах. Коперник, Бруно, Галилей вынуждены были каждый по-cвоему вступить в борьбу с аристотелевской традицией.

Это дело продолжали их современники и преемники.

Одним из современников Галилея, который особенно ясно осознал про тиворечие старой науки новым открытиям и необходимость опоры на новую методологию, был английский государственный деятель и философ Френсис Бэкон (1561—1626). Государственные дела, которые к тому же приходилось вершить в обстановке назревающей революции, не помешали Бэкону размышлять о научном прогрессе. Он задумал создать обширное сочинение под названием «Великое восстановление», из которого, однако, успел написать только одну часть под названием «Новый органон», вышедшую в 1620 г. В этом сочинении Бэкон указывает на неприглядное состояние «обычных», т. е. университетских, наук, на их бесплодие, в то время как в механических искусствах, т. е. технике, наблюдается интенсивное, непрерывное развитие: «Они, как будто восприняв какое-то удивительное дуновение, с каждым днем возрастают и совершенствуются». Это совершенствование беспредельно: «Скорее прекратятся и изменятся желания людей, чем эти искусства дойдут до предела своего совершенствования» Нам теперь видно, как глубоко прав был Бэкон, говоря так. Технический прогресс его времени не шел ни в какое сравнение с современным прогрессом техники, и все же Бэкон сумел увидеть в нем тенденцию непрерывного и беспредельного совершенствования техники.

Установив и резко подчеркнув несоответствие практики и теории, Бэкон указывает, что обращение к наследию древних не может устранить это несоответствие. «Было бы постыдно для людей, — говорит Бэкон, — если бы границы умственного мира оставались в тесных пределах того, что было открыто древними, тогда как в наши времена неизмеримо расширились и приведены в известность пределы материального мира, т. е. земель, морей, звезд».

Бэкон вскрывает причины плачевного состояния наук, важнейшими из которых, по его мнению, являются неправильная цель и неправильный метод науки, противодействие научному прогрессу, оказываемое богословием и схоластикой: «По теперешнему положению дел условия для разговора о природе стали более жесткими и опасными по причине учения и метода схоластов», — писал Бэкон, добавив, что строптивая и колючая философия Аристотеля смешалась более чем следовало с религией. Бэкон полагал, что цель науки заключается в наделении человеческой жизни «новыми открытиями и благами», а не в бесполезных умствованиях схоластов. Схоластика и схоластическое преподавание препятствуют научному прогрессу: «В науках же и искусствах, как в рудниках, все должно шуметь новыми работами и дальнейшим продвижением вперед».

Что же нужно сделать для этого? Аля этого, по мнению Бэкона, надо помочь науке правильным методом и правильной организацией. Человеческий ум, по Бэкону, осаждают «Призраки» свойственные человеческому разуму и являющиеся источ-ником заблуждения: ум склонен лег-ко обобщать единичные факты и приходить к выводам, не соответствующим действительности, он нелегко расстается со сложившимися убеждениями, ему присуща некоторая инерция.

Он более активно реагирует на эффекты, на то, «что сразу и внезапно может его поразить».

Далее, человек «скорее верит в истинность того, что предпочитает». Познанию истины мешает также несовершенство чувств, благодаря которому «остаются скрытыми тонкие перемещения частиц в телах». Все это обусловлено самой человеческой природой и названо Бэконом «призраками Рода». «Призраки Пещеры» обусловлены индивидуальными склонностями умов. Одни склонны к почитанию древности, другие к восприятию нового и т. п. «Призраки Рынка» порождены обычным словоупотреблением, общественным мнением. И наконец, «призраки Театра» обусловлены господствующими теориями, предвзятыми мнениями, суеверием. Из существования таких «призраков», по Бэкону, и вытекают серьезные трудности мыслительной работы, трудности познания природы Правильный метод должен помочь преодолению этих «призраков», делу отыскания истины.

Бэкон разделяет ученых своего времени на два класса: эмпириков и догматиков. Эмпирики, подобно муравьям, тащат в свою муравьиную кучу всевозможные факты, догматики же, подобно пауку, ткут ткань из самих себя. Надо, по Бэкону, в науке работать как пчела; извлекать материал из внешнего мира и перерабатывать его рационально.

В основе метода Бэкона лежит опыт. Наука должна опираться на опыт, на практику, строя из них выводы, «причины и аксиомы» методом индукции (наведения), т. е. переходя от частных фактов к обобщениям. Эти обобщения вновь проверяются опытом и практикой. «Наш путь и наш метод... состоит в следующем: мы извлекаем не практику из практики и опыт из опытов (как эмпирики), а причины и аксиомы из практики и опытов и из причин и аксиом — снова практику и опыты, как верные истолкователи природы». Научные истины проверяются, таким образом, опытом и практикой и, в свою очередь, выводятся из них.

Индуктивный метод сыграл огромную роль в развитии естествознания. Долгое время естественные науки: физику, химию, астрономию — называли индуктивными науками, противопоставляя их гуманитарным наукам и чистой математике. Но уже сам Бэкон считает, что индукция неполна и несовершенна без теоретического анализа, без использования математики: «Лучше же всего продвигается вперед естественное исследование, когда физическое завершается в математическом». Он стоит на точке зрения атомистики, утверждая, что «каждое естественное действие совершается при посредстве самых малых частиц». Прекрасную характеристику философии и метода Бэкона дал Маркс: «Настоящий родоначальник английского материализма и всей современной экспериментирующей науки —это Бэкон, Естествознание является в его глазах истинной наукой, а физика, опирающаяся на чувственный опыт, — важнейшей частью естествознания. Анаксагор с его гомеомериями и Демокрит с его атомами часто приводятся им как авторитеты. Согласно его учению, чувства непогрешимы и состав-ляют источник всякого знания. Наука есть опытная наука и состоит в применении рационального метода к чувственным данным. Индукция, анализ, сравнение, наблюдение, эксперимент суть главные условия рационального метода».(Маркс К. и Энгельс ф. Святое семейство, или Критика критической критики. Против Бруно Бауэра и компании. Маркс К., Энгельс ф. Соч., 2-е изд, т. 2, с. 142. )

Существенно, что Бэкон хорошо понимал необходимость финансирования науки и организации научных учреждений. В своем неоконченном фантастическом произведении «Новая Атлантида» он описывает такое учреждение — «Дом Соломона» — и его огромное значение для рационально построенного общества.

И действительно, потребность научного развития вызвала к жизни новые организации в виде научных обществ и академий. Первая такая академия — флорентийская академия опыта — была организована в 1657 г. во Флоренции учениками и последователями Галилея.

Флорентийские академики (их было всего девять) совместно ставили и обсуждали опыты, описанные позднее в сборнике трудов академии, вышедшем в 1667 г. В этом же году покровитель академии брат герцога Тосканского Леопольд Медичи по требованию папских кругов вынужден был закрыть академию. Так церковь уничтожила наследие Галилея, нанеся тем самым огромный вред итальянской науке, уступившей лидерство в научном соревновании другим странам.

Еще раньше, чем во Флоренции, начиная с 1645 г., в Лондоне стал собираться кружок любителей естественных наук. В Англии в те годы бушевала гражданская война, участники кружка по мере развития революционных событий разделились: одни остались в Лондоне, другие собирались в Оксфорде. После реставрации кружок вновь начал собираться в Лондоне и оформился организационно, получив формальный королевский статут 28 ноября 1660 г. как Лондонское Королевское общество. Общество было основано «для преуспеяния экспериментальной философии» под девизом «ничего на слово» и существует и поныне как высшее научное учреждение Англии (Английская Академия наук).

Аналогичные собрания в сороковых годах проходили в Париже. Позднее министр короля Людовика XIV Кольбер внес предложение об открытии Академии наук в Париже, которая и была утверждена в 1666 г. Затем последовали организации научных обществ и академий в других государствах. Петр I во время своего путешествия по Европе знакомился с английским королевским обществом, президентом которого в то время был Ньютон. Уже будучи императором, Петр I посетил Париж и Парижскую Академию наук. Он хорошо понимал необходимость создания в России высшего научного учреждения. Он вел длительные переговоры с учеными Европы об организации академии и 28 января 1724 г. подписал указ об учреждении Петербургской Академии наук. Она начала свою работу в 1725 г., уже после смерти Петра, когда в Петербург приехали первые академики.

Рис. 7. 'Начала философии' Декарта. Титульный лист

Научные общества и академии были новыми центрами наук, возникшими в противовес старым университетам, все еще находившимся в плену схоластики. Однако перемены коснулись и университетов, которые постепенно втягивались в научное движение. Достаточно сказать, что в Кембриджском университете с 1669 по 1695 г. был профессором Исаак Ньютон.

Развитие науки потребовало развития научной информации. Обычными формами такой информации были личное общение и переписка (и, конечно, книги). В эпоху Галилея жил ученый монах Мерсенн (1588—1648), который известен своими открытиями в акустике. Но главным делом его жизни была организация взаимной научной информации ученых посредством переписки, которую он поддерживал со всеми ведущими учеными своего времени, служа своеобразным центром связи между ними. Мерсенна прозвали «человек-журнал». Но человека не стало, да и развитие науки стало таким, что один гений не мог охватить всех научных новостей, и вместо «человека-журнала» появились научные журналы. С 1665 г. начали выходить труды Лондонского Королевского общества (Philosophical Transactions), затем труды Парижской Академии наук. С 1682 г. в Лейпциге стал выходить научный журнал «Acta Eruditorum». Научная периодика и поныне является основной формой научной информации.

Таким образом, развитие науки подтверждало идеи Бэкона: опытное естествознание стало фактом общественного сознания, и были созданы новые организационные формы развития науки. Это, конечно, не означает, что наука развивалась по предначертаниям Бэкона. Просто Бэкон, как передовой человек своего времени, осознал значение науки для общественного прогресса, ее роль в развитии техники, причины неудач схоластической университетской науки и правильно понял роль опыта и практики в развитии естествознания. В XVII в. наука становится признанной общественной силой, способной помогать развитию общественного производства. Наука из служанки богословия превращается в самостоятельную форму общественного сознания.

Таким образом, мы можем говорить о происшедшей в XVII в. научной революции, в результате которой возникла классическая физика (и не только физика) в той форме и с теми методами познания, какой мы ее сегодня знаем. Говоря о методе познания, следует напомнить, что наряду с индуктивным в современной науке находит широкое применение дедуктивный метод, когда из небольшого числа общих принципов выводятся и прослеживаются в деталях частные следствия. Так, классическая механика развивается из законов Ньютона или из вариационных принципов динамики, макроскопическая электродинамика — из уравнений Максвелла и т. д. Метод дедукции был обоснован вскоре после Бэкона французским философом Рене Декартом (1596—1650) в книге «Рассуждение о методе», которая вышла в свет в 1637 г.

Следует, однако, подчеркнуть, что было бы грубым упрощением считать Декарта основателем дедуктивного метода, а Бэкона—основателем индуктивного. Оба метода зародились еще в Древней Греции, и Бэкон и Декарт лишь развили их применительно к естествознанию. При этом ни Бэкон не отрицал значения дедукции, ни Декарт не отрицал значения опыта и индукции. Научный метод основан на диалектическом сочетании индукции и дедукции, и это понимали оба великих философа. Но Бэкон подчеркивал ведущую роль опыта и индукции, Декарт же — логического анализа и правильных умозаключений. Он полагал, что в основу этих умозаключений должны был положены ясные и простые прин ципы и строгая логическая последовательность выводов. Математика в методе Декарта играет первостепенную роль.

Рис. 8. Система мира по Декарту. Рисунок из 'Начал философии'

Он писал: «Те длинные цепи выводов, сплошь простых и легких, которыми обычно пользуются геометры, чтобы дойти до своих наиболее трудных доказательств, дали мне повод представить себе, что и все вещи, которые могут стать предметом знаний людей, находятся между собой в такой же последовательности. Таким образом, если остерегаться принимать за истинное что-либо, что таковым не является, и всегда наблюдать порядок, в каком следует выводить одно из другого, то не может существовать истин ни столь отдаленных, чтобы они не были недостижимы, ни столь сокровенных, чтобы нельзя было их раскрыть».

Таким образом, согласно Декарту, применяя метод геометров, т. е. ма-темагиков, можно добиться в изучении природы огромных успехов. Для этого метода нет недостижимых истин, «столь сокровенных, чтобы нельзя было их раскрыть». Эта вера в мошь математического метода весьма характерна для Декарта, и он особенно ценил Галилея за то, что тот «старается изучать вопросы с помощью математического рассуждения».

Но основной проблемой физики XVII в. были законы движения. Как применить математику к движению? И здесь Декарту принадлежит решающее открытие: он ввел в математику переменные величины, установил соответствие между геометрическими образами и алгебраическими уравнениями; Декарт положил начало аналитической геометрии. Здесь он «первые применил свой метод: «Приняв во внимание, что среди всех, искавших истину в науках, только математикам удалось найти некоторые доказательства, т.е. некоторые точные и очевидные соображения, я не сомневался, что и мне следовало начать с того, что было ими обследовано» Результатом такого начала явилась «геометрия», приложенная к «Рассуждению о методе». Другими приложениями являются «Диоптрика» и «Метеоры».

Когда идея или открытие назревает, она возникает почти одновременно в нескольких головах. Так было и с идеей переменной величины. Галилей в своих механических исследованиях хорошо понимал необходимость оперирования переменными величинами. Идея мгновенной скорости, меняющейся от момента к моменту, была им освоена во всей полноте. В «Диалоге» он описывает, как свободно падающее тело проходит через все ступени скорости, начиная с нулевой. Собеседники не сразу могут принять эту идею, им трудно понять, что падающее ядро обладает вначале такой скоростью, что, сохранись она неизменной, ядро не достигло бы Земли и за день. Сальвиати подхватывает эту мысль, усиливает ее. «Можете сказать в год, в десять, в тысячу лет»

В «Беседах» обсуждение переменной скорости падающего тела занимает видное место. Сагредо вновь возвращается к своей Мысли: «Надлежит признать, что для промежутков времени, все более и более близких к моменту выхода тела из состояния покоя, мы придем к столь медленному движению, что при сохранении постоянства скорости тело не пройдет мили ни в час, ни в день, ни в год, ни даже в тысячу лет; даже в большее время оно не продвинется и на толщину пальца — явление, которое весьма трудно себе представить, особенно когда наши чувства показывают, что тяжелое падающее тело сразу же приобретает большую скорость». Сальвиати подробно разъясняет это обстоятельство и, в частности, указывает, что при бросании тела вверх оно постоянно уменьшает свою скорость до полной остановки. Симпличио возражает в духе апорий Зенона, что невозможно исчерпать бесконечное количество степеней медленности и, таким образом, брошенное вверх тело никогда не останавливается. Возражение Симпличио Сальвиати парирует чрезвычайно сильно: «Это случилось бы, синьор Симпличио, если бы тело двигалось с каждой степенью скорости некоторое определенное время, но оно только проходит через эти степени, не задерживаясь более чем на мгновение, а так как в каждом, даже самом малом, промежутке времени содержится множество мгновений, то их число является достаточным для соответствия бесконечному множеству степеней скорости».

Как видно из этого опыта, Галилей отчетливо представляет текучесть переменной величины, которая проходит последовательно все значения и не задерживается «более чем на мгновение» Мгновение — бесконечно малая величина, число мгновений в небольшом промежутке времени бесконечно велико и взаимно однозначно соответствует числу значений переменной величины. Галилей владеет идеей взаимно однозначного соответствия бесконечных множеств. Это видно, например, из его утверждения, что всех членов натурального ряда чисел «столько же», сколько полных квадратов этих чисел.

Галилей независимо от Декарта пришел к идее представления переменной величины линией. Этой идеей он пользовался для вывода закона пути равноускоренного движения. Онразработал остроумный метод измерения конечной скорости падающего тела по глубине ямки, оставленной в мягкой пластине упавшим телом Установив, что эта глубина пропорциональна высоте падения, Галилей пришел сначала к ошибочному выводу, что скорость падающего тела пропорциональна пройденному пути Но он скоро понял свою ошибку и установил, что в равноускоренном движении скорость пропорциональна времени Изображая время отрезками вертикальной прямой, он изображал скорость, полученную телом в конце данного промежутка времени, отрезком перпендикуляра к оси времен, восстановленного в конце соответствующего отрезка времени.

Таким образом, Галилей впервые изо бразил зависимость скорости от времени графически, и его график отличается от принятого ныне только тем, что время мы откладываем теперь по горизонталь ной оси, а скорость — по вертикальной, что, конечно, совершенно несуществен но Путь, пройденный телом за данный промежуток времени, Галилеи определяет по графику, суммируя все отрезки скорости, т е находит площадь фигуры (в случае равномерного движения — прямоугольника, в случае равноускоренного движения — прямоугольного треугольника), образованной графиком скорости, осью времен и начальным и конечным отрезками скорости По существу он выполняет операцию интегрирования.

Ученики Галиаея Кавальери и Торри-челли также внесли свой вклад в основание теории бесконечно малых Дело создания основ математики переменных величин было завершено Ньютоном и Лейбницем.

Вернемся, однако, к Декарту В1644 г Декарт издал обширное сочинение под названием «Начала философии» В него вошли части сочинения Декарта о мире (космосе), которое он намеревался издать еще в 1633 г Услышав об осуждении Галилея, он отложил издание своего сочинения и только спустя одиннадцать лет обнародовал его в расширенном и переработанном виде В этом сочинении он изложил грандиозную программу создания теории природы, руководствуясь своим методологическим правилом брать за основу наиболее простые и ясные положения Еще в «Рассуждении о методе» Декарт подверг анализу всевозможные исходные положения, сомневаясь в справедливости любого из них, в том числе и в положении «Я существую» Однако в акте мышления сомнение невозможно, ибо наше сомнение уже есть мысль Отсюда знаменитое положение Декарта «Я мыслю, следовательно, существую» Чтобы обезопасить свое учение от нападок церковников, Декарт говорит о существовании бога и внешнего мира, созданного богом Но обмануть церковников не удается, они распознали материалистическую сущность системы Декарта, и ученому под конец жизни пришлось искать убежища в Швеции, где он и умер Верный своему методу, Декарт ищет в материальном субстрате самое основное и простое и находит его в протяженности.

Материя Декарта — это чистая протяженность, материальное пространство, заполняющее всю безмерную длину, ширину и глубину Вселенной Части материи находятся в непрерывном движении, взаимодействуя друг с другом при контакте.

Взаимодействие материальных частиц подчиняется основным законам или правилам «Первое правило заключается в следующем каждая частица материи в отдельности продолжает находиться в одном и том же состоянии до тех пор, пока столкновение с другими частицами не вынуждает ее изменить это состояние»

«В качестве второго правила я предполагаю следующее если одно тело сталкивается с другим, оно не может сообщить ему никакого другого движения, кроме того, которое потеряет во время этого столкиове ния, как не может и отнять у него больше, чем одновременно приобрести себе»

«В виде третьего правила я прибавлю, что хотя при движении тела его путь чаще всего представляется в форме кривой линии и что хотя невозможно произвести ни одного движения, которое не было бы в каком-либо виде круговым, тем не менее каждая из частиц тела по отдельности всегда стремится продолжать его по прямой линии»

В этих «правилах» обычно усматривают формулировку закона инерции и закона сохранения количества движения В отличие от Галилея Декарт отвлекается от действия тяготения, которое он, между прочим, также сводит к движению и взаимодействию частиц, и упоминает о направлении инерционного движения по прямой Однако его формулировка еще отличается от ньютоновской, он говорит не о состоянии равномерного и прямолинейного движения, а вообще о состоянии, не разъясняя подробно содержания его термина.

Из всего содержания «Начал» вид но, что состояние частей материи характеризуется их величиной («количество материи»), формой, скоростью движения и способностью изменять эту скорость под воздействием внешних частиц Можно отождествить эту способность с инерцией, и тогда в одном из писем Декарта мы встречаем очень интересное утверждение «Можно утверждать с достоверностью, что камень неодинаково расположен к принятию нового движения или к увеличению скорости, когда он движется очень скоро и когда он движется очень медленно».

Другими словами: Декарт утверждает, что инерция тела зависит от его скорости. Известный русский физик Н. А. Умов, приводя в 1896 г. эту выдержку, подчеркнул важность утверждения Декарта и высказал мысль, что при скоростях, близких к скорости света, масса тела должна возрастать. Как известно, закон возрастания массы со скоростью был установлен в теории относительности Эйнштейном, а для электромагнитной инерции — Д. Д. Томсоном.

В письмах Декарта встречается формулировка закона инерции, уже почти текстуально совпадающая с ньютоновской: «Полагаю, что природа движения такова, что, если тело пришло в движение, уже этого достаточно, чтобы оно его продолжало с той же скоростью и в направлении той же прямой линии, пока оно не будет остановлено или отклонено какой-либо другой причиной».

Этот принцип сохранения скорости по модулю и направлению тем более интересен у Декарта, что, по его представлению, пустоты в мире нет и всякое движение является циклическим: одна часть материи занимает место другой, эта — предыдущей и т. д. В результате вся Вселенная пронизана вихревыми движениями материи. Движение во Вселенной вечно, так же как и сама материя (хотя Декарт и пишет о сотворении материи и движения богом, но в дальнейшем бог устраняется и природа действует по собственным законам), и все явления в мире сводятся к движениям частиц материи Вначале эти движения были хаотическими и беспорядочными, в результате этих движений частицы дробились и сортировались.

По Декарту, существуют три сорта частиц (три элемента): частицы земли, воздуха (неба), огня. Наиболее крупные частицы— это частицы земли. Они погружены в среду из частиц неба, в которые вкраплены также частицы огня, образующие Солнце. Вихревые движения круглых подвижных частиц «неба» увлекают в своем движении планеты, состоящие из элементов земли. Вся Вселенная разбита на такие вихревые области, которые можно рассматривать как предшественники современных галактик. Такова космогоническая гипотеза Декарта.

В физике Декарта нет места силам, тем более силам, действующим на расстоянии через пустоту. Все явления мира сводятся к движениям и взаимодействию соприкасающихся частиц. Такое физическое воззрение получило в истории науки название картезианского, от латинского произношения имени Декар та — Картезий. Картезианское воззрение сыграло огромную роль в эволюции физики и, хотя и в сильно измененной форме, сохранилось до нашего времени. Все попытки построить единую теорию поля и вещества по существу повторяют на новой основе попытку Декарта построить физическую картину мира с непрерывной материей и сохраняющимся механическим движением.

 

Первые успехи экспериментальной физики

Итак, примерно с сороковых годов XVI столетия до сороковых годов XVII столетия (от Коперника до Галилея) происходил сложный революционный процесс замены средневекового мировоззрения и науки новым мировоззрением и новой, базирующейся на опыте и практике наукой. Была проделана большая работа по обоснованию и укреплению гелиоцентрической системы мира (Коперник, Бруно, Кеплер, Галилей), по критике перипатетической методологии и науки, по выработке методологических основ новой науки (Бэкон, Галилей, Декарт). Успех этого большого, необычайно важного для развития всей человеческой культуры и общественного сознания дела определился в значительной мере достигнутыми конкретными научными и практическими результатами Новая наука и новое мировоззрение доказывали свою правоту и силу делом, а не бесплодными словопрениями XVII век был веком победы научной революции.

Успехи экспериментального и математического метода обозначились прежде всего в механике Уже Леонардо да Винчи по-новому подошел к статическим и динамическим задачам механики. XVI век был веком освоения античного наследства. Коммандино (1509-1575) перевел труды Евклида, Архимеда, Герона, Паппа Александрийского. Ученик Комман-дино, покровитель и друг Галилея, Гвидо Убальдо дель Монте (1545—1607) издал в 1577 г. сочинение по статике, в котором изложил работы древних авторов и развил их, решая задачу равновесия косого рычага, не зная, что эта задача была уже решена Леонардо. Гвидо Убальдо ввел в науку термин «момент». Этот термин вообще широко использовался в XVI и начале XVII в., в частности Галилеем, однако у Убальдо он наиболее подходит к современному понятию «статический момент силы». Гвидо Убальдо показывает, что для равновесия рычага важны значения сил и длины перпендикуляров, опущенных из точки опоры на линии действия сил (грузов) Совокупность обоих факторов, обусловливающих действие силы в рычаге, он называет моментом и формулирует условие равновесия рычага в виде равенства моментов.

Рис. 9. Титул книги Стевина

Новый подход к статическим проблемам мы находим в классическом труде «Начала статики» голландского инженера и математика Симона Стевина (1548—1620), которому математика обязана введением десятичных дробей. Математический подход у Сте-вина сочетается с опытом и технической практикой. На титульном листе трактата Стевина нарисована наклонная плоскость, обвитая цепью, составленной из соединенных вместе шаров. Надпись над рисунком гласит: «Чудо и не чудо». Наклонная плоскость на рисунке изображена в виде прямоугольного треугольника с горизонтальной гипотенузой. Часть цепи, обвивающая гипотенузу, имеет большую длину и содержит большее число шаров, чем те ее участки, которые прилегают к катетам. Большая часть имеет больший вес, поэтому, казалось бы, что вес цепи, прилежащей к большему катету,, перетянет, и цепь придет в движение. Но так как картина распределения шаров при этом не меняется, то движение должно продолжаться вечно. Вечное движение Стевин считает невозможным, поэтому он полагает, что действие веса шаров на обоих катетах одинаково (нижняя часть роли не играет, она совершенно симметрична). Отсюда он заключает, что сила, скатывающая груз по наклонной плоскости, во столько же раз меньше веса груза, во сколько раз высота плоскости меньше ее длины. Так была решена задача, перед которой остановились Архимед, арабские и европейские механики.

Но Стевин пошел еще дальше. Он понял векторный характер силы и впервые нашел правило геометрического сложения сил. Рассматривая равновесие цепи на треугольнике, Стевин заключил, что если три силы параллельны сторонам треугольника и их модули пропорциональны длинам этих сторон, то они уравновешиваются. В сочинении Стевина содержится также принцип возможных перемещений в применении к полиспасту: во сколько раз полиспаст дает выигрыш в силе, во столько же раз проигрывает в пути, меньший груз проходит больший путь.

Особенно важна часть трактата Стевина, посвященная гидростатике. Для изучения условий равновесия тяжёлой жидкости Стевин пользуется принципом отвердевания — равновесие не нарушится, если части уравновешенного тела получат дополнительные связи, отвердеют. Поэтому, выделив мысленно в массе тяжелой жидкости, находящейся в равновесии, произвольный объем, мы не нарушим этого равновесия, считая жидкость в этом объеме отвердевшей. Тогда она представит собой тело, вес которого равен весу воды в объеме этого тела. Поскольку тело находится в равновесии, на него со стороны окружающей жидкости действует сила, направленная вверх, равная его весу.

Так как окружающая тело жидкость остается неизменной, если это тело заменить любым другим телом той же формы и объема, то она всегда действует на тело с силой, равной весу жидкости в объеме тела.

Это изящное доказательство закона Архимеда вошло в учебники.

Стевин доказывает далее путем логических рассуждений и подтверждает экспериментом, что весовое давление жидкости на дно сосуда определяется площадью дна и высотой уровня жидкости и не зависит от формы сосуда. Значительно позже этот гидростатический парадокс был открыт Паскалем, не знавшим сочинения Стевина, написанного на мало распространенном голландском языке.

Как практик-кораблестроитель, Стевин рассматривает условия плавания тел, подсчитывает давление жидкости на боковые стенки, решая вопросы, важные для кораблестроения.

Таким образом, Стевин не только восстановил результаты Архимеда, но и развил их. С него начинается новый этап в истории статики и гидростатики.

Почти одновременно со Стевином и независимо от него вопросы статики и гидростатики решал Галилей. Он также нашел закон равновесия тел на наклонной плоскости, которую вообще изучил очень подробно. Наклонная плоскость сыграла важную роль в механических исследованиях Галилея. К этому мы еще вернемся при обсуждении динамики Галилея.

Галилей восстановил в более простой и измененной форме архимедовское доказательство закона рычага. Он обосновал его заново, опираясь по существу на принцип возможных перемещений (с помощью этого не сформулированного им еще в явной форме принципа Галилей обосновал и закон наклонной плоскости).

Обсуждению закона Архимеда и условий плавания тел посвящено вышедшее в 1612 г. сочинение Галилея «Рассуждения о телах, пребывающих в воде». И это сочинение Галилея нераздельно связано с его борьбой за новое мировоззрение и новую физику. Он писал: «Я решил написать настоящее рассуждение, в котором надеюсь показать, что я часто расхожусь с Аристотелем во взглядах не по прихоти и не потому, что я не читал его или не понял, но в силу убедительных доказательств». В этом сочинении он пишет и о своих новых исследованиях спутников Юпитера, и об открытых им солнечных пятнах, наблюдая которые он вывел, что Солнце медленно вращается вокруг своей оси.

Переходя к основной теме сочинения, Галилей полемизирует с перипатетиками, считающими, что плавание тел определяется прежде всего формой тела. Оригинален подход Галилея к обоснованию закона Архимеда и теории плавания тел. Он рассматривает поведение тела в жидкости в ограниченном объеме и ставит вопрос о весе жидкости способной удержать тело заданного веса.(Вопрос Галилея обсуждался на страницах советских научно-популярных журналов Ему посвящались страницы фундаментальных монографий по гидростатике и механике )

Главная заслуга Галилея в обосновании динамики. К тому, что уже было сказано по этому вопросу, нам остается добавить немногое, но это немногое имеет существенное значение. Галилею принадлежит фундаментальное открытие независимости ускорения свободного падения от массы тела, которое он нашел, опровергая мнение Аристотеля, что скорость падения тел пропорциональна их массе. Галилей показал, что эта скорость одинакова для всех тел, если отвлечься от сопротивления воздуха, и пропорциональна времени падения, пройденный же в свободном падении путь пропорционален квадрату времени.

Рис. 10. Маятник Галилея

Открыв законы равноускоренного движения, Галилей одновременно открыл закон независимости действия силы. В самом деле, если сила тяжести, действуя на покоящееся тело, сообщает ему за первую секунду определенную скорость, т. е. изменяет скорость от нуля до некоторого конечного значения (9,8 м/с ), то в следующую секунду, действуя уже на движущееся тело, она изменит его скорость на ту же самую величину и т. д. Это и отражается законом пропорциональности скорости падения времени падения. Но Галилей не ограничился этим и, рассматривая движелие тела, брошенного горизонтально, настойчиво подчеркивал независимость скорости падения от сообщенной телу при бросании горизонтальной скорости: «Не замечательная ли вещь, — говорит Сагредо в «Диалоге»,— что в то самое малое время, которое требуется для вертикального падения на землю с высоты каких-нибудь ста локтей, ядро, силою пороха выброшенное из пушки, пройдет четыреста, тысячу, четыре тысячи, десять тысяч локтей, так что при всех горизонтально направленных выстрелах останется в воздухе одинаковое время».

Галилей определяет и траекторию горизонтально брошенного тела. В « Диалоге » он считает ее ошибочно дугой окружности В «Беседах» он исправляет свою ошибку и находит, что траектория движения тела параболическая.

Законы свободного падения Галилей проверяет на наклонной плоскости Он устанавливает важный факт, что скорость падения не зависит от длины, а зависит только от высоты наклонной плоскости. Далее он выясняет, что тело, скатившееся по наклонной плоскости с определенной высоты, поднимется на ту же высоту в отсутствие трения. Поэтому и маятник, отведенный в сторону, пройдя через положение равновесия, поднимется на ту же высоту независимо от формы пути. Таким образом Галилей по существу открыл консервативный характер поля тяготения. Что же касается времени падения, то оно в соответствии с законами равноускоренного движения пропорционально корню квадратному из длины плоскости. Сравнивая времена скатывания тела по дуге окружности и по стягивающей ее хорде, Галилей находит, что тело скатывается быстрее по окружности Он полагает также, что время скатывания не зависит от длины дуги, т. е. дуга окружности изохронна. Это утверждение Галилея справедливо только для малых дуг, но оно имело очень важное значение. Открытие изохронности колебаний кругового маятника Галилей использовал для измерения промежутков времени и сконструировал часы с маятником. Конструкцию своих часов он не успел опубликовать. Она была опубликована после его смерти, когда маятниковые часы уже были запатентованы Гюйгенсом.

Изобретение маятниковых часов имело огромное научное и практическое значение, и Галилей чутко понял значение своего открытия. Гюйгенс исправил ошибку Галилея, показав, что изохронной является циклоида, и использовал в своих часах циклоидальный маятник. Но теоретически правильный циклоидальный маятник практически оказался неудобным, и практики перешли к галилеевскому, круговому маятнику, который и поныне применяется в часах.

Еще при жизни Галилея Эванджелиста Торричелли (1608—1647) обратил на себя его внимание своим сочинением, в котором решил задачу о движении тела, брошенного с начальной скоростью под углом к горизонту. Торричелли определил траекторию полета (она оказалась параболой), вычислил высоту и дальность полета, показав, что при заданной начальной скорости наибольшая дальность достигается при направлении скорости под углом 45° к горизонту. Торричелли разработал метод построения касательной к параболе. Задача нахождения касательных к кривым привела к возникновению дифференциального исчисления. Галилей пригласил Торричелли к себе и сделал его своим учеником и преемником.

Имя Торричелли навсегда вошло в историю физики как имя человека, впервые доказавшего существование атмосферного давления и получившего «торричеллиеву пустоту». Еще Галилей сообщал о наблюдении флорентийских колодезников, что вода не вытягивается насосом на высоту более некоторого определенного значения, составляющего немного более Юм. Галилей заключил отсюда, что аристотелевская «боязнь пустоты» не превышает некоторого измеряемого значения.

Торричелли пошел дальше и показал, что в природе может существовать пустота Исходя из представления, что мы живем на дне воздушного океана, оказывающего на нас давление, он предложил Вивиани (1622—3703) измерить это давление с помощью запаянной трубки, заполненной ртутью При опрокидывании трубки в сосуд с ртутью ртуть из нее выливалась не полностью, а останавливалась на некоторой высоте, так что в трубке над ртутью образовывалось пустое пространство Вес столба ртути измеряет давление атмосферы Так был сконструирован первый в мире барометр.

Открытие Торричелли вызвало огромный резонанс Рухнула еще одна догма перипатетической физики. Декарт сразу же предложил идею измерения атмосферного давления на различных высотах Эта идея была реализована французским матемагиком, физиком и философом Паскалем Блез Паскаль (1623—1662) — замечательный математик, известный своими результатами в геометрии, теории числа, теории вероятностей и т. д., вошел в историю физики как автор закона Паскаля о всесторонней равномерной передаче давления жидкости, закона сообщающихся сосудов и теории гидравлического пресса В 1648 г по просьбе Паскаля его родственником был произведен опыт Торричелли у подножия и на вершине горы Пюи де Дом и был установлен факт падения давления воздуха с высотой. Совершенно ясно, что «боязнь пустоты», которую еще в 1644 г. признавал Паскаль, противоречила этому результату, как и установленному еще Торричелли факту изменения высоты ртутного столба в зависимости от состояния погоды Из опыта Торричелли родилась научная метеорология Дальнейшее развитие открытия Торричелли привело к изобретению воздушных насосов, открытию закона упругости газов и изобретению пароатмосферных машин, положившему начало развитию теплотехники. Итак, достижения науки стали служить технике Наряду с механикой стала развиваться оптика. Здесь практика опередила теорию. Голландские мастера очков построили первую оптическую трубу, не зная закона преломления света. Этого закона не знали Галилей и Кеплер, хотя Кеплер правильно чертил ход лучей в линзах и системах линз. Закон преломления нашел голландский математик Виллеброрд Снел-лиус (1580-1626). Однако он его не опубликовал. Впервые опубликовал и обосновал этот закон с помощью модели частиц, меняющих скорость движения при переходе из одной среды в другую, Декарт в своей «Диоптрике» в 1637 г. Эта книга, являющаяся одним из приложений к «Рассуждению о методе», характерна своей связью с практикой. Декарт отправляется от практики изготовления оптических стекол и зеркал и приходит к этой практике. Он ищет средства избежать несовершенства стекол и зеркал, средства устранения сферической аберрации. С этой целью он исследует различные формы отражающих и преломляющих поверхностей: эллиптическую, параболическую и т. д.

Связь с практикой, с оптическим производством вообще характерна для оптики XVII в. Крупнейшие ученые этой эпохи, начиная с Галилея, сами изготовляли оптические приборы, обрабатывали поверхность стекол, изучали и совершенствовали опыт практиков. Степень обработки поверхностей линз, изготовленных Торричелли, была настолько совершенна, что современные исследователи предполагают, что Торричелли владел интерференционным методом проверки качества поверхностей. Голландский философ Спиноза добывал средства к существованию изготовлением оптических стекол. Другой голландец — Левенгук — изготовлял превосходные микроскопы и стал основателем микробиологии. Ньютон, современник Снеллиуса и Левенгука, был изобретателем телескопа и собственноручно, с необыкновенным терпением шлифуя и обрабатывая поверхности, изготовлял их. В оптике физика шла рука об руку с техникой, и эта связь не порывается до настоящего времени.

Другим важным достижением Декарта в оптике была теория радуги. Он правильно построил ход лучей в дождевой капле, указал, что первая, яркая дуга получается после двукратного преломления и одного отражения в капле, вторая дуга — после двукратного преломления и двукратного отражения. Открытое Кеплером явление полного внутреннего отражения используется, таким образом, в декартовской теории радуги. Однако причины радужных цветов Декарт не исследовал. Предшественник Декарта в исследовании радуги, умерший в тюрьме инквизиции Доминис воспроизвел цвета радуги в стеклянных шарах, заполненных водой (1611).

Начало исследования в области электричества и магнетизма было положено книгой врача английской королевы Елизаветы Уильяма Гильберта (1540—1603) «О магните, магнитных телах и о большом магните — Земле, новая физиология», вышедшей в 1600 г. Гильберт первый дал правильное объяснение поведению магнитной стрелки в компасе. Ее конец не «влечется» к небесному полюсу (как думали до Гильберта), а притягивается полюсами земного магнита. Стрелка находится под воздействием земного магнетизма, магнитного поля земли, как объясняем мы теперь.

Гильберт подтвердил свою идею моделью земного магнита, выточив из магнитного железняка шар, который он назвал «терреллой», т. е. «земелькой». Изготовив маленькую стрелку, он демонстрировал ее наклонение и изменение угла наклонения с широтой. Магнитное склонение на своей террелле Гильберт продемонстрировать не мог, так как полюса его терреллы были для него и географическими полюсами.

Далее Гильберт открыл усиление магнитного действия железным якорем, которое правильно объяснил намагничением железа. Он установил, что намагничение железа и стали происходит и на расстоянии от магнита (магнитная индукция).

Ему удалось намагнитить железные проволоки магнитным полем Земли. Гильберт отметил, что сталь в отличие от железа сохраняет магнитные свойства после удаления магнита. Он уточнил, наблюдение Перегрина, показав, что при разламывании магнита всегда получаются магниты с двумя полюсами и, таким образом, разделение двух магнитных полюсов невозможно.

Крупный шаг вперед сделал Гильберт и в изучении электрических явлений. Экспериментируя с различными камнями и веществами, он установил, что, кроме янтаря, свойство притягивать легкие предметы после натирания приобретает ряд других тел (алмаз, сапфир, аметист, горный хрусталь, сера, смола и т. д.), которые он назвал электрическими, т. е. подобными янтарю. Все прочие тела, в первую очередь металлы, которые не обнаруживали такие свойства, Гильберт назвал «неэлектрическими». Так в науку вошел термин «электричество», и так было положено начало систематическому изучению электрических явлений. Гильберт исследовал вопрос о сходстве магнитных и электрических явлений и пришел к выводу, что эти явления глубоко различны и не связаны между собой. Этот вывод держался в науке более двухсот лет, пока Эрстед не открыл магнитное поле электрического тока.

«Я воздаю величайшую хвалу и завидую этому автору», — писал Галилей в «Диалоге» о книге Гильберта. «Он кажется мне достойным величайшей похвалы также и за много сделанных им новых и достоверных наблюдений, ...и я не сомневаюсь, что с течением времени эта новая наука будет совершенствоваться путем новых наблюдений и в особенности путем правильных и необходимых доказательств. Но от этого не должна уменьшаться слава первого наблюдателя».

Нам осталось добавить несколько слов об изучении тепловых явлений. Теплота и холод в аристотелевской физике были одними из первичных качеств и поэтому дальнейшему анализу не подлежали. Конечно, представления о «степени нагретости» или холода существовали и раньше, люди отмечали и сильный холод, и сильную жару. Но только в XVII в. начались попытки определения температуры более объективными показателями, чем человеческие ощущения. Один из первых термометров, точнее, термоскопов был изготовлен Галилеем. Исследования тепловых явлений после смерти Галилея продолжали флорентийские академики. Появились новые формы термометров. Ньютон изготовил термометр с льняным маслом.

Однако термометрия прочно встала на ноги только в XVIII в., когда научились изготовлять термометры с постоянными точками. Во всяком случае, в эпоху Галилея наметился научный подход к изучению тепловых явлений. Были сделаны и первые попытки построить теорлю теплоты. Интересно, что Бэкон решил применить свой метод именно к исследованию теплоты.

Собрав большое количество сведений, в том числе и непроверенных фактов, расположив их в придуманной им таблице «Положительных инстанций» и «Отрицательных инстанций», он все же пришел к правильному выводу, что теплота является формой движения мельчайших частиц.

 

Глава пятая. Завершение борьбы за гелиоцентричекую систему

 

Дальнейшие успехи экспериметальной физики

Церковь сожжением Бруно, запрещением учения Коперника и осуждением Галилея рассчитывала запугать ученых и остановить распространение новых идей. Ей действительно удалось кое-кого запугать. Так, Декарт, закончивший свою «Космогонию», услыхав об осуждении Галилея, отказался ее печатать. Но остановить распространение нового научного движения не удалось Следуя примеру Галилея, ученые всех стран интенсивно занимались экспериментальными исследованиями и развитием научных понятий, подготовляя тем самым почву для физического обоснования системы Коперника, которое и было дано в конце XVII в. Ньютоном. Мы рассмотрим здесь новые успехи экспериментальной физики, достигнутые после Галилея.

При этом следует прежде всего отметить достижения, связанные с открытием Торричелли. Перипатетики все еще упорно держались за старую «боязнь пустоты» и придумывали всевозможные объяснения опыту Торричелли Один из основателей Лондонского Королевского общества — Роберт Бойль (1627—1691) — выдающийся химик и экспериментатор, опровергая мнение перипатетиков, что ртуть в трубке Торричелли удерживается невидимыми нитями, решил исследовать упругость воздуха. Взяв (U-образную трубку, запаянный конец которой был короче открытого, он подливал в открытый конец ртуть, показывая, что ртутный столб уравновешивает избыточную упругость сжатого воздуха. Помощник Бойля Тоунли, рассматривая запись высот ртути в открытом и закрытом коленах, подметил обратную пропорциональность между избыточной высотой ртутного столба и объемом воздуха в закрытом колене. Бойль, тщательно исследовав эту закономерность при давлениях выше и ниже атмосферного, установил закон, носящий ныне его имя. Свои опыты он описал в сочинении «Защита доктрины, относящейся к упругости и весу воздуха», вышедшем в 1662 г.

Через 14 лет вышло сочинение французского аббата Мариотта (1620-1684) «Опыт о природе воздуха», в котором Мариотт независимо от Бойля описал аналогичные опыты, приведшие его к тому же выводу. История оказалась благожелательной к Мариотту и, несмотря на очевидный приоритет Бойля, соединила его имя с именем последнего Закон Бойля — Мариотта ныне известен каждому школьнику, хотя правильнее его было бы назвать законом Бойля — Тоунли Бойль неутомимо экспериментировал. Его опытам с упругостью воздуха предшествовало изобретение воздушного насоса. С помощью насоса он обнаружил понижение ртутного столба при откачивании воздуха, более раннее закипание воды при пониженном давлении (понижение точки кипения), прекращение действия сифона в вакууме и т. д. Эти опыты были описаны в сочинении «Новые физико-механические опыты, касающиеся упругости воздуха», вышедшем в 1660 г.

Через три года после проведения опытов с воздушным насосом и через год после открытия газового закона Бойль опубликовал работу «Опыты и рассуждения, касающиеся цветов», где описывал интерференционные явления в тонких пленках (мыльных и тонких стенках стеклянных шаров). Бойль отошел от перипатетического представления о цветах как некоторых специфических качествах тел и объяснил цвета количеством отраженного света.

Большие заслуги Бойль имеет в химии. Его сочинение «Скептический химик» рассматривается как начало новой, научной химии в противовес алхимии. Бойль ввел новое понимание элемента, отличное от аристотелевского и алхимического. Ему также принадлежит заслуга введения атомистики в химию. Вместе с тем Бойль разделял многие ошибочные представления своего времени, и Ломоносов, проверяя опыты Бойля, опроверг его утверждение об увеличении веса металлов при обжигании. Произведя опыты с накаливанием металлов в запаянных сосудах, Ломоносов установил, что общий вес металлов и сосуда остается неизменным и что «мнение Роберта Бойля ложно». Этими опытами Ломоносов впервые установил закон сохранения веса веществ при химических реакциях и предварил опыты Лавуазье, из которых вытекала правильная теория горения.

Воздушный насос — предшественник современных вакуумных насосов — был сконструирован в пятидесятых годах XVII в. магдебургским бургомистром Отто Герике (1602—1686), который, приняв доктрину о существовании пустоты, поставил своей целью получение пустоты в достаточных количествах, чтобы можно было экспериментировать с нею. Вначале он пытался получить пустоту откачиванием воды из бочки, но это, понятно, не удалось, место воды немедленно занимал воздух. Заменив бочку медным шаром и откачивая из него воздух насосом, Герике убедился, что по мере разрежения поршень насоса с трудом вытягивался физически сильным рабочим. Герике укрепил цилиндр насоса на треножнике, привинченном к полу, и снабдил рукоятку поршневого штока рычагом. С этим насосом он провел ряд эффектных опытов, иллюстрирующих огромную силу атмосферного давления, в том числе и знаменитый опыт с магдебургскими полушариями, который он демонстрировал перед членами рейхстага 8 мая 1654 г.

Книга Герике «Новые магдебургские опыты о пустом пространстве» вышла в свет в 1672 г. с замечательными иллюстрациями, изображающими различные опыты, проведенные Герике. Книга с иллюстрациями давала яркое представление о силе атмосферного давления, и мысль о возможности использования этой силы неизбежно возникала у многих людей.

Герике был искусным экспериментатором. Он усовершенствовал барометр, термометр, построил первую электрическую машину. Машина Герике представляла собой шар из серы, вращающийся на железной оси. Вращающийся шар натирался рукой. Герике впервые наблюдал электрическое отталкивание, электрическую проводимость, незначительные электрические разряды, сопровождающиеся потрескиванием. К сожалению, Герике не приводил в действие свою машину в темноте, обнаруженное при этом свечение, несомненно, привлекло бы внимание его к электрическим опытам.

Рис. 11. Опыт с магдебуургскими полушариями

Рис. 12. Титульный лист 'Новых опытов' Герике

Колокол с тарелкой для воздушного насоса был введен Христианом Гюйгенсом. Гюйгенс же сконструировал ртутный манометр для измерения низких давлений. Известный изобретатель парового котла (а также паровой машины) Дени Папен (1647—1714) заменил в насосе кран клапаном. Первая пароат-мосферная водоподъемная машина была спроектирована в 1698 г. Севери. Оптика продолжала свое дальнейшее развитие после Галилея и Декарта Ученик Галилея математик Кавальери (1598—1647) установил для двояковыпуклых и двояковогнутых линз соотношение:

где R1, и R2 — радиусы сферических поверхностей, ограничивающих линзы, причем R2 — радиус поверхности, на которую падает пучок параллельных лучей, формула Кавальери представляет собой частный случай выражения фокусного расстояния линзы для п = 1,5. Общая формула линзы была получена Эдмундом Галлеем (1656-1742) только в 1693 г.

Декартовское обоснование закона преломления подверг критике знаменитый математик Пьер ферма (1601—1665), который в противовес Декарту вывел закон преломления на основе принципа наименьшего времени распространения света. Этот принцип в истории физики сыграл большую роль. В 1648 г. чешский ученый Иоханнес Маркус Марци (1595—1667) описал явление призматических цветов. Он поставил призму перед отверстием камер-обскуры и получил на задней стороне камеры спектр, который правильно объяснил тем, что каждому цвету соответствует своя преломляющая способность. Он же показал, что отдельный монохроматический участок в дальнейшем призмой не разлагается Таким образом, Марци был непосредственным предшественником оптических открытий Ньютона.

В 1665 г. вышло в свет сочинение ученого-иезуита Гримальди (1618— 1663), сыгравшее важную роль в истории оптики. В этом сочинении впервые описано явление дифракции и высказано мнение о волновой природе света. В 1669 г. датский ученый Эразм Бартолин (1625—1698) описал двойное лучепреломление в исландском шпате. Другой датский ученый — Оле Рёмер (1644—1710), работавший в Парижской обсерватории, составляя таблицы затмений спутников Юпитера, обнаружил периодическое запаздывание этих затмений и объяснил их конечностью скорости света. В это же время появилось на латинском языке сочинение Гюйгенса о свете, исправленное автором и переизданное на французском языке в 1690 г. «Трактат о свете» Гюйгенса вошел в историю науки как первое научное сочинение по волновой оптике. В этом «Трактате» сформулирован принцип распространения волны, известный ныне под названием принципа Гюйгенса; на основе этого принципа выведены законы отражения и преломления света, развита теория двойного лучепреломления в исландском шпате, исходя из представлений, что скорость распространения света в кристалле в различных направлениях различна и поэтому форма волновой поверхности будет не сферической, а эллипсоидальной.

Теория распространения и преломления света в одноосных кристаллах—замечательное достижение оптики Гюйгенса. Гюйгенс описал также исчезновение одного из двух лучей при прохождении их через второй кристалл при определенной ориентировке его относительно первого. Таким образом, Гюйгенс был первым физиком, установившим факт поляризации света.

Цветов Гюйгенс в своем трактате не рассматривает, равно как и дифракцию света. Его трактат посвящен только обоснованию отражения и преломления (включая и двойное преломление) с волновой точки зрения. Вероятно, это обстоятельство было причиной того, что теория Гюйгенса, несмотря на поддержку ее в XVIII в. Ломоносовым и Эйлером, не получила признания до тех пор, пока Френель в начале XIX в. не воскресил волновую теорию на новой основе.

Христиан Гюйгенс, сын образованного голландского дворянина Константина Гюйгенса, родился 14 апреля 1629 г. Отец преподал ему начала математики и механики, но решил сделать сына юристом и, когда Христиан достиг шестнадцатилетнего возраста, направил его изучать право в Лейденский университет. Занимаясь в университете юридическими науками, Гюйгенс в то же вр\.мя увлекался математикой, механикой, астрономией, практической оптикой. Искусный мастер, он самостоятельно шлифовал оптические стекла и усовершенствовал трубу, с помощью которой открыл кольца и спутники Сатурна.

Кольца Сатурна были впервые замечены Галилеем в виде двух боковых придатков, «поддерживающих» Сатурн. Но труба Галилея не обладала необходимой разрешающей способностью и достаточным увеличением. Когда кольца стали видны как тонкая линия, он их не заметил и больше о них не упоминал. Гюйгенс, во всей своей научной деятельности продолжавший дело Галилея, разгадал загадку Сатурна и впервые описал его знаменитые кольца.

Одним из важнейших открытий Гюйгенса было изобретение часов с маятником. Он запатентовал свое изобретение 16 июня 1657 г. и описал его в небольшом сочинении, опубликованном в 1658 г. Теоретические основы своего изобретения Гюйгенс изложил в сочинении «Маятниковые часы» («Horologium oscillatorium»), вышедшем в 1673 г. В этом сочинении Гюйгенс устанавливает, что свойством изохронности обладает циклоида, и разбирает математические свойства циклоиды. Как уже говорилось, маятник Гюйгенса в отличие от галилеевского был циклоидальным.

Исследуя криволинейное движение тяжелой точки, Гюйгенс, продолжая развивать идеи, высказанные еще Галилеем, показывает, что тело при падении с некоторой высоты по различным путям приобретает конечную скорость, не зависящую от формы пути, а зависящую лишь от высоты падения, и может подняться на высоту, равную (в отсутствие сопротивления) начальной высоте. Это положение, выражающее по сути дела закон сохранения энергии для движения в поле тяжести, Гюйгенс использует для теерии физического маятника. Он находит выражение для приведенной длины маятника, устанавливает понятие центра качания и его свойства.

Формулу математического маятника для циклоидального движения и малых колебаний кругового маятника он выражает следующим образом. «Время одного малого колебания кругового маятника относится к времени падения по двойной длине маятника, как окружность круга относится к диаметру, откуда следует: Т= 2п/(l/g)1/2 — (в современных обозначениях).

Существенно, что Гюйгенс в конце своего сочинения дает ряд предложений (без вывода) о центростремительной силе и устанавливает, что центростремительное ускорение пропорционально квадрату скорости и обратно пропорционально радиусу окружности. Этот результат подготовил ньютоновскую теорию движения тел под действием центральных сил.

В 1663 г. Гюйгенс был избран членом Лондонского Королевского общества, а в 1666 г. членом только что организованной Парижской Академии наук. Гюйгенс жил в Париже до 1681 г., когда после отмены Нантского эдикта он, как протестант, вернулся на родину.

Будучи в Париже, он хорошо знал Рёмера и активно помогал ему в наблюдениях, приведших к определению скорости света. Гюйгенс первый сообщил о результатах Рёмера в своем трактате.

Рис.13. Опыт Герике с электрической машиной

Заметим, что скорость света впервые попытался определить Галилей Два наблюдателя, снабженные фонарями с задвижками, располагались в темную ночь на таком расстоянии друг от друга, на каком еще был виден свет фонаря. Когда первый наблюдатель открывал задвижку, второй, увидев свет, открывал свою.

Конечно, этот эксперимент ничего не дал, хотя в принципе метод был совершенно правилен.

Декарт считал, что свет распространяется мгновенно. Этот вывод он обосновал тем, что конечная скорость света неизбежно должна приводить к искажению положения небесных светил. Такая аберрация действительно была обнаружена Джеймсом Брадлеем (1693—1762) в 1728 г. и дала новый метод определения скорости света.

По возвращении на родину Гюйгенс продолжал заниматься оптическими проблемами и изготовлением оптических стекол. Он уделял внимание также космологическим и математическим проблемам. Умер он 8 июля 1695 г. Из механических исследований Гюйгенса, кроме теории маятника и центростремительной силы, известна его теория удара упругих шаров, представленная им на конкурсную задачу, объявленную Лондонским Королевским обществом в 1668 г. Теория удара Гюйгенса опирается на закон сохранения живых сил, количество движения и принцип относительности Галилея. Она была опубликована лишь после его смерти в 1703 г.

 

Ньютон

Достигнутые опытным естествознанием результаты получили завершение в работах великого английского ученого Исаака Ньютона. Важнейшим научным достижением Ньютона было создание теории движения планет и связанное с этим открытие закона всемирного тяготения, положенного в основу физического обоснования гелиоцентрической системы. Ньютон жил и работал в знаменательную историческую эпоху, оказавшую огромное влияние на дальнейшее историческое развитие Англии и не только Англии. В год рождения Ньютона началась английская революция, в год поступления Ньютона в Кембридж началась реставрация. В 1688 г. произошла так называемая «Славная революция», т. е. компромисс между борющимися за власть буржуазией и дворянством. В ньютоновскую эпоху Англия сформировалась как крупнейшая морская держава, сломившая морское могущество Испании и Голландии и сделавшая решающий шаг в капиталистическом развитии.

Страна жила напряженной политической жизнью, в ней боролись сторонники самых разнообразных политических идей — от приверженцев абсолютной монархии до идеологов уравнительного коммунизма. Бесконечно разнообразны были религиозные теории — от сторонников католицизма (папистов) и англиканской церкви до крайних пуритан и атеистов. Наконец, это была эпоха расцвета опытной науки, провозглашенной Бэконом, •эпоха организации Лондонского Королевского общества, эпоха Бойля, Гука, Галлея.

Ньютон родился 25 декабря 1642 г. старого стиля, т. е. 4 января 1643 г. по новому стилю, в деревушке Вульсторп в графстве Линкольн (Линкольншир), в семье деревенского фермера, умершего незадолго до его рождения. До двенадцатилетнего возраста его воспитывала бабушка. В двенадцать лет Ньютона отдали в городскую школу в Грантаме. По окончании школы он возвратился в родную деревню. Из будущего ученого пытались сделать деревенского фермера. Но юноша не обнаруживал склонности к сельскому хозяйству, и по совету дяди, воспитанника Кембриджского университета, был отправлен обратно в Грантам для подготовки к поступлению в университет.

По своей структуре университет представлял совокупность отдельных колледжей, каждый из которых был нечто вроде самостоятельной общины. Члены этой общины (феллоу) жили и работали в колледже, образуя замкнутую корпорацию, нечто вроде монашеского ордена. Наиболее бедные члены этой общины — «сабсайзеры», не имевшие возможности платить за свое содержание, обязаны были прислуживать членам колледжа. В качестве «сабсайзера» Ньютон был принят в колледж Святой Троицы (Тринити-колледж) в 1661 г.

Одним из учителей Ньютона был профессор Исаак Барроу, занимавший Люкасовскую кафедру, названную так по имени человека, завещавшего средства на ее содержание. Барроу читал лекции по оптике на весьма высоком для того времени уровне (он, например, давал формулы линз для различных частных случаев), и Ньютон с большим интересом и вниманием слушал своего учителя. С ним у Ньютона установились тесные дружеские отношения, и Барроу стал видеть в одаренном ученике своего преемника. Ньютон получил младшую ученую степень бакалавра, затем в 1665 г.— степень магистра. В этом же году разразилась эпидемия чумы, и Ньютон уехал из Кембриджа в деревню, откуда возвратился осенью 1668 г. В деревне он много и напряженно работал, его будущие великие открытия созревали в деревенском уединении. Немудрено, что через год, в 1669 г., Барроу, решив посвятить себя теологии, передал кафедру своему гениальному ученику. Ньютон стал профессором Кембриджа.

Первая научная работа Ньютона относится к оптике. Еще в 1665 г. он начал исследование призматических цветов. Результатом этого исследования явилось убеждение, что никакими средствами нельзя добиться совершенства оптических приборов с объективами из линз. По его мнению, хроматическая аберрация линз неустранима. Поэтому Ньютон приходит к выводу, что в телескопе надо линзы заменить сферическими зеркалами. В 1668 г. он построил первую миниатюрную модель рефлектора. В 1671 г. Ньютон построил второй усовершенствованный рефлектор, послуживший поводом к избранию его членом Королевского общества.

Прочитанный Ньютоном мемуар об открытиях в оптике вовлек его в полемику с Робертом Гуком (1635-1703), официальным экспериментатором Королевского общества. Гук в докладе, представленном обществу в 1672 г., и в книге «Микрография» становится на точку зрения волновой теории и высказывает мысль о поперечности световых волн.

Гук описывает явления интерференции и дифракции света, но еще недостаточно владеет языком волновой оптики, чтобы использовать эти явления для подтверждения волновой теории, как это сделал через полтораста лет Френель. Гук ревниво относился к вопросам приоритета и оспаривал его у Ньютона как в оптике, так и в механике. Раздраженный полемикой, Ньютон принял решение ничего не публиковать по оптике до тех пор, пока жив Гук, и выполнил это решение. Кроме первых двух оптических мемуаров, повлекших за собой полемику с Гуком, Ньютон не публиковал ничего до 1704 г., когда была издана его «Оптика».

Вообще Ньютон очень неохотно печатался, возможно и потому, что почти каждая публикация приводила к тяжелым спорам, в том числе и по вопросу приоритета. У Ньютона оспаривали приоритет в изобретении рефлектора, в исследовании цветов тонких пленок, в открытии закона тяготения и изобретении дифференциального и интегрального исчисления, т. е. почти веего, что составляет славу Ньютона. Удивительного в этом неприятном обстоятельстве, принесшем немало огорчений Ньютону, ничего нет. Открытия, сделанные Ньютоном, «носились в воздухе», они относились к актуальным научным проблемам того времени, над которыми размышляло немало ученых, приходя с разных сторон к одинаковым или почти одинаковым выводам. Механика, математика и оптика созрели для завершающих открытий, и Ньютон выполнил эту завершающую работу с исчерпывающей полнотой и гениальностью.

Современники чувствовали величие Ньютона, и все же для одних он остался непонятным, а для других — равноправным членом «республики наук», по выражению М.В.Ломоносова, с которым можно и должно было спорить, не стесняясь в выражениях и обвинениях. Только на отдалении веков стал виден гений Ньютона, возвысивший его над всеми современниками, и стало ясным величие его дела.

Но тягостная полемика с современниками приводила порой Ньютона к решению ничего не публиковать.

Однако поставленные проблемы все же надо было решать. Над проблемой движения планет размышляли многие современники Ньютона. Астроном Гал-лей понял, что идея Гюйгенса о существовании центростремительной силы позволяет объяснить динамику движения планет, и пытался ее разработать. В ходе работы он встретился с большими трудностями и обратился за консультацией к Ньютону. Ньютон показал ему рукопись, в которой проблема, волновавшая Галлея, была полностью решена. Галлей стал настойчиво убеждать Ньютона опубликовать свой труд. Ньютон долго не соглашался. Только с помощью влиятельных в Кембридже лиц Галл ею удалось сломить сопротивление Ньютона. Особенно смущала Ньютона третья часть его труда, в которой речь шла о системе мира. «Третью часть я намерен теперь устранить,— писал он,— философия — это такая наглая и сутяжная дама, что иметь с ней дело — это все равно, что быть вовлеченным в судебную тяжбу». В конце концов знаменитые «Математические начала натуральной философии» Ньютона вышли в свет в 1687 г., спустя 144 года после того, как Коперник опубликовал свою систему мира. Эта система получила динамическое обоснование и стала прочной научной теорией. Одновременно было завершено начатое Галилеем дело создания новой механики. Три закона Ньютона завершают труды Галилея, Декарта, Гюйгенса и других ученых по созданию классической механики и вместе с тем создают прочную основу для плодотворного ее развития.

Как и предвидел Ньютон, его «Начала», несмотря на трудный и специальный характер изложения, вызвали оживленную дискуссию в первую очередь с картезианцами. Допущение абсолютно пустого пространства и гравитационных сил, действующих на расстоянии через пустоту, породило философские споры. В них оказались заинтересованными и церковники, связывающие эти допущения с таинством евхаристии, при котором якобы происходит чудесное превращение хлеба и вина в тело и кровь Христа. При подготовке второго издания «Начал» кембриджский математик Коте, редактировавший это издание, усилил его антикартезианскую направленность, снабдив его своим предисловием, носящим откровенно теологический характер. Такой же характер носит и «Общее поучение», которым Ньютон заключает второе издание книги. В нем он указывает на несостоятельность картезианской вихревой концепции, описывает, как управляет миром господь бог. Ученый и богослов причудливо переплетаются в поучении Ньютона, научные идеи сочетаются в нем с теологическими бреднями.

Ньютон серьезно интересовался богословскими вопросами. Он был автором «Толкования на книгу пророка Даниила», «Апокалипсиса» и «Хронологии». Его религиозность была резко антикатолической, антипапистской, и такой же характер носили его богословские книги. Если же добавить к этому, что Ньютон глубоко интересовался алхимией и увлекался алхимическими опытами, то мы можем понять, что он был сыном своего времени, когда наука, по выражению Энгельса, еще глубоко увязала в теологии.

Ньютон был сыном своего времени и в отношении к политическим проблемам. Его тревожила католическая и абсолютистская реакция, проявившаяся при Якове II Стюарте, и он принимал активное участие в протесте Кембриджа против этих тенденций.

С приходом к власти Вильгельма Оранского в 1688 г. Ньютон был избран депутатом парламента от Кембриджа. Когда новое правительство стало испытывать финансовый кризис от плохой чеканки обращающейся золотой монеты, которую можно было опиливать и обрезать, делая ее неполноценной, Ньютон со своими друзьями лордом Монтегю и философом Локком участвовал в обсуждении проекта финансовой реформы. Назначенный Смотрителем Монетного двора, Ньютон в короткий срок перечеканил монету, способствовав тем самым оздоровлению финансов страны.

В 1699 г. Ньютон был назначен директором Монетного двора и переехал в Лондон. В 1703 г. он был избран президентом Королевского общества. обеспеченный материально, окруженный почетом и славой, Ньютон провел в Лондоне последние годы своей жизни. Он умер 21 марта 1727 г., и прах его был торжественно захоронен в Вестминстерском аббатстве.

Научное наследие Ньютона сводится к трем основным областям: математике, механике и астрономии, оптике. В математике Ньютон разделяет с немецким ученым и философом Готфри-дом Вильгельмом Лейбницем (1646— 1716) славу создателя дифференциального и интегрального исчисления.

Мы уже видели, что потребность в создании новой математики, математики переменных величин, была остро насущной. Эта математика постепенно создавалась усилиями ученых различных стран, начиная с Кеплера, Галилея и Декарта. Проблема квадратуры криволинейных площадей и проведение касательных к кривым, проблема максимума и минимума успешно решались для отдельных случаев рядом математиков и физиков. Но только Ньютон и Лейбниц разработали общий метод решения таких задач. Ньютон назвал свой метод исчислением флюксий, именуя этим термином то, что мы ныне подразумеваем под производной. Саму переменную функцию Ньютон назвал флюентой (текущей), флюксии Ньютон обозначал буквами с точкой наверху. О своем методе Ньютон сообщил в письме Лейбницу, переставив буквы латинской фразы: «Дана флюента, найти флюксию и обратно». Он выписал с соответствующим числовым коэффициентом те буквы, которые встречаются в этом предложении. Зашифрованное таким образом предложение было разгадано Лейбницем, который сообщил в ответ, что он сам владеет подобным же методом. Об этом обмене письмами Ньютон сообщил в одном из примечаний к первому изданию «Начал», указав, что метод Лейбница отличается от его собственного лишь обозначениями. Лейбниц обозначал производные штрихами (y', у" и т. д.) или как отношение дифференциалов (dx/dy)

Квадратуру Лейбниц обозначал удлиненной латинской буквой J, т. е. современным знаком интеграла.

Обозначения, введенные Лейбницем, оказались весьма удобными и сохранились до настоящего времени. Что же касается ньютоновских обозначений, то они употребляются в физике для указания производных по времени (х, x, y ).

Во втором и третьем изданиях «Начал», которые были выпущены при жизни Ньютона, примечание о переписке с Лейбницем было снято. Причиной этому был спор о приоритете, который разделил математиков того времени на два лагеря. Приверженцы одного из них защищали приоритет Ньютона, сторонники другого — Лейбница. Последующие исследования показали, что оба ученых пришли к великому открытию независимо друг от друга. Однако Энгельс был на стороне Лейбница и считал Ньютона плагиатором, так далеко докатились отголоски этого тягостного спора, который пришлось распутывать историкам математики.

Интересно, что в «Началах» Ньютон не пользуется своим методом, а доказывает свои предложения геометрическим способом и с помощью метода предельных отношений. Последний представляет собой дальнейшее развитие метода древних атомистов («метода неделимых»). Ньютон в поучениях к первой книге «Начал» подчеркивает это обстоятельство, разъясняя, что в его методе фигурируют не «неделимые» конечно малые величины, «математические атомы», а бесконечно малые величины, т. е. не у, х, a dy, dx. В его разъяснении заключаются современные определения производных и интегралов:

При обосновании метода пределов Ньютон апеллирует к механическим образам, к представлению о конечной, предельной скорости движения. Так входили в науку новые математические идеи, логическое обоснование которых потребовало усилий многих поколений математиков, вплоть до нашего времени. Идея бесконечности оказалась весьма коварной.

Но Ньютон избежал трудностей. Доказав вспомогательные геометрические леммы методом пределов, он в дальнейшем все предложения доказывал в духе старых геометров и логически безупречно. Однако эта безупречность достигалась за счет громоздкости и сложности доказательств. Последующим математикам пришлось выполнить работу по переводу механики на язык математического анализа.

В 1736 г. вышла «Механика, или Наука о движении, изложенная аналитически Леонардом Эйлером, членом Петербургской Академии наук», в которой были впервые написаны в дифференциальной форме уравнения механики и все математические расчеты велись на языке анализа. В 1788 г., через 100 лет после «Начал» Ньютона, вышла «Аналитическая механика» Лагранжа, в которой, как об этом с гордостью сообщал сам автор, не было ни одного чертежа. Так за 100 лет эволюционизировали математические методы механики.

Роль математики в развитии физики огромна. Современная теоретическая физика— сугубо математическая дисциплина, построенная на сложном математическом аппарате. Начало такому развитию теоретической физики было положено Галилеем, Декартом, Ньютоном и Лейбницем, выдающимися физиками и философами XVII столетия, философия активно участвовала в развитии новой науки. Работа, проделанная Бэконом, Декартом, Спинозой, Локком и другими философами XVII в., помогала развитию естествознания.

Естествоиспытатели и философы работали рука об руку над построением фундамента новой науки и нового мировоззрения. Поэтому глубоко не правы те, кто считает, что философия только мешала развитию науки, путаясь у ней в ногах и навязывая ей чуждые догмы. Передовая философская мысль всегда расчищала дорогу науке и, опираясь на достижения науки, сама развивалась и обогащалась. Догматизм, некритическое высокомерие всегда были врагами и науки и философии.

Говоря о математических идеях Ньютона и соотношении философии и естествознания, мы уже перешли тем самым к рассмотрению его знаменитых «Математических начал натуральной философии «Термин «натуральная философия» свидетельствовал о тесной связи науки и философии, которые, как и в эпоху возникновения науки в Древней Греции, работали вместе. Но по существу он означал физику, и в английских университетах физика еще долгое время называлась натуральной философией. Так, в истории науки термин «физика» впервые был употреблен для обозначения книги по философии природы, натуральной философии, а термин «натуральная философия» был использован для книги, излагающей основу классической физики. Однако это забавное историческое обстоятельство имеет вполне серьезный смысл: и Аристотель, и Ньютон смотрели на задачи физики одинаково — как на общую теорию природы. Различие, причем очень существенное, в их взглядах заключалось в методе построения такой теории. Ньютон строил натуральную философию, т. е. теорию природы, на математических и, конечно, экспериментальных началах, тогда как Аристотель принципиально исключал математику и эксперимент как метод познания природы. Победил метод Галилея — Ньютона, приведший физику к тем колоссальным успехам, которые ныне видны каждому, даже человеку, совершенно неискушенному в физике.

Прервем пока рассказ о «Началах» Ньютона и рассмотрим предварительно его открытия в оптике. По свидетельству самого Ньютона, он еще в 1665 г. купил призму, чтобы воспроизвести «знаменитое явление цветов». Призматический спектр был в то время хорошо известен, а призмы изготовлялись на продажу.

Призматическими цветами занимались многие ученые, и Марци, например, понял, что каждому цвету присуща своя преломляемость. Но Ньютон впервые исследовал спектр всесторонне и глубоко, заложив основы научной спектроскопии.

Титульный лист 'Механики' Эйлера

Он правильно понял удлиненную форму спектра, установил со всей определенностью факт различной преломляемости цветовых лучей, дальнейшую неразлагаемость монохроматического пучка, выяснил влияние формы щели на чистоту спектра, впервые применил метод скрещенных призм, короче, как было уже сказано, заложил основы спектроскопии.

Получая призматический спектр, мы устанавливаем призму на угол наименьшего отклонения, как это делал Ньютон, регулируем ширину щели, опираясь на его наблюдения о влиянии форм и размеров отверстия на чистоту спектра, скрещиваем спектральные аппараты при изучении аномальной дисперсии, как это сделал впервые Ньютон, еще не знавший аномальной дисперсии.

Рис. 15. Опыт Ньютона с солнечным спектром

Основной результат своих спектроскопических исследований Ньютон сформулировал так: «Всякий однородный свет имеет собственную окраску, отвечающую степени его преломляемости, и такая окраска не может изменяться при отражениях и преломлениях».

Рис. 16. Метод скрещенных призм Ньютона

Таким образом, по Ньютону, у светового луча имеется объективная, неизменная характеристика (цвет), которую он сохраняет при отражении и преломлении. В другом месте Ньютон указывал, что эта характеристика не может быть изменена какой-либо иной причиной, которую он мог наблю дать.

Ньютон не наблюдал отражения от движущегося зеркала, комбинационного рассеяния, в которых проявляются изменения цветности луча.

Такие квантовые эффекты были обнаружены только в XX в., и до тех пор вывод Ньютона сохранил всю свою силу, как он сохраняет ее и сейчас во всех случаях, когда не происходит энергетических превращений световых квантов.

Как уже упоминалось, из своих исследований Ньютон сделал важный практический вывод о существовании хроматической аберрации, которую он ошибочно считал неустранимой. Им (впрочем, не только им одним) были введены в астрономию телескопы — рефлекторы.

Стеклянные зеркала таких рефлекторов Ньютон сам шлифовал с величайшим терпением и искусством, подробно описывая в «Оптике» процедуру шлифовки. Ньютон работал в оптике и как исследователь, и как практик. Чрезвычайно интересно, что он думал связать с качественной характеристикой света и число, соответствующее этой характеристике, осуществив первый интерференционный спектроскоп, известный под названием «кольца Ньютона».

Ньютон понял, что интерференционные цвета тонких пленок (интерференции света он еще не знал, хотя хорошо понимал сущность волновых явлений) определяются толщиной пленки. Это предположил еще раньше Гук, который запальчиво обвинил Ньютона в плагиате. Но Гук не проверил свою гипотезу и не сделал из нее конкретных выводов. Ньютон же разработал установку, в которой толщина менялась по простому геометрическому закону, получил на этой установке цветные коль-Ца и открыл важный факт повторяемости цветов при изменении толщины на определенную величину.

Другими словами, Ньютон был первым в мире, открывшим периодичность в световых явлениях. Он установил, что для каждого цвета имеется своя длина, на которую изменяется толщина воздушного клина, когда одно цветовое кольцо заменяется другим того же цвета. Она соответствует четверти длины световой волны, по волновым представлениям. Ньютон определил эту величину для всех основных цветов спектра—от красного до фиолетового. Принимая во внимание, что оттенки цвета распознать очень трудно и основные семь цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый — весьма неопределенные понятия, следует признать, что Ньютон определил длину волны весьма точно. Лишь в красной части спектра у него наблюдаются расхождения с современными данными.

Ньютон исследовал также явление дифракции и, описав достаточно точно радужные полосы на внешних границах тени волоса, не заметил внутренней светлой полосы. Не заметил он и фраунгоферовых линий в солнечном спектре, которые были открыты значительно позже (в 1801 г.) Волластоном и вновь переоткрыты и тщательно описаны фраунгофером. Сыграли ли тут роль недостатки зрения Ньютона или некоторая теоретическая предубежденность (один из «призраков» Бэкона), сказать трудно, фактом остается то, что знаменитый наблюдатель не заметил некоторых важных и интересных фактов. На каком же языке описывал Ньютон открытую им периодичность, если в оптике он не пользовался языком волновой теории и не прибегал к таким понятиям, как длина волны? Приведем его собственную формулировку из «Оптики».

Предложение XII

«Каждый луч света при своем прохождении через любую преломляющую поверхность приобретает некоторое преходящее строение или состояние, которое при продвижении луча возвращается через равные интервалы и располагает луч при каждом возвращении к легкому прохождению через ближайшую преломляющую поверхность, между же возвращениями—к легкому отражению».

Таким образом, луч света попеременно через равные интервалы находится то в фазе легкого прохождения (Ньютон вместо слова «фаза» употреблял термин «приступ». — Я. К.), то в фазе легкого отражения. Результат его, падения на поверхность определяется тем, в какой фазе он падает — в фазе (или приступе) легкого прохождения или, наоборот, легкого отражения. Эта идея дает ему возможность описать опыт с кольцами и определить интервал между возвращениями в одну и ту же фазу.

Явление периодичности света, с нашей точки зрения, означает, что в описании его играют фундаментальную роль периодические функции, синусоидальные функции времени, пространства, т. е. гармонические волны. Ньютон использовал для описания открытого им явления образ волны, возбуждаемой в преломляющей среде падением светового луча, подобно тому как камень, брошенный в воду, возбуждает в ней водяные водны. Эти волны, приводя в движение частицы преломляющего (или отражающего) тела, распространяются в этой среде подобно звуку и движутся со скоростью, большей скорости света, опережая луч.

Луч, падая на поверхность, либо движется в направлении фазы волны, и тогда он проходит, либо его движение противоположно направлению волнового движения, тогда он отражается. «Следовательно, — заключает Ньютон, — каждый луч попеременно располагается или к легкому отражению или к легкому пропусканию каждым колебанием, обгоняющим его».

Эта модель Ньютона, в которой сочетаются корпускулярные (световой луч) и волновые представления (направляющая волна), предвосхищает будущие идеи де Бройля о волне-пилоте, бегущей с фазовой скоростью, большей скорости частицы и большей скорости света. Вообще на всем протяжении своих оптических исследований, начиная с первых мемуаров и кончая «Оптикой», Ньютон постоянно обсуждает две концепции света: корпускулярную и волновую. Волновая теория ему кажется неспособной справиться с противостоящими ей огромными трудностями.

Во-первых, она не в состоянии объяснить прямолинейное распространение света, волна должна огибать препятствия и загибаться внутрь геометрической тени. Как мы знаем, это действительно и наблюдается. Но Ньютон не заметил светлой полосы внутри тени волоса, а радужные внешние полосы он объяснил действием краев на малых расстояниях. «Как только луч проходит мимо тела, он идет дальше по прямой».

Гюйгенс объяснил образование геометрической тени тем, что боковые вторичные волны, испускаемые точками волнового фронта, не имеют огибающей и поэтому неэффективны. Но тем самым он отказался от описания дифракции, которая с успехом была объяснена на основе его принципа Френелем через 130 лет. Гюйгенс далее очень удачно объяснил двойное преломление в одноосном кристалле, но остановился перед объяснением открытого им явления поляризации (употребляя теперешний термин).

Ньютон в своей «Оптике» разбирает это явление и считает, что его можно объяснить, исходя из представления присущей световому лучу полярности. Для волн (имелись в виду продольные волны) о такой полярности говорить нельзя, и, следовательно, волновая теория в этом пункте несостоятельна.

Во-вторых, волновая теория требует допущения среды, в которой распространяется свет. «Против заполнения неба жидкими средами, — говорит Ньютон, — если они только не чрезвычайно разрежены, возникает большое сомнение в связи с правильными и весьма длительными движениями планет и комет по всякого рода путям в небесном пространстве. Ибо отсюда ясно, что небесное пространство лишено всякого заметного сопротивления, а следовательно, и всякой ощутимой материи». «Если же ее (т. е. эту среду или материю. — П. К.) отбросить, то и гипотезы о том, что свет состоит в давлении или движении, распространяющемся через такую среду, отпадают вместе с нею».

Таким образом, Ньютон был первым строгим критиком волновой теории, рассматривающей свет как механические волны в особой среде, которая со времени Гюйгенса стала называться световым эфиром. Мысль же о том, что световые волны могут быть другой, не механической природы, ему, конечно, в то время не могла прийти в голову.

В связи с серьезными трудностями волновой теории Ньютон предлагает обсудить другую концепцию природы света: «Не являются ли лучи света очень малыми телами, испускаемыми светящимися веществами? Ибо такие тела будут проходить через однородные среды без загибания в тень, соответственно природе лучей света. Они могут иметь также различные свойства и способы сохранять эти свойства неизменными при прохождении через различные среды, в чем заключается другое условие лучей света. Прозрачные вещества действуют на лучи света на расстоянии, преломляя, отражая и изгибая их, и взаимно лучи двигают части этих веществ на расстоянии, нагревая их; это действие и противодействие на расстоянии очень похожи на притягательную силу между телами».

Ньютон считает, следовательно, что свет может быть исследован с точки зрения существования дальнодействующих сил. Свет по этой концепции мыслится состоящим из частиц, своеобразных световых атомов, которые могут взаимодействовать с частицами вещества. В «Началах» Ньютон доказывает, что частица, вступая в плотную среду, ускоряется притяжением частиц этой среды. Если тангенциальная составляющая скорости частицы при этом не меняется, то направление ее движения можно определить по закону преломления:

где с, — скорость света в первой среде, с2 — во второй среде. При этом если i > r, т. е. луч света идет из менее плотной среды в более плотную, то с2 > с1, — скорость света в воде или стекле больше, чем в воздухе.

К такому же выводу еще раньше пришел Декарт, но у него речь шла только о механической модели, иллюстрирующей преломление, скорость же света он считал бесконечной. Наоборот, у Гюйгенса закон преломления принимает вид:

и скорость света в воде меньше скорости света в воздухе.

Когда Фуко в 1850 г. показал, что скорость света в воде действительно меньше, чем скорость света в воздухе, то это казалось решающим опровержением корпускулярной теории. На самом деле обе концепции нашли свое место не только в описании света, но и в описании материи на совершенно иной, не классической основе. И Ньютон, как бы предвидя это обстоятельство, избегал высказываться решительно в пользу той или иной концепции. Только его последователи приписывали ему безоговорочную поддержку корпускулярной теории. Ньютон же как в оптике, так в вопросе о тяготении категорически подчеркивал, что он «не измышляет гипотез», а предполагает оставаться на почве строго установленных фактов и принципов.

При всем различии оптики Ньютона и Гюйгенса у них есть одна существенная общая черта: оба они стремятся описать явление света в рамках механических представлений. Механика лежала в основе физических и философских воззрений XVII в. Декарт, Гюйгенс, Ньютон —все они пытались свести явления природы к явлениям механики. «Было бы желательно вывести из начал механики и остальные явления природы...» —писал Ньютон в предисловии к «Началам», и с этим желанием солидаризировались современные ему физики и философы.

Механические явления были наиболее ясными и наглядными; в изучении этих явлений физика достигла наибольших успехов, и механическое мировоззрение явилось отражением этих успехов. Еще Декарт развивал механическую картину мира. Ньютон заложил новые основы механического мировозврения, после ожесточенной борьбы вытеснившие картезианские. Эти основы были заложены в его «Математических началах натуральной философии», к рассмотрению которых мы вновь обращаемся.

В «Началах» содержатся определения основных понятий механики, формулировка основных законов механики, известных ныне под именем законов Ньютона, приложения законов механики к теории движения под действием центральных сил и к решению других механических вопросов, обоснование закона всемирного тяготения, открытого Ньютоном, и изложение системы мира, т. е. теории движения планет и спутников на основе закона тяготения. Таким образом, это первый в истории науки систематический курс теоретической механики, включающий и небесную механику. Отдельные результаты предшественников Ньютона, начиная с Галилея, были обобщены и развиты Ньютоном в его гигантском труде. Ньютон завершил работу предыдущих поколений и открыл путь последующим поколениям физиков и механиков.

«Начала» открываются определением количества материи: «Количество материи есть мера таковой, устанавливаемая пропорционально плотности и объему ее».

Русский переводчик «Начал» академик А. Н. Крылов вставил в скобках после слов «количество материи» слово «масса», с тем чтобы ослабить впечатление от метафизического и неупотребительного в современных руководствах термина Ньютона. Ньютон вдобавок выражает массу через плотность, определяемую в этих руководствах как раз через массу и объем. Но термин «количество материи» и у Декарта, и у Ньютона имеет вполне определенное содержание. Декарт считает весь мир однородной материей и по большему или меньшему объему материи определяет ее количество. Ньютон, подобно древним атомистам, считает реальными атомы и пустоту. Количество однородных атомов и есть количество материи. Очевидно, оно будет тем больше, чем больше взятый объем и чем плотнее расположены атомы в этом объеме.

Чтобы не было никаких сомнений, Ньютон поясняет свое определение примерами воздуха, порошка, снега, количество материи которых увеличивается, если их сжать; «При этом, — добавляет Ньютон, — я не принимаю в расчет той среды, если таковая существует, которая свободно проникает в промежуток между частицами».

Таким образом, определение количества материи у Ньютона опирается на атомистику и соответствует определенному строю физического мышления. Самое же главное, что эта величина доступна измерению. Количество материи определяется по весу тела, оно пропорционально весу тела, «что мною найдено опытами над маятниками, произведенными точнейшим образом...».

Тысячелетняя практика использования весов для измерения количества вещества, массы вещества обобщается Ньютоном и анализируется экспериментально. Он наблюдал качания маятников одинаковых длин, но с разными грузами: свинцовым, золотым, деревянным, ртутью и т. д. У всех этих маятников периоды совпадали.

Но еще Галилей показал, что движение маятника — это не свободное падение его груза. Все тела в отсутствие сопротивления воздуха падают одинаково. Ньютон проверил экспериментально утверждение Галилея, поместив в трубку перышко, кусок свинца и пробку. Откачав из трубки воздух, он убедился, что различные тела в безвоздушном пространстве падают с одинаковой скоростью, а маятники качаются с одинаковым периодом независимо от веса груза.

Тем самым Ньютон подтвердил точным опытом независимость ускорения силы тяжести от массы тела. Масса и вес строго пропорциональны друг другу. Эту зависимость Ньютон использовал для практического измерения масс или количества вещества.

Ньютон, открывший закон тяготения, ясно понимал, что вес— случайное, переменное воздействие на тело, и поэтому считал необходимым установить и другую, внутреннюю характеристику тела — инерцию.( В современных школьных учебниках эту характеристику называют инертностью. Ньютон этого термина не знал и всюду говорил об инерции. ) Ей он посвящает третье определение своей книги: «Врожденная сила материи есть присущая ей способность сопротивления, по которой всякое отдельно взятое тело, поскольку оно предоставлено самому себе, удерживает свое состояние покоя или равномерного прямолинейного движения». «Эта сила, — добавляет Ньютон, — всегда пропорциональна массе и если отличается от инерции массы, то разве только воззрением на нее».

Масса как мера инерции сохранилась в современных учебниках физики, и ее по-прежнему, как и у Ньютона, измеряют с помощью весов. Там, где господствует невесомость, массу можно измерять по инерции, и в этом смысле измерение инерции есть самый общий способ измерения массы. Вместе с тем инерция и весомость — это различные физические понятия. То, что они пропорциональны друг другу, очень удобно для практических целей, но это совершенно необъяснимое явление. Галилей и Ньютон установили этот факт. Ньютон широко использовал его для измерения масс, физики последующих поколений также измеряли массы весами. Лишь Эйнштейн выяснил глуббкое значение этого факта.

Введя понятие массы, Ньютон дал точную, измеряемую механическую характеристику тела. До Ньютона такой ясной характеристики не было, механика еще не владела полностью этим фундаментальным понятием. Заслуга Ньютона состоит в том, что он ввел во всеобщее употребление понятие массы и указал способы ее измерения.

Ньютон ввел и второе фундаментальное понятие механики: количество движения, определив его как меру движения, пропорциональную массе и скорости (II определение «Начал»). Выражением «количество движения» пользовался еще и Декарт, но он не понял векторного характера этой величины и, применяя ее к теории удара, допустил грубые ошибки. Ньютон знал векторный характер скорости и, пользуясь на практике своим определением, всегда учитывал направление движения, формулируя правило параллелограмма скоростей.

Однако термин «количество движения», как показала история науки, был явно неудачным.( Это, однако, не помешало ему удержаться в науке вплоть до наших дней, аналогично другому неудачному термину - «лошадиная сила». Сегодня термин «количество движения» заменен термином «импульс». ) Дело в том, что было совершенно неясно, чем же измерять движение. Декарт предложил измерять его произведением массы на скорость и высказал закон сохранения движения в форме сохранения общего количества движения. За год до выхода «Начал», в 1686 г., Лейбниц опубликовал статью под заглавием «Краткое доказательство ошибки достопамятного Декарта и других касательно закона природы, благодаря которому бог желает сохранять всегда количество движения тем же». Лейбниц указывал, что в явлениях природы сохраняется и другая мера движения. Так, если падающий груз производит деформирующее действие (таким способом Галилей измерял скорости падения), то это действие пропорционально высоте падения и, следовательно, квадрату скорости, а так как оно к тому же пропорционально и массе падающего тела, то движение, сообщенное деформированному телу, пропорционально произведению массы на квадрат скорости.

Эту величину Лейбниц позже назвал «живой силой», отличая ее от «мертвой силы», силы давления неподвижного груза.

Что величина mv2 сохраняется, было ясно еще Гюйгенсу, который опирался на закон сохранения величины mv2 в своей теории упругого удара и в теории маятника. Этот же факт хорошо знал и Ньютон, дополняя выводы Гюйгенса установлением теоремы живых сил для движения под действием центральной силы. Эту теорему Ньютон доказывал геометрически, изображая графически зависимость силы от пути, пройденного движущейся точкой. Он доказывал, что квадрат скорости движения будет пропорционален площади кривой, ограниченной графиком силы, осью расстояния, начальной и конечной ординатой (начальной и конечной скоростью), т. е.

где f(r) - модуль действующей силы. И тем не менее Ньютон принимает в качестве «количества движения» величину ту. К этому его вынуждает динамика. Ньютон вводит в науку важное понятие силы. Контактные силы: мышечные усилия, удар, давление — хорошо известны из практики, и их введение в науку оправдано. Но Ньютон дает новое определение силы (определение IV «Начал») как действие, производимое над телом, чтобы изменить его состояние покоя или равномерного прямолинейного движения. Такое действие может быть произведено не только при контакте, но и на расстоянии некоторым силовым центром. Действие, производимое силовым центром, Ньютон называет центростремительной силой (независимо от того, притягивается или отталкивается тело от центра) и определяет ее следующим образом (определение V «Начал»): «Центростремительная сила есть та, с которой тела к некоторой точке как к центру отовсюду притягиваются, гонятся или как бы то ни было стремятся».

Центростремительная сила определяется, во-первых, мощностью или интенсивностью самого силового центра (например, массой Земли или Солнца, магнитной массой полюса магнита и т. д.). Эту мощность Ньютон называет абсолютной величиной центростремительной силы.

Во-вторых, она определяется ускорением, получаемым телом под действием силы. Это ускорение Ньютон называет ускорительной величиной центростремительной силы.

В-третьих, она определяется изменением количества движения за единицу времени. Эту скорость изменения количества движения Ньютон называет движущей величиной центростремительной силы.

Эти три фактора, определяющие действие центростремительной силы, которые Ньютон ясно отличает друг от друга, и поныне являются основными характеристиками силового поля. То, что Ньютон называет абсолютной величиной центростремительной силы, мы называем зарядом (электрическим, магнитным, гравитационным и т. д.). В XIX в. говорили о «массах» (электрических, магнитных, гравитационных).

Ньютоновская «ускорительная величина» центростремительной силы — это современная напряженность силового поля, а движущая величина центростремительной силы называется в настоящее время пондеромотор-ной силой.

Из этих определений центростремительной силы (определения V—VIII) видно, что Ньютон хорошо представлял картину силового поля вокруг «источника ее (т. е. силы. — П. К.) распространения из центра в окружающее ее пространство» и выработал точные характеристики, с помощью которых описывают это поле и поныне. Важнейшую роль в этих характеристиках играет скорость изменения количества движения тела. Ньютон понял фундаментальное значение понятия количества движения для динамики: быстротой изменения этой величины определяется действие силы, и поэтому положил ее в основу всей динамики. Развитие науки подтвердило правильность выбора, сделанного Ньютоном, и современная наука лишь перестала употреблять его термин «количество движения», заменив его коротким словом «импульс». Количество движения Ньютона — это динамическая характеристика движения.

Что же касается лейбницевской «живой силы», то она, как мы теперь знаем, является энергетической характеристикой движения и равна кинетической энергии ~mv2 движущейся точки.

Обе меры необходимы и полезны и с успехом «работают» в современной науке. Но до установления закона сохранения и превращения энергии такая двузначность «меры движения» вызывала путаницу и разногласие, физики разделились на сторонников Декарта и сторонников Лейбница в отношении меры движения, и шумные споры между ними не утихали.

Еще в 1758 г. Ломоносов писал-«...Самые первые начала механики а тем самым и физики, еще спорны и что наиболее выдающиеся ученые нашего века не могут прийти к соглашению о них. Самый явный пример этого—мера сил движения, которую одни принимают в простом, другие — в двойном отношении скорости».

В 1743 г. вышла «Динамика» французского энциклопедиста Жана Далам-бера (1717—1783). Даламбер разъясняет в предисловии к своему сочинению эквивалентность двух мер. Когда тело, обладающее некоторой скоростью, начинает тормозиться под действием силы, то выбор меры исчезнувшего движения определяется постановкой задачи. Если нам дано время торможения, то тормозящая сила определяется количеством движения mv. Если же нам дан путь торможения, то она находится из (mv2)/2

Этим простым замечанием Даламбер охладил разгоряченные головы, и споры о двух мерах движения мало-помалу затихли. Но, повторяем, истинная суть двух мер движения выяснилась только в результате открытия закона сохранения энергии, и Энгельс в «Диалектике природы», вернувшись к истории знаменитого спора, вскрыл его глубокую методологическую сущность.

Итак, Ньютон ввел в механику фундаментальные понятия: массы, силы, количества движения (импульса). Но для построения механики нужно было ещё одно важное понятие: система отсчета. Разговор о движении беспредметен, если не указана система отсчета. Ньютон хорошо понимал это обстоятельство, поэтому он заключает раздел определений «Поучением», в котором останавливается на понятиях пространства и времени.

Ньютону был известен принцип относительности Галилея, который он сформулировал в виде одного из основных следствий законов механики: «Относительные движения друг по отношению к другу тел, заключенных в каком-либо пространстве, одинаковы, покоится ли это пространство или движется равномерно и прямолинейно без вращения». В другом месте Ньютон утверждает: «Может оказаться, что в действительности не существует покоящегося тела, к которому можно было бы относить места и движения прочих», и, таким образом, он считает, что наблюдаемые нами движения относительны и абсолютного движения не существует. Но он знает также, что ускоренное движение системы отсчета проявляется динамически, вызывая явление инерции.

Так, поверхность воды во вращающемся ведре будет не плоскостью, а параболоидом вращения. Поэтому Ньютон принимает, что в природе существует абсолютный покой, абсолютно неподвижная система отсчета. Это пустое однородное неподвижное пространство атомистов и Евклида — чистое вместилище всех вещей. Существенно, что наряду с абсолютным пространством Ньютон признает и абсолютное время, текущее само по себе, безотносительно к каким-либо процессам. Вот как он определяет абсолютное и относительное время и пространство.

«I. Абсолютное, истинное математическое время само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью.

Относительное, кажущееся, или обыденное, время есть или точная, или изменчивая, постигаемая чувствами, внешняя, совершаемая при посредстве какого-либо движения мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как-то: час, день, месяц, год».

Наше измерение времени как несовершенное, повседневное (от зари до зари), так и точное, астрономическое дает нам относительное, или обыденное, время, основанное на наблюдаемых нами движениях. Эти движения, даже вращение Земли, могут быть не вполне равномерными, в то время как истинное математическое время течет само по себе абсолютно равномерно. Постигая относительное время, конструируя все более и более точные часы, мы имеем в виду недостижимый идеал, истинное, абсолютное время.

«II. Абсолютное пространство по самой своей сущности безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным.

Относительное есть его мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное: так, например, протяжение пространства подземного воздуха или надземного, определяемых по их положению относительно Земли...»

«III. Место есть часть пространства, занимаемого телом, и по отношению к пространству бывает или абсолютным, или относительным...»

«IV. Абсолютное движение есть перемещение тела из одного абсолютного его места в другое, относительное — из относительного в относительное же».

Задача натуральной философии, по Ньютону, и состоит в том, чтобы распознать истинные, абсолютные движения и изучать их законы. Хотя на практике мы познаем кажущиеся относительные движения, мы можем по ним находить истинные движения и их причины. В качестве примера Ньютон приводит свой знаменитый опыт с вращающимся ведром. Если подвесить ведро с водой на веревке к потолку и, закрутив предварительно веревку, отпустить сосуд, предоставив веревке возможность раскручиваться, то стенки ведра начинают вращаться вместе с веревкой. Вода же сразу не увлекается движением, и ее поверхность сначала плоская, т. е. вода находится в сильном относительном вращении по отношению к ведру, и это относительное вращение не сказывается на ее состоянии. По мере вовлечения воды во вращение поверхность ее деформируется. Наибольшая деформация будет наблюдаться, когда скорость вращения воды относительно стенок ведра будет равна нулю. В этот момент абсолютное движение воды будет наибольшим. Ньютон заключает отсюда и возможность обнаружения вращательного движения в абсолютном пустом пространстве. Ускорение в механике Ньютона носит абсолютный характер.

Концепция абсолютного пространства—времени, оторванного от материальных тел и реальных процессов,— метафизична. Не случайно Ньютон связывает свои представления об абсолютном пространстве с божеством. Один из современников Ньютона в своем дневнике писал, что Ньютон, подготовляя новое издание «Оптики», предлагал включить в него вопрос: «Чем наполнено пространство, свободное от тел?» Ньютон считал, что оно наполнено богом. Бог, по Ньютону, присутствует как в пространстве, свободном от тел, так и там, где имеются тела.

Спрашивается: при чем же здесь физика? Почему до Эйнштейна физики не критиковали божество —метафизическую концепцию абсолютного, пустого, неподвижного, однородного пространства, а молчаливо соглашались с ней? Потому, что эта математическая абстракция хорошо соответствовала принципам евклидовой геометрии.

Эти евклидовы представления настолько укоренились в умах людей, что геометрия Лобачевского казалась нелепостью даже для его современников — ученых-академиков.

Что же касается бога, то хорошо известно, что верующий человек может припутать бога к любому обстоятельству, и нет ничего удивительного в том, что религиозный Ньютон считал пространство «чувствилищем бога». Важно, что основой классической физики были законы, установленные Ньютоном для движения тел в абсолютном евклидовом пространстве.

По принципу относительности это пространство представлялось любой системой отсчета, в которой не проявляется ощутимым образом действие инерционных сил.

Приведем формулировку законов Ньютона в том виде, в каком они были сформулированы им самим, и в переводе на русский язык, сделанном академиком А. Н. Крыловым.

Axiomata sive leges motus Lex I

Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus illud a viribus impressis cogitur statum suum mutare.

Lex II

Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum lineam rectam qua vis ilia imprimitur.

Lex III

Actioni contrariam semper et aequalem esse reactionem: sive corporum duorum actio-nes in se mutuo semper esse aequales et in partes contrarias dirigi.

Перевод.

Аксиомы или законы движения

Закон I

Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

Закон II

Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.

Закон III

Действию всегда есть равное и противоположное противодействие, иначе взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.

«Математические начала натуральной философии» — книга, вошедшая в золотой фонд науки. Законы Ньютона в течение веков заучивались в авторской формулировке. Так, в одном из русских учебников физики для гимназии законы Ньютона даны в оригинальной латинской формулировке без перевода. Этот учебник вышел в 1915 г., т. е. всего за два года до Октябрьской революции, спустя два года после создания квантовой модели атома Бора и спустя десять лет после создания Эйнштейном специальной теории относительности. Как видим, еще в то время считалось обязательным для учащихся гимназий знание подлинного текста законов Ньютона. Так было почти во всех школах мира. Поколения людей воспитывались на законах Ньютона, которые казались незыблемым фундаментом научного познания природы. Имея в виду их огромное историческое значение, мы и привели выше их точную авторскую формулировку.

Законы Ньютона комментировались и разъяснялись неоднократно, поэтому мы останавливаться на них не будем. Подчеркнем только, как это делает и сам Ньютон, роль третьего закона. Здесь впервые в механике Ньютона появляется слово «взаимодействие». Сила — это взаимодействие между телами.

Из математического выражения силы и третьего закона Ньютон выводит закон сохранения импульса для замкнутой системы и закон сохранения движения центра тяжести: «...По отношению к центру тяжести системы нескольких тел имеет место тот же самый закон сохранения состояния покоя или равномерного и прямолинейного движения, как и для одного тела. Таким образом, поступательное количество движения отдельного ли тела или системы тел надо всегда рассчитывать по движению центра тяжести их».

Так как по второму закону действие силы определяется только изменением количества движения тела и не зависит от наличия других сил или состояния движения тел, то Ньютон в качестве следствия закона формулирует принцип суперпозиции в виде правила параллелограмма сил. Тем самым он мимоходом дополняет и статику, обосновывая действие рычага, наклонной плоскости и других статических машин.

Чтобы яснее себе представить вклад, внесенный Ньютоном в развитие механики, сопоставим три его закона с тремя законами, данными Гюйгенсом в его сочинении «Маятниковые часы», вышедшем за 14 лет до «Начал». Гюйгенс называет свои законы не аксиомами, как Ньютон, а гипотезами и формулирует их следующим образом:

«I. Если бы веса не было и воздух не сопротивлялся движению тел, то каждое из них продолжало бы достигнутое движение прямолинейно и с постоянной скоростью.

II. Однако благодаря действию веса, причину которого мы не рассматриваем, случается, что тела производят сложное движение, составленное из равномерного движения в том или ином направлении, и из движения, вызванного весом и направленного по вертикали вниз.

III. Эти два движения можно рассматривать отдельно, и каждое из них не влияет на другое». Как видим, гипотезы Гюйгенса значительно ближе к принципам, сформулированным Галилеем в 1638 г., чем к аксиомам Ньютона.

Стержнем ньютоновской динамики является понятие силы, а основная задача динамики сводится к установлению закона силы из данного движения и, обратно, определению закона движения тел по данной силе. Так, из законов Кеплера Ньютон вывел существование силы, направленной к Солнцу и обратно пропорциональной квадрату расстояния планет от Солнца. Тем самым Ньютон решил задачу физического обоснования системы Коперника. Одновременно он открыл существование в природе силы, которая обусловливает притяжение тел, в том числе и Луны к Земле, и притяжение самой Земли, как и других планет, к Солнцу, т. е. силу всемирного тяготения.

Еще Кеплер, размышляя над природой силы, заставляющей двигаться планеты вокруг Солнца, пришел к выводу, что они увлекаются Солнцем. Солнце, вращаясь вокруг своей оси, увлекает за собой планеты, подобно тому как водоворот кружит попавшие в него тела. Кеплера не смущало то обстоятельство, что планеты имеют разные периоды обращения вокруг Солнца. В то же время Кеплер предполагал, что причина взаимного притяжения тел подобна притяжению магнитом куска железа. Такой силой Кеплер объяснил приливы, приписывая их притяжению вод океана Луной. Два камня, изолированные ви Вселенной от влияния всех других тел, по Кеплеру, «стремились бы соединиться друг с другом, подобно двум магнитам».

Несмотря на фантастичность многих рассуждений Кеплера, он сделал важный шаг в сторону отхода от аристотелевской концепции тяготения как естественного стремления всех тел к центру мира. Декарт в своих космогонических теориях окончательно порывает с этой концепцией и считает тяготение результатом вихревых движений мировой материи. Гюйгенс, разделяя позицию Декарта, иллюстрирует природу тяготения опытом с вращающейся жидкостью, в которой взвешены частицы. Отброшенные сначала к стенкам сосуда, они потом устремляются к центру. Это явление наблюдал каждый, помешивающий чай в стакане; по окончании помешивания частички устремляются к центру по дну стакана. Поведение частиц чая в стакане объяснил Эйнштейн в одной из своих заметок, по-видимому, не подозревая, что касается вопроса, поднятого Гюйгенсом для объяснения природы тяготения.

Но вихревая концепция тяготения, хотя и давала красивую модель, не помогала точному описанию движения небесных светил.

С течением времени выкристаллизовалась идея силы, с которой Солнце действует на планеты и планеты на своих спутников. Так, один из членов флорентийской Академии опыта — Борелли (1608-1679), разбирая в 1666 г. теорию движения спутников Юпитера, писал: «Предположим, что планета стремится к Солнцу и в то же время своим круговым движением удаляется от этого центрального тела, лежащего в середине круга. Если обе эти противоположные силы равны между собой, то они должны уравновеситься — планета не будет в состоянии ни приблизиться к Солнцу, ни отойти от него дальше известных пределов и в таком равновесии будет продолжать свое обращение около Солнца».

Борелли не знал, что в это же время молодой Ньютон уже рассчитал математически эту идею и описал движение Луны вокруг Земли. Затем, в 1673 г., Гюйгенс дал закон центростремительной силы, а в следующем, 1674 г. Гук набросал схему картины мира, в которой «все небесные тела имеют притяжение, или силу тяготения, к своему центру». Закон зависимости этой силы от расстояния до центра Гук определить еще не сумел.

Только Ньютон облек все эти сырые, незавершенные идеи в точную форму математического закона. Гипотеза, что силовой центр действует с силой, обратно пропорциональной квадрату расстояния от него, вполне естественна и по существу высказана Ньютоном еще в его оптическом мемуаре 1675 г. Как освещение, создаваемое точечным источником, убывает обратно пропорционально квадрату расстояния от источника, так и действие силового центра, распространяясь на все большую и большую поверхность, ослабевает обратно пропорционально квадрату расстояния от центра. Эта гипотеза подсказывалась геометрией. Поэтому, размышляя о движении Луны, Ньютон сделал предположение, что Луна падает на Землю, как и камень, но с ускорением, во столько раз меньшим ускорения падения камня, во сколько раз квадрат земного радиуса меньше квадрата расстояния от центра Луны до центра Земли.

«Луна тяготеет к Земле и силою тяготения постоянно отклоняется от прямолинейного движения и удерживается на своей орбите».

Это предположение, сформулированное им в «Началах», Ньютон подтверждает расчетами. Пользуясь формулой центростремительного ускорения, данной Гюйгенсом, и астрономическими и геодезическими данными, Ньютон показывает, что центростремительное ускорение Луны в 3600 раз меньше ускорения падения камня. А так как расстояние от центра Земли до центра Луны в среднем в 60 раз больше радиуса Земли, то можно предположить, что Луна также притягивается к Земле, как и камень, но сила притяжения убывает обратно пропорционально квадрату расстояния. «Сила, с которою Луна удерживается на своей орбите, направлена к Земле и обратно пропорциональна квадратам расстояний мест до центра Земли».

Из законов Кеплера Ньютон сделал важный вывод: «Силы, которыми главные планеты постоянно отклоняются от прямолинейного движения и удерживаются на своих орбитах, направлены к Солнцу и обратно пропорциональны квадратам расстояний до центра его».

В «Поучении» к предложениям о законе притяжения Луны к Земле и планет к Солнцу Ньютон указывает, что если бы вокруг Земли вращалось несколько лун, то все бы они двигались под действием аналогичной силы и их движение подчинялось бы законам Кеплера. .«Если бы наинизшая из этих лун была малой и почти что касалась бы вершин высочайших гор, то центростремительная сила, которою она удерживалась бы на своей орбите, равнялась бы приблизительно силе тяжести на вершине этих гор; если бы этот спут-ничек лишить его поступательного движения по орбите, то вследствие отсутствия центробежной силы, от которой он продолжал оставаться на своей орбите, он под действием предыдущей стал бы падать на Землю и притом с такой же скоростью, с какою на вершинах этих гор падают тяжелые тела...»

Это рассуждение Ньютона показывает, какой огромный шаг сделала человеческая мысль в познании мироздания. Еще живы перипатетические традиции, над учением Коперника тяготеет запрещение церкви, а Ньютон уже разбирает динамику искусственных спутников Земли («спутничков»). Его мысленный эксперимент реализовали советские ученые, запустив 4 октября 1957 г. первый в мире искусственный спутник Земли.

От Земли и Луны Ньютон обращается к планетам. Он приходит к выводу, что тяготение существует на всех планетах, и по третьему закону «Юпитер тяготеет ко всем своим спутникам, Сатурн к своим, Земля к Луне, Солнце ко всем главным планетам». При этом «тяготение, направляющееся к любой из планет, обратно пропорционально квадрату расстояний мест до центра ее». Такая формулировка, в которой вместо «тел» фигурирует «место», свидетельствует, что Ньютон, говоря о тяготении, имеет в виду то, что мы сегодня называем полем тяготения. Поле тяготения определяется массой планеты: «Все тела тяготеют к каждой отдельной планете, и веса тел на всякой планете при одинаковых расстояниях от ее центра пропорциональны массам этих планет».

Этим предложением Ньютон наносит решающий удар перипатетической концепции веса как естественного стремления тел к центру мироздания, находящемуся в центре Земли. Каждая планета создает свое поле тяготения, и «природа тяжести на других планетах такова же, как и на Земле». Особенно важен факт независимости времени падения тяжелых тел от массы, установленный Галилеем. Ньютон считал необходимым проверить этот факт «точнейшим образом» по «равенству времени качаний маятников». «Я произвел такое испытание, —пишет Ньютон, —для золота, серебра, свинца, стекла, песка, обыкновенной соли, дерева, воды, пшеницы. Я заготовил две круглые деревянные кадочки, равные между собою; одну из них я заполнил деревом, в другой же я поместил такой же точно груз из золота (насколько мог точно)-в центре качаний. Кадочки, подвешенные на равных нитях 11 футов длиной, образовали два маятника, совершенно одинаковые по весу, форме и сопротивлению воздуха; будучи помещены рядом, они при равных качаниях шли взад и вперед вместе в продолжение весьма долгого времени.... Следовательно, количество вещества в золоте относилось к количеству вещества в дереве, как действие движущей силы на все золото к ее действию на все дерево, т. е. как вес одного к весу другого. То же самое было и для прочих тел. Для тел одинакового веса разность количеств веществ (масс), даже меньшая одной тысячной доли полной массы, могла бы быть с ясностью обнаружена этими опытами»

Ньютон понял важность точного установления факта пропорциональности массы и веса. После открытия им закона тяготения масса становится характеристикой не только инертности тел, нo и их гравитации. Опыты Ньютона показали, что гравитационная и инертная массы равны с точностью до 0,001. Последующие эксперименты доказали это равенство с еще более высокой степенью точности. Этот факт положен Эйнштейном в основу его теории тяготения. Он, как видим, сыграл фундаментальную роль и в открытии закона тяготения.

«Тяготение существует ко всем телам вообще и пропорционально массе каждого из них» (предложение VII).

«...Тяготение ко всей планете происходит и слагается из тяготений к отдельным частям ее...» (следствие 1).

«Тяготение к отдельным равным частицам тел обратно пропорционально квадратам расстояний мест до частиц» (следствие 2).

Так формулирует Ньютон свой знаменитый закон, который мы ныне выражаем компактной формулой;

Этим законом Ньютон дал точную динамическую основу системе Коперника и всей небесной механике, которая, развиваясь на этой основе, добилась огромных успехов. Выражение «астрономическая точность» стало синонимом непревзойденной точности научного предвидения. Открытие в XIX в. планеты Нептун Леверье и Адамсом «на кончике пера» явилось потрясающим триумфом теории Ньютона. Сегодняшние достижения космонавтики, выведшие человека в космос, представляют новый блестящий успех ньютоновской теории. Закон всемирного тяготения подтвердился в этих достижениях с поразительной точностью.

Закон тяготения породил и длительные философские дискуссии, переходящие в богословские. В физике это были дискуссии о природе действия на расстоянии, споры между сторонниками Ньютона и Декарта. Они начались еще при жизни Ньютона. Когда в 1713 г. вышло второе издание «Начал», то редактор этого издания, молодой кембриджский астроном Роджер Коте постарался придать новому изданию воинствующий антикартезианский и антиматериалистический характер. Он снабдил издание своим обширным предисловием, излагающим методологические основы того направления, которое получило в истории науки название ньютоновского.

В своем предисловии Коте указывал на три основных методологических направления в современной ему науке: берущее свое начало от Аристотеля перипатетическое, картезианское и ньютоновское. Лет через сорок после Котса Ломоносов также соединит эти три направления, предупреждая, чтобы его самого «за Аристотеля, Картезия и Ньютона не почитали», утверждая тем. самым не только оригинальность и самобытность своего научного мышления, но и наличие в современной ему науке трех главных направлений, названных им по именам лидеров.

Может возникнуть сомнение в живучести перипатетической концепции «скрытых качеств» и вообще схоластической традиции. Однако уходящая в прошлое перипатетическая методология далеко еще не сошла с арены во времена Ньютона и Ломоносова. Ломоносов справедливо усматривал в идее теплорода «элементарный огонь Аристотеля», а «скрытые качества» существовали еще и в физике XIX в.

Коте в своем предисловии быстро расправляется с перипатетиками, заверяя, что они «в сущности ничему не учат», и сосредоточивает весь огонь своей критики на картезианцах, которых обвиняет в том, что они «предаются фантазиям», придумывая всевозможные неощутимые жидкости и скрытые движения. Изложив основные положения теории Ньютона, согласно которой «Земля и Солнце и все небесные тела, сопровождающие Солнце, взаимно притягиваются» и «отдельные мельчайшие частицы обладают... притягательными силами, пропорциональными их массам» и обратно пропорциональными квадратам расстояний, Коте указывает, что эта теория («философия») строится на наблюдении и опыте, а не на произвольных гипотезах. Тем самым она обладает преимуществом по сравнению с картезианской теорией, так как основана на опыте и согласуется с опытом же. Гипотетический "элемент, по мнению Котса, из нее исключается начисто. Но остается все-таки основной вопрос: что такое тяготение и вообще центральная4 сила, действующая на расстоянии? Не являются ли они такими же скрытыми качествами, как и скрытые качества перипатетиков?

Котc возражает: «Тяготение не есть скрытая причина движения небесных тел, ибо явления показывают, что эта причина существует на самом деле» — и тут же переходит в наступление: «Правильнее признать, что к скрытым причинам прибегают те, кто законы этих движений приписывает неведомо каким вихрям некоторой чисто воображаемой материи, совершенно не постижимой чувствами».

Вопрос о причине тяготения не имеет смысла. «Причины идут неразрывной цепью от сложнейших к простейшим, и когда достигли до причины самой простой, то далее идти некуда». Такой «самой простой» причиной и является тяготение, точный закон которого найден Ньютоном. Тем не менее Коте считает необходимым посвятить немало места в своем предисловии опровержению концепции эфира и его вихревых движений. Коте справедливо указывает, что «присутствие этого эфира ничем не проявляется», но он не ограничивается этим научным аргументом, а бьет наотмашь, говоря, что картезианцев «надо причислять к отребью того нечестивого стада, которое думает, что мир управляется роком, а не провидением, и что материя в силу своей собственной необходимости всегда и везде существовала, что она бесконечна и вечна». В этом гвоздь вопроса. Пустое пространство, дальнодействующие силы и первичный толчок (начальные условия) устраивали богословов, стремление же последовательных материалистов «найти истинные начала физики и истинные законы природы единственно силою своего ума» означает, «что философия должна основываться на безбожии». «Ради таких людей, — сердито замечает Коте,—не стоит портить философию». Что же касается редактируемого им сочинения Ньютона, то Коте утверждает в качестве конечного вывода; «Поэтому превосходнейшее сочинение Ньютона представляет вернейшую защиту против нападок безбожников, и нигде не найти лучшего оружия против нечестивой шайки, как в этом колчане».

Ради этого вывода и было написано большое предисловие Котса, с благословения и при активной поддержке начальника Тринити-колледжа епископа Бентли, уже использовавшего, как на это указывалось в предисловии Котса, в своих выступлениях против атеистов теорию Ньютона.

Какова же была позиция самого Ньютона? Ньютон не скрывал своего отрицательного отношения к гипотезам. И в «Оптике» и в «Началах» он предупреждал читателя о своем намерении не прибегать к гипотезам и высказывался по поводу гипотез совершенно определенно: «Гипотезам... метафизическим, механическим, скрытым свойствам, не место в экспериментальной философии». Знаменитое hupotheses non fingo («гипотез не измышляю») Ньютона кратко и точно выражает его отношение к гипотезам, и в этом пункте он полностью солидарен с Котсом.

Однако, несмотря на такое категорическое заявление, он и в «Началах» и особенно в «Оптике» неоднократно выдвигает и обсуждает гипотезу. Ведь уже сама его знаменитая концепция абсолютного пространства, не постигаемого чувствами, является гипотезой и притом явно метафизического характера. Более того, в предисловии к первому изданию «Начал» он выдвигает в качестве основной программы физики задачу построения механической теории природы. При этом он исходит из гипотезы, что явления природы «обусловливаются некоторыми силами, с которыми частицы тел, вследствие причин, покуда неизвестных, или стремятся друг к другу и сцепляются в правильные фигуры, или же взаимно отталкиваются и удаляются друг от друга»

Картина мира, рисуемая в этом программном высказывании, основана на атомной гипотезе и представлении о неизвестных еще межатомных притягательных и отталкивательных силах. Что же касается самих дально-действующих центральных сил, математическую характеристику которых Ньютон изложил тщательно и подробно, то он подчеркивал, что эта характеристика только математическая и она вовсе не означает, что ею определяются «физические причины происхождения таких сил» или что силовым центрам («которые суть математические точки») приписываются «физические силы», формулируя понятия, характеризующие центростремительные силы, Ньютон подчеркивал: «Эти понятия должно рассматривать как математические, ибо я еще не обсуждаю физических причин и места нахождения сил».

Заканчивая «Начала», Ньютон пишет «общее поучение» в духе Котса, начиная его словами: «Гипотеза вихрей подавляется многими трудностями», и более кратко, чем Коте, но с большей точностью излагает суть своей теории, которая хорошо согласуется с наблюдениями, в то время как картезианская вихревая теория им противоречит. В духе Котса Ньютон приходит к выводу, что «такое изящнейшее соединение Солнца, планет и комет не могло произойти иначе, как по намерению и по власти могущественного и премудрого существа». Таким образом, вопреки своему намерению «не измышлять гипотез», Ньютон вводит гипотезу бога и подробно обсуждает ее, заканчивая свой богословский экскурс утверждением, что рассуждения о боге «на основании совершающихся явлений, конечно, относятся к предмету натуральной философии». Итак, картезианским гипотезам «не место в натуральной философии», богословским же и Коте и Ньютон охотно предоставляют страницы «натуральной философии». В этом пункте они солидарны.

Но заканчивается это антикартезианское богословское «общее поучение» совершенно неожиданно: «Теперь следовало бы кое-что добавить о некотором тончайшем эфире, проникающем все сплошные тела и в них содержащемся, коего силою и действиями частицы тел при весьма малых расстояниях взаимно притягиваются, а при соприкосновении сцепляются, наэлектризованные тела действуют на большие расстояния, как отталкивая, так и притягивая близкие малые тела, свет испускается, отражается, преломляется, уклоняется и нагревает тела, возбуждается всякое чувствование, заставляющее члены животных двигаться по желанию, передаваясь именно колебаниями этого эфира от внешних органов чувств мозгу и от мозга мускулам. Но это не может быть изложено вкратце, к тому же нет и достаточного запаса опытов, коими законы действия этого эфира были бы точно определены и показаны».

Физик в Ньютоне побеждает теолога, и он заканчивает свое творение наброском грандиозной программы физики эфира, объясняющей свойства тел, электрические, оптические и физиологопсихические явления совершинно в духе материалистической концепции Декарта.