Вдобавок, в СССР развивалось производство искусственного жидкого топлива, не только у нас, но и в остальной части страны.
Первые опыты по ожижению твердого топлива проводил еще Бертело в 1868 году - он обрабатывал угольный порошок йодисто-водородной кислотой при температуре 270 градусов и получал 60% жидких углеводородов и остальное - гудрон. Понятное дело, эта технология была интересна только с научной точки зрения а также тем, что показывала, что твердое топливо можно в принципе перевести в жидкое. Попытки получить промышленные технологии жидкого топлива пошли только с начала 20го века в разных странах, в том числе и в России - все распробовали двигатели внутреннего сгорания, а запасы нефти тогда считались ограниченными - вот и ринулись искать новые способы получения бензина. У нас по этой теме работал Зелинский, а Ипатьев в 1908 году показал возможность гидрирования угля.
Но наибольших успехов достигли немецкие ученые - для Германии, у которой не было собственных больших источников нефти (добыча нефти - всего 100 тысяч тонн в год), получение жидкого топлива было жизненно важным вопросом. В 1913-17 годах немецким ученым Бергиусом был запатентован процесс "бергинизации" (позднее - в 1931 году - он получил Нобелевскую премию за развитие методов высокотемпературной химической обработки) - при температуре 450 градусов, давлении 200 атмосфер и расходе водорода в 5% от массы угля он построил установку с суточной переработкой 80 тонн угля - уголь подавался в реакционную камеру в виде пасты из угольного порошка и масляных остатков с добавлением катализатора - красного шлама, отхода бокситного производства. На выходе получалось 40% жидких нефтяных фракций, а остальное - вода, газ, пек, непрореагировавший уголь, зола и полпроцента аммиака.
После войны большие работы проводились обществом Фабериндустри - они также применяли каталитические методы, но по методу Фишера-Тропша, при котором топливо получалось из синтез-газа при меньших давлениях и температурах - для кобальтовых катализаторов всего 1 атмосфера и 190-240 градусов, для железных - до 30 атмосфер и до 350 градусов. Первая полупромышленная установка заработала в 1922, а в 1926 году заработала первая промышленная установка каталитической гидрогенизации бурого угля - через десять лет ее производительность была 2,5 тысячи тонн жидкого топлива в сутки.
И Германия продолжала наращивать мощности по производству искусственного жидкого топлива. В 1936 году построен завод мощностью 300 тысяч тонн в год - он делал топливо при давлении 300 атмосфер из смолы, легкого масла и полукокса путем гидрирования. В 1938 построен завод мощностью всего 34 тысячи тонн в год - он выделывал топливо из кокса и коксового газа путем синтеза, зато при очень низком давлении - всего 10 атмосфер. В 1940 запущен завод мощностью 600 тысяч тонн в год - он делал топливо из каменного угля путем гидрирования при давлениях 300-700 атмосфер. Были и другие заводы, работавшие как по методу гидрогенизации, так и по методу Фишера-Тропша - уже в 1941 они произвели 4,1 миллион тонн жидкого топлива. В итоге 85% потребностей Люфтваффе в топливе покрывалось за счет синтетического бензина. Да и 600 тысяч тонн в год дизтоплива - тоже неплохой приварок немецкому транспорту и в особенности подводным лодкам.
Англосаксы, имевшие большие запасы нефти, тоже решили попробовать новую технологию, но широко производство не разворачивали. Так, американцы купили немецкий патент и запустили свою установку в Батон-Руж - она была рассчитана на переработку 1600 кубометров сырья в сутки - примерно на 400 тонн бензина. В ней было три реакционные камеры диаметром 90 сантиметров и высотой 12 метров каждая - объемом менее четырех кубометров. В Англии была своя опытная установка, производившая также 410 тонн в сутки или 150 тысяч тонн в год, но работавшая по двухстадийному процессу - сначала гидрогенизировали уголь до среднего масла и затем это масло догидрогенизировали либо до бензина, либо до керосина.
В Советском Союзе опытные работы по ожижению угля производились с 1928 года. До войны в Москве работал Всесоюзный научно-исследовательский институт газов и искусственного жидкого топлива. Было запланировано строительство восьми заводов искусственного жидкого топлива общей производительностью 200 тысяч тонн бензина в год. Война помешала этим планам, но что-то построили - в 1942 году работало небольшое предприятие по производству жидкого топлива на базе сланцев из Кашпира (в 12 км от Сызрани) - порядка 30 тонн топлива в сутки. В этом же году был возведен также небольшой Усольский завод (Иркутская область), перерабатывавший сапропелиты и дававший 5 т моторного топлива в сутки. В июле 1943 года в Госплане СССР был организован сектор искусственного топлива и газа (в составе отдела топливной промышленности). В том же году при Совнаркоме было создано специальное Главное управление - Главгазтоппром, на которое и возлагалась организация проектных и научно-исследовательских работ в области создания синтетических моторных топлив, масел и смазок. Правда, забегая вперед, отмечу, что с работами по жидкому топливу сильно подкузьмила девонская нефть Второго Баку - к концу 1943го года дебет девонских скважин составлял уже 300-400 тысяч тонн в сутки. Возникла ощутимая нехватка перерабатывающих мощностей, особенно тяжелых фракций - как отмечал Байбаков, "Мы стали задыхаться от большого количества мазута" (в РИ он это сказал в 1950 году, в АИ стали задыхаться раньше, так как было меньше перерабатывающих мощностей и девонскую нефть также нашли раньше и активнее ее разрабатывали). Поэтому все мощности, что предполагалось направить на выработку искусственного топлива, были направлены на переработку мазута. Ведь гидрировать можно не только угли, но и любые продукты, содержащие углерод - смолы, тяжелые масла, парафины и так далее - в том числе и мазут. Вот советское руководство и пустило все гидрогенизационные установки, что начали производиться на советских заводах, на выработку топлива из мазута.
Поэтому мы - ЗРССР - в части выработки искусственного жидкого топлива оказались в первых рядах, пусть и не по своей воле - просто своей нефти у нас сначала не было, а отбитое у немцев в 1941 топливо советских складов быстро бы закончилось. Именно поэтому я запустил исследования в этой области уже осенью 1941го года, благо тогда уже подобрались команды химиков и технологов, знакомых с процессами высокотемпературной переработки твердого топлива. Они, правда, работали над транспортными и промышленными газогенераторами, ну так производство жидкого топлива отличается от этой работы только давлением, особенно если по процессу Фишера-Тропша - это та же перегонка твердого топлива в газ, только потом он не сжигается в топках и цилиндрах, а перерабатывается в жидкое топливо. Но наши спецы почему-то ратовали за гидрогенизацию угля - точнее, нефтяного кокса. Ну а кто я такой, чтобы спорить со спецами, тем более что они предоставили выкладки, из которых все так и следовало.
Естественно, как и прочие вещи, производство жидкого топлива мы начинали с малого - практически на коленке лабали агрегаты и на них отлаживали процессы. Так, первый аппарат поначалу выдавал всего десять килограммов бензина или керосина в сутки - в качестве реакционной камеры мы взяли кусок ствола от гаубицы, для теплообменников использовали трубки паровоза, сепаратор - газовый фильтр от газогенераторного двигателя трактора, ну и остальное оборудование получили примерно также - раздербаниванием более-менее подходящего по требующимся функциям, хотя немного поточить на станках все-таки пришлось, чтобы состыковать все это между собой. Уже через три месяца та же установка выдавала пятьдесят килограммов топлива в сутки - народ учился все лучше управлять процессами. Через полгода - восемьдесят килограммов - и это был уже предел данной конструкции. Но в дополнение к ней работало уже десять таких установок - и восемьсот килограммов горючего давали либо почти тысячу километров пробега бронетехнике, либо полет в семьсот километров. Причем агрегаты высокого давления по прежнему изготавливались из орудийных стволов, а теплообменники, колонны, фильтры - тут мы использовали уже большие, объемные конструкции - раздербанили три паровода, поставили их котлы на попа, набили нужной требухой - и все аппараты работали на эту связку.
Потом уже пошли агрегаты высокого давления нашего собственного изготовления - сначала того же объема, так как процессы были отлажены, затем мы его стали наращивать. Поначалу делали трубы по той же технологии, что и артиллерийские стволы - прокатывали стальное бревно и вырезали в нем сердцевину. Тупо, долго и сложно, зато надежно. А потом, когда овладели электрошлаковой сваркой - стали сваривать нужные объемы из прокатанных и изогнутых отдельных листов толщиной десять сантиметров - на тот момент у нас не было достаточного количества легирующих добавок и мы использовали обычную конструкционную сталь - в принципе, по сопротивляемости нагрузкам под температурой она была сравнима со сталью с 4-6 процентами хрома, и только добавление 0,5 процента молибдена увеличивало ее стойкость в два раза. Так, для удлинения на 1% при температуре 500 градусов стали в 0,2% углерода было достаточно усилия в 3,7 килограмма на квадратный миллиметр - примерно 370 атмосфер - в течение 100 000 часов, а на 10% - 5,3 кг на квадратный миллиметр - 530 атмосфер. Мы, впрочем, и не рассчитывали на такие сроки эксплуатации, и то, что наша техника проработает 100 000 часов - более 11 лет - было лишь приятным бонусом, не более - мы ее все-равно собирались постоянно модернизировать.
Да и водородная коррозия не давала спокойно жить. При больших давлениях и температурах, характерных для гидрогенизации, водород диссоциирует на атомы. А размер каждого атома - 0,1 нанометра, так что водород вполне свободно проходит через кристаллическую решетку железа и межкристальное пространство стали - стальные конструкции напитываются водородом. Казалось бы - да и черт-то с ним ! Но этот вредитель не только просачивается внутрь казалось бы такого крепкого материала, как сталь - нет, он там накапливается, причем до таких пределов, что может создавать давления, превышающие предел прочности металла - кристаллы начинают раздвигаться, в металле образуются микрополости, микротрещины, водород проникает в металл все активнее - процесс нарастает. Но и это еще не все. В стали содержится углерод, и при тех высоких температурах, что присутствуют в процессах гидрогенизации, он реагирует с просочившимся водородом - внутри стали образуется метан. В принципе, это снижает давление водорода, так как одна молекула метана вбирает из окружающего пространства четыре атома водорода - объем газа падает. Правда, этот метан тоже может перемещаться по межкристалльному пространству, накапливаться и разрывать металл. Но и это еще не все - сам-то углерод уходит из стали, отчего та превращается в обычное железо и ее прочность снижается - при этом снижается не только общая конструкционная прочность агрегатов, но и микроскопическая - водороду легче разорвать обезуглероженную сталь, то есть проще образуются микропоры и микротрещины, соответственно, водороду становится еще проще проникнуть вглубь, к новым слоям металла - история повторяется все снова и снова. Причем этот процесс - сравнительно быстрый. Так, Сталь 35 при температуре 500 градусов обезуглероживается на глубину 5 миллиметров всего за 100 часов. При 400 градусах - на 2 миллиметра. В общем, с этим водородом сплошное расстройство.
(кстати - этот эффект был известен еще в 1935, но и в 1965 инженеры НАСА с удивлением наблюдали за разрушением емкости для хранения водорода на давлениях, существенно ниже расчетных - с такими "кадрами" неудивительно, что первым человеком в космосе стал Гагарин, а не какой-нибудь Алан Шепард - впрочем, без фон Брауна и других немецких спецов Шепард, пожалуй, не стал бы и десятым человеком, побывавшим в космосе (путь даже по суборбиталке))
Так вот - водород. К счастью, есть методы, позволяющие с ним бороться. Например - легирование хромом. Два процента хрома сводят обезуглероживание до десятых долей миллиметра на каждые триста часов при 500 градусах. Впрочем, другие карбидообразующие легирующие добавки - вольфрам, молибден, ванадий - также защищают сталь, образуя устойчивые карбиды. К тому же хром образует с железом хромистый феррит, устойчивый при высоких температурах и давлениях, а молибден существенно замедляет реакцию образования метана, то есть соединения углерода стали с проникшим в нее водородом - водород дольше остается в атомарном состоянии, его давление нарастает и уже он не пускает следующие порции водорода внутрь. Так что способы борьбы были. Мы столкнулись с этим не только при гидрогенизации, но и при производстве аммиака из азота воздуха, так что результаты борьбы с водородной коррозией работали сразу по нескольким направлениям. Правда, в 1942 мы ограничивались газопламенным напылением покрытий, укрепляя прежде всего наружные слои внутренних стенок химических аппаратов, и полностью легированную сталь мы начали использовать уже в 1943 - с середины 1942го мы начали получать значимые количества легирующих добавок - и со своих горных разработок, и с востока - да потом еще полгода учились варить-прокатывать-сваривать такую легированную сталь - но дело понемногу двигалось - в итоге вдобавок к напылению мы вставляли внутрь рабочего толстостенного цилиндра из обычной стали тонкостенный цилиндр из хромомолибденовой стали - собственно, использовали мировой опыт. Да еще в пространство между этими цилиндрами запускали холодный водород, который охлаждал внешний цилиндр и заодно предохранял его и от серной коррозии, когда сера, присутствующая в сырье, соединяется с железом и образует сернистое железо. Ну вот, а ведь я хотел позднее предложить охлаждать стенки ракетного сопла, пропуская через проделанные в них отверстия жидкий кислород - типа внести очередное "рацпредложение". Оказывается, все придумано до нас.
Как бы то ни было, по сути, с электрошлаковой сваркой нам стали доступны агрегаты любого объема. Мы даже начали сваривать подобным образом затворы танковых пушек - вместо сложного выпиливания затвора из цельного куска железа - вытачивали несколько отдельных деталей - нижнияя и верхняя, боковые стенки, детали для паза затвора - и потом все это сваривали. Объем и сложность станочных работ уменьшились как минимум на половину, хотя первые тридцать затворов трескались от выстрелов, да и сейчас примерно половина сварных швов имела дефекты, так что затворы отправлялись на доработку - вырезать паз и проварить заново - а то и на переплавку. Но постепенно отладим.
С реакторными камерами мы также не форсировали события, так как каждое увеличение объема - это по сути овладение новой технологией - технологический слой сырья растет, повышается неоднородность тепловых полей - и чтобы учиться ими управлять - нужно время. Которое у нас было - к зиме 1941/42 еще оставались запасы на отжатых нами у немцев складах РККА или на складах, отжатых уже у немцев, к тому же мы массово применяли суррогаты в виде спирта, ацетона и прочей гадости, да и наши мини-установки синтетического топлива прирастали числом - где-то по десять-двадцать штук в месяц - если первые тридцать штук были сделаны из гаубичных стволов, то последующие шли уже полностью нашего изготовления. К началу лета 1942го мы выпускали двадцать тонн горючего в сутки, с учетом суррогатов - спирта, ацетона - сорок. К осени мы выпускали уже пятьдесят тонн в сутки, вместе с суррогатами - восемьдесят. К тому же летом, когда шли активные бои в Восточной Пруссии, мы смогли очень хорошо разжиться захваченным у немцев топливом - Вильно, Кенигсберг и другие города дали нам более двух миллионов тонн топлива. Так что время на эксперименты было.
Первый цилиндр, выполненный электрошлаковой сваркой, мы сделали в сентябре 1942 года - еще из обычной стали с напылением. И стали тренироваться на новой аппаратуре - если предыдущие реакционные цилиндры были диаметром 15 сантиметров и длиной метр, то новый был диаметром уже 30 сантиметров и такой же длины. С этих 0,035 кубометра реакционного объема мы стали снимать в сутки уже 300 килограммов масляной жижи, из которой потом получали 200 килограммов бензина, 50 - солярки и лигроина, несколько килограммов масел и густой остаток, который шел на замешивание коксовой пыли в пасту для следующих порций сырья. До американцев нам было еще далеко - те с одного кубометра снимали тридцать тонн искусственного бензина в сутки. Так что нам было куда расти - даже с такой установки в теории можно было снять 1,1 тонны топлива.
И мы росли. Уширяли диаметр подводящих патрубков, меняли конструкцию подающих насосов, уплотнений, экспериментировали с составом смеси, температурой - до февраля 1943го года было проведено порядка восьмисот экспериментов и введено сорок семь изменений в конструкцию. Прежде всего - в уплотнения - наши первые варианты были недостаточно плотными и нам все не удавалось создать нужное давление - вот и получались на выходе какие-то замасленные коксовые ошметки, и это помимо постоянных возгораний прорывавшегося водорода, было даже пара взрывов, после чего мы поставили у соединений горелки, которые дожигали выходящий через уплотнения водород. И это при том, что чертежи были взяты из книг, так что по конструкциям мы по сути ничего и не придумывали. Но вот по допускам, термической обработке металла - тут требовалось думать и экспериментировать. Расширяющийся от нагревания металл сминал уплотнения, недостаточно закаленные поверхности проминались - и все это требовалось отрабатывать изменениями конструкции, чтобы, например, для расширения оставить зазор, который, тем не менее, не давал бы газам выходить через уплотнения - а это изменение конструкции и даже принципов работы самих уплотнений.
Но и в процессе экспериментов выход топлива понемногу рос - примерно на сотню килограммов каждый месяц. К началу 1943го мы снимали в среднем уже 500 килограммов топлива, то есть почти половину из максимально возможного. Причем работало уже шесть установок, все - в экспериментальных режимах, и на лучшей выходило уже под тонну - почти идеал. А с декабря пошли новые установки - пять штук того же диаметра 30 сантиметров и длиной уже два метра - объемом 0,07 кубометра, и две - диаметром 50 сантиметров и длиной два метра, объемом уже 0,2 кубометра - если с первых в теории можно было снять две тонны топлива в сутки, то со вторых - уже шесть тонн. К марту 1943го выходило всего полторы и три тонны соответственно - если первая была просто длиннее, то вторая - еще и толще - новые объемы - новые проблемы.
Но скорость освоения новых объемов увеличивалась - если на первых установках половину теоретически возможного объема бензина мы научились снимать за полгода, то на вторых - уже за два месяца - народ набирался опыта и уже начинал "нюхом чуять", в чем заключаются проблемы. К началу сорок третьего над проблемой работало порядка сотни экспериментаторов, ну и аппаратуру им делали на заводах. Причем, если первые установки сделали чуть ли не на глазок и потом их допиливали, то новые - еще более объемные установки - проектировали уже на основе каких-то расчетов - диаметры отверстий, мощности насосов, канавки для уплотнений - для порядка двадцати узлов экспериментаторы вывели уравнения приближенного расчета.
И продолжали их уточнять, но, скажем, сделанная в апреле реакционная камера диаметром семьдесят сантиметров и длиной три метра, то есть внутренним объемом 0,57 кубометра, сразу выдала половину от возможного топлива - девять тонн в сутки. А за месяц, что подбирали режимы температуры и давлений это количество выросло до 15 тонн топлива в сутки.
К этому времени самые первые установки на основе гаубичных стволов уже были выведены из промышленной эксплуатации и на них ставили эксперименты по обработке сырья под высоким давлением и температурой, а также обучались новые техники. Вместо тех установок работали пятнадцать установок объемом 0,07 кубометра, выдавая по 800 килограммов топлива в сутки - 12 тонн, десять установок объемом 0,2 кубометра с производительностью по пять тонн каждая, 50 тонн на всех, и семь установок объемом 0,57 кубометра - они выдавали 15 тонн каждая - почти сто тонн в сутки на круг, и строились установки с реакционными камерами диаметром также 70 сантиметров, но длиной уже шесть метров, то есть в два раза длиннее - мы решили пока не наращивать диаметр, а только увеличивать длину, так как она меньше влияла на параметры работы, и раз мы вполне освоили этот диаметр, то пока решили не гнать дальше. Одна такая установка объемом 1,15 кубометра в идеале даст 35 тонн топлива в сутки, по результатам, когда мы их достроили в конце мая, то почти сразу получили 30 тонн - просто отличный результат.
В итоге к началу лета мы получали 250 тонн синтетического топлива в сутки. К тому же мы отладили оснастку и автоматы для производства этого оборудования - реакционных камер, труб, насосов, фланцев, уплотнений и прочего, так что смогли вводить по однокубовой установке в неделю - к концу лета мы производили уже 600 тонн искусственного топлива в сутки, затрачивая на него 2 000 тонн торфяного полукокса в качестве сырья и еще 4 000 тонн - в качестве топлива - добыча торфа и изготовление из него кокса шли круглые сутки - ведь только для получения искусственного топлива было необходимо добывать 20 000 тонн торфа, а ведь торф использовался нами и для других целей - по этому показателю мы почти приблизились к довоенной добыче, когда в БССР добывали 30 000 тонн в сутки.
Помимо искусственного жидкого топлива у нас были и другие виды и источники топлива - спирт, бензол, ацетона, скипидар, горючие сланцы, нефть. Кстати, проблему потребления топливного спирта не по назначению, то есть вовнутрь, решили просто - стали добавлять вещество, вызывающее рвоту - сначала это были просто отвары на основе чабреца, баранца и других народных средств, а потом из них выделили нужные вещества, сейчас уже начали их синтезировать. Ну и наркомовские сто грамм, чтобы не оставлять народ без естественного релаксанта.
Но постепенно мы отходили от всех этих суррогатных видов топлив - спирт слишком набирал воду, что было особенно опасно зимой, когда она могла замерзнуть в самых неподходящих местах, ацетон, скипидар - просто опасны для человека, к тому же это ценные химические продукты, как и бензол.
И у нас было чем их заменить. Как я уже упоминал ранее, к началу 43го мы добывали 120 тонн нефти в сутки - на шатилковском месторождении - сто километров на северо-запад от Гомеля. К концу лета 1943го мы добывали там уже 500 тонн нефти в сутки - Могилевский труболитейный завод поставлял ежемесячно десятки километров труб, так что поиск новых залежей шел постоянно. Ну а Речицкое месторождение, обнаруженное в сорока километрах на запад от Гомеля, сразу стало давать еще сто тонн в сутки - там был близко фронт, а нефть залегала почти на километр глубже, хотя там ее было больше. Итого по нефти у нас была добыча 600 тонн в сутки, или чуть более двухсот тысяч тонн в пересчете на год с перспективой дальнейшего роста - пока это был всего один процент от добычи СССР перед тем, как был потерян Кавказ - впрочем, на нужды РККА по нашим сведениям шло порядка двадцати процентов выработанных нефтепродуктов.
Для ее переработки мы вводили в строй небольшие НПЗ, которые вырабатывали топливо уже из нефти, причем нам очень пригодился опыт по производству синтетического топлива, благо технологии и оборудование у нас были теми же самыми. Мы могли перерабатывать нефть в топливо светлых фракций на 80% (СССР - максимум половину) - даже мазут, даже гудрон и даже битум - повторю, для гидрогенизации главное - это чтобы был хоть какой-то углерод, а уж соединить его с водородом, чтобы образовались более легкие топливные фракции - это вопрос достаточности топлива для подогрева и устойчивости аппаратуры к высоким давлениям и температурам. В принципе, могли бы перерабатывать и все 100% добываемой нефти, но там уже становилось слишком сложно выдавливать последние крохи. Так что к концу лета производство топлива из нефти почти догнало производство синтетического топлива - четыреста тонн в сутки против шестисот. И дальше эти объемы будут только расти.