Динамика звёздных систем

Сурдин Владимир Георгиевич

Закон гравитации Ньютона

 

 

Великие теоремы притяжения

Итак, в мире звёзд царствует гравитация. Остальные три физических взаимодействия — электромагнитное, слабое и сильное ядерные — практически никакой роли в движении звёзд и в эволюции звёздных систем не играют. Сила гравитации описывается чрезвычайно простым, особенно с точки зрения искушённых в математике школьников, законом. Исаак Ньютон опубликовал его в 1687 году в своей замечательной книге «Начала натуральной философии». Этот закон описывает взаимодействие двух материальных точек, т. е. таких тел, размер которых мал по сравнению с разделяющим их расстоянием. Но он применим к любым телам, поскольку каждое из них можно представить в виде совокупности материальных точек. Закон Ньютона гласит, что две материальные точки, обладающие массами М, и М2, притягиваются друг к другу с одинаковой силой, равной произведению их масс, делённому на квадрат расстояния между ними и, разумеется, умноженному на некоторую константу (обычно в курсах физики её обозначают буквой G, от лат. gravitas — тяжесть), значение которой зависит от единиц измерения массы, силы и расстояния:

В системе СИ ([М] = кг, [R] = м, [F] = Н) значение

но астрономы (и физики-теоретики, когда они работают в этой области) пользуются более удобными для проведения вычислений системами единиц, в которых многие константы, в том числе и G, можно полагать равными единице и забывать про них.

Обратите внимание, как коротка запись числа G — всего четыре значащих цифры; другие физические константы содержат по 8—10, а порой и 12 цифр. Почему же именно значение G измерено с такой низкой точностью? А потому, что гравитация — слабая сила, менее других проявляющая себя в лабораторных экспериментах. Очень трудно

определить притяжение двух тел с аккуратно измеренной массой. Если два большущих слона (М1 = М2 = 4 т) стоят в лаборатории, тесно прижавшись друг к другу (R= 1 м), то их взаимное гравитационное притяжение составляет всего около 0,1 г. А вот если бы один слон состоял только из протонов, а другой — только из электронов, то они притягивались бы с силой порядка 1030 т! К счастью, все слоны, планеты и звёзды состоят практически из равного количества протонов и электронов, электрическое взаимодействие которых уравновешивается. Зато гравитационное взаимодействие всех частиц — протонов, нейтронов и электронов — суммируется, поскольку в природе нет гравитационных зарядов разного знака. Поэтому крайне слабая сила всемирного тяготения, почти незаметная между лабораторными телами, является доминирующей для крупных космических тел.

Итак, взаимодействие материальных точек описывается очень простым законом. Для математика этого было бы достаточно, но физик и астроном сразу вспоминают, что реальные тела — это ведь не точки, а протяжённые объекты. Значит, производя расчёты, придётся иметь дело с суммированием или с интегрированием, т. е. с вычислением суммы всех сил, действующих на интересующий нас объект со стороны всех прочих объектов Вселенной. Это задача крайне сложная: представьте себе, что слон притягивает мышонка, и нам предстоит просуммировать все силы, действующие на мышонка со стороны каждой точки хобота, ушей, ног, хвоста и прочих органов слона — со стороны миллионов частей, каждую из которых можно уподобить материальной точке... Сегодня мы можем сказать: что в этом особенного? Мысленно разобьём слона на миллион частей и просуммируем силы от единицы до миллиона. Настольный компьютер сделает это за минуту, поскольку суммировать придётся простенькие члены. Но во времена Ньютона не было компьютеров, и любое суммирование или то, что мы теперь называем интегрированием по объёму, было чрезвычайно сложной операцией, ведь её приходилось выполнять пером на бумаге. И Ньютон не продвинулся бы далеко в исследовании Вселенной, если бы не две замечательные теоремы, которые ему удалось доказать.

I Теорема 1. Сферическое тело (тонкая сферическая оболочка) постоянной плотности притягивает любую точку, находящуюся вне его, так, как будто вся масса тела сосредоточена в его центре.

Эта изумительная теорема дала возможность небесным механикам — людям, которые занимаются расчётом движения планет и космических зондов, а также звёзд и галактик, — свести большинство задач о взаимодействии космических тел к задаче о притяжении двух точек. Дело в том, что почти все небесные тела, за редким исключением, можно уподобить последовательности вложенных друг в друга сфер, каждая из которых имеет постоянную плотность (которая обычно меняется лишь от центра к периферии). Например, у нашей Земли форма почти шарообразная, плотность растёт по направлению к центру, однако, разбив её на бесконечное количество сферических слоёв, вы убедитесь, что каждый из них притягивает внешнюю точку так, как будто вся масса сосредоточена в центре. Поэтому никакого суммирования или интегрирования не нужно.

Теорема 2. Если точку поместить внутри однородной сферы (причём в любом месте, а не только в центре), то она не ощутит притяжения сферы, поскольку силы, действующие на неё со стороны всех элементарных частей этой сферы, в точности уравновесятся.

Эта теорема очень помогла тем специалистам, которые изучают недра небесных тел: стало возможным решать задачи, мысленно поместив наблюдателя внутрь планеты и не заботясь о тех слоях вещества, которые находятся снаружи от него, поскольку их суммарное притяжение у сферической планеты в точности равно нулю.

Таким образом, снаружи сферы вы чувствуете, будто вас притягивает точка, а внутри сферы — вообще невесомость. Эти замечательные теоремы позволили даже во времена Ньютона, при полном отсутствии вычислительной техники, чрезвычайно точно решать интереснейшие задачи: о строении планет (в частности Земли), об их взаимном притяжении и движении в пространстве.

 

Движение двух точек под действием ВЗАИМНОГО ГРАВИТАЦИОННОГО ПРИТЯЖЕНИЯ

Ньютон решил задачу о том, как движутся две материальные точки, взаимно притягивающие друг друга, например, планета и её спутник. Вы, конечно, знаете решение этой задачи: под действием взаимного притяжения каждое из тел обращается по эллиптической орбите вокруг общего центра масс, лежащего в фокусах эллипсов. Орбиты тел подобны, но имеют разный размер, обратно пропорциональный массам тел. Если из инерциальной системы отсчёта, связанной с центром масс, перейти в неинерциальную, связанную с одним из тел, то второе обращается вокруг него также по эллиптической орбите (найдите сами её размеры).

Решение Ньютона, полученное в конце XVII века, подтвердило на основании новой по тем временам физики эмпирические открытия, сделанные Кеплером ещё в начале того же века: по результатам многолетних наблюдений, в основном проделанных датским астрономом Тихо Браге, Кеплер обнаружил, что планеты обращаются вокруг

Солнца по эллипсам с переменной скоростью, двигаясь так, что радиус-вектор (прямая, соединяющая планету и Солнце) за равные отрезки времени заметает равные площади, и что квадраты периодов обращения двух планет относятся как кубы больших полуосей их эллиптических орбит [4, 5]. Ньютон, используя сформулированные им законы механики и предположение о гравитационной силе, обратной квадрату расстояния, не только объяснил найденные Кеплером закономерности движения планет, но и доказал, что эллипс — лишь частный случай любого конического сечения (им может быть также парабола, гипербола, окружность или прямая), по которому происходит движение двух гравитационно взаимодействующих тел (рис. 1). Разумеется, если речь идёт о длительном движении связанных, т. е. не улетающих далеко друг от друга тел, то это эллипс или его частный случай — окружность (а почему не отрезок прямой?).

Рис. 1. Сечения конуса плоскостью представляют все возможные траектории движения в задаче двух тел: 1) окружность, 2) эллипс, 3) парабола, 4) гипербола; прямая получается в сечении конуса плоскостью, проходящей через вершину конуса.

Любопытно, что закон Ньютона справедлив только в нашем, трёхмерном пространстве. Нам трудно представить себе другое пространство, но математики и физики оперируют с пространствами произвольного числа измерений: с 1-, 2-, 4-мерными, и даже с пространствами большей размерности. Например, одна из последних теорий строения элементарных частиц утверждает, что мы живём в (не пугайтесь!) 506-мерном пространстве, но только три его координаты доступны нам как направления движения, ещё одна — это время, а остальные 502 настолько туго «свёрнуты в клубочек», что мы их не замечаем, а вот элементарные частицы при высоких энергиях — замечают. Но если бы мы жили в реальном, полноправном геометрическом пространстве большего или меньшего числа измерений, то закон притяжения имел бы иную форму. Легко понять, какую: если напряжённость физического поля, связанного с обменом стабильными частицами (фотонами, гравитонами и т. п.), проинтегрировать по поверхности, окружающей источник этого поля, то должна получиться константа — полный поток частиц.

Рис. 3. Траектории частицы при п немного меньшем (а) или большем (б), чем 2, показывают направление поворота орбиты, близкой к эллиптической.

Рис. 2. Смоделированные на компьютере траектории движения частицы, обращающейся вокруг центра притяжения под действием силы F ~1/Rn. Значения п = 1, 2 и 3 соответствуют ньютоновскому притяжению в физическом пространстве двух, трёх и четырёх измерений.

Значит, если бы мы жили в евклидовом пространстве N измерений (время — особая координата, здесь мы её не рассматриваем), то закон Ньютона имел бы форму

например, если бы мы жили в 4-мерном пространстве, то сила была бы обратно пропорциональна кубу расстояния.

Интересно, к чему бы это привело? Давайте менять показатель степени при R и смотреть, как будет двигаться пробное тело в этом случае. На рис. 2 показаны варианты такого движения для целого n = N — 1, а на рис. 3 — для нецелого n в законе

Среди наших примеров только для ньютоновского притяжения (n = 2) получилась простая замкнутая траектория. Быть может, вы угадаете ещё одно значение n, дающее эллиптическую траекторию? В чём отличие этого эллипса от кеплеровской орбиты?

При n < 3 область движения частицы ограничена: хотя траектория не замкнута, частица не покидает области в виде кольца; такое движение можно считать устойчивым. При n > 3 устойчивость исчезает: частица либо бесконечно удаляется от центра, либо падает в центр. При небольшом отличии n от 2 траектория имеет вид «розетки»; такую орбиту могло бы иметь тело, движущееся по эллипсу, ось которого непрерывно поворачивается. В случае n > 2 поворот эллипса происходит в направлении движения частицы; в случае n < 2 эллипс поворачивается в противоположном направлении. Далее мы увидим, что эти математические этюды имеют важный физический смысл.