Разведка далеких планет

Сурдин Владимир Георгиевич

7. Планеты-карлики

 

 

За пределом Большой восьмерки

Вот мы и «вернулись из разведки», обнаружив восемь больших планет в нашей Солнечной системе и около пятисот очень больших планет в других планетных системах. Попутно узнали (главы 4 и 6), что кроме полновесных, настоящих планет, многие звезды окружены роями мелких тел – астероидов, карликовых планет, комет, межпланетной пыли… Присутствие мелкой пыли без особого труда обнаруживается даже у далеких звезд: обладая большой суммарной поверхностью, пылинки перехватывают заметную долю оптического излучения своей звезды и, нагревшись, переизлучают эту энергию в инфракрасном диапазоне. Именно избыток ИК-излучения в спектре звезды заставляет предположить наличие вокруг нее пылевого облака или диска. Иногда его удается сфотографировать (см. рис. 6.9). Хотя отношение к бытовой пыли у нас сугубо отрицательное, космическая пыль очень интересует астрономов и служит объектом пристального исследования. Без сомнения, очень велика ее роль в рождении звезд и планет, поскольку пылинки – главные охладители межзвездной среды, способствующие ее сжатию и конденсации. Не менее важна роль пылинок как катализаторов химических реакций в межзвездном и межпланетном пространстве. Не исключено, что первые шаги в эволюции живого вещества тоже были сделаны благодаря космической пыли. Но эту интересную тему мы оставим для другого рассказа, а раз уж отправились на разведку планет, то ими и ограничимся.

Эта глава посвящена маленьким планетам Солнечной системы, не входящим в «большую восьмерку», но все же имеющим некоторые признаки настоящих планет. Давайте вспомним определение планеты (с. 245): это объект, обращающийся вокруг Солнца и достаточно массивный для того, чтобы придать себе сфероидальную форму, к тому же не имеющий рядом со своей орбитой тел сравнимой с ним массы. Что касается отсутствия близких массивных соседей, то это требование, разумеется, важно для правильного представления о происхождении и эволюции планеты, но прямо не связано с условиями на ее поверхности и в ее недрах. Если масса космического тела настолько велика, что собственная сила тяжести придала ему сфероидальную форму, то это означает, что в его недрах протекает геологическая эволюция. В результате вещество разделяется по плотности (легкое вверх, тяжелое вниз), выделяется тепло, идут химические реакции и т. п. А если у этого тела к тому же есть атмосфера и, может быть, даже небольшие спутники, то любой планетолог будет изучать его как полноценную планету. Высадившись на поверхности такого тела, мы ощутим себя на планете, независимо от того, как называется этот объект в астрономических справочниках.

Рис. 7.1. Сравнительные размеры первых десяти астероидов и Луны. Крупнейший астероид Церера теперь отнесен к семейству планет-карликов.

Собственно говоря, именно в таком широком смысле астрономы довольно долго использовали термин «планета». Плутон был назван планетой, несмотря на то, что его орбита пересекается с орбитой значительно более крупного тела – Нептуна. А все астероиды до недавнего времени называли «малыми планетами». Сейчас это положение исправлено: Плутон и ему подобные стали называть «планетами-карликами», а более мелкие объекты – просто «астероидами». Именно о планетах-карликах пойдет речь в этой главе, а следующую, заключительную главу мы посвятим еще более странным планетам, живущим в семействах спутников больших планет. Их бы стоило называть «планетами-спутниками». Но пока речь не о них.

 

Как отличить планету от прочих небесных светил?

При взгляде на ночное небо все светила, кроме Луны, сначала кажутся нам одинаковыми «звездочками», различающимися только своим блеском. Но, присмотревшись, мы замечаем, что подавляющее большинство звезд дрожит, мигает, переливается, то есть испытывает хаотические флуктуации блеска. Астрономы называют это мерцанием. Мерцает абсолютное большинство звезд, но не все: некоторые светят стабильно. Почему они «отбились от коллектива»? С помощью

звездной карты и Астрономического календаря, а еще проще – с помощью компьютерного планетария быстро выясняется, что немигающие «звезды» – это в действительности планеты. Стабильность блеска планет давно уже стала народным способом их поиска на небе: обычно именно так отличают планеты от ярких звезд.

Как известно, звезды мерцают потому, что их свет проходит через неспокойные слои атмосферы. Теплые потоки воздуха поднимаются вверх, охлажденные стремятся вниз, они смешиваются друг другом, дробятся на ячейки с разной температурой и оптической плотностью. На границах этих ячеек происходит преломление света. В общем, такой процесс легко смоделировать, направив в стакан с кипятком струйку холодной воды либо наоборот. Попробуйте сами: поставьте стакан холодной воды на газету, плесните в него кипяток – и увидите, как будет выглядеть газетный текст сквозь воду, пока она полностью не перемешается. Глядя сквозь оптически неоднородную бурлящую атмосферу на далекие источники света (не только космические!), мы замечаем их мерцание в том диапазоне частот, который доступен нашему зрению, то есть не выше 20 Гц. Высокочастотные мерцания мы (в отличие, скажем, от стрекоз) не различаем, хотя они тоже присутствуют.

Оставим пока в стороне явление дифракции света на зрачке глаза, а также зернистость сетчатки, которые даже при отсутствии атмосферы не позволили бы нам различить реальный диск звезды или воспринять далекую звезду как точку исчезающе малого углового размера. Оба эти явления – дифракция и «пиксельная» структура сетчатки – размывают изображение звезды, но сами по себе в силу своей статичности не вызывают колебаний яркости и цвета. Однако и в том случае, если бы острота нашего зрения была фантастически высокой, мы, наблюдая сквозь атмосферу, не смогли бы различить реальные диски звезд. Дело в том, что за время одного «кадра», воспринимаемого нашим зрением (около 0,05 с), быстрое атмосферное дрожание почти точечного изображения звезды создает вместо него «кляксу», угловой размер которой зависит от состояния атмосферы в месте наблюдения и обычно составляет от 2″ до 5″. Впрочем, наш глаз не различает столь малых углов. Дифракция на зрачке и неоднородность сетчатки снижают угловое разрешение нашего ночного зрения до 2–3 минут дуги, то есть примерно до 150″. Так что звезду-«кляксу» размером 2–5″ наш глаз воспринимает как точку, но низкочастотные колебания ее яркости глаз замечает. Они-то и служат причиной мерцания звезд.

Все это понятно, но почему же все-таки звезды мерцают, а планеты – нет, почему при наблюдении ночного неба невооруженным глазом изображение звезды дрожит, а планета выглядит более стабильной, почти неизменной? Разумеется, преломление света в атмосфере не зависит от того, каков его источник: звезда или планета.

Таблица 7.1

Угловой диаметр планет, доступных по своему блеску для наблюдения невооруженным глазом

Причина видимого различия звезд и планет в том, что угловой размер любой из ярких планет значительно больше углового размера атмосферных изображений звезд. Это видно из данных табл. 7.1, причем нужно учитывать, что меньшее значение диаметра относится к конфигурации (рис. 7.2), в которой планета не наблюдается. Для внешних планет – Марса, Юпитера и Сатурна – это эпоха соединения, когда планета располагается на небе вблизи Солнца. Для внутренних планет – Меркурия и Венеры – это эпоха верхнего соединения, когда планета также располагается вблизи Солнца, находясь за ним. Обычно внешние планеты наблюдаются вблизи их противостояния и поэтому имеют максимальный угловой размер. А внутренние планеты (особенно Меркурий) видны лишь в эпоху наибольшей элонгации, когда их диаметр составляет около половины от максимального, точнее 8–9″ у Меркурия и 26″ у Венеры. Не беря в расчет Меркурий (немногие его когда-либо видели!), можно заключить, что диски ярких планет видны под углом не менее 20″, что значительно превосходит размер атмосферных изображений звезд.

Рис. 7.2. Конфигурации планет, то есть их характерные положения относительно Земли и Солнца. По отношению к земному наблюдателю планета на внешней орбите может располагаться в соединении или противостоянии с Солнцем, а также в восточной или западной квадратурах. Планета на внутренней орбите может располагаться в нижнем (1) или верхнем (3) соединениях, а также в наибольшей восточной (4) или западной (2) элонгациях.

Таким образом, мы наблюдаем звезду сквозь очень узкий воздушный «канал», оптические свойства которого постоянно меняются из-за турбулентного движения воздуха. А диск планеты видим сразу через множество подобных каналов, свойства которых меняются хаотически, несогласованно. При этом, однако, угловой размер планет меньше разрешающей способности глаза, так что изображение планет, как и изображения звезд, мы воспринимаем в виде точек.

Хотя глазу планета все равно кажется точкой, изображение диска планеты можно представить как тесно прижатые друг к другу изображения множества звезд. Например, при угловом размере изображений звездных дисков 3″ на диске ночных планет (Марс, Юпитер, Сатурн) в эпоху противостояния их поместится около 100. Наше зрение суммирует хаотическое мигание каждой части планетного диска, при этом флуктуации яркости этого суммарного изображения планеты усредняются и оказываются значительно ниже, чем у изображений отдельных звезд. Поэтому нам кажется, что планеты практически не мерцают. Как видим, рождественская песенка «Twinkle, twinkle, little star…» очень точно определяет причину мерцания звезд: потому и twinkle, что little.

Любопытная получается картина: астрономы-профессионалы проклинают атмосферу за то, что она мешает им получать четкие изображения космических объектов, а начинающему любителю астрономии атмосфера, оказывается, помогает отличить планету от звезды. Не будь атмосферы, звезды, как и планеты, не мерцали бы.

Кстати, в эпоху зарождения радиоастрономии эта наука тоже переживала свой «любительский» период и тоже использовала эффект мерцания. В начале 1960-х гг. было известно несколько «радиозвезд» (как позже выяснилось – квазаров). Их выявили, наблюдая покрытия радиоисточников Луной. Но в тех местах на небе, где Луна не гуляет, радиотелескопы того времени не могли отличить точечный источник от протяженного, поскольку имели очень плохое угловое разрешение (как зрение весьма близорукого человека). В те годы новый метод поиска «радиозвезд» разработал Энтони Хьюиш из Кавендишской лаборатории Кембриджского университета (Англия). Он использовал аналогию: обычные звезды мерцают, потому что их свет проходит через неспокойные слои атмосферы, значит, радиозвезды должны мерцать, поскольку на пути к Земле радиоволны проходят сквозь неоднородный солнечный ветер. Хьюиш заполнил антеннами поле площадью 2 га и начал систематический обзор всего неба в поиске мерцающих радиозвезд, которые могли бы оказаться квазарами. Каждый день прибор выдавал 30-метровую бумажную ленту информации, анализом которой занималась студентка Хьюиша – Джоселин Белл. Она заметила, что один из радиоисточников мерцал довольно необычно – строго периодически. Так были открыты радиопульсары, оказавшиеся нейтронными звездами! В те годы на Рождество астрономы пели: «Twinkle, twinkle, neutron star…».

Кстати, если бы зрение человека оказалось значительно более чувствительным к слабым потокам света, например таким, как у ночного хищника совы, то мы без труда могли бы видеть Уран (+5,5m), а может быть, и Нептун (+7,8m). А вот смогли бы мы тогда догадаться, что это планеты? Из-за большого расстояния от Солнца угловая скорость их перемещения относительно звезд очень мала, и это затруднило бы выяснение их истинной природы. А как же метод мерцаний? Ведь планеты не должны мерцать? Но Уран и Нептун как раз мерцают! Их угловой диаметр составляет 2–4″, что близко к типичному размеру изображения звезды на уровне моря. Так что народная примета «звезды мерцают, а планеты – нет» отражает не только возможности нашего зрения, но и свойства земной атмосферы.

Обсуждая видимость звезд и больших планет, мы чуть не забыли об основной теме этой главы, о планетах-карликах. А можно ли их заметить невооруженным глазом и отличить от звезд? Заметить астероид невооруженным глазом, да еще в городе, практически невозможно. Даже самый яркий из них – Весту – до изобретения телескопа астрономы не отмечали как планету, хотя наиболее зоркие из звездочетов, возможно, иногда замечали самые яркие астероиды (табл. 7.2) и даже планету Уран (+5,5m), принимая их за тусклые звезды. Сегодня мы без труда можем в эпоху противостояния увидеть их в простой бинокль (табл. 3.2). Но ни Уран, ни яркие астероиды не были отождествлены как члены Солнечной системы до конца XVIII в., пока не появились достаточно мощные телескопы и подробные звездные каталоги. Из-за малого углового размера астероиды и мерцают как звезды, и с помощью обычного наземного телескопа (без адаптивной оптики) их диски не отличишь от звезд. Прав был Гершель, когда назвал их «астероидами», то есть звездообразными. Мы не говорим больше «малая планета», поскольку ничего общего у астероидов с планетами нет.

Таблица 7.2

Ярчайшие астероиды и планета-карлик Церера

А что касается карликовых планет, то ближайшая из них, Церера, хотя и может в исключительных случаях быть доступна невооруженному глазу, своим угловым размером все равно не превосходит «кляксу» атмосферного изображения звезды. Поэтому, подобно астероидам, Церера мерцает как обычная звездочка. В этом смысле переход Цереры в более высокую подгруппу ничего не изменил: как была на вид звездообразной, так ею и осталась. Однако для нас, разведчиков далеких планет, присутствие карликовой планеты Цереры недалеко от Земли чрезвычайно полезно. Все остальные планеты-карлики расположены гораздо дальше и по внешнему виду вообще неотличимы от звезд. Об их внешнем виде почти ничего не известно. А Цереру можно неплохо фотографировать даже от Земли с помощью космических телескопов и наземных инструментов с адаптивной оптикой, а кроме того, в ближайшее время ее будет изучать космический зонд.

К некоторым небольшим астероидам уже приближались космические зонды и передали их детальные изображения (см. рис. 4.31). Но к крупным астероидам и карликовым планетам экспедиций пока не было. Ожидается, что в 2011–2012 гг. зонд «Dawn» (NASA) будет исследовать Весту, а к 2015 г. прибудет к Церере. Но пока их лучшие снимки получены от Земли; они представлены на с. 10 цветной вкладки. В момент съемки расстояние до Цереры было 1,64 а. е., ее угловой диаметр составил 0,798″, а линейное разрешение на поверхности – около 20 км/пикс. Замеченное на поверхности темное пятно – вероятно, кратер – предварительно названо именем Пиацци, первооткрывателя Цереры. Замечено и несколько других крупных кратеров; дно одного из них покрыто светлым веществом.

О строении поверхности и недр Цереры пока высказываются противоречивые мнения. Температура ее поверхности не поднимается выше -35 °C, но это выше температуры сублимации (испарения) водяного льда. Тем не менее есть намеки на отложения снега и разреженную атмосферу. Некоторые модели Цереры говорят о том, что под ее поверхностью располагается толстый слой водяного льда, а под ним – каменистое ядро. Но существуют и альтернативные модели однородного строения этой планетки. Есть надежда, что после 2015 г. мы узнаем об этой карликовой планете много интересного.

На снимке Весты в основном видно южное полушарие, большую часть которого занимает огромный кратер диаметром 460 км, что близко к диаметру самого астероида (около 530 км). Глубина этого кратера около 13 км, его вал выше окружающей местности на 4-12 км, а центральный пик возвышается над дном кратера на 18 км.

Рис. 7.3. Этот метеорит размерами 9,6x8,1x8,7 см и массой 631 г, упавший в I960 г. в Западной Австралии, специалисты считают осколком астероида Веста. Он почти целиком состоит из минерала пироксена, оптический спектр которого очень похож на спектр Весты. На Земле этот минерал обычно встречается в потоках лавы. Судя по структуре метеорита, его вещество однажды испытало плавление. Похоже, что он был выбит из глубоких недр астероида. Соотношение изотопов кислорода в нем совсем не такое, как в земных и лунных породах. Образец покрыт корой плавления, образовавшейся при полете в атмосфере Земли.

Удар, создавший этот кратер, был так силен, что разрушил кору астероида и проник в область мантии. Произошло это менее 1 млрд лет назад, и выброшенное при этом вещество лишило Весту примерно 1 % ее массы. Более 50 маленьких астероидов считаются осколками Весты; астрономы называют их вестоидами (vestoid). Среди найденных на Земле метеоритов около 200 считаются частицами Весты (рис. 7.3). Планетологи полагают, что в их метеоритных коллекциях есть уже образцы с Луны, Марса, Весты и, возможно, со спутника Марса – Фобоса.

 

Как планеты стали карликами

Если не ошибаюсь, впервые «карлики» появились в астрономическом жаргоне вместе с диаграммой Герцшпрунга – Рассела, представляющей распределение звезд по температуре их поверхности (спектральному классу) и мощности излучения (светимости). На этой диаграмме, впервые построенной в 1910 г., звезды невысокой температуры, имеющие вследствие этого красноватый цвет поверхности, разделились на две группы: с очень высокой и очень низкой светимостью. Поскольку это ясно указывало на различие размеров звезд, их вполне естественно стали величать «гигантами» и «карликами». Именно так впервые назвал их Эйнар Герцшпрунг и окончательно закрепил Генри Рассел в своей заметке «„Giant“ and „Dwarf“ Stars», опубликованной в 1913 г. в журнале Observatory Так в астрономии появились красные карлики (red dwarf).

А через несколько лет астрономов поразили спектры едва заметных спутников двух ярких звезд – Сириуса и 40 Эридана. Оказалось, что их едва различимые спутники – Sirius В и 40 Eridani В – имеют нормальную для звезды массу, весьма горячую белую поверхность, но при этом очень низкую светимость! Хотя астрономы-наблюдатели обнаружили их еще в XIX в., но только законы физики, открытые в XX в., помогли понять, что у этих спутников необычайно малый размер и фантастическая плотность. В 1922 г. американский астроном Виллем Лёйтен предложил называть этих звездных гномов белыми карликами (white dwarf). С этого момента «карлики» прочно обосновались в астрономии: в семействе звезд появились желтые карлики (в их числе и наше Солнце) и голубые карлики, в семействе звездных систем – карликовые галактики, а с недавних пор, как мы знаем, родилось и семейство планет-карликов.

В отношении звезд этот набор терминов трудно назвать удачным. Представляя себе «карликов», мы ожидаем некоторого сходства между ними хотя бы в размерах. Но белые карлики меньше красных карликов в десятки раз и меньше желтых карликов в сотни раз! Да и по своим свойствам они имеют мало общего: если вспомнить, что по определению звезды – это объекты, в недрах которых протекают термоядерные реакции, то белые карлики вообще не звезды, а вырожденные остатки проэволюционировавших звезд. То же и с галактиками: карликовые галактики значительно ближе к звездным скоплениям, чем к нормальным галактикам. Учитывая эти неудачи с «карликовыми» терминами, резонно спросить: а может быть, астрономы попали впросак и с планетами-карликами?

Таблица 7.3

Параметры некоторых астероидов (Р — период суточного вращения, a и e — большая полуось и эксцентриситет орбиты)

Изучив табл. 7.3, мы увидим, что семейство астероидов так разнообразно и неоднородно, что идея их деления на несколько подклассов напрашивается сама собой. По некоторым параметрам это деление уже давно выполнено. Есть спектральные типы астероидов, различающиеся веществом на их поверхности. Есть семейства астероидов, объединенные по характеру их орбитального движения. Но, учитывая колоссальную разницу в размерах и массах астероидов, естественно хочется поделить их на группы «мертвых» и «живых». Эти образы неожиданно пришли мне на ум, обычно астрономы так не говорят. Под мертвыми я имею в виду небольшие астероиды – камни, булыжники или льдистые глыбы, не обладающие существенными внутренними источниками тепла и достаточной гравитацией, чтобы их недра могли самостоятельно изменяться. Они испытывают удары соседей и нагрев солнечными лучами; их форма и состав поверхности изменяются, но все эти процессы – не более чем эволюция гальки под напором морской волны. Значительно более сложная эволюция, затрагивающая весь объем тела и меняющая его исходную структуру и состав до неузнаваемости, протекает только у достаточно крупных тел, и их в геологическом смысле можно считать живыми; астрономы называют их планетами.

Такое деление мелких тел Солнечной системы напрашивалось давно, и астрономы подходили к нему постепенно. Важную роль здесь сыграл Плутон (см. с. 10 цветной вкладки). Ох, и плут он, этот Плутон! С момента открытия его всегда упоминали как нетипичный объект. Сколько раз он водил астрономов за нос! Начать с того, что его открыли, разыскивая совсем другую, гораздо более массивную планету. Но ее не оказалось, зато нашелся малыш-Плутон. И сразу же начались сюрпризы: он единственный в своем движении вокруг Солнца пересекает орбиту соседней планеты; он единственный то имеет атмосферу, то теряет ее, когда она замерзает и в виде снега падает на поверхность планеты. Этот плут даже регулярно меняет свой порядковый номер, попеременно становясь то восьмой, то девятой планетой от Солнца; у него единственного обнаружился спутник – Харон – размером чуть ли не с саму планету, отчего парочку Плутон – Харон стали называть двойной планетой. Одним словом, Плутон – уникальная планета. Или не планета вовсе?

Рис. 7.4. Оценки массы (черные точки) и размера Плутона первоначально были завышены, поскольку ошибочно предполагалось, что притяжение к Плутону возмущает движение Урана и Нептуна. После неоднократных переоценок в сторону уменьшения массы возникла даже шутка, что если экстраполировать кривую на будущее, то получится, что планета должна совсем исчезнуть в 1980 г.! В итоге анализ орбиты спутника Плутона, Харона, выявил истинную массу этой системы: около V400 массы Земли.

В любом учебнике астрономии состав Солнечной системы до недавних пор описывался так: планеты типа Земли (Меркурий, Венера, Земля и Марс), газовые планеты-гиганты (Юпитер, Сатурн, Уран, Нептун) и Плутон. По мере исследования Плутона оценки его размера и массы становились все меньше (рис. 7.4), отчего он все сильнее отдалялся от коллектива планет и приближался к спутникам и астероидам. Но если бы новых открытий не произошло, то придумывать для Плутона особый класс было бы чересчур щедро. Однако в 1990-е гг. за орбитой Нептуна стали обнаруживаться и другие небольшие планетки типа Плутона, и когда выяснилось, что Плутон даже не самый крупный из них, пришла пора объединить их в самостоятельную подгруппу.

При подготовке Генеральной ассамблеи Международного астрономического союза (MAC) 2006 г. обсуждались разные предложения по поводу нового деления семейства планет. Например, были предложения разделить их все на три равноправные группы:

– каменные планеты типа Земли;

– газовые планеты-гиганты типа Юпитера;

– ледяные планеты-карлики типа Плутона.

С точки зрения внутреннего строения планет, это неплохое деление, хотя и не полное: крупнейшие астероиды типа Цереры, наша Луна и крупные спутники планет-гигантов в физическом смысле тоже планеты-карлики, хотя и не ледяные, а каменные или каменно-ледяные. Но более убедительными оказались те специалисты, которые предлагали при разбиении на типы учитывать не только массу и состав вещества планет, но и характер их взаимодействия с соседями. Так в определении «планеты» появилось требование, чтобы она не была подчиненным телом: не являлась спутником более массивной планеты и не испытывала сильного влияния соседей в своем орбитальном движении вокруг звезды.

Всем этим требованиям отвечают 8 известных планет, которые не стали пока делить на более мелкие подгруппы. А для Плутона и ему подобных организовали «клуб», пропуском в который служит способность тела придать себе сфероидальную форму. По этому критерию в группу Плутона попала и Церера, имеющая выдающуюся для астероида массу (в ней содержится треть всего вещества, заключенного в Поясе астероидов) и по форме близкая к эллипсоиду, что естественно при ее довольно быстром вращении. Из прочих астероидов Главного пояса только Паллада и Веста считаются кандидатами в эту группу. Остальные астероиды настолько малы и угловаты (рис. 7.5), а порой даже состоят из почти не связанных друг с другом частей, что они ни в каком смысле не могут быть названы планетами. В то же время на периферии Солнечной системы обнаружилось несколько тел, близких к Плутону по размеру и массе. Все эти объекты международное сообщество астрономов и решило впредь называть планетами-карли-ками (dwarf planet).

Наивно было бы думать, что решением даже такого уважаемого собрания ученых, как Генеральная ассамблея MAC, можно разом решить проблему классификации. Природа разнообразнее наших представлений о ней: постоянно обнаруживаются – и не только в астрономии – новые типы объектов, не укладывающиеся в существующую номенклатуру. Мы вынуждены придумывать им новые названия, но при этом нередко используем знакомые нам образы и слова. Вспомнить хотя бы жирафа, латинское имя которого – Camelopardalis — означает «верблюдолеопард». И в астрономии таких терминов немало: планетарные туманности не имеют отношения ни к планетам, ни к туману; световой год не служит для измерения времени; звездная величина не имеет отношения к размеру звезды, а нередко – и к самим звездам. То же и с названиями объектов: маленькую галактику мы называем Большим Магеллановым Облаком, хотя ни одно из этих трех слов не имеет к этой звездной системе прямого отношения.

Рис. 7.5. Некоторые из астероидов, с которыми к середине 2010 г. сближались космические зонды. Все снимки в одном масштабе. Фото: NASA, ESA.

На мой взгляд, не стоит давать объектам нового типа названия, сконструированные из старых слов. Лучше сразу придумывать новые термины. Даже не очень удачные, они успешно закрепляются и хорошо служат: в астрономии – квазары, пульсары, магнитары; в химии – фуллерены; в физике – кварки (самое нелепое из когда-либо введенных в науку слов, но ведь прижилось!). Здесь можно вспомнить великого футуриста Айзека Азимова (1920–1992), который еще до открытия объектов пояса Койпера почувствовал особый статус Плутона и возможность обнаружения множества подобных ему тел. Азимов предложил называть их мезопланетами (греч. mesos – средний, промежуточный), включив в эту группу все объекты меньше Меркурия, но крупнее Цереры. Однако новый термин не обрел популярности, ведь Азимов был не астроном, а биохимик и к тому же писатель-фантаст. Но мне это слово кажется более удобным, чем «карликовая планета»: ведь все остальные подобные термины – планета, астероид, комета, кентавр и др. – однословные, и только «планета-карлик» состоит из двух слов.

Впрочем, можно понять и тех, кто считает, что не стоит злоупотреблять новыми терминами. Назвав объекты типа Плутона карликовыми планетами, астрономы пошли традиционным путем: если среди звезд есть гиганты и карлики, то пусть будут и среди планет. Согласимся, что этот термин весьма точно передает физические свойства маленьких планет, и его введение выглядит как естественное развитие номенклатуры.

Разумеется, журналисты преподнесли решение Ассамблеи MAC как изгнание Плутона из семейства полноценных планет: «Астрономы обещали найти десятую планету, а вместо этого лишили нас девятой!» Под влиянием подобных сообщений публика возбудилась: осенью 2006 г. были даже шуточные демонстрации протеста с лозунгами «Верните нам Плутон!». Раздавались и нешуточные призывы учредить День планеты Плутон и отдать астрономов под суд за «научную ересь». Появился даже неологизм «плутонуть» (to pluto), что-то вроде «задвинуть, разжаловать, понизить в должности».

Ну что тут скажешь? Действительно, Плутон уже не фигурирует в таблицах планет; теперь в справочниках он проходит под простым астероидным номером – 134340 Pluto. Но на самом деле Плутон не перестал быть планетой, и само семейство планет не обеднело, а лишь приросло новыми членами. Просто Плутон и его братья оказались иной весовой категории, и это стало последней каплей, вызвавшей необходимость деления семейства планет на классы. Как известно, классификация – важный шаг в любом научном исследовании.

Любопытно, что некоторые комментаторы увидели в истории с Плутоном даже национально-политический момент: мол, больше всех этим решением огорчены американцы, которые Плутон открыли, которые к нему зонд «New Horizons» послали… И вот – нате вам: отправляли аппарат к последней неизученной планете Солнечной системы, а за время пути планета «исчезла»! Разумеется, это недоразумение. Американцы в 1930 г. не просто открыли очередную планету, а обнаружили планету нового типа, ставшую родоначальником, прототипом нового класса планет, хотя и карликовых, но от этого не менее интересных (спросите у биологов, кто интереснее – слон или муравей). Зонд «New Horizons» летит теперь не к последней планете Солнечной системы, а к первой планете пояса Койпера – гигантской неисследованной области Солнечной системы. Эта область носит имя американского астронома, населяющие ее объекты были открыты (Плутон) и продолжают открываться (Квавар, Эрида, Седна и др.) американскими астрономами, таким образом их национальная гордость должна быть удовлетворена. Впрочем, у самих астрономов национальная гордость развита слабо. Астрономия – наука глубоко интернациональная.

 

Пояс Койпера?

Область Солнечной системы за орбитой Нептуна, на расстоянии от 30 а. е. до приблизительно 55 а. е. от Солнца, сегодня в большинстве публикаций называют поясом Койпера. Первый объект в этой области, Плутон, был открыт в 1930 г., и в то время ее еще никак не называли. Обнаружение в 1978 г. спутника Плутона, Харона, только укрепило общее мнение, что Плутон – полноценная планета, и, возможно, где-нибудь далеко за ним найдется еще одна большая планета, а может быть, и еще одна… Но реальность оказалась иной. Второй объект за орбитой Нептуна обнаружили лишь в 1992 г., а сегодня известно, что эта окраина Солнечной системы населена множеством объектов умеренного размера, типа астероидов и ядер комет, среди которых есть и несколько планет-карликов (см. главу 4).

Почти сразу же после открытия второго транснептунового объекта (ТНО) к этой области «прилипло» имя «пояс Койпера». Оправдывалось это обычно тем, что в 1951 г. известный американский астроном, выходец из Голландии, Джерард Койпер (Kuiper G. Р., 1905–1973) высказал предположение, что за орбитами планет-гигантов, на расстоянии 35–50 а. е. от Солнца существует область, откуда во внутреннюю часть Солнечной системы приходят короткопериодические кометы. Однако довольно быстро стали выясняться исторические подробности…

Оказалось, что ранее к подобной идее пришел ирландский военный инженер, экономист и астроном-любитель Кеннет Эджворт (Edge-worth K. E., 1880–1972), опубликовавший в 1943 и 1949 гг. небольшие статьи о происхождении комет. Вторая из них вышла в одном из ведущих астрономических журналов «Monthly Notices of Royal Astronomical Society» (1949, vol. 109, p. 609). В ней Эджворт предположил, что за орбитой Нептуна в наши дни могло бы обитать множество небольших тел – потенциальных ядер комет. С другой стороны, Койпер несколькими годами позже Эджворта высказал гипотезу, что за орбитой Нептуна в эпоху молодости Солнечной системы могли формироваться ядра комет и небольшие тела типа Цереры, но затем они были выброшены оттуда. Койпер считал, что эту область расчистил Плутон, масса которого, по тогдашним оценкам, была примерно такой же, как у Земли. В современную эпоху, полагал Койпер, можно ожидать некоторого числа объектов далее 50 а. е. от Солнца, но в диапазоне от 30 до 50 а. е. (это область движения Плутона) должно быть практически пусто. Иными словами, Койпер не верил в существование пояса Койпера!

После того как вскрылся этот исторический казус, многие астрономы, в особенности европейские, стали называть указанную область «поясом Эджворта – Койпера». Но исторические изыскания на этом не закончились. Выяснилось, что идею о существовании множества тел за орбитой Нептуна первым высказал даже не Эджворт, а американский астроном Фредерик Леонард (Leonard F. C., 1896–1960), причем сразу же после открытия Плутона. В «Записках Тихоокеанского астрономического общества» («Leaflets of the Astronomical Society of the Pacific», 1930, № 30) он утверждал, что Плутон лишь первый, но далеко не последний обитатель пространства за Нептуном.

Несмотря на очень высокий и вполне заслуженный авторитет Койпера, его сомнения в существовании пояса Койпера разделяли далеко не все астрономы. В 1960-е гг. наличие занептунового резервуара комет отстаивал знаменитый гарвардский астроном Фред Уипл (Whipple F. L., 1906–2004), автор известной гипотезы о ядрах комет как

о «грязных снежках». Его коллега Эл Камерон независимо от Уипла тоже обосновывал идею занептунового кольца малых тел. Эту идею поддерживали своими исследованиями и другие астрономы, в том числе и советские (Е. И. Казимирчак-Полонская, Б. Ю. Левин, Р. И. Киладзе). Малая масса и нетипичная для планеты орбита Плутона многих подводила к мысли о том, что он первый представитель нового класса объектов. По существу, Койпер оказался единственным, кто отрицал возможность существования современного пояса Койпера! Но его имя было столь популярным, особенно среди американских астрономов (а он действительно много сделал в планетных исследованиях), что без особых сомнений этим именем стали называть область ново-открытых малых тел за Нептуном.

Стоит ли теперь, когда история восстановлена, настаивать на смене названия? Такое мнение существует. Например, некоторые предлагают изменить ставшее уже привычным название на новое – «пояс Уипла» или «пояс Леонарда – Уипла», указывая, что именем Койпера и так уже названы кратеры на Луне, Марсе и Меркурии, самолет-обсерватория, астероид и т. п. Другие предлагают никого не обижать и сменить «пояс Койпера» на «пояс ЛЭджКУип» (LEdgeKWhip belt), объединив в этом изящном термине имена сразу четырех персонажей (Leonard + Edgeworth + Kuiper + Whipple). Поскольку это предложение доводит идею переименования до абсурда, можно не сомневаться, что имя Койпера уже навсегда останется в истории связанным с Плутоном и его семьей. В конце концов, «пояс Койпера» – это всего лишь символ, идентификатор, указывающий на определенную область Солнечной системы и напоминающий нам о замечательном ученом, которого однажды подвела интуиция.

 

Плутон и его братья

В главе 4 мы уже познакомились с объектами пояса Койпера и прочими ТНО, с историей их открытия и основными подгруппами (плутино, кьюбивано и др.). Хотя исследования этой далекой области еще только разворачиваются, ясно уже, что объекты там очень разнообразны. Например, диаметры обнаруженных тел лежат в пределах от 2500 км у планеты-карлика Эриды до 1 км у самого маленького из зарегистрированных пока объектов, который был замечен телескопом «Хаббл» в декабре 2009 г. Вообще-то яркость этого малыша оценивается в 35m, т. е. он в 100 раз тусклее, чем способен увидеть «Хаббл». Как же его заметили? Его выдала тень! Объект на мгновение заслонил собой звезду, устроив для «Хаббла» маленькое звездное затмение. Оно обнаружилось при анализе данных со звездных датчиков телескопа, помогающих ему поддерживать точную ориентацию в пространстве. Оказалось, что и эти чисто технические устройства могут послужить для разведки далеких планет. Правда, чтобы сделать это открытие, астрономам Калифорнийского технологического института пришлось проделать огромную работу: проанализировать многолетние непрерывные записи звездных датчиков, чтобы заметить единственное затмение, длившееся 1/3 секунды!

Можно не сомневаться, что с появлением более мощных телескопов за Нептуном будут открыты и более мелкие объекты, а возможно, и более крупные. Кстати, не удивляйтесь, обнаружив в разных публикациях заметно различающиеся данные о размерах «транснептунят»: различить их диски от Земли очень сложно – например, Плутон виден под углом менее ОД″. Поэтому пока их размер оценивают разными методами. К примеру, сразу после открытия Квавара размер его изображения на снимках «Хаббла» оценивался в 0,04″, что давало диаметр этой планетки 1 300 км и делало ее крупнейшим объектом, обнаруженным в Солнечной системе после открытия Плутона. Но затем был использован фотометрический метод, давший существенно иной результат. Суть метода проста: падающий на планету солнечный свет частично отражается от ее поверхности, а частично поглощается и переизлучается в инфракрасном диапазоне.

Рис. 7.6. Слева: наилучшее изображение Квавара, собранное из 16 снимков, полученных в 2002 г. космическим телескопом «Хаббл». Справа: Эрида и ее спутник Дисномия (внизу слева) размером порядка 100 км. Спутник движется вокруг Эриды по круговой орбите радиусом 36400 км с периодом 15,77 сут. Фото: HST NASA

Зная расстояние до объекта и измерив его излучение в широком диапазоне спектра – от видимого до ИК, легко вычислить, сколько солнечных лучей он перехватывает, а значит – каков его размер (предполагается, что собственных источников тепла у маленького тела нет). Используя данные наземных и космических ИК-обсерваторий, включая «Спитцер» (NASA), астрономы оценили диаметр Квавара примерно в 850 км. Даже учет некоторых тонких эффектов позволяет сейчас «натянуть» размер Квавара максимум до 900 км. По этой причине Квавар пока не включают в группу планет-карликов, а считают лишь кандидатом в нее.

Похожая история произошла и с Седной: первоначально ее размер предполагался около 1700 км, а позже был снижен до 1200÷1600 км. Еще больше неопределенность у Варуны: за пять лет (2002–2007 гг.) оценка ее диаметра уменьшилась с 1000 до 500 км. Казалось бы, такие различия размеров не очень важны, но дело в том, что у многих крупных ТНО обнаружены спутники, наблюдение за движением которых позволяет очень точно определить массу главного тела. Если же мы ошибаемся при измерении его размера, скажем, на 30 %, то вдвое ошибаемся при вычислении объема, а значит, и средней плотности. А ведь именно средняя плотность характеризует состав и даже внутреннюю структуру твердого тела: 5÷6 г/см3 – у тела есть металлическое ядро, 3÷4 г/см3 – каменистое тело типа астероида, 1÷2 г/см3 – льдистое тело типа ядра кометы. Иногда встречаются тела с плотностью менее 1 г/см3; их структура, по всей видимости, пористая. Пример – спутник Сатурна Гиперион, похожий на губку и имеющий плотность 0,57 г/см3.

Единственная транснептунная планета-карлик, размер которой удалось измерить весьма точно и даже получить грубое изображение поверхности, – это Плутон.

Рис. 7.7. Наиболее четкое изображение Плутона, полученное по снимкам космического телескопа «Хаббл». Пока трудно судить, что представляют собой эти пятна на поверхности. Загадочное яркое пятно в центре, судя по цвету, покрыто замерзшей окисью углерода. Детали поверхности Плутона мы увидим в 2015 г., когда к нему приблизится зонд «New Horizons» (NASA).

В этом существенно помогли прохождения Харона на фоне Плутона, наблюдавшиеся в 1985–1991 гг.: закрывая часть диска планеты, спутник помог просканировать ее и по вариациям яркости и цвета восстановить размер и вид поверхности. Очень ценными оказались и снимки с космического телескопа. Правда, диск Плутона занимает всего несколько пикселей на ПЗС-матрице «Хаббла». Чтобы получить изображение, имеющее более высокое разрешение, нежели размер пикселя, был использован метод субрастрирования (dithering). Для этого получают несколько последовательных изображений, каждый раз сдвигая приемник на известное расстояние, меньшее размера пикселя. Комбинация полученных снимков дает изображение с «субпиксельным» разрешением. Но для его восстановления понадобилось 4 года непрерывной работы 20 компьютеров. Исходные снимки Плутона были сделаны «Хабблом» в 2002–2003 гг., а итоговое изображение впервые опубликовано лишь в 2010 г. (см. рис. 7.7 и с. 10 цветной вкладки).

Только точное измерение размера и массы тела позволяет вычислить его среднюю плотность, узнать характерный состав и решить, можно ли зачислить это тело в группу планет-карликов. Расчеты показывают, что ледяные тела принимают округлую форму при диаметре более 400 км, а льдисто-каменистые тела типа Цереры – при диаметре более 900 км. По этим параметрам в Солнечной системе пока насчитывается 5 карликовых планет (табл. 7.4 и 7.5), но нет сомнения, что их намного больше: за Нептуном, вероятно, обнаружатся сотни льдистых тел размером более 400 км. Уже обсуждается несколько кандидатов в карликовые планеты. Сейчас в списке первоочередников около дюжины объектов размером более 650 км, среди которых Седна, Варуна, Квавар, Иксион (Ixion), Орк (Orcus), Веста, Паллада, Гигия и другие крупные объекты пояса астероидов и ТНО.

Таблица 7.4

Планеты-карлики: параметры орбиты (Q и q — расстояние в афелии и перигелии; i  – наклонение орбиты к эклиптике)

Таблица 7.5

Планеты-карлики: физические параметры

Глядя на с. 13 цветной вкладки, вы наверняка удивитесь: как это яйцеобразная Хаумея попала в карликовые планеты? Действительно, ее форма отнюдь не сферическая. По результатам измерения телескопа «Кек», Хаумея – это трехосный эллипсоид с длиной осей 1960х1518х х996 км. Как видим, у этого эллипсоида большая ось вдвое длиннее короткой! Казалось бы, тело такого размера должно было придать себе гидростатическую, а значит, круглую форму. А вот и нет! Мягкое тело в состоянии гидростатического равновесия принимает форму шара только в том случае, если не вращается. А вращение придает такому телу форму эллипсоида, сжатого вдоль оси вращения. Именно эту форму имеют планеты-гиганты и даже Земля. Однако при быстром вращении, когда центробежная сила становится сравнима с гравитационной, форма тела может стать более причудливой: например, эллипсоид может стать трехосным, вытянутым, что и произошло с Хаумеей. Ведь она вращается очень быстро, с периодом чуть менее 4 часов. При средней плотности тела около 3 г/см3 это почти на грани разрыва! Что вынудило Хаумею вращаться так быстро, доподлинно не известно, но есть основания предполагать, что это был мощный удар.

Различие характерных свойств в группе планет-карликов не больше, чем у планет земной группы. Их размеры различаются менее чем в 3 раза, а массы – менее чем в 20 раз (примерно таково различие между Землей и Меркурием). Остальные параметры еще ближе: так, ускорение свободного падения вблизи поверхности карликовых планет составляет 0,3÷0,8 м/с2, т. е. сила тяжести там приблизительно в 20 раз меньше, чем на Земле. В этом смысле планеты-карлики – просто идеальные объекты для будущих космических экспедиций. Вторая космическая скорость у их поверхности составляет около 1 км/с, что даже меньше, чем на Луне: посадка и взлет там не представляют серьезной проблемы. По этой же причине, вследствие малой скорости убегания, планеты-карлики практически лишены атмосферы: имея температуру поверхности 30÷45 К (лишь у Цереры она составляет 167 К), эти планетки не могут удержать легкие газы, а тяжелые газы там замерзают.

Впрочем, некоторые планеты-карлики обладают удивительной способностью замораживать и размораживать свою атмосферу. Это явление уже наблюдалось у Плутона. Вообще-то Солнце там греет слабо. Если бы мы оказались на поверхности Плутона, то не смогли бы различить диск Солнца: при наблюдении невооруженным глазом Солнце казалось бы нам ослепительной звездой, тускло освещающей поверхность планеты. Впрочем, этого освещения было бы достаточно для телевизионной съемки и даже для чтения. Но температура на Плутоне низкая, 33÷55 К. Двигаясь по эллиптической орбите, он заметно меняет свое расстояние от Солнца – от 30 до 49 а. е. При этом почти втрое меняется поток солнечного тепла, падающий на его поверхность. Эффект усиливается еще и оттого, что таяние снега, как правило, делает поверхность более темной и поглощающей больше тепла. В результате в течение долгого плутонианского года меняется и температура. Большую часть года температура низкая и летучие вещества лежат на поверхности в виде снега, но в районе перигелия температура возрастает, и они оттаивают. Так было сравнительно недавно: в 1989 г. Плутон проходил перигелий и с 1979 по 1999 гг. был даже ближе к Солнцу, чем Нептун. В этот период значительная часть замерзших газов (в основном метана и азота) перешла с поверхности в атмосферу. В 1988 г. наблюдалось покрытие Плутоном звезды: ее яркость убывала постепенно, в течение нескольких секунд, что несомненно указывало на довольно плотную атмосферу. Ее давление у поверхности оценивается в 0,3 Па, что, конечно, в сотни тысяч раз ниже, чем на Земле.

Рис. 7.8. Орбита Седны, кандидата в планеты-карлики.

Еще заметнее сезонные колебания температуры должны проявляться у Седны, которая подходит к Солнцу на 76 а. е., а затем удаляется на 961 а. е. Это повторяется с периодом около 12 тыс. лет, причем в течение двух столетий пролета через перигелий температура поверхности может подниматься выше 35,6 К, когда в вакууме азот из твердого состояния переходит в газообразное. Такому росту температуры способствует весьма темная красноватая поверхность Седны; своим цветом она напоминает марсианскую, хотя состав имеет существенно иной. Спектр Седны указывает на присутствие водяного, метанового и азотного льда, а значит, в середине лета у Седны может возникать азотная атмосфера. Кроме того, в спектре есть признаки высокой концентрации аморфного углерода и органических веществ – метанола и др.

Узнав о планетах с временными атмосферами, мы, естественно, должны задуматься: а чем же в таком случае отличаются кометы от астероидов? До недавних пор астрономы могли четко указать отличие астероидов от комет. Кометы движутся по вытянутым, произвольно ориентированным орбитам, а с приближением к Солнцу окутываются обширной атмосферой – комой – и отращивают газово-пылевые хвосты, за что и получили прозвище летающих айсбергов. В отличие от них астероиды движутся по орбитам, значительно более близким к окружности и лежащим вблизи основной плоскости Солнечной системы, и состоят из тугоплавких веществ, не испаряющихся даже при сближении с Солнцем. Однако эта простая классификация больше не годится, поскольку обнаружены объекты со свойствами, характерными как для астероидов, так и для комет.

Рис. 7.9. Строение Солнечной системы по современным представлениям. Кометы в облаке Оорта слабо связаны с Солнцем и подвержены гравитационному влиянию окружающих звезд и других массивных объектов. Поэтому они часто покидают Солнечную систему, но эти потери компенсируются кометами из значительно более населенного облака Хилса, иначе называемого поясом Хилса или внутренним облаком Оорта.

Первые два из них были найдены еще в 1996 г. Тогда в Европейской южной обсерватории (ESO) открыли объект Р/1996 N2 (Elst-Pizarro) с кометным хвостом, хотя двигался он по типично астероидной орбите. А почти одновременно найденный американскими астрономами объект 1996 PW хоть и был лишен хвоста, но двигался по очень вытянутой орбите, как комета. А в 1997 г. европейские астрономы добавили к ним третью «комету-астероид», получившую из-за своего хвоста кометное обозначение Р/1997 ТЗ. Открытие состоялось в ходе исследования астероидов-троянцев, сопровождающих Юпитер в его орбитальном движении двумя группами – вблизи точек Лагранжа L4 и L5 (см. с. 185–186). Это открытие отлично демонстрирует интернациональный характер работы астрономов.

Детальное изучение района точки L4 начали Герхард Хан, Стефано Моттола, Магнус Лундстрем и Ури Карсенти из Института планетных исследований (Берлин) и Клаес-Ингвар Лагерквист из Уппсальской обсерватории (Швеция). В ходе «Троянского обзора» на телескопе системы Шмидта ESO Гвидо и Оскаром Пизарро были получены фотографии области вокруг точки L4 Юпитера, покрывшие 900 квадратных градусов небесной сферы. Изучивший их К.-И. Лагерквист нашел около 400 астероидов, большинство из которых не было известно ранее. К их изучению обратились и другие астрономы. В октябре 1997 г. Андреас Натуес с помощью 60-сантиметрового телескопа обсерватории Ла-Силья (Чили) получил изображение одного из новых астероидов 19m, на котором У. Карсенти обнаружил у объекта небольшой хвостик. Детально изучив находку с помощью 3,5-метрового Телескопа новой технологии (NTT), астрономы убедились, что это направленный в сторону Солнца пылевой хвост длиной 1,5′, а ядро объекта окутано слабой пылевой комой. Его орбита оказалась умеренно вытянутой (e = 0,36) со средним расстоянием от Солнца 6,67 а. е. и периодом около 17 лет. Следовательно, это был не «троянец», поскольку Юпитер движется вокруг Солнца на расстоянии 5,2 а. е. с периодом 11,86 лет.

Можно было бы отнести этот объект к группе кентавров, но возникло немало вопросов. Например, почему эта странная комета имеет только направленный к Солнцу аномальный хвост, состоящий из крупных пылинок, нечувствительных к давлению солнечных лучей. Где же обычный для комет газовый хвост, повернутый от Солнца? И что представляют собой другие астероиды, движущиеся по вытянутым орбитам: быть может, при рассмотрении в мощные телескопы у них тоже обнаружатся хвостики и кома? До сих пор неясными остаются строение и эволюционный статус «комето-астероидов»: особые ли это тела, или под поверхностью многих астероидов находятся залежи льда, который при сильном нагревании или соударении с другим астероидом имитирует кометное поведение?

Тайна «комето-астероидов» стала приоткрываться только в октябре 2009 г., когда на поверхности астероида 24 Фемида с помощью ИК-телескопа NASA (Мауна-Кеа, о. Гавайи) американские астрономы Эндрю Ривкин, Джошуа Эмери, Умберто Кампинс и их коллеги обнаружили снег, в котором довольно много органического вещества, включая полициклические ароматические углеводороды (ПАУ). Фемида – крупное тело диаметром около 200 км, она движется в диапазоне от 2,7 до 3,5 а. е. от Солнца. Температура ее поверхности – около -114 °C. Учитывая расстояние от Солнца, это довольно высокая температура; она объясняется темной поверхностью Фемиды, которая отражает менее 7 % света, напоминая своей чернотой поверхность Луны или свеженакатанный асфальт. Удивительно, как при таком поглощении тепла Фемида смогла сохранить на поверхности водяной лед. Однако наблюдения показывают, что слой замерзшей воды покрывает всю поверхность астероида. Толщина этого слоя неизвестна. Он может испаряться и постоянно подпитываться из недр; тогда запасы воды велики. Но, возможно, обнаруженная вода «синтезируется» в тонком поверхностном слое из бомбардирующих его протонов солнечного ветра и атомов кислорода, входящих в состав окислов грунта. Авторы открытия считают, что льда на астероиде много и что он не единственный такой. Льдистым астероидам уже придумали название – кометы Главного пояса (main-belt comets, MBCs). Возможно, члены именно этого семейства занесли когда-то на Землю воду и органику. Нужны новые наблюдения и новые открытия.

Это относится и к планетам-карликам. Их исследования продвигаются медленно, поскольку требуются гигантские телескопы с фантастическим качеством изображений. Новое поколение телескопов диаметром 20÷50 м сможет разрешить многие проблемы, над которыми бьются сейчас астрономы. Внешняя граница пояса Койпера располагается на расстоянии около 50 а. е., где существует орбитальный резонанс 2:1 с Нептуном; далее число объектов резко уменьшается, в основном там присутствуют члены рассеянного диска, имеющие вытянутые и сильно наклоненные орбиты.

Объекты за Нептуном пока трудно отнести к какому-либо классу – к каменистым астероидам или к ледяным ядрам комет. Новооткрытые тела в большинстве своем имеют темную красноватую поверхность, что указывает на ее древний состав и возможное присутствие органических соединений. С помощью гигантских телескопов можно будет детально изучить спектры этих тел, выяснить их состав и, может быть, даже получить четкие изображения поверхности. К наиболее интересным из них нужно будет отправлять зонды.

Однако пояс Койпера, рассеянный диск и группа обособленных объектов с большими перигелиями (detached objects) – это еще не последние рубежи Солнечной системы. Далеко за ними на основе изучения комет предполагается существование объектов облака Хилса (Hills cloud objects) и еще более далеких объектов облака Оорта (Oort cloud objects), о которых почти ничего не известно. Так что для разведчиков далеких планет еще осталось много белых пятен даже в пределах нашей родной Солнечной системы.