О чем рассказывает свет

Суворов С. Г.

Невидимый свет

 

 

Электромагнитные волны

В то же время, когда спектроскопия начала так бурно развиваться, английский физик Джемс Клерк Максвелл (1831 —1879) обобщал результаты опытных исследований электрических и магнитных свойств материи. При этом он вовсе не имел дела со светом и со всеми понятиями, которые с ним связаны. Его интересовали другие вопросы: как взаимодействуют электрически заряженные частицы и токи, как появляются магнитные свойства вещества при движении зарядов, что происходит в пространстве, когда совершается электрический разряд, и аналогичные. Соответственно он пользовался такими понятиями, как электрическая и магнитная напряженность в данном месте пространства, скорость распространения электрического действия, диэлектрическая постоянная и т. п.

Максвелл опирался на опытные данные, полученные великим английским физиком Михаилом Фарадеем (1791 —1867), Эрстедтом, русским физиком Ленцем и другими. Экспериментального материала к 60-м годам прошлого века накопилось достаточно.

Еще Фарадей полагал, что магнит притягивает железо на расстоянии потому, что магнит создает вокруг себя в пространстве особое состояние — магнитное поле. Он нашел, что при движении магнита, от которого магнитное поле изменяется, в находящихся в этом поле проводниках возбуждается электрический ток. Максвелл обратил внимание на то, что верно и обратное: когда в проводниках быстро изменяются токи, в силу чего в пространстве вокруг изменяется электрическое поле, это изменение приводит к возникновению в пространстве магнитных влияний — магнитного поля. В свою очередь изменение магнитного поля приведет, согласно Фарадею, к новому изменению электрического поля. Новое изменение электрического поля вновь вызовет изменение магнитного. И так процесс будет продолжаться, пока не затухнет.

Рис. 25. Схема излучателя электромагнитных волн. К вибратору А, имеющему в Б разрыв, подведено от повышающего трансформатора Т высокое напряжение. В искровом промежутке Б проскакивает искра

Читатель, вероятно, уже почувствовал, что эта картина напоминает некоторый колебательный процесс. Существенный шаг вперед, который сделал Максвелл, как раз и состоит в том, что резкое изменение электрического поля (электрический импульс) он стал рассматривать как источник электромагнитного колебания, которое создает в пространстве электромагнитные волны.

 

Возбуждение электромагнитных волн

Простейший способ возбудить электромагнитные волны — создать электрический разряд. Представим себе металлический стержень с шаром на конце, заряженный положительным электричеством, и другой такой же стержень, заряженный отрицательным электричеством (см. рис. 25). Сблизим стержни настолько, чтобы между ними проскочила искра. Искра — это и есть электрический разряд, кратковременный ток через воздух, он длится тысячные доли секунды. При искровом разряде электрические заряды перескакивают с одного стержня на другой, а потом обратно, меняя направление и величину напряжения в шарах миллионы раз в секунду. Оказывается, что при этом в каждой точке пространства миллионы раз в секунду меняется электрическое и магнитное напряжение. Говорят, что каждая точка пространства получает электромагнитный импульс (толчок), или возбуждение, и это возбуждение распространяется вокруг нашего искрового разрядника, как круги по воде от упавшего камня. Это и есть электромагнитные волны.

Грозовая молния — это тоже искра, но в миллионы раз мощнее лабораторной, это — грандиозный электромагнитный -импульс, источник электромагнитных волн в пространстве.

Рис. 26. Ламповый генератор радиоизлучений — автоколебательный контур с обратной связью

Обычно колебания в описанных излучателях быстро затухают. Что сделать, чтобы они не затухали? Очевидно, то же, что делают, когда хотят, чтобы ритмично, не затухая, колебался маятник или качели: давать им в подходящий момент ритмичные толчки.

Значит, для получения незатухающих электрических колебаний нужны две системы: колеблющийся «маятник» и ритмично действующий «толкач».

В качестве колеблющегося «маятника» мы возьмем «колебательный контур» КК (рис. 26), состоящий из емкости Е и индукционной катушки ИК 1 .

В качестве ритмичного «толкача» будет служить электронная лампа Л, точнее, пульсация анодного тока в ней. Электронная лампа замечательна тем, что анодным током в ней можно управлять, лампа может «запираться» и «отпираться» для тока. Рассмотрим, как она работает. Через катод К проходит постоянный ток от батареи накала Б н и накаляет его. Из него вырываются электроны. Если на анод лампы А наложить положительный потенциал, соединив его с положительным полюсом батареи Б (в нашей схеме это делается через контур КК), то электроны в лампе понесутся от катода К к аноду А, через лампу пойдет «анодный ток». Но если на его пути поставить сетку С и наложить на нее отрицательный потенциал, лампа будет «заперта», ток через нее не пойдет. Накладывая на сетку то положительный, то отрицательный потенциал, можно заставить анодный ток в лампе пульсировать. Если этот пульсирующий ток пропустить через колебательный контур КК, то он может играть роль «ритмичного толкача» для колебаний в контуре.

Но кто же будет накладывать переменный потенциал на сетку, откуда появится ритмика у анодного тока?

А можно заставить работать сам колеблющийся контур. Для этого надо сетку соединить через индукционную катушку ИК 2 с индукционной катушкой ИК 1 колебательного контура КК, как указано на рисунке. Колеблющийся (переменный) ток в контуре будет возбуждать в катушке ИК 2 переменную электродвижущую силу. Вот от нее-то на сетке С и будет непрерывно меняться потенциал. Он будет то «запирать», то «отпирать» лампу, и в ней будет пульсировать анодный ток, который и будет давать «толчки» в колебательном контуре КК. Нужно только подходящим образом подобрать пульсацию анодного тока, и тогда колебания в контуре будут постоянно поддерживаться и не затухать. Если этот контур соединить с антенной, то в пространстве будут распространяться незатухающие («гармоничные») электромагнитные волны. Энергия этих воли, как и потери в контуре на нагревание, восполняется за счет энергии батареи Б.

Такой генератор колебаний,представляет собой автоколебательную систему с обратной связью, т. е. с таким устройством, в котором само колебание в системе (контуре КК) частично используется для управления (регулирования) этим же колебанием.

Примерно такие схемы «лампового генератора» и применяются в наше время в радиотехнике.

 

Обнаружение электромагнитных волн

Но электромагнитные волны в пространстве глазом не воспринимаются. Как же их обнаружить? И что, собственно, колеблется в этих волнах?

Свойства водяных волн мы изучали, наблюдая за колебаниями пробки, па которую действовала водяная волна. Нельзя ли найти такую «пробку», на которую действует электромагнитная волна и которую можно наблюдать непосредственно глазом или же с помощью прибора? Роль такой «пробки» для электромагнитной волны играет «пробный электрический заряд», величина которого принята за единицу. Представим себе, что в пространстве равномерно расположены такие пробные заряды и в каком-то центре произошел искровой разряд (импульс). По пространству пойдет шаровая электромагнитная волна. Она будет последовательно «раскачивать» наши пробные заряды. Одновременно в каждый момент будут возбуждаться пробные заряды, находящиеся на шаровой поверхности. В следующий момент это будет поверхность с большим радиусом. Можно определить скорость распространения электромагнитной волны. Это легко понять в принципе; фактически же скорость распространения электромагнитной волны вычисляется более сложным путем.

Что же колеблется в пробном заряде? Может быть, он, как и настоящая пробка на воде, движется вправо и влево, вверх и вниз? Нет, здесь дело не в таком механическом колебании. В пробном электрическом заряде колеблется (по величине и направлению) сила электрического и сила магнитного воздействия на него электромагнитной волны. А сила, отнесенная к единичному заряду, называется напряженностью. Периодически электрическая и магнитная напряженности в точке, где находится заряд, меняются по величине и направлению; они то достигают максимума, то падают до нуля, то направлены в одну сторону, то в другую.

 

Длина волны электромагнитных волн

Но там, где есть периодическое колебание, которое распространяется в пространстве, там можно говорить и о длине волны. У водяных волн мы называли длиной волны расстояние между двумя ближайшими гребнями. А что такое гребень водяной волны? Это наибольшее отклонение частиц воды в одну сторону — вверх.

У электромагнитных волн мы можем называть длиной волны расстояние между двумя ближайшими точками, в которых электрическое (или магнитное, это безразлично) напряжение имеет наибольшее значение и направлено в одну сторону. Здесь полная аналогия с определением длины волны на воде. Ту роль, которую для определения длины водяной волны играет гребень, у электромагнитной волны выполняет максимум электрического (или магнитного) напряжения.

 

Теория электромагнитного поля Максвелла

Заслуга Максвелла состоит в том, что он нашел математическую форму уравнений, в которых связаны воедино значения электрической и магнитной напряженностей, которые создают электромагнитные волны, со скоростью распространения их в средах, обладающих определенными электрическими и магнитными характеристиками. Короче говоря, заслуга Максвелла состоит в создании теории электромагнитного поля.

Создание этой теории позволило Максвеллу высказать еще одну замечательную идею.

В конкретном случае взаимодействия токов и зарядов он измерил электрические и магнитные напряжения, учел величины, характеризующие электрические и магнитные свойства пространства, лишенного вещественной среды («пустоты»). Подставив все эти данные в свои уравнения, он вычислил скорость распространения электромагнитной волны. По его подсчетам, она оказалась равной 300 тысячам километров в секунду, т. е. равной скорости света! А ведь в свое время скорость света определяли чисто оптически: расстояние, пройденное световым сигналом от источника до приемника, делили на время его движения; никто при этом и думать не мог ни об электрических и магнитных напряженностях, ни об электрических и магнитных свойствах среды.

Случайно ли такое совпадение скоростей?

Максвелл сделал смелое предположение: скорость света и скорость электромагнитных волн одинаковы потому, что свет имеет ту же природу — электромагнитную.

 

Электромагнитная природа света

Теория Максвелла была разработана в 60-х годах. В 1888 году немецкий физик Генрих Герц (1857—1894) получил электромагнитные волны длиной в 9 метров. Они были получены с помощью искрового разрядника, схема которого как раз и была показана на рис. 24.

Теория Максвелла была практически доказана: электромагнитные волны действительно существуют, и их можно возбуждать чисто техническими средствами.

В 1895 году русский физик Александр Попов (1859— 1906) изобрел радио — одно из величайших достижений науки и техники нашего времени. Попов особое внимание обратил на разработку приемника электромагнитных волн, на усиление посылаемых и принимаемых сигналов, для чего он впервые применил антенны, на использование электромагнитных волн в качестве сигналов для связи; с помощью электромагнитных волн он послал первую в мире радиограмму, на которой зрители могли прочитать имя Генриха Герца.

Изучая свойства световых волн и электромагнитных волн, физики пришли к выводу, что Максвелл был прав: природа их, действительно, одинакова. И те и другие волны распространяются с одинаковой скоростью, отражаются и преломляются по одним и тем же законам, дают такие же тени и огибания краев препятствий. Пожалуй, наиболее важным было установление того, что скорость распространения световых волн в различных средах совершенно так же зависит от электрических и магнитных свойств этих сред, как от этих свойств зависит и скорость распространения в них электромагнитных волн. В частности, для любых электромагнитных волн, как и для света, скорость в среде уменьшается по мере укорочения длины волны. Вот поэтому-то когда белый свет падает на грань стеклянной призмы под углом, он расщепляется на составные части; каждая волна, входящая в состав белого света, движется в стекле со своей скоростью: красное излучение быстрее, чем желтое, желтое— быстрее, чем зеленое и т. д., поэтому фронт волны каждого излучения по-своему меняет направление.

Свет — это те же электромагнитные волны, как и волны, получаемые от искрового разряда или каким-либо иным техническим путем. Оба типа волн отличаются лишь тем, что у них различна длина волны или частота. Световые волны, действия которых воспринимаются глазом, имеют длину от 4000 до 7500Å, а радиоволны, с которыми работал Попов, — около 10 метров, т. е. в десятки миллионов раз больше.

Заметим, кстати, что изобретение Попова внесло принципиально новое отношение человека к такой области природы, как свет в широком смысле слова: ранее человек мог только пассивно возбуждать свет, теперь он научился модулировать его параметры, т. е. величины, его характеризующие. Но об этом скажем несколько позже.

 

Невидимый свет

Теперь мы можем говорить о свете в широком смысле слова, включающем в себя и невидимый свет. Впрочем, фактически физики с ним познакомились уже давно. Давно они замечали, что по обе стороны видимого светового спектра имеются какие-то невидимые излучения. Если за красным краем солнечного спектра поставить термометр, он сильно нагревается. А за фиолетовым концом спектра термометр нагревается слабее, но зато сильно чернеют фотопластинки, более бурно протекают химические процессы.

Невидимые излучения за красным концом спектра назвали инфракрасными, а за фиолетовым концом — ультрафиолетовыми. После работ Максвелла, Герца, Лебедева и других стало ясно, что инфракрасные и ультрафиолетовые излучения — это также электромагнитные волны; длина волн у первых больше, чем у красного света, а у вторых меньше, чем у фиолетового.

Теория Максвелла по-новому осветила огромную область процессов природы — электромагнитных излучений. Конец XIX века ознаменован открытием многих групп излучений, составляющих по своей природе одну и ту же семью.

Выше было сказано, что Герц и Попов получали электромагнитные волны порядка 10 метров. Важно было установить, можно ли с помощью технических устройств получить излучения со все меньшей длиной волны и, наконец, сомкнуть их с теми излучениями, которые уже встречались в природе. В этом направлении шли исследования физиков.

В 90-х годах прошлого века русский физик П. Н. Лебедев (1866—1912) много работал над практическим доказательством электромагнитной природы света. Он создал вибратор, от которого получил самые короткие в то время волны—длиной в 6 миллиметров. Дальше техника получения коротких волн развивалась крайне медленно, встречались большие технические трудности. Это легко понять из следующих расчетов. Чтобы получить электромагнитные волны длиной в 10 метров (Герц, Попов), надо заставить электрические заряды колебаться с частотой в 30 миллионов циклов. Волны, полученные Лебедевым, уже требуют вибратора с частотой в 50 миллиардов циклов. Только в 1922 году советский физик А. А. Глаголева-Аркадьева изобрела «массовый излучатель», который излучал волны порядка десятых долей миллиметра. Благодаря ее работам спектр электромагнитных волн, получаемых от технических вибраторов, сомкнулся с инфракрасными излучениями.

Что же является излучателем более коротких электромагнитных волн — инфракрасных и еще более коротких? Колебания зарядов внутри молекул и атомов и их ядер. Световые излучения нам известны от природы, так как они воспринимаются нашим глазом. Другие же — были открыты физиками при помощи различных приборов.

В 1895 году немецкий физик Вильгельм Рентген (1845—1923) обнаружил, что поток быстро летящих электронов, ударяясь о стекло или металлическую пластинку, вызывает появление невидимых излучений. Излучения были замечены случайно: они упали на бумагу, покрытую особым веществом — платино-цианистым барием, и бумага в темноте засветилась. Так были открыты «рентгеновские лучи», с помощью которых в настоящее время «просвечивают» внутренние органы человека. Длины волн рентгеновских излучений лежат в промежутке примерно от десятых долей до сотни ангстрем. По длине волны они следуют непосредственно за ультрафиолетовыми излучениями.

Вскоре после открытия рентгеновских излучений в природе были найдены излучения с еще более короткой длиной волны, так называемые гамма-излучения. Их испускают радиоактивные вещества.

 

Шкала электромагнитных излучений

Таким образом, шкала излучений, обнаруженных человеком в природе, оказалась очень широкой. Если идти от наиболее длинных волн к коротким, мы увидим следующую картину (рис. 27). Сначала идут радиоволны, они самые длинные. В их же число входят и излучения, открытые Лебедевым и Глаголевой-Аркадьевой; это — ультракороткие радиоволны. Далее последовательно идут инфракрасные излучения, видимый свет, ультрафиолетовые излучения, рентгеновские и, наконец, гамма-излучения.

Границы между различными излучениями весьма условны: излучения непрерывно следуют одно за другим и даже отчасти перекрывают друг друга.

Взглянув на шкалу электромагнитных волн, читатель может заключить, что видимые нами излучения составляют весьма небольшую часть известного нам общего спектра излучений.

Для обнаружения и изучения невидимых излучений физик должен был вооружиться дополнительными приборами. Невидимые излучения можно обнаружить по их действию. Так, например, радиоизлучения действуют на антенны, создавая в них электрические колебания: инфракрасные излучения сильнее всего действуют на тепловые приборы (термометры), а все остальные излучения наиболее сильно действуют на фотопластинки, вызывая в них химические изменения. Антенны, тепловые приборы, фотопластинки — это новые «глаза» физиков для различных участков шкалы электромагнитных волн.

Рис. 27. Шкала излучений. Заштрихованная сеткой область изображает часть спектра, видимую человеческим глазом

Открытие многообразных электромагнитных излучений— одна из самых блестящих страниц истории физики.

 

Развитие радиоастрономии

В последние годы установлено, что радиоизлучения испускаются не только грозовыми разрядами или специально созданной технической аппаратурой. Эти излучения непрерывно испускают также и звезды и особенно ядра галактик.

Спектры радиоизлучений звезд и галактик являются таким же мощным средством изучения свойств звезд и галактик и протекающих в них процессов, как и спектры видимой части света. Для получения и анализа спектров радиоизлучений в последнее десятилетие построены мощные радиотелескопы, в которых отсутствует обычная оптика. Радиотелескопия увеличила возможности изучения звезд и галактик, так как в радиоспектрах раскрываются новые особенности и процессы в источниках. Кроме того, радиотелескопы проникают во Вселенную гораздо глубже, чем оптические телескопы. Им доступны галактики на расстояния до 10 миллиардов световых лет и более, тогда как оптические телескопы проникают во Вселенную лишь до 5—6 миллиардов световых лет.

 

Призма отказывается служить

Спектроскоп со стеклянной призмой оказал ученым большую помощь. Но после открытия электромагнитных излучении выявилось, что стеклянная призма не для всех лучей прозрачна. Она пропускает только видимый свет и частично инфракрасные и ультрафиолетовые излучения, а именно те из них, которые ближе всего примыкают к видимому свету. Остальные излучения стекло не пропускает, и, значит, нужно подыскивать призмы не из стекла, а из других материалов. Для длинноволновых инфракрасных излучений пришлось бы изготовить призмы не из стекла, а из каменной соли или из минерала сильвина. Для коротких электромагнитных волн в несколько сантиметров подходящей была бы призма из асфальта или серы. Для средневолновых ультрафиолетовых излучений пришлось бы взять призму из кварца. Для коротковолновых же ультрафиолетовых излучений вообще нет подходящего «прозрачного» материала среди известных в настоящее время. А рентгеновские лучи так мало преломляются в любом материале, что почти невозможно развернуть их в широкую полосу спектра.

Стеклянная призма хорошо работает на небольшом участке спектральной шкалы. На других участках она отказывает. Материал, из которого сделана призма, становится препятствием для исследований.

Но нельзя ли обойтись без призмы? Нельзя ли разложить сложные излучения на простые каким-либо иным путем, без призмы?

И снова работает пытливая мысль человека, ищет и находит выход.

 

Дифракционная решетка

На смену призме пришел новый прибор — дифракционная решетка.

С явлением дифракции мы уже встречались. Это была дифракция от двух щелей в приборе Юнга. Дифракционная решетка — это пластинка со множеством щелей (до 100—150 тысяч). Все ее щели отстоят друг от друга на равных расстояниях. Дифракционная картина в ней существенно отличается от картины дифракции от двух щелей. Рассмотрим действие решетки (см. схему на рис. 28).

Посмотрим сначала, в чем действие решетки сходно с действием прибора Юнга.

Пусть на дифракционную решетку со множеством щелей падает пучок параллельных одноцветных лучей. Мы уже знаем, что, пройдя щели, они отклонятся и будут интерферировать друг с другом.

Обозначим направления интерферирующих лучей через угол φ 1 . Разность хода волн у лучей 1 и 2 выражается отрезком A 1 B 1 . Пусть она равна целой длине волны λ. Мы уже знаем, что в этом случае луч 1 и луч 2 будут усиливать друг друга.

Разность хода между лучами 1 и 3 (отрезок А 1 Б 2 ) равна 2λ. Третий луч также усилит действие лучей 1 и 2. Но и все другие лучи, идущие под углом φ 1 будут усиливать друг друга. Яркость света в направлении φ 1 действием решетки чрезвычайно усиливается.

Так же будет действовать решетка и в направлениях φ 2 , φ 3 и т. д., для которых разность хода волн между соседними лучами составляет 2λ, 3λ и т. д.

Рис. 28. Схема действия дифракционной решетки

Направления, по которым яркость света усиливается решеткой, определяются по тому же правилу, что и для двух щелей.

Теперь посмотрим, каково различие в действиях решетки и прибора Юнга. Рассмотрим лучи, идущие под углом, весьма мало отличающимся от угла φ 1 . Пусть в этом направлении разность хода между двумя соседними лучами будет немного больше λ, например λ + 1/100 λ. В приборе Юнга с двумя щелями яркость света в новом направлении будет лишь чуть-чуть меньшей. А в решетке со множеством щелей картина будет другая. Если разность хода между лучами 1 и 2 будет λ + 1/100 λ, то между лучами 1 и 3 она будет 2(λ + 1/100 λ) = 2λ + 2/100 λ, между лучами 1 и 4 соответственно 3(λ + 1/100 λ) = 3λ + 3/100 λ, и так далее. А между лучом 1 и 51 мы получим разность хода 50λ + 50/100 λ = 50λ + 1/2 λ, т. е. целое с половиной число длин волн.

А это уже особый случай: при такой разности хода волн лучи 1 и 51 погасят друг друга. По тем же причинам погасят друга друга соответственные пары лучей 2 и 52, 3 и 53 и так далее. В решетке со множеством щелей для каждого луча (идущего не под углами φ 1 , φ 2 и т. д.) всегда найдется такой соответственный луч, который его погасит. Следовательно, в дифракционной решетке в направлении, хоть немного отличающемся от угла φ 1 , φ 2 , ... , свет распространяться не будет.

Если мы выделим лучи, которые отклоняются от угла φ 1 иначе, чем в только что разобранном случае, то разность хода волн у соседних лучей будет иная, не λ + 1/100 λ, а, например, λ + 1/200 λ. По существу, это не меняет дела: лучи в этом направлении тоже погаснут. Разница лишь в том, что взаимно будут гаситься не 1 и 51 лучи, а 1 и 101, 2 и 102 и т. д. В решетке, в которой свыше ста тысяч щелей, для каждого данного луча (в этом направлении) всегда найдется такой луч, который его погасит.

Общий итог таков: в дифракционных решетках свет усиливается только по строго избранным направлениям φ 1 , φ 2 , φ 3 и т. д., по которым разность хода волн между соседними лучами составляет целое число волн: λ, 2λ, Зλ и т. д. Во всех других направлениях свет гаснет. На экране появятся узкие цветные линии, перемежающиеся широкими темными полосами. Зато поток света, идущий в этих избранных направлениях, будет очень сильным: ведь в его создании участвуют не две, а огромное множество щелей.

Здесь следует сделать одно важное замечание. Электромагнитные волны несут энергию. Энергия, которую несет параллельный пучок лучей, падающий на решетку, вследствие интерференции позади решетки, конечно, не пропадает. Она только перераспределяется и сосредоточивается в некоторых направлениях, в которых световые лучи усиливают друг друга. Закон сохранения энергии справедлив и в случае интерференции.

 

Дифракционные спектры

Мы рассмотрели дифракционную картину одноцветных лучей. А какова будет картина, если мы дополнительно осветим решетку вторым, тоже одноцветным светом, но другой волны?

Для вторых лучей направления освещенности будут уже не φ 1 , φ 2 , φ 3 и т. д., а какие-то другие, ибо у них другая длина волны и усиление света будет при другой разности хода. На экране наряду с линиями первого цвета на месте темных полос появятся яркие линии второго цвета.

Рис. 29. Так располагаются дифракционные спектры: Б — белая полоса; Ф — фиолетовые; К — красные концы спектров. Два левых и два правых крайних спектра частично налагаются друг на друга

Отсюда легко понять, что получится, если осветить дифракционную решетку белым (составным) светом. На экране появятся такие же цветные полосы, как и после прохождения белого света сквозь стеклянную призму. Дифракционная решетка разлагает белый свет на цветные полосы.

Дифракционная картина на экране будет выглядеть так. В центре расположится белая полоса. Это потому, что для лучей, идущих по перпендикуляру к решетке, разность хода волн между соседними лучами (1 и 2 и т. д.) равна нулю, они усиливают друг друга. А это справедливо для лучей всех цветов, поэтому лучи всех цветов будут в центре экрана усиливать друг друга. А совокупность всех цветов дает, как известно, белый цвет.

С обеих сторон от центральной полосы будут симметрично располагаться цветные спектральные полосы. Их будет по нескольку с обеих сторон. К центральной полосе они будут обращены фиолетовыми концами (рис. 29).

Так получаются спектры от дифракционной решетки.

Хорошие решетки должны содержать множество очень точно расположенных щелей, и изготовить их — дело большого искусства и точности. Очень точная «делительная машина» царапает алмазом на гладкой поверхности стекла правильные ряды штрихов. Штрихи — это препятствия для света, а тончайшие, не тронутые алмазом промежуточные полоски — это щели, сквозь которые проходит свет. Такие дифракционные решетки называют прозрачными.

 

Отражательные решетки

Пока мы имеем дело с прозрачными решетками, мы снова пользуемся стеклом, а оно не прозрачно для многих видов излучения. Мы все еще не ушли от трудностей. Поможет ли нам открытие дифракционных спектров?

Оказывается, поможет. Прозрачные дифракционные решетки можно заменить отражательными, изготовленными на отполированной поверхности металла.

Рис. 30. Отражательная дифракционная решетка работает так же, как и прозрачная

Как же работают отражательные дифракционные решетки? Почему в них образуются спектры?

Представим себе, что А 1 , А 2 , А 3 и т. д. на рис. 30 обозначают уже не щели, а узкие зеркальные полоски; а идущие от решетки лучи 1,2, 3 и т. д. — отраженные лучи. Следовательно, падающие на решетку лучи шли до точек А 1 , А 2 и т. д. не слева (как было, когда А 1 , А 2 и т. д. были щелями), а справа и, упав на зеркальные полоски А 1 , А 2 и т. д., отразились от них. Только в этом ходе лучей до точек А 1 , А 2 и т. д. вся и разница. Наложение же отраженных лучей 1, 2, 3 и т. д. совершенно аналогично наложению лучей, прошедших сквозь щели. Все рассуждения, которые мы привели раньше, сохраняются в силе.

Таким образом, от отражательных решеток также можно получить дифракционные спектры. Но в чем различие? Различие в том, что при этом лучи уже не проходят сквозь материал, из которого изготовлена решетка, а отражаются от него. Для отражательной дифракционной решетки непрозрачность материала не играет роли. А это уже существенный выигрыш.

Новый метод получения спектров расширяет возможности анализа излучений. В этом случае дифракционные спектры можно получить не только для видимого света, но и для других излучений, в том числе и для ультрафиолетовых.

 

Поиски решетки для рентгеновских излучений

Однако в работе с дифракционными решетками встретились свои трудности.

Дело в том, что однотипной решетки для всех излучений подобрать нельзя. Для различных излучений нужны различные решетки. Ширина светлых штрихов решетки должна быть сравнима с длиной волны исследуемых излучений. Если она будет, скажем, в сотни и тысячи раз больше или меньше длины исследуемых волн, спектральной полосы на экране не получится. А ведь в видимом свете мы имеем дело с длинами волн в диапазоне 4—8 тысяч ангстрем или четыре — восемь стотысячных долей сантиметра. Такую малую величину невозможно себе и представить.

И все же когда человеку понадобилось технически выделить, отмерить такую величину в дифракционной решетке, он этого достиг. В современных дифракционных решетках с помощью специальной делительной машины наносится 1000—1500 штрихов на миллиметр; общая сумма светлых и темных полос достигает, следовательно, 2000—3000 на миллиметр. Нетрудно рассчитать, что ширина светлого штриха равна примерно 4000— 5000 ангстрем, т. е. того же порядка, как и длина волны видимого света!

Такая решетка будет подходящей для видимого света и ультрафиолетовых излучений. Но она не даст спектральных полос рентгеновских излучений. Для последних ее светлые штрихи слишком широки. Ширину их надо бы уменьшить в тысячи раз. Это значит, что на одном миллиметре пришлось бы нанести миллионы штрихов. Но тогда пришлось бы «штриховать» каждый атом. Но как это можно сделать? И вообще какой это имеет смысл?

Более пятнадцати лет для рентгеновского излучения не находили подходящей решетки. Никто поэтому не знал, проявляет ли оно волновые свойства. Шли даже споры о том, какова его природа. Одни говорили, что рентгеновское излучение — это волны, и для него все же можно найти подходящую решетку. Другие же утверждали, что это поток мельчайших частиц и не нужно пытаться определять длину несуществующей волны. В то время одни рентгеновские излучения от других отличали не по длине волны, а по тому, как глубоко они проникают в различные вещества. Те излучения, которые проникали глубже, называли «жесткими», а те, которые проникали не так глубоко, — «мягкими». Ясно, что эта характеристика была не очень точной.

 

Нашлась решетка и для рентгеновских излучений

Но нашлась дифракционная решетка и для рентгеновских излучений. Сама природа пришла здесь на помощь.

В конце XIX и начале XX века физики усиленно изучали строение твердых тел. Известно, что многие твердые тела являются кристаллами. Атомы в кристаллах расположены строго правильными рядами. Они составляют как бы естественные решетки. На рис. 31 изображена часть кристаллической" решетки поваренной соли.

Рис. 31. Так располагаются атомы в кристалле поваренной соли. Белыми шариками обозначены атомы натрия, черными — атомы хлора. Расстояния между слоями атомов около трех ангстрем

Русский ученый Е. С. Федоров еще в 1891 году опубликовал исследование «Симметрия правильных систем фигур», в котором теоретически рассчитал, какие кристаллические формы могут встретиться в природе. Он нашел 230 возможных форм. Почти три четверти века прошло с тех пор. Наука подтвердила все вычисления ученого, и новых форм кристаллов действительно найдено не было.

Зная формы кристаллов, физики вычислили, каковы расстояния между слоями атомов в кристаллических решетках. Оказалось, что эти расстояния равны примерно одному ангстрему. Эта величина сравнима с размерами атома. Такую частую штриховку нельзя нанести никакой делительной машиной.

Кристаллы и были использованы в качестве дифракционной решетки для рентгеновских излучений. В этой решетке «преграды» и «щели» — это сами атомы и промежутки между ними. А атомы лежат не на плоскости, а расположены в пространстве. Но рассчитать дифракцию от такой решетки можно. В 1912 году физики подвергли кристалл рентгеновскому облучению и получили его дифракционный спектр. Природа рентгеновских излучений была установлена: это электромагнитные излучения, как и радиоволны, как и видимый свет.

Два крупных физика-кристаллографа — русский ученый Ю. В. Вульф и англичанин В. Брэгг одновременно установили, как можно рассчитать длину волны рентгеновских излучений, если известно расстояние между слоями атомов в кристаллической решетке и дана самая картина спектра. Формула, выражающая эту связь, называется формулой Вульфа — Брэгга.

На примере развития техники спектрального анализа видно, что по мере того, как возникают трудности и ставится новая задача, находятся и пути ее разрешения.