Что, если Ламарк прав? Иммуногенетика и эволюция

Стил Эдвард

Линдли Робин

Бландэн Роберт

Глава 4

КЛОНАЛЬНО-СЕЛЕКЦИОННАЯ ТЕОРИЯ

 

Первую «селекционную» теорию образования антител предложил в 1900 г. Пауль Эрлих (Ehrlich). Согласно его теории, существуют клетки (по-видимому, В-лимфоциты), на поверхностной мембране которых расположено много разных молекул антител. Эти клетки способны синтезировать любое из них. После того как происходит связывание чужеродного антигена с каким-то одним антителом, клетка начинает производить антитела только этой специфичности. Поскольку этот «селективный» процесс происходит одновременно в большом числе клеток, образуется много антител, специфичных к данному антигену. Сейчас известно, что идея Эрлиха не верна. Современные селекционные теории, основанные на представлениях о том, что одна клетка может продуцировать только антитела одного типа (а не многих), начали появляться только в 1950-х гг.

Первой среди них была теория, предложенная Нильсом Ерне (Jerne) в 1955 г. Несмотря на ошибочные представления об антителах как основных единицах отбора, его вклад в проблему был плодотворен. Его теория переместила интересы иммунологов с инструктивных теорий, по которым антитела принимают любую форму в зависимости от формы антигена, на селекционные. В 1957 г. Макфарлейн Бернет предположил, что основной единицей отбора антигеном является клетка, и что одна клетка отвечает за образование антител только одного типа. Именно Бернет придумал термин «клональная селекция» [I]. В основе этой теории лежит представление о том, что «одна клетка производит только одно антитело» (точнее, антитела одной специфичности). Существует много разных клеток (лимфоцитов), образующих и несущих на поверхности разные антитела. Клетка «отбирается» антигеном, форма которого соответствует антителам, производимым данной клеткой. Именно она начинает размножаться и дает клон идентичных клеток, причем все клетки клона продуцируют антитела одной специфичности. Согласно этой теории, должен существовать механизм, который обеспечивает проявление на поверхности клетки антител только одной специфичности и исключает все другие антитела. Теперь мы знаем, что «решение», какое антитело будет синтезироваться в В-клетке, принимается на ранних стадиях развития лимфоцита. Бернет не только нашел экспериментальные свидетельства в пользу этой теории, но и сформулировал ее следствия для проблемы различения «своего» и «не-своего».

В краткой форме мысль об отборе клеток была высказана Дэвидом Талмейджем (Talmage) в 1957 г., но Бернету мы обязаны всесторонней разработкой этой теории. Далее клонально-селекционная теория развивалась усилиями таких исследователей, как Мелвил Кон и Элистэр Каннингем (Cunningham). До сих пор основные представления этой теории объясняют, как иммунная система приспосабливается к разнообразным и постоянно меняющимся антигенам внешней среды. Основные положения клонально-селекционной теории подтверждены экспериментально (рис. 4.1).

Рис. 4.1. Клональная селекция. Эта идея иллюстрируется также на рис. 1.2 и в табл. 3.1.

Привлекательность этой теории состояла в том, что она давала разумные объяснения механизма аутотолерантности. Если рецептор на поверхности развивающегося незрелого лимфоцита связывается с собственным антигеном, клетка получает «отрицательный» сигнал и уничтожается. (В отличие от этого, зрелые лимфоциты должны размножаться, продуцировать и секре-тировать антитела, если их рецептор связан с антигеном.) Так как собственные антигены — это первые молекулы, которые встречаются незрелым лимфоцитам, этот процесс должен происходить в местах развития лимфоцитов. Бернет назвал его уничтожением «запрещенных» клонов. Это очень элегантное теоретическое объяснение проблемы аутотолерантности. Только лимфоциты, прошедшие этот селекционный фильтр (уничтожение запрещенных клонов), достигают зрелости и приобретают способность связываться с чужеродными антигенами. С тех пор, как в 1957 г. была сформулирована клонально-селекци-онная теория, проведено множество иммунологических исследований, выявлены разные классы лимфоцитов (В- и Т-клетки) и роль каждого из них в иммунном ответе, однако основные положения этой теории до сих пор справедливы.

Итак, мы видим, что в основе клональной селекции лежит простой дарвиновский отбор. Предполагается, что до встречи с антигеном уже существует множество разнообразных клеток, несущих рецепторы. Свои и чужие антигены играют только селективную роль (соответственно отрицательную или положительную) в формировании репертуара лимфоцитов в крови и лимфатической системе. Предполагается, что есть единственное событие, от которого зависит отбор, — это реакция связывания поверхностного антитела В-клеток (или рецепторов Т-клеток) с антигеном определенной формы. Популяции клеток, образовавшиеся в результате «клонального роста», продуцируют специфические антитела и Т-клетки, необходимые для борьбы с инфекцией. Клональный рост может увеличивать число клеток в тысячи раз. Это объясняет, почему концентрация антител в крови растет в экспоненциальной зависимости от времени после заражения или искусственного введения чужеродного антигена (рис. 3.8). Увеличение концентрации антител отражает экспоненциальный рост популяции продуцирующих их клеток, численность которых удваивается при каждом делении. После пятнадцати делений должно появиться около 30 тысяч клеток, возникших из одной исходной клетки, так как число клеток описывается 2"-степенньш рядом, где п равно числу делений. Такое увеличение численности клеток, секретирую-щих антитела, дает возможность быстро достичь эффективной концентрации антител, достаточной для борьбы с острой инфекцией. Как правило, это занимает от трех до пяти дней.

Легко представить себе, как клонально-селекционная теория объясняет иммунологическую память. Она является следствием (по крайней мере, частично) размножения стимулированных антигеном клеток (клональная экспансия). Если антигенспецифичные клетки размножились, некоторые из их потомков становятся долгоживущими. Эти клетки «памяти» могут оставаться в кровеносной системе и в лимфоидных тканях, дожидаясь следующей встречи с тем же самым антигеном спустя много лет.

Эта теория дает также объяснение феномена созревания аффинности (сродства антитела к антигену). Образующиеся на поздних стадиях иммунного ответа антитела имеют большую аффинность, чем те, что образовались ранее (рис. 3.8). По мере того, как концентрация антигена в лимфоидной ткани падает, конкуренция за связывание с редким антигеном приводит к тому, что для размножения «отбираются» более успешные В-клет-ки. В-лимфоциты с поверхностным рецептором самой высокой аффинности (антиген связывается более прочно) будут побеждать в соревновании, и синтезируемый ими тип антител станет, в конечном счете, преобладающим. В следующей главе (рис. 5.4) мы рассмотрим этот процесс отбора, основанного на сродстве, более подробно.

Если изучить каждое антитело в образце крови, то можно обнаружить тысячи разных молекул антител, причем каждое способно распознать специфичный антиген внешней среды. Если определить аминокислотную последовательность каждого из этих антител, окажется, что одно антитело отличается от другого последовательностью аминокислот в вариабельной V-области, которая образует антигенсвязывающий центр (рис. 3.2). Этот факт был установлен в 1960-х гг., и он дал решающие доказательства истинности клонально-селекционной теории Бернета.

Важная экспериментальная проверка клонально-селекционной теории была предпринята в конце 1960-х гг. нашим коллегой Гордоном Эйда (Ada), работавшим с Полин Берт (Byrt) в Институте медицинских исследований Уолтера и Элайзы Холл. В основе их эксперимента лежало предположение, что если популяцию лимфоцитов подвергнуть воздействию антигенов одного типа, с ними будет связываться только клон лимфоцитов с антителами, реагирующими на этот антиген, тогда как огромное большинство клеток не будет связываться, т. к. они продуцируют антитела, реагирующие на другие антигены. Создавая радиоактивные антигены, Эйда и Берт рассуждали так: лимфоциты, которые свяжут их, будут облучены и погибнут. Таким образом, популяция лимфоцитов окажется неспособной к иммунному ответу на проверяемый радиоактивный антиген, но будет нормально реагировать на другие антигены. Именно такой результат они и получили. Этот эксперимент стал известен как «эксперимент по самоубийству антигеном». Он был первым экспериментальным доказательством клонально-селекционной теории.

Отталкиваясь от клонально-селекционной теории, Тед Стил и Боб Бландэн стали изучать механизм эволюции генов антител. Эта новая область иммунологии исследует генетические особенности процессов, обеспечивающих разнообразие антител и созревание аффинности. С конца 1970-х гг. становится все больше известно об уникальной системе генов Ig и ТкР. Сейчас мы уже много знаем о структуре последовательностей ДНК этих генов. Мы можем объяснить, почему одна клетка производит антитела одной специфичности, и как мутация порождает новое антитело. Именно это делает иммунную систему способной продуцировать антитела высокой аффинности ко многим тысячам новых антигенов.

Клонально-селекционная теория поставила вопрос о том, подвергаются ли Ig-гены изменениям в отдельных В-лимфоци-тах после стимуляции антигеном. В общей форме этот вопрос обсуждал еще Бернет в 1957 г. Однако он полагал, что разные Ig-гены, кодирующие антитела различной специфичности, существуют уже до того, как чужеродные антигены внедряются в систему. (Дарвин в предьвдущем столетии также считал доказанным предсуществование генетической изменчивости животных и растений, на которую действует естественный отбор.) Таким образом, Бернет предполагал, что гены антител экспрес-сируются в популяции клеток, последние затем могут отбираться антигеном и клонально размножаться. (Современные методы молекулярной биологии, необходимые для ответа на вопрос о соматическом мутировании в то время были недоступны.)

Тем не менее в конце 1960-х-начале 1970-х гг. Мелвин Кон, а затем Элистэр Каннингем привели доводы в пользу того, что иммунная система имеет способность генерировать соматические мутации генов антител в ответ на внедрение чужеродных антигенов. По их мнению, по-видимому, выгодно, чтобы с ДНК зародышевой линии наследовалось только небольшое число необходимых Ig генов, а новые могли бы возникать в течение жизни животного в виде соматических мутаций, вызванных антигеном. В то время, когда эта теория соматического мутирования была высказана впервые, она была оценена по достоинству только небольшим числом иммунологов. Большинство продолжало придерживаться мнения, что все антитела закодированы в генах половых клеток, то есть они предсущест-вуют до рождения животного. Это предполагало, что изменчивость является результатом случайных (редких) мутаций в генах клеток зародышевой линии, которые передаются потомкам. Без преувеличения можно сказать, что споры между приверженцами идеи «соматических мутаций» и «мутаций в половых клетках» были в центре внимания большинства наиболее важных работ. Они сыграли ту же роль, что и дискуссия в физике о кор-пускулярно-волновой двойственности в квантовой механике в 1920-х годах. Поэтому мы вынуждены объяснять основные молекулярные механизмы в контексте их исторических корней.

 

Почему антитела специфичны и как приобретается аутотолерантность

Вернемся к проблеме различения своего и не-своего. Мы уже говорили, что для различения своего и не-своего антитела должны быть специфичными. Таким образом, для того чтобы отличать огромный внутренний мир молекул от внешнего мира (а некоторые химические характеристики этих миров одинаковы), эволюция обеспечила ошеломляющее разнообразие молекул, распознающих антигены. Антитела каждой специфичности клонально экспрессируются в популяции тысяч клеток, и простой механизм удаления клона выбраковывает те клетки, которые реагируют на самого себя. Это придает особое значение специфичности и разнообразию антител. В качестве простого, но не строго корректного сравнения [2] можно привести четкость изображения на экране телевизора, которая зависит от числа минимальных элементов изображения (пикселов) в строке экрана. Чем плотнее строка, тем четче изображение. Для того чтобы легко различать разные участки и, следовательно, идентифицировать изображение, необходимо иметь набор разных пикселов (светлые, темные, красные, зеленые и так далее). По аналогии, чем меньше специфичных антител и рецепторов Т-лимфоцитов, тем большему риску уничтожения они подвергаются в процессе установления аутотолерантности. Если бы все они были неспецифичны, было бы два возможных исхода. Первый — после того, как установилась аутотолерантность, у нас не осталось бы иммунной системы. И второй — если бы аутотолерантности не существовало, наша собственная иммунная система атаковала бы и разрушала организм, которому она принадлежит.

Поскольку мы приняли необходимость существования аутотолерантности, мы должны считать аксиомой утверждение, что аутотолерантность каждого индивида должна «обучаться» в дарвиновском смысле этого слова. Поясним это. Если самцы инб-редной линии А мышей скрещиваются с самками генетически другой инбредной линии В, то появляется потомство, которое унаследовало разные гены от разных родителей. Мыши линии А генетически запрограммированы производить в клетках и тканях молекулы А-антигена, тогда как мыши линии В запрограммированы производить В-антигены. В некотором смысле это напоминает правила переливания крови у человека для системы групп крови АВО. Взрослые особи линии А всегда будут развивать анти-В иммунную реактивность (естественно развивающиеся антитела и Т-клетки), а особи В будут развивать анти-А реактивность. Таким образом, ткань, пересаженная от А к В и, наоборот, от В к А, всегда будет отторгаться. Однако потомки генетически различающихся родителей будут по своему антигенному составу АВ, и это представляет для них серьезную проблему. Если бы аутотолерантность не приобреталась в ходе развития, АВ потомки этого скрещивания не могли бы выжить. Они должны были бы саморазрушиться, как только их иммунная система приобрела бы способность реагировать на свои собственные клетки. Однако мы знаем, что популяции человека и большинство популяций диких животных чрезвычайно разнообразны по генам, кодирующим антигены гистосовмести-мости. Следовательно, каждый из нас несет разные комбинации этих антигенов, унаследованных от родителей. То есть, все мы похожи на гибридов АхВ, изображенных на рис. 4.2.

Рис. 4.2. Толерантность к собственным антигенам не детерминирована генетически. Мелвин Кон и его коллеги Петер Бретчер и Род Лангман неоднократно подчеркивали этот ключевой момент. На рисунке показан результат эксперимента, поставленного природой (случайные скрещивания генетически различающихся индивидов). Поскольку взрослое потомство АВ не разрушает само себя аутоиммунной реакцией, это со всей очевидностью свидетельствует о том, что толерантность приобретается в ходе развития организма. Клонально-селекционная теория Макфарлейна Бернета объясняет, как это достигается путем дарвиновского отрицательного отбора в иммунной системе — уничтожением «запрещенных» клонов, направленных против собственных антигенов (рис. 4.1).

Очевидно, что индивид АВ на какой-то стадии своего развития должен «научиться» быть толерантным и к А-, и к В-антигенам. То есть, механизм аутотолерантности должен приобретаться «соматически». В начале 1950-х годов Питер Медавар и его коллеги экспериментально подтвердили эти теоретические предположения, впервые сформулированные Макфарлейном Бернетом и Фрэнком Феннером (Fenner) в 1949 г. Группа Медавара показала, что, если новорожденным мышам линии В ввести клетки линии А, они вырастают толерантными к трансплантатам кожи линии А. Таким образом, мышей линии В можно было соматически модифицировать так, что они приобретали способность не отторгать кожные трансплантаты линии А, которые в норме у взрослых отторгаются (рис. 4.3). Вернет и Медавар в 1960 г. получили Нобелевскую премию за открытие приобретенной иммунной толерантности.

Рис. 4.3. Эксперимент Питера Медавара по приобретенной неонатальной толерантности. Питер Медавар, Лесли Брент и Руперт Биллингем провели свои эксперименты в 1940-х-начале 1950-х годов. Результаты экспериментов согласуются с клонально-селекционной теорией Макфарлейна Бернета. Они показали, что введение в организм на ранних стадиях неонатально-го развития чужих клеток из костного мозга может индуцировать приобретенную иммунологическую толерантность. Введение на этих стадиях чужеродного антигена вызывает уничтожение клонов, направленных против чужих. В результате иммунная система начинает относиться к чужим тканям как к своим.

Итак, мы приходим к заключению, что необходимая для приобретения и иммунности, и толерантности соматически обучающаяся программа основана на ключевом взаимодействии (или связывании) антигенов с клонально экспрессирующи-мися поверхностными молекулами, распознающими антигены (антитела, ТкР). Это достигается в процессе дарвиновского отбора, действующего в популяции лимфоцитов. Это — основной принцип функционирования иммунной системы. Мы объясним в дальнейшем, что обратная связь между генами сомы и половых клеток дает логически последовательное объяснение всех уникальных молекулярно-генетических свойств иммунной системы. Но, прежде чем вести читателя дальше, мы должны потратить немного времени на описание деталей строения ДНК-последовательностей генов Ig и ТкР и некоторых необычных свойств этих генов.

 

Чем гены антител отличаются от других генов: перестройки ДНК вариабельной области

Принцип «ДНК делает РНК делает Белок», уже описанный в гл. 2, применим для всех организмов: от простых бактерий до сложньк позвоночных, включая человека. Однако существует одно важное отличие структуры генов высших клеток, включая клетки позвоночных, и соответствующих генов бактерий. Кодирующие последовательности эукариотических генов (экзо-ны) перемежаются с некодирующими участками ДНК (интронами).

В конце 1970-х годов Р. Роберте (Roberts) и П. Шарп (Sharp), получившие Нобелевскую премию в 1994 г., показали, что первичная копия информационной РНК (мРНК), образующаяся в клеточном ядре, содержит интронные последовательности, но к моменту выхода мРНК из ядра в цитоплазму, участки интронов в ней уже отсутствуют, а экзоны оказываются состыкованными, так что мРНК без запинки транслируется в белок.

Процесс удаления интронов называется сплайсингом РНК. Сплайсинг чрезвычайно точен, он редко разрезает РНК в неправильном месте. Сейчас известно, что для обозначения границ интронов существует сигнальная последовательность, узнаваемая особым ферментным комплексом (сплайсосомой). Некоторые интроны являются рибозимами (РНК-ферментами), способными к самосплайсингу. Возможно, это реликты «мира РНК», существовавшего много миллиардов лет назад. Часто сплайсосомы состоят из РНК и белка. Отметим один очень важный момент: места сшивок (разрезании), которые закодированы в ДНК-последовательности, разрезаются сплайсо-сомами, действующими на одноцепочечные последовательности РНК, только после транскрипции. Двухцепочечная ДНК генома никогда не разрезается в этих местах. Все гены, представленные одной копией (рис. 4.4), кодируют белки, необходимые для выполнения функций «домашнего хозяйства» клетки или многоклеточного организма. Именно эти гены являются предметом решения «жизнь или смерть» при дарвиновском отборе. Например, гены, кодирующие белковые субъединицы молекулы гемоглобина (которая переносит кислород от легких ко всем органам тела), представлены одной копией. Поврежденные молекулы, появившиеся в результате мутаций, обычно неэффективно переносят кислород и, следовательно, приводят к гибели организма или снижают его жизнеспособность.

Таким образом, в высших клетках имеется механизм редактирования РНК, который работает до того, как она появится в форме зрелой молекулы, кодирующей специфическую последовательность аминокислот — белок. Удаление интронов из РНК и соединение кодирующих последовательностей должны быть очень точными, чтобы гарантировать сохранение рамки считывания триплетов оснований (см. приложение). Если на этом этапе произойдет ошибка (и изредка они происходят), может образоваться мРНК с последовательностью «вне рамки». Обычно это приводит к синтезу ненормального белка и преждевременному прекращению синтеза из-за появления стоп-ко-дона. (Стоп-кодоны не определяют никакой аминокислоты. Таким образом, они прекращают добавление аминокислот к белковой цепи. Существует три стоп-кодона — это UAG, UAA и UGA.) Эти стоп-кодоны в норме определяют 3'-конец, или правую границу кодирующей последовательности гена. Преждевременная остановка (терминация) приводит к образованию более короткого белка, обычно со сниженной функцией. Следовательно, нормальные гены, кодирующие белки, можно представить как ряд соприкасающихся триплетных кодонов со стоп-кодоном на конце (подобно точке в конце предложения). Их называют открытой рамкой считывания (сокращенно ORF). Давление естественного отбора должно действовать против любой мутации, приводящей к появлению стоп-кодона внутри ORF.

Рис. 4.4. Строение бактериального гена и однокопийного эукариотического гена. На рисунке показаны различия в строении генов, кодирующих белок, у бактерий и у высших клеток. Обратите внимание, что левый конец цепи ДНК принято обозначать как 5'-конец, правый конец — как 3' (произносится как «пять штрих» и «три штрих», соответственно). Слово «однокопий-ный» означает, что в хромосоме находится только одна функциональная копия гена (в отличие от семейства V-генов, рис. 4.5, к которому относится много генов с очень высокой степенью сходства ДНК-последовательностей, расположенных в одной хромосоме). Участки ДНК, которые кодируют белок, изображены в виде прямоугольников. Двухцепочечная ДНК изображается прямой линией, одноцепочечная информационная мРНК — волнистой линией. Изогнутые стрелки указывают на точку начала транскрипции мРНК.

А. У бактерий участок, кодирующий белок, представлен непрерывной рядом триплетных кодонов, каждый из которых определяет одну аминокислоту (см. приложение). мРНК транскрибируется и немедленно транслируется в аминокислотную последовательность (белок) в рибосомах.

Б. У эукариот почти все гены, кодирующие белки, устроены сложнее. У них последовательности, кодирующие белок (экзоны), прерываются некодирующими последовательностями (интронами). На рисунке это обозначено промежутками между кодирующими участками. Редким исключением (гены без интронов) в высших клетках являются гены, кодирующие гистоны (табл. 5.1), а также псевдогены и функциональные ре-трогены, появившиеся в результате обратной транскрипции молекулы мРНК (см. гл. 7). Таким образом, по матрице ДНК создается длинная содержащая интроны молекула про-мРНК. Особая молекулярная внутриядерная органелла (сплайсосома) определяет границы между интронами и экзонами, вырезает интроны из про-мРНК и точно соединяет экзоны, образуя непрерывный кодирующий участок. Затем зрелая, или «процессированная», мРНК экспортируется из ядра в цитоплазму, где она транслируется в последовательность аминокислот в рибосоме.

Молекулярно-генетические исследования Ig-генов начались в середине 1960-х гг. К этому моменту было известно, что и тяжелые (Н), и легкие (L) цепи антитела выполняют двойственную функцию (рис. 3.2). Они состоят из вариабельной аминокислотной последовательности, или V-домена (служит для связывания антигена), и константной, или С -домена (служит, например, для запуска лизиса клетки-мишени или фагоцитоза). Гены антител отличаются от всех остальных генов, локализованных и картированных генетиками в определенных местах хромосом (называемых локусами). Гены, кодирующие V-и С-домены, отделены друг от друга огромным участком последовательности ДНК. Например, V- и С-домены тяжелых цепей мыши находятся в хромосоме 12, около концевого участка длинного плеча хромосомы. Генетическое картирование и последующее изучение последовательности нуклеотидов ясно показали, что V-участок отстоит от С-участка по крайней мере на 300 000 п. н. (300 тыс. п. н.) оснований! Почему?

Даже в середине 1970-х гг., когда стала известна экзоно-ин-тронная структура генов, такое большое расстояние казалось необычным. Однако десятью годами раньше Драйер (Dreyer) и Беннет (Bennet) предположили, что единый участок ДНК, кодирующий Н- или L-цепь, образуется в результате перемещения (транслокации) V-участка к С-участку. То есть, для объяснения удивительного свойства Ig-генов было предсказано существование особого типа редактирования, или сплайсинга ДНК-последовательностей. Далее, эти авторы допускали, что данный процесс происходит при созревании лимфоцита. Драй-ер и Беннет предположили, что часть Ig-локуса (или места локализации в хромосоме последовательности ДНК, кодирующей Ig-гены) содержит в зародышевой линии большое число (сотни) V-генов. В каждой отдельной В-клетке один из этих генов передвигается и становится рядом с одним из нескольких возможных С-генов. Случайное перемещение только одного V-ге-на из большого числа возможных приводит к тому, что клетка производит антитела только одной специфичности. После такой случайной перестройки генов Н- и L-цепей клетка из большого числа возможных комбинаций Н + L белковых цепей создает один полный белок. Затем клетка экспрессирует это антитело на поверхности, и ее судьба решается окончательно: если она окажется «против своих», она будет уничтожена. Если она выжила, она станет потенциальным участником иммунного ответа на чужие антигены.

Это теоретически привлекательное, хотя и достаточно смелое предсказание перестройки ДНК, было доказано лишь десять лет спустя Сусуми Тонегава, который описал организацию и перестройку генов Ig-локуса у мыши[3]. Оказалось, что перестройка ДНК много сложнее, чем предполагалось. Этот процесс изображен на рис. 4.5; он имеет место и у мыши, и у человека. У других позвоночных может быть несколько иная, но в принципе сходная организация кодирующих элементов Ig-локуса.

Несмотря на то, что до точного картирования и секвениро-вания (определения последовательности нуклеотидов) каждого V-элемента генома мыши и человека еще далеко, у нас есть четкая картина строения Ig-генов в клетках зародышевой линии и в соматических клетках. На рис 4.5 приведена схема строения гена тяжелой цепи Ig, но очень похожие схемы можно нарисовать и для генов легких цепей Ig, и для ТкР-генов. Обратите внимание, что около ста V-генов (или V-элементов) расположено левее соединительных J-элементов (от англ. joining — J) и D-элементов (от англ. diversity — разнообразие), а они, в свою очередь, отделены от небольшого числа (примерно 8) генов константной области (C-constant). D- и J-элементы кодируют от трех до пятнадцати аминокислот, тогда как V-элемент — около 100 аминокислот.

О генах антител в неперестроенном виде говорят, что они имеют «конфигурацию зародышевой линии». В таком виде находится ДНК в половых клетках (сперматозоидах и яйцеклетках) и во всех клетках организма, кроме зрелых лимфоцитов (в клетках печени, почек, поджелудочной железы, в других лимфоцитах, например, в фагоцитах). В каждом созревающем лимфоците мыши и человека ДНК подвергается случайной соматической перестройке. Один из V-элементов перемещается и соединяется с одним D- и одним J-элементом. Этот участок располагается перед первым С-геном. Кодирующий С-участок разделен рядом интронов. После этого все еще остается длинная промежуточная последовательность между перестроенным V-геном, который теперь называется V(D)J-ген, и С-участком. Эту структуру называют «соматической конфигурацией». Скобки вокруг D в общем символе гена появляются, потому что гены легких цепей Ig построены только из V- и J-элементов.

В конфигурации зародышевой линии ДНК не транскрибируется в мРНК, по которой могли бы синтезироваться Н- или L- белковые цепочки антитела. В соматической конфигурации перестроенные V(D)J- и С-участки активно транскрибируются, образуется мРНК, которая транслируется в Н- и L- цепи антитела. В неперестроенных V-элементах никогда не происходит соматического мутирования. Мутации появляются только в V(D)J-перестройке.

Перестройки ДНК выполняются набором особых рекомби-национных ферментов. Кодирующие их гены называются генами, активирующими рекомбинацию (recombination activating genes — RAG), и локализованы где-то в других местах генома. RAG-ферменты распознают ДНК-последовательности (реком-бинационные сигнальные последовательности) на соответствующих концах V-, D- и J-элементов, которые и соединяются. Первым шагом в экспрессии тяжелой цепи в созревающей В-клетке костного мозга человека или мыши является DJ-пере-стройка. Вся промежуточная ДНК между D-элементом (их может быть 20 или более) и J-элементом (их 4 или 5) удаляется. Следующий шаг — перемещение случайно выбранного V-эле-мента к перестроенному DJ-элементу, причем снова вся промежуточная ДНК удаляется.

Рис. 4.5. Строение генов, кодирующих V- и С-области тяжелых цепей антитела, в зародышевой линии и после соматической перестройки у человека и мыши.

А. В конфигурации зародышевой линии ряд очень похожих (но все-таки различных) вариабельных V-элементов лежит выше (левее) экзонов, кодирующих константную С-область. Эти V-элементы зародышевой линии (кодирующие примерно 95 аминокислот) называются неперестроенными. Между V- и С- элементами расположены D- и J-элементы (каждый кодирует короткую последовательность аминокислот). Каждый V-элемент имеет лидерную (L) последовательность, которая кодирует короткую последовательность аминокислот, сигнальный пептид. Все гены, кодирующие белки, например, антитела, предназначенные для выведения из клетки (для секреции) или для перехода в другие окруженные мембраной области клетки, имеют такие сигнальные пептиды, которые позволяют им перемещаться в нужные внутриклеточные или внеклеточные области. Интрон между L и V называется L-V-интроном (или лидерным интроном). Его значение для понимания следов интеграции сомы в зародышевую линию подробно описано в гл. 6.

Б. В ходе развития В-клеток в костном мозге в каждом В-лимфоците случайно перестраиваются V-, D- и J-элементы тяжелой цепи, и появляется перестроенная последовательность вариабельной области VDJ, которая теперь называется соматической конфигурацией. Для Н-цепей на первом этапе перестройки происходит объединение DJ, за ним следует объединение с V-элементом, и образование VDJ. После перестройки обнаруживается, что вся ДНК между случайно выбранным V-элементом и использованным J-элементом удаляется из клетки. Таким образом, каждая успешная перестройка ДНК вариабельной области уникальна для каждой зрелой В-клетки. Обратите внимание, что перестроенный участок (VDJ) лежит выше (левее) экзона, кодирующего С-белок. Заметьте также, что в участке между VDJ и С, названном J-C-интроном, лежит неиспользованный элемент (который в этом примере просто удаляется). Про-мРНК, содержащая вариабельный (VDJ) участок, присоединенный к С-участку, образуется в ядре. L-V и J-C интроны (и интроны внутри С -участка) затем вырезаются, что приводит к экспорту зрелой РНК молекулы в цитоплазму, где она транслируется на рибосоме в последовательность аминокислот. Лидерный (сигнальный) пептид отрезается от белка, когда он выделяется из клетки (объяснения терминов см. также в табл. 3.1 и 5.1, на рис. 4.4 и в тексте). Соматическая конфигурация и конфигурация зародышевой линии генов L-цепей такая же, кроме того, что легкие цепи не содержат D-участков.

 

Продемонстрированные Тонегавой V(D)J-nepecтройки (случайное использование примерно 100 V-генов, 20 D-генов и 4 J-генов и случайное объединение тяжелых и легких цепей для образования гетеродимерного связывающего центра) дают возможность продуцировать большое потенциальное разнообразие белков из сравнительно небольшого количества генетического материала. Кроме того, иногда слияние V, D, и J приводит к добавлению или потере оснований, увеличивая, таким образом, разнообразие.

Разобравшись в этих молекулярных процессах, мы можем теперь задать два очень важных вопроса. Почему В-лимфоцит производит антитела только одной специфичности? Почему соматические мутации (в В-лимфоцитах) возникают преимущественно в перестроенном V(D)J-участке?

Все соматические клетки (клетки тела) имеют двойной набор хромосом, один набор от матери, другой от отца. Такие клетки называются диплоидными. Сперматозоиды и яйцеклетки имеют только по одному набору хромосом (они гаплоидны). Оплодотворение, слияние сперматозоида и яйцеклетки, восстанавливает диплоидное состояние. Кроме половых хромосом (X и Y), все другие хромосомы диплоидного набора разбиваются на пары с очень похожими ДНК-последовательностями. По мере созревания В-лимфоцита начинается перестройка V-, D- и J-элементов. Успешная V(D)J-перестройка в одной хромосоме посылает сигнал, который выключает активность RAG-ферментов и препятствует перестройке в гомологичной хромосоме. Вот, в принципе, ответ на первый вопрос. Дальнейшие детали мы не рассматриваем.

Второй вопрос, почему мутации ограничиваются V(D)J-участком, чрезвычайно важен для обсуждения обратной связи между сомой и зародышевой линией, которая составляет главную тему этой книги. Мы подробно расскажем об этом в следующей главе. Здесь подчеркнем лишь некоторые общие принципы. Если мутации в вариабельной области антитела могут оказаться полезными, то мутации в константной области, скорее всего, вредны, так как они могут нарушить эффекторные функции антитела, запуск лизиса бактериальных клеток или стимулирование фагоцитоза (рис. 3.1). Разделение V- и С-участков позволило эволюции создать механизм, который обеспечивает мутации в V-участке, но сохраняет С-участок неизменным. Вот что происходит в В-лимфоците на определенных стадиях его жизни. Перестроенный V(D)J-ген может подвергаться очень высокому уровню соматических мутаций, и новое антитело оценивается по способности связывать антиген (см. следующую главу). Антитела с самой высокой аффинностью к чужеродному антигену выигрывают в отборочных соревнованиях за связывание антигена, сохраняются и становятся долго живущими клетками памяти. В-лимфоцит проиграет соревнование, если мутация уменьшает или уничтожает аффинность; такие клетки погибают. В-лимфоциты, кодирующие антитела, которые связывают собственные антигены, также уничтожаются, и, следовательно, сохраняется аутотолерантность.

Сейчас мы хорошо понимаем, как иммунная система может кодировать миллионы специфических антител, и что тем не менее все еще имеется достаточно ДНК для всех остальных генов, необходимых клетке и многоклеточному организму. Простыми вычислениями можно показать возможности зародышевой линии:

• у мыши или человека в конфигурации зародышевой линии Н-цепи закодировано примерно 100 V-элементов, примерно 20 D-элементов и 4 J-элемента. В соответствии с моделью случайных перестроек это может дать 100 х 20 х 4 = 8000 возможных Н-белковых цепей;

• конфигурация зародышевой линии главного генного кластера, определяющего L-цепь, кодирует примерно 100 V-элементов и 4 J-элемента, что может дать 100 х 4 = 400 возможных L-белковых цепей;

• таким образом, общее число возможных HL-белковых гете-родимеров, при условии, что все Н + L образуют жизнеспособные антитела, равно 8000 х 400 = 3,2 х 106, или примерно 3 миллиона специфичных антител.

В этих вычислениях не учитывается дополнительное разнообразие, возникающее в результате добавлений или потерь оснований в процессе слияния V(D)J.

Сколько же из этих 3 млн. потенциальных антител используется? Ответ прост — мы не знаем. Однако нам известно, что около половины V-элементов никогда не участвуют в образовании антитела (то есть обнаружено, что они не перестраивались в В-клетках). Род Лангман (Langman) и Мелвин Кон теоретически рассмотрели один фактор, который ограничивает репертуар антител. У мыши примерно 50 миллионов В-клеток. Если случайный репертуар из 3 млн. антител разных специфичностей равномерно распределен по 50 миллионам В-клеток, то среднее число клеток с данным антителом должно быть равно примерно семнадцати. При острой бактериальной инфекции для того чтобы победить в суровой борьбе с быстро размножающимися бактериями, иммунная система должна выработать большое количество антител с достаточной авидностью, чтобы уничтожать больше бактерий, чем их образуется при размножении. Так как бактерии могут делиться чаще, чем один раз в час, а В-клетки затрачивают по крайней мере 5—6 часов на деление, это соревнование может быть выиграно только при условии, что начальное число В-клеток, связывающих эти бактерии, велико. Другие критические факторы — это скорость образования белка антитела в В-клетках и их физическая локализация относительно места инфекции. Чем ближе они находятся, тем выше локальная концентрация антител и больше скорость уничтожения инфекции. Эти ограничения заставили Лангмана и Кона предположить, что начальный репертуар функциональных антител (до соматического мутирования) должен быть меньше потенциального репертуара. Они полагают, что разнообразие у мышей — около 10 тыс. специфичностей, что дает в среднем по 5 тыс. В-клеток на специфичность.

Однако эти оценки размера репертуара антител все еще велики. Основа стратегии иммунной системы как мыши, так и человека — это случайные перестройки V- , D- и J-генов. Полностью функциональные белки антител закодированы в зародышевой линии как отдельные участки ДНК, «ожидающие» соматической перестройки и сборки в функциональный V(D)J-ген (рис. 4.5). Затем случайная комбинация Н- и L-белковых цепочек образует HL-гетеродимер — антитело. Такая стратегия хранения генетической информации чрезвычайно экономна и позволяет зашифровать миллионы потенциально полезных вариантов.

Дополнительное соматическое варьирование перестроенных V(D)J-последовательностей в В-лимфоцитах также вносит вклад в разнообразие репертуара благодаря селективному размножению антител отдельных специфичностей. Действительно, сейчас мы знаем, что в зрелых В-клетках возникают вызванные антигеном соматические гипермутации перестроенных V(D)J-участков. Это важно, так как дает возможность отобрать и размножить мутантные В-клетки, производящие антитела высокой аффинности. Существует также явление, описанное группой ученых под руководством Мартина Уайгерта (Weigert) и другими, называемое «замещение V-гена» [5]. Оно происходит при образовании тяжелых цепей, и суть его состоит в том, что находящийся выше V-элемент может занять место уже существующего элемента в VDJ-последовательности. Во время клонального роста одна и та же линия В-клеток может подвергаться нескольким последовательным заменам V-гена.

Еще один момент, который следовало бы повторить, говоря о процессе перестройки и объединения V(D)J, заключается в том, что полный ген, кодирующий вариабельную область антитела, собирается из нескольких частей (битов) ДНК-последовательностей. Несколько членов каждого семейства этих частей (V, D и J) собираются случайно. V-D-J объединенный участок формирует связывающий центр антитела, который находится в непосредственном контакте с молекулой антигена.

Известно два исключения из этого общего правила, гласящего: что ни одного полного V-гена не существует в ДНК зародышевой линии. У скатов (хрящевые рыбы) одно семейство генов L-цепи в зародышевой линии состоит из «слитых» VJ-по-следовательностей [б]. Либо это семейство представляет собой первичный ген, который существовал до разделения V- и J-элементов, либо оно возникло в результате объединения V- и J-элементов. Группа Гэри Литмана (Litman), обнаружившая эти гены, отдает предпочтение последней интерпретации. Второе исключение — это группа V-псевдогенов тяжелых цепей у кур, которые содержат и «частички D», присоединенные к концу V-последовательности в предпочтительной рамке считывания, существующей в функциональных VDJ-перестройках [7]. Возможно, эти гены появились благодаря обратной транскрипции мРНК, кодирующей V(D)J-o6nacTb, в результате чего возникли ретротранскрипты кДНК с рамкой считывания объединенных VJ или VDJ, которые каким-то образом включились в половые клетки.

Мы подробно обсуждаем детали строения локусов Ig в конфигурации зародышевой линии и соматической конфигурации, поскольку это позволит интерпретировать их в рамках предположения о существовании ламарковского процесса обратной связи сомы и зародышевой линии. В следующих главах мы сравним эти конфигурации и увидим, что различия между ними высвечивают генетическую уникальность иммунной системы и позволяют назвать «умными» гены, кодирующие антитела и ТкР. Уникальные свойства Ig-генов и молекулярных продуктов этих генов, созданные в ходе эволюции позвоночных, дают возможность по-новому взглянуть на роль некоторых генетических процессов, протекающих в иммунной системе. К этим процессам относятся сплайсинг V(D)J-информационной РНК, обратная транскрипция и предполагаемый перенос ДНК от сомы в зародышевую линию.

Для многих читателей это утверждение может показаться непоследовательным. Действительно, если эволюция со всей своей мудростью смогла создать такую генетическую стратегию, которая способна кодировать более миллиона разных антител, достаточного для ответа на неожиданное, то нуждается

ли такая эффективная система в ламарковской обратной связи генов? Возможный ответ таков: дошедшая до наших дней система не могла появиться без соматического гипермутирования и без обратной связи генов сомы и зародышевой линии. Мы вернемся к этой проблеме позже.

 

Отступление: можно ли сравнивать иммунную систему с современными компьютерными антивирусными программами?

Нам кажется уместной следующая, связанная с компьютерами, аналогия. Одна из множества опасностей, перед лицом которых мы стоим в век Интернета, соединяющего миллионы персональных компьютеров, — это электронные «вирусы» — детище нашей кибернетической культуры. Многие компьютерные вирусы по своему поведению очень похожи на биологические. При заражении жесткого диска они могут уничтожать или портить и файлы, и программы. Если мы нечаянно посылаем зараженное сообщение коллегам и друзьям, то тем самым мы производим новые копии вируса, обеспечивающие его выживание. Сейчас доступны антивирусные пакеты программ, которые автоматически проверяют входящие файлы на наличие известных компьютерных вирусов. А что же абсолютно новые электронные вирусы? Как нам защитить от них свои-компьютеры? Насколько современные антивирусные компьютерные программы сравнимы с биологической стратегией иммунного ответа? Что, если кибернетики были бы в состоянии создать новые электронные вирусы со всеми врожденными эффективными стратегиями нашей собственной иммунной системы? Смогут ли интернетовские или телефонные линии и коммутирующие концентраторы начать страдать от болезней, подобньк СПИДу? Произойдет ли это до того, как программисты создадут антивирусные программы, которые способны эффективно отвечать на неожиданное? Это захватывающие вопросы. IBM в настоящий момент создает «иммунную систему» для борьбы с вирусами в киберпространстве [8]. Антивирусные программы живут в хозяине-компьютере и контролируют системные функции, изменения в программах или семействах сигнатур для того, чтобы распознавать и уничтожать вирусы. У компьютерной иммунной системы, создаваемой IBM, любой набор данных, подозреваемых на зараженность, автоматически посылается в аппарат вирусного анализа. Программа, действующая как подсадная утка, «соблазняет» вирус заразить ее, так что код вируса выявляется для дальнейшего анализа. Затем аппарат вирусного анализа обновляет свои файлы прежде, чем посылать эту новую информацию назад в инфицированную машину и в любой другой потенциально инфицированный узел в сети (иммунный ответ). Таким образом, новые антивирусные программные технологии основаны на элементарных моделях иммунной системы позвоночных. «Эволюция» уже действует на компьютерном поле боя. Дальнейшее развитие антивирусных технологий, возможно, будет изменяться параллельно знаниям о биологической эволюции.

В этой главе было описано много примеров эффективности и логики иммунной системы, которые, возможно, помогут тем, кто интересуется «биологическим» дизайном компьютерных программ, обнаружить некоторые фундаментальные принципы. Анализ того, почему самолеты не похожи на птиц, дает нам важные уроки. Птицы имеют более высоко развитые факторы стабильности и маневренности, чем самолеты, однако, самолеты летают быстрее. Создания природы, как правило, оказываются более гибкими и легкими, нежели сконструированные людьми аппараты. Веками природа служила источником вдохновения для разработчиков новых технологий. Однако нам еще далеко до уровня эффективности системы приобретенного иммунитета. Как заметил Ричард Фейнман (Feynman), говоря об эффективности природы в квантовом масштабе и размышляя о том, может ли эффективно обрабатываться информация на этом уровне: «Внизу еще много места...».

В физике твердого тела и ядерной физике ученые только сейчас открывают детали некоторых законов природы, описывающих поведение субатомных частиц. Со временем откроется возможность создать нанокомпьютерную технологию (порядка 10-9 метра, или 10-3 микрона). Вполне вероятно, создание компьютерной технологии, действующей с той же эффективностью, что и живая клетка, со всем набором врожденных разумных функций, размещенных и внутренне управляемых на площади примерно в 5—10 микрон (приблизительный диаметр клеточного ядра равен 10-5 метра). В ближайшем будущем, используя современные промышленные технологии, достижения ультрафиолетовых лазеров, роботов и линз, необходимых для гравировки микросхем на силиконовых чипах, люди могли бы породить новое поколение микропроцессоров с размерами не больше 0,13 микрон в поперечнике. Правда, есть ряд технических и физических преград, которые пока делают дальнейшую миниатюризацию невозможной. Возможно также, что программисты смогут имитировать некоторые природные стратегии обработки информации для повышения эффективности своих программ. Конечно, наше схематичное сравнение иммунной системы с современными сканирующими антивирусными программами далеко от реальности. Когда мы сравниваем стратегии антивирусных программ со стратегиями нашей иммунной системы, оказывается, что компьютерщикам надо еще многому научиться. Информационным технологиям придется сделать существенный скачок для того, чтобы достичь совершенства иммунной системы позвоночных, приобретенного ею за время эволюции.