И называлась эта техника — микроканальные фотоумножители. Все-таки те ИК-приборы, что мы использовали до сих пор, были еще несовершенны и уж точно не дотягивали до тех картинок, что я помнил по своему времени. Точнее, как раз картинок они почти что и не давали. Так, наиболее массовым прибором был детектор тепла — одноэлементный прибор, с помощью которого можно было определить, что вот там что-то теплится — а уж что — солдат, танк, пострелявшее орудие или амбразура ДОТа — надо было высматривать глазами. Ну, не совсем глазами, а оптическими и телескопическими приборами, что мы выпускали в массовых количествах. Какую-то картинку давали системы с механическим сканированием, в которых линейка детекторов последовательно ощупывала пространство и выдавало на ЭЛТ набор точек — в этих устройствах были почти те же детекторы, только сделанные немного по-другому, чтобы обеспечить достаточное быстродействие, необходимое для развертки хотя бы десяти кадров в секунду.
Одноэлементные приборы были легкими, но не давали картинки, сканирующие — давали картинку, но были громоздкими. Промежуточное положение между ними занимали электронно-оптические преобразователи. Эти электровакуумные приборы имели фотокатод — напыленную либо осаженную с внутренней поверхности колбы смесь веществ, которые могли эмитировать электроны под воздействием падающего света — сурьма-цезий, окисленное серебро-цезий и т. п. Причем выбитые электроны могут вылетать из каждой точки фотокатода во всех направлениях — как перпендикулярно, так и практически горизонтально поверхности, поэтому их надо фокусировать, чтобы они летели к экрану более-менее параллельно — электролюминисцентному слою, напыленному на другой стороне колбы. Фокусировать можно либо электростатическими, либо магнитными полями, либо обоими сразу. Немцы применяли только первый вариант. При этом четкое изображение все-равно не получишь — так, при расстоянии между электродами в двадцать миллиметров и фокусирующем напряжении десять тысяч вольт диаметр точки изображения будет почти миллиметр. Причем — каждой точки изображения на фотокатоде. Все дело в том, что свет разной длины волны выбивает электроны разной энергии, и так как каждая точка исходного изображения состоит из набора волн разной частоты, то она даст набор электронов с разной энергией, а фокусирующее напряжение рассчитано, скажем, только на какой-то узкий диапазон энергий — вот остальные электроны, не попадающие в этот диапазон, и будут фокусироваться уже не в точку, а в круг. Это помимо упомянутого мною эффекта выбивания электронов под разными углами. И чем больше расстояние между электродами и чем меньше напряжение — тем больше результирующий диаметр круга от каждой точки. В результате "круги" соседних точек накладываются друг на друга, изображение размывается. В принципе, этого достаточно чтобы рассмотреть крупные объекты, расположенные на дальних расстояниях, либо мелкие — на близких.
Вот только компактными такие приборы назвать все-равно нельзя — для создания высоких напряжений требовался мощный источник электричества, сам прибор тоже немаленький, а небольшой коэффициент усиления накладывал дополнительные требования. Да и наши производственные возможности в начале не позволяли создавать ЭОП, а потом твердотельные и вакуумные одноэлементные ИК-детекторы уже достигли достаточного качества и тем более количества, чтобы имело смысл переводить все на ЭОП. Правда, дополнительное закручивание электронов еще и магнитным полем повышало четкость изображения раз в сто, если не в двести — тут уже можно было бы различать более мелкие объекты на больших расстояниях. Магнитное поле закручивало электроны, так что они двигались от каждой точки фотокатода уже не по параболе, а по спирали, хотя это давало S-образные искажения изображения. К тому же подобрать напряженность магнитного поля так, чтобы электроны при очередном витке пересеклись бы с осью, выходящей из точки фотокатода, откуда они были выбиты, было сложновато — напомню, энергия электронов разная. Да и хроматическая аберрация также возникает — все из-за той же разности в энергиях, а следовательно и скоростях электронов.
Ну и все-таки самое главное — низкий коэффициент усиления обычных электронно-оптических преобразователей — где-то сотня, может, полторы. Правда, были идеи создавать многокамерные ЭОП, когда последовательно соединяется несколько колб, и каждый последующий каскад усиливает изображение от люминофора предыдущего каскада — тут усиление получалось уже до миллиона раз. Но такая конструкция сложна в изготовлении, хрупка в эксплуатации, да и достаточно объемна, а кроме того — снова исчезают мелкие детали, так как нечеткость изображения протаскивается через весь тракт, увеличиваясь от каскада к каскаду. В тридцатые эта идея уже была опробована и ее отбросили именно из-за сильного размывания изображения — не смогли создать достаточную фокусировку на каждом из каскадов. У нас тоже с чисто электростатической фокусировкой ничего не получилось, и лишь добавление еще и магнитной как-то улучшило изображение, но это — дополнительное усложнение — народ продолжал ковырять и эту схему, чисто на всякий случай — вдруг выстрелит. Но наши основные усилия были приложены к другой технологии.
К канальным усилителям. Сначала их делали как все нормальные люди — в вакуумной колбе находились электроды, из которых последовательно и выбивалось все больше и больше электронов — разрешающая способность, правда, лимитировалась внутренним диаметром колбы, но эти приборы использовали наши физики и химики — к нашим я относил и немцев, которые согласились работать с нами — их набралось немало и после захвата нами Кенигсберга, да и в армии они тоже служили — немцы почему-то гребли в армию в том числе и научный персонал. Совсем как в РККА.
Особо популярными фотоэлектронные умножители стали в спектроскопии — видимой, УФ и ИК — с ее помощью мы определяли наличие веществ в смесях и газах. Благо спектрометрия — что оптическая, что инфракрасная — развивались уже не одно десятилетие — даже ИК-спектры веществ стали определять еще в 80х годах 19го века, только применяли для этого призмы из монокристаллов солей, вплоть до обычной поваренной соли, так как стекло поглощало ИК-излучение, пропуская его лишь в ближнем к видимому свету диапазоне. Мы же, с развитием фотолитографии, стали выпускать дифракционные решетки — они мало того что более эффективны кристаллических призм за счет того, что практически не уменьшают интенсивность излучения, так еще позволяют исследовать ИК-излучение в очень широком диапазоне, так как не поглощают излучение, тогда как призмы на основе кристаллов имеют ограниченную полосу пропускания. Решетки тут уже выпускали, но на спецстанках, которые нарезали штрихи резцом — требовались очень точные и соответственно трудоемкие в изготовлении и обслуживании станки. Методы фотолитографии были гораздо проще, и по сути мы отлаживали нашу фотолитографию именно на производстве дифракционных решеток как более простых микроструктур — и уже потом новые разрешающие способности переходили в микроэлектронику.
А решеток требовалось все больше и больше. ИК-излучением регистрируются колебательные энергии молекул, и так как строение каждой молекулы индивидуально, то у нее будут индивидуальными и колебания, то есть любая молекула имеет присущий только ей ИК-спектр — набор полос разной частоты и интенсивности — максимумы полос, их полуширина, интенсивность. Поэтому можно определить присутствие и количество молекул данного вещества в смеси. Более того, своими характеристиками обладали отдельные структуры молекул — например, связи фосфора с кислородом, или бензольные кольца — все они давали свои полосы, сходные между собой даже если находились в разных молекулах. Соответственно, выявляя такие характерные участки на спектрограммах, можно было предполагать и наличие таких соединений, и это — только снятием спектра, без анализа соединения химическими методами.
Ну, если суметь рассмотреть их спектр среди спектров, выдаваемых другими молекулами и их элементами в той же смеси — порой линии были очень близко, чтобы их разглядеть. Например, в алканах элемент — CH3 давал полосы на длинах 3,36-3,39, 3,47-3,50, 6,80-6,97 и 7,22-7,30 микрометров, а — СН2- на 3,40-3,45, 3,49-3,52 и 6,76-6,94. То есть линии спектра этих элементов располагались очень близко, а то и перекрываясь на некоторых диапазонах, так что при недостаточной разрешающей способности спектрометра они все просто сливались в одну линию — и ладно если только между собой, но могли сливаться и с другими структурными элементами.
Чтобы все-таки отделить одну линию от другой, обычно ставили несколько призм — первой раскладывали исходный поток света, а другими дополнительно раскладывали уже отдельные участки этого разложенного спектра. Причем количество таких каскадов в общем случае ограничивалось только силой проходящего излучения — и изначальной, и поглощением в материале призм. Так как решетки практически не поглощали излучение, с этим было проще, и мы ставили несколько решеток и сначала на одной раскладывали весь пучок, а потом на остальных — подпучки, доводя количество каскадов до восьми, но там уже сама конструкция становилась очень сложной — ведь эти пучки света не должны пересечься с конструкциями, на которых будут крепиться решетки, да и виброзащита, компенсация температурного расширения существенно усложнялись.
Но, например, для промышленных применений требовалось отслеживать не все вещества, а только ограниченное количество, поэтому можно было делать спектрометры, рассчитанные на какие-то отдельные участки спектра. Это упрощало конструкцию и вместе с тем сохраняло почти лабораторную точность измерений — разве что требовалась более сильная защита от цеховых условий — и по пыли, и по вибрации, и по дрейфу температуры. Например, применение спектрометров при выплавке металла позволило увеличить выход металла на пять процентов и на столько же сократить расход топлива — и это только за счет более точного измерения доменных газов, еще при ручном управлении. А мы уже отлаживали автоматическую систему, которая анализировала выходящие из жерла газы и на основе этого анализа подправляла дутье — стало больше кислорода — уменьшить, так как наблюдается избыток кислорода и железо начнет снова окисляться и медленнее восстанавливаться, а если кислорода стало меньше — дутье можно и увеличить, активизировав горение топлива и тем самым увеличив интенсивность реакций. Собственно, металлурги поступали так же, только автоматика позволяла более тонко реагировать на изменение доменных газов. Нам это рассказывал один из металлургов, что попали к нам из плена — с началом войны он пошел в военкомат добровольцем, его и взяли, вместо того чтобы вернуть к домне — ну ни о чем не думают с этой мобилизацией — план выполнили — и ладно, а что специалист занимается не своим делом — хоть бы хны. Прямо немцы какие-то. И технологи обещали еще лучшие показатели — и на этой системе, а если увеличим количество фурм для более тонкой подстройки под процесс и количество точек измерения — эффективность одной домны будет еще больше.
Так что ИК-спектрометрия уже выходила за пределы лабораторий в промышленность. Ну, в полулабораторных производствах чистых веществ она тоже уже активно использовалась, но мы начали нарабатывать опыт ее применения и в таких грязных производствах, как черная металлургия. Да и не только. К началу сороковых в мире было получено порядка трехсот ИК-спектров молекул — по существовавшей тогда технологии снятие спектра через призмы было долгим делом — от трех часов до двух суток, в зависимости от наличия оборудования, количества доступных призм, которые требовали бережного обращения — ведь та же соль растворяется в воде, поэтому помещение и прибор требовали очень сухого воздуха. Мы же за один только год получили дополнительно почти тысячу спектров.
Конечно, поначалу действовали такими же медленными способами, как и в остальном мире, и только когда начались работы по фотолитографии, дело пошло все быстрее и быстрее. Собственно, дифракционные решетки и начали делать в лаборатории фотолитографии для себя, чтобы получить более точные методы определения веществ, и уже потом они пошли "в народ". А когда к процессу стали подключать автоматизированные исследовательские комплексы на базе аналоговых вычислительных машин — вот тогда и раскочегарились по полной — по оценкам наших специалистов, за следующий год мы получим уже три тысячи спектров. А может и больше — сейчас шла отладка применения для спектрометрии уже цифровой вычислительной системы, и тогда не потребуется вручную двигать все эти рукоятки и верньеры подстройки. Также была надежда, что удастся автоматизировать калибровку — сейчас она становилась одним из самых узких мест во всем процессе. Другим узким местом была собственно расшифровка спектров — выше я приводил диапазоны группы — СН2- для алканов, а например в циклопропане (который тоже алкан) эта группа даст линии уже в диапазонах 3,35-3,29 и 9,8-10 — то есть тот же структурный элемент даст другую картинку — и тут уж без цифровых компьютеров никак не обойтись. А то и без искусственного интеллекта. И с ростом количества спектров проблема будет все возрастать. Да и сейчас тоже было непросто — проблема курицы и яйца родилась не вчера и не только в этой области — ведь заранее неизвестно, что находится в смеси, а находиться там могло в общем случае что угодно — вот и приходилось гадать — вот та вот линия — это мы просто раньше не видели ее на этом соединении из-за несовершенства оборудования или же в смеси присутствует еще какое-то вещество? А то и не одно… Нет, без "цифры" дальше никуда.
Причем, что самое интересное, вещества-то мы могли определять, а вот избавляться от них или нет — это уже был отдельный вопрос. В ряде случаев они просто не мешали, поэтому к ним и не применялось никаких воздействий. В других случаях просто не было технологии, чтобы избавиться от этих веществ — тут уже направление работы было понятно, но требовалось время, чтобы доработать техпроцесс. Или несколько техпроцессов — можно ведь не избавиться от вредного вещества, а нивелировать его вредное воздействие другим веществом — как например порой поступали при легировании полупроводников — просто добавляли больше донорной или акцепторной примесей — и все. Так что даже если в продукте находили какие-то лишние вещества, их до поры до времени могли в нем и оставить — пока мы снимали сливки, то, что можно сделать относительно просто. Так, мощность нашей взрывчатки на основе тринитротолуола повысилась на пять процентов — только за счет лучшей очистки. Вроде бы и немного, но, например, поражающая способность снарядов 152 миллиметра возросла на десять процентов — теперь по фронту они крыли не семьдесят пять, а восемьдесят два метра. Правда, там и новая сталь сыграла свою роль, и ее обработка. Но без этой прибавки мощности взрывчатки могло и не сработать, а новая взрывчатка дробила корпус с достаточным усилием. Так что от новых технологий был уже конкретный практический выхлоп.
И ожидался еще больше — не только в промышленности, но и, например, в медицине. Так, мы определили структуру молекул пенициллина, крустозина и грамидицина С — широко использовавшихся антибиотиков. Собственно, пенициллин был нашей разработкой, крустозин — тоже пенициллин, но полученный из другого грибка семейства пенициллиновых — его получила Зинаида Ермольева в сорок втором, разве что ей меньше повезло со штаммом, чем нам — она его взяла со стены в одном из бомбоубежищ Москвы, а мы — откопали в отходах спиртзавода. Ну и массовизация, а потом и автоматизация исследований показала, что добавка всего одной десятой фенилацетамида в дополнение к фенилуксусной кислоте в питающем растворе повышала выход антибиотика с пятнадцати до семидесяти процентов — конечно, с добавками веществ пробовали не совсем уж наобум, а исходя из близости веществ по структуре. Ну а грамидицин-С — это разработка других советских ученых-микробиологов — супругов Георгия Гаузе и Марии Бражниковой — и тоже от сорок второго года — этот антибиотик уже передали нам — я про такой как-то и не слышал, поэтому и работ не запускали, а сами на грибок Bacillus brevis не натолкнулись. Ну и ладно — обмен все-равно шел, причем очень интенсивный — не то что с союзничками — мы-то им, точнее НарКомЗдрав СССР — данные по грамидицину передали, а вот "они" свою более эффективную технологию пенициллина зажали — сначала вроде бы договорились продать за 10 миллионов долларов, потом передумали — типа "ой, ошиблись в расчетах" — заломили уже двадцать миллионов. Наши снова согласились. Тогда заломили тридцать. После чего все стало понятно — снова то самое "пусть они как можно больше убивают друг друга". Но тут уже советские медики распробовали и наш пенициллин, так что вопрос временно был снят с повестки дня. Вот мы и расшифровывали структуры самых важных лекарств — ведь зная структуру, уже можно двигаться вперед и по пути улучшения технологии их производства, и по пути повышения эффективности лекарств. Например, в пенициллине Ермольевой по сравнению с нашим один из элементов находился в другой позиции — вот его эффективность и была ниже. Наверное. Тут биологи и медики еще разбирались, и разбираться им придется еще долго. Впрочем, как и в других областях — например, в диагностике и исследовании рака — там были какие-то наметки насчет ранней диагностики на основе увеличения поглощения нуклеиновых кислот, но работы еще предстояло немеряно.
Так что ИК-спектроскопия становилась все более важным и мощным инструментом исследований. Причем пошла она у нас достаточно резво — этим занимались во всем мире не одно десятилетие, тема была совершенно не революционной и сначала пошла по разряду "всякое", благо методики снятия ИК-спектров были давно известны. Но вот применение фотоэлектронных умножителей вывело эту технологию на совершенно другой уровень — чувствительность повысилась на порядки, стало возможным различать совсем уж незначительные флуктуации и концентрации веществ — десять, а порой и двадцать девяток. Причем без проведения химических реакций, что особенно подкупало в спектрографии. Разве что все больше напрягала необходимость сканировать спектр — пока приборов было мало, приходилось последовательно просматривать датчиком нужные участки спектра, что, естественно, очень тормозило процесс, а иногда и вообще не позволяло получать достоверные результаты — реакция уже закончится, а мы снимем только небольшой диапазон частот. Уже начинали ставить и линейки датчиков, чтобы одновременно снимать сразу несколько диапазонов, но диаметр входных отверстий вакуумных фотоумножителей с отдельными электродами накладывал большие ограничения на точность каждого из измерений — в ФЭУ попадали сразу несколько полосок, и приходилось либо ставить на входе щелевой фильтр, чтобы вырезать поддиапазон, либо сильнее разносить сами спектральные полосы, что снижало их яркость. Проблема была именно в разрешающей способности приборов. И для того, чтобы повысить разрешающую способность спектрографов, физикам и потребовались фотоэлектронные умножители как можно меньшего размера.
Проблема была решена с появлением фотоэлектронного умножителя без электродов — в качестве электродов, из которых последовательно выбивались электроны, выступила освинцованная внутренняя поверхность стеклянной трубки. Соответственно, минимальное разрешение теперь ограничивалось внутренним диаметром трубки, а если смотреть по всему полю трубок — то расстояние между центрами соседних трубок. Сначала это были просто трубки наподобие тех, что применяли в химических лабораториях — их внутренний диаметр был уже не два-три сантиметра, а полмиллиметра. И борьба за разрешающую способность продолжалась. Этот диаметр пытались уменьшить, вытягивая трубки в нагретом состоянии, но их просветы непредсказуемо слипались, так что много трубок выходило "слепыми", без канала. Следующий шаг позволили сделать стекловолоконщики — они исследовали свойства волокон из двух сортов стекол, когда один сорт был сердцевиной, а другой — оболочкой стекловолокна. Тут уж я нацелили их на изготовление световодов, и они постепенно начинали применяться в медицине и технике. Но и физики уцепились за эту технологию — помимо того, что волокна уже сами по себе были тонкими, наличие сердцевины не давало стенкам слипнуться при вытягивании и спрессовывании блоков таких волокон, оставляя их целыми.
Причем сначала эти блоки применили в обычных ЭОП — там была проблема с фокусировкой и переносом электронов к экрану — электростатическая линза давала вогнутую поверхность четкого изображения, как и любая другая линза, поэтому наши придумали хитрый финт — стали делать вогнутой входную поверхность, на которую нанесен фотокатод — так линза "исправляла" кривизну фотокатода и в ее фокусе оказывалась вся пластина с люминофором, а не какая-то его часть. И просто сделать вогнутым входное стекло нельзя — тогда изображение будет искривляться прямо на входе. И плоским вход тоже не сделаешь — тогда получим на входе сразу оптическую линзу. А вот блок из световодов — с плоским срезом снаружи и вогнутым внутри, где фотокатод — доносил изображение до экрана без искажений, точнее, при переносе искажения, а точнее неравномерность потока электронов, исправлялась электростатической линзой.
Вот этот блок световодов и заинтересовал наших ученых — ведь по сути это стеклянная палочка, вставленная в очень тонкую трубку. Только надо как-то удалить сердцевину. Ее стали делать из боратно-бариевого стекла — оно растворяется в слабом растворе кислот, а оболочка из свинцово-силикатного — практически не растворяется, и после промывки от кислот и просушки останется только восстановить часть свинца из стекла в водородной печи — и получаем освинцованную внутреннюю поверхность очень тонких волокон. Затем — поместить полученную микроканальную пластину в ту же колбу, что и обычный ЭОП, вместо электростатической линзы подвести к ее плоскостям ускоряющее напряжение и — вуаля! — получаем усиление катодных электронов. Причем — сразу же в сотни, тысячи раз. При разрешении примерно сорок точек на миллиметр. Вот тут-то военные чуть было не наложили загребущую лапу на все приборы, что начали выходить из лабораторий, и только мой волюнтаризм, а также доводы типа "для вас же с их помощью будут разрабатываться новые технологии" позволили оставлять часть микроканальных ЭОП в науке.
Да, приборы стали получаться не сразу. Начинали с довольно толстых каналов — около десятой миллиметра, но уже и такие приборы давали вполне узнаваемую картинку. Гораздо сложнее было обеспечить стабильность изготовления. Поначалу мы складывали короткие и толстые — около миллиметра — трубки и вытягивали этот пакет в длину, а потом спрессовывали и разрезали. Проблемы шли косяком. Недопрессованность оставляла щели между канальными трубками — и если пластина разделяла вакуум и воздух, а не была полностью внутри вакуумной колбы, то соответственно вакуум быстро улетучивался, а то и вообще не создавался. Перепрессованность пережимала каналы — на изображении появлялись черные точки. Неаккуратность в укладке трубок или в результате неравномерного прессования приводила к изгибам каналов — изображение деформировалось, порой достаточно неравномерно — правда, эффекты порой были занятными, наподобие кривого зеркала. Степень вытяжки трубок плавала, соответственно каналы получались разного диаметра — и снова на экране появлялись незапланированные визуальные эффекты — некоторые даже напоминали мне те, что я видел на компьютерах. Тут и меньший размер какой-либо точки или группы точек изображения по сравнению с соседями, и меньшее, или наоборот большее усиление данного канала, дававшее изменение яркости данной конкретной точки, которого не было на исходном изображении — даже если внутренние диаметры были одинаковыми, степень металлизации внутренней поверхности каналов могла различаться от участка к участку, соответственно, сопротивление, а значит и падение напряжения вдоль канала или его отдельных участков — плавало, а раз падение напряжения различается, то будет различаться и степень ускорения первичных и вторичных электронов, значит, на очередном соударении электронов о стенки канала будет выбито больше или меньше вторичных электронов, в результате до электролюминисцентного слоя дойдет разное количество электронов и точка будет светиться с яркостью, не соответствующей яркости соседних точек с учетом исходного изображения — скажем, мы тестировали приборы на однотонных бумажных листах, так даже несмотря на одинаковую освещенность листа, на изображении мы зачастую видели пятна и разводы, темные или очень яркие точки — сказывались различия в характеристиках каналов, как отдельных, так и их группах — ведь та же металлизация, проходившая в водородной печи, требовала стабильности потоков водорода по всему полю обрабатываемой пластины, а если где-то водород пойдет через каналы сильнее, то там и восстановление свинца из стекла пойдет интенсивнее — вот и увеличенная проводимость по сравнению с соседними участками, где водорода оказалось меньше.
Забегая вперед, отмечу, что над однородностью восстановления свинца мы бились более двух лет, как и над однородностью волокон, хотя бы для одной партии микроканальных усилителей — для разных-то партий состав стекла в стекловолокнах все-равно плавал вокруг средней величины, поэтому требовалось подбирать под конкретную партию и параметры восстановления свинца — температуру и длительность — на основе измерений текущей проводимости каналов, так что схема аналоговой аппаратуры для управления печками за три года с начала разработок разрослась до двух шкафов. Ну а сам конвейер по изготовлению микроканальных ЭОП мы разрабатывали и отлаживали лет пять. Причем с одновременным совершенствованием самих приборов.
Так, по нашей первой технологии часть электронов, выбитых светом с фотокатода, попадала в перегородки между волокнами — то есть в их торцы — и терялась для изображения. Ввели "раззенковку" входных отверстий — более интенсивно растворяли их кислотой, так что стенки стачивались до клина. Прирост получился небольшим — хотя на расширенное отверстие теперь падало больше электронов, далеко не всем удавалось пройти внутрь канала — угол падения мог быть таким, что электрон просто отскакивал обратно или слишком вбок. Ввели покрытие входных отверстий каналов материалами с высоким коэффициентом вторичной эмиссии — оксидом магния или йодидом цезия. Стало существенно лучше. Особо умные типа меня тут же предложили покрывать этим веществом и каналы — ну а чего, свинцом ведь покрываем! — в ответ на что чуть не были покрыты русским матом, но потом народ подостыл и популярно объяснил, что не получится, потому что свинец восстанавливается из стекла — его окислов свинца. А оксид магния или йодид цезия — даже если их каким-то образом ввести в стекло и сохранить там при всех этих переплавках и вытяжках, то при восстановлении водородом они превратятся непойми во что. "Ну а если чистый магний… или цезий… или другой металл… может, они и будут работать в восстановленном виде?". В общем, народ обещал подумать, а я под это дело открыл новую тему — мало ли… Ну, ладно — количество электронов нарастили — так пошла засветка! Люминофор стал светить слишком ярко, этот свет возвращался обратно к фотокатоду через просветы микроканалов, выбивал электроны, которые снова с усилением шли к люминофору и так далее. Пришлось делать косые каналы — разрезать жгут стекловолокон на микроканальные пластины не точно поперек, а по диагонали, чтобы в итоге свет от экрана упирался бы в косые стенки каналов — а электронам ведь все-равно — ну пойдут по ускоряющему каналу, расположенному косо, а не под прямым углом к фотокатоду — невелика беда.
В общем, проблемы понемногу решали. Причем одно время казалось, что конкурирующие технологии себя еще покажут. Так, на одноколбовых ЭОП с комбинированной электростатической и магнитной фокусировками мы достигли уже отличных показателей по разрешающей способности — подбором напряжений, количества и формы электростатических линз и магнитных катушек. Вот только эксплуатировать такие системы было очень сложно — характеристики источников питания плавали, плавали характеристики линз и катушек — от тепловых эффектов — соответственно, чтобы получать четкое изображение, требовалось постоянно регулировать приборы. А еще надо учесть внешние поля — работающий рядом карбюраторный двигатель, если недостаточно заэкранировать его электрическую часть, сводил на нет все потуги как-то настроить четкое изображение — внешние поля постоянно и непредказуемо сбивали электроны с заданного настройками пути. Так что даже первые микроканальные ЭОП с разрешающей способностью одна точка на миллиметр были приняты очень тепло, а уже когда это разрешение было повышено в десять, двадцать, а потом и в пятьдесят раз — приборы просто полюбились и в войсках, и в лабораториях, и на заводах, и в медицинских учреждениях.
Да, как ни странно, микроканальные ЭОП шли прежде всего в гражданские отрасли, хотя с учетом военного времени эти отрасли были лишь продолжением военных учреждений. Военных успокаивало лишь понимание, что без развития науки и технологий им же самим воевать было бы куда труднее — сравнение с РККА было явно не в пользу последней. А еще военных успокаивал тот факт, что в первые месяцы выпуск качественных приборов был минимален — из десяти годных к эксплуатации, совсем уж без дефектов хорошо если был только один — он и шел в гражданку, а остальные девять — военным. Это из той сотни, что вообще была изготовлена — остальные девяносто вообще были непригодны ни под каким видом. Военным ведь, в принципе, можно смириться с тем, что, например, четверть изображения справа-сверху имеет потемнение — объекты можно разглядеть и с таким дефектом. А вот для получения, скажем, рентгеновских изображений, это уже не годится, так как становится непонятно — это различия в структуре просвечиваемого образца или особенность прибора? Как бы то ни было, ИК-приборы, которые могли дать картинку в реальном времени и которые можно было надевать на голову даже обычному пехотинцу, произвели в войсках небольшой фурор.