О чем рассказывает свет

Суворов Сергей Георгиевич

Свет и энергия будущего

 

 

Проблема источников энергии

Современное общество потребляет много энергии. Чем выше уровень производительных сил общества, тем быстрее растет его потребность в энергии. Откуда берется потребляемая человеком энергия? Почти до середины XX века важнейшими источниками энергии была химическая реакция окисления угля, нефти, древесины, торфа, сланцев. Это — простейшая и сравнительно легко вызываемая реакция; со времени добычи огня и еще за несколько тысячелетий до изобретения письменности человек сжигал топливо. Кроме того, на протяжении тысячелетий человек использовал естественное падение воды и некоторые побочные источники (ветер, морские приливы и т. п.). Даже после открытия электрической формы энергии человек для ее получения по-прежнему сжигает топливо и использует падение воды.

Потребление энергии в последние десятилетия развивалось быстро. Стал актуальным вопрос о том, насколько перспективны существующие источники энергии. Подсчеты показали, что запасы топлива на Земле ограниченны. Ученые ведут споры о том, на сколько поколений их хватит. Ограниченны, хотя далеко еще не полностью используются, и запасы гидроэнергии. Отыскание новых, практически неисчерпаемых и перспективных источников энергии стало одной из наиболее важных научно-технических задач современности. Где же эти неисчерпаемые первоисточники энергии?

Естественно, что научная мысль все более обращалась к исследованию солнечной энергии и ее роли на Земле. Уже давно стало ясно, что Солнце и другие звезды являются источником колоссальной энергии. Эта энергия в виде света переносится в мировое пространство на огромные расстояния, исчисляемые миллиардами световых лет.

Наше Солнце за одну секунду испускает в мировое пространство энергию, которая, по подсчетам С. И. Вавилова, эквивалентна массе в 5 миллионов тонн. На Землю падает лишь небольшая ее часть, равная примерно сорока тысячам миллиардов больших калорий. Но и эта энергия чрезвычайно велика. Ее хватило бы, чтобы нагреть от 0° С и затем испарить более 75 миллионов тонн воды в секунду, а за сутки — 6500 миллиардов тонн. Нигде больше в природе на Земле человек не встречается с таким огромным количеством энергии.

Что же делается с этой энергией на Земле?

 

Два круговорота вещества и энергии на Земле

Достигнув Земли, солнечная энергия способствует осуществлению на ней ряда процессов, без которых была бы невозможна органическая жизнь в ее высокой стадии. Особенно замечательны два круговорота веществ и энергии на Земле, происходящие под действием солнечного света.

Один из них — круговорот воды. Он связан с тепловыми действиями света. Солнечный свет нагревает и испаряет воду, поднимает с поверхности рек, морей и океанов и из почвы миллионы и миллионы тонн воды до верхних слоев атмосферы. Создавая в атмосфере, опять-таки благодаря тепловому действию, разность температур и давлений, он перемещает эти тонны воды, распределяет ее по всем широтам и долготам и способствует ее выпадению на поверхность Земли в виде осадков. В силу этого непрерывно питается почва и земные водоемы, не пересыхая, текут реки, вода снова и снова стремится перейти на низший уровень. На этой основе создана гидроэнергетика. В ней человек использует в конечном счете не что иное, как преобразованную солнечную энергию.

Но полезная работа солнечного света не ограничивается только этим. Растворяя различные соли в почве, вода способствует усвоению растениями различных питательных веществ, необходимых для их роста. Без этого круговорота воды, вызываемого действием солнечного света, жизнь на Земле была бы невозможной.

Солнечный свет вызывает на Земле и другой не менее важный круговорот — круговорот углерода и кислорода. Он связан с химическими действиями света.

Углерод С необходимо входит в состав органических клеток животных и растений и их преобразованных остатков — угля, нефти, древесины и пр. С другой стороны, повсюду в природе сгорание этого элемента, т. е. его соединение с кислородом О (окисление), дает энергию, необходимую для жизнедеятельности организмов, а равно и для производственной деятельности человека.

Сгорание углерода, а следовательно, уменьшение в природе свободных углерода и кислорода происходит всюду и в больших масштабах (дыхание человека и животных, горение топлива, гниение органических остатков и т. п.). Если бы этот процесс шел только в одну сторону, то в конце концов свободный углерод, т. е. один из существенных строительных материалов, из которого образуются органические клетки, исчез бы. Исчез бы также и кислород, необходимый для получения энергии в организмах. В результате окисления углерода получилась бы углекислота CO 2 , обладающая в обычных условиях большой стойкостью и отравляющими свойствами.

Однако, к счастью, в природе создаются и условия, при которых идет и обратный процесс. Он связан с растительным царством. Растения вырабатывают хлорофилл, в зернах которого под воздействием солнечного света происходит расщепление углекислоты CO 2 . В результате этого процесса вновь образуются свободные углерод и кислород (потому-то в лесах «легко дышится»).

Таким образом, получается вечный круговорот: углерод и кислород то соединяются, давая энергию животным и человеку, но переходя при этом в инертное состояние, то вновь расщепляются и становятся свободными, создавая возможность растительным и животным организмам строить свои клетки и при новом окислении углерода получать все новые количества энергии.

Этот круговорот непрерывно повторяется, непрерывно создается энергия и потенциальная возможность жизни. Но это — не «вечный двигатель»; этот круговорот — результат работы солнечного света, проявление его энергии, преобразуемой в определенных условиях (хлорофилл) в потенциальную энергию углерода и кислорода, которые, соединяясь, приводят к дальнейшему преобразованию энергии в теплоту.

Энергию, выделяемую при сжигании углерода, равно как и энергию падающей воды, можно рассматривать как преобразованные формы солнечной энергии. Эти формы энергии под действием солнечного света непрерывно в природе возобновляются. В недрах Земли в течение миллионов лет накоплены огромные запасы преобразованной солнечной энергии. Но, как уже было сказано, потребности в энергии в наше время весьма велики, и они быстро растут. Ни энергия накопленных в Земле угля и нефти, ни гидроэнергия в перспективе не такой уж далекой не смогут эти потребности удовлетворить. Где же искать новые, более перспективные источники?

 

Солнечные батареи

Обращает на себя внимание весьма малый коэффициент использования солнечной энергии при сжигании топлива. Очень уж многозвенен этот процесс: солнечная энергия — химический процесс расщепления углекислоты и получение потенциальной химической энергии кислорода и углерода — последующее окисление углерода и образование тепловой энергии — преобразование полученной теплоты в двигателе внутреннего сгорания в механическую энергию движения ротора — преобразование механической энергии ротора в динамомашине в электрическую энергию, — наконец, передача электроэнергии на производство и новое ее преобразование в соответствии с потребностью.

Во всем этом цикле превращений участвует только крайне малая часть солнечной энергии, дошедшей до Земли. Но, кроме того, в каждом звене этой цепи превращений теряется много энергии на побочные процессы. В каждом звене коэффициент полезного действия представляет собой малую дробь, а общий коэффициент полезного действия солнечной энергии тем более мал, ибо он представляет собой произведение нескольких малых дробей.

Естественно, что научно-техническая мысль работает над сокращением длинной цепи превращений по крайней мере до одного — двух звеньев. Потери солнечной энергии резко сократились бы, если бы она была непосредственно превращена в электрическую энергию. Да и долю используемой на это солнечной энергии можно было бы резко увеличить.

Но в принципе такая проблема уже решена в фотоэлементах (см. опыт Столетова). В них как раз и происходит непосредственное превращение световой энергии в энергию потока электронов, т. е. в электрический ток. Надо только изготовить достаточное количество надежно и экономично работающих фотоэлементов и покрыть ими крыши домов и все свободные площади. Но это «только» — легко сказать. На деле задача эта не проста. Для ее выполнения потребовалось бы большое количество редких химических материалов. Их надо подвергнуть весьма тщательной химической очистке и добиться почти абсолютной однородности. Изготовление фотоэлементов в больших масштабах технически сложно и пока дорого. Пока они изготовляются лишь в количествах, необходимых для приборостроения и автоматики. Конечно, когда маленький фотоэлемент полностью заменяет человека, как это имеет место, например, в автоматических контролерах, стоящих при входе в московское метро, это выгодно. Еще более выгодно применять системы фотоэлементов на космических кораблях. Там они используются для ориентации корабля (по Солнцу или по Луне), а также для получения электротока от солнечных лучей (солнечные батареи). На космических кораблях фотоэлементы имеют особое преимущество, поскольку они обеспечивают длительное действие приборов и не утяжеляют корабль. Однако пока они дают немного энергии и применяются на космических кораблях лишь как дополнение к обычным химическим батареям.

В этом методе непосредственного превращения солнечной энергии в электрическую есть еще много технических и экономических трудностей. Но в принципе здесь все уже ясно. Поэтому многие ученые видят в нем главный и перспективный источник получения энергии для нужд человека. Эти идеи особенно активно развивал выдающийся русский физик академик А. Ф. Иоффе (1880—1960).

 

Превращение вещества в свет как источник энергии

Рождаясь в недрах вещества, свет раскрыл перед мыслящим человеком огромные кладовые энергии, связанной в атомах. Без изучения языка света, несущего информацию о сложной структуре атома, нельзя было ни осознать этот факт, ни поставить и решить проблему высвобождения атомной энергии. Частично эта задача уже решена. Мы уже построили и строим атомные электростанции, атомные ледоколы и подводные лодки.

Но познание атомов как источников энергии находится еще в самом раннем периоде своей истории. Мы пока еще используем энергию синтеза или же распада атомов, притом только определенных атомов.

Еще не раскрыта сложная структура ядра и элементарных частиц. Быть может, наибольшую энергию можно будет получать не при переходе атома с одного энергетического уровня на другой и даже не в процессе распада или синтеза атомов, а в процессах совершенно иного рода. Выше уже говорилось о том, что физики установили факт превращения частиц вещества — электрона и позитрона, находящихся в сильном поле ядра, в гамма-кванты, т. е. в свет. Этот процесс связан с максимальным образованием энергии.

Позитрон является такой же частицей вещества, как и электрон, но только заряд его не отрицателен, а положителен; он является как бы отображением электрона, или, как говорят физики, его античастицей. В наше время известно свыше тридцати различных элементарных частиц; для некоторых из них уже открыты их античастицы. Например, установлено наличие не только элементарной частицы — протона, но и антипротона, не только нейтрона, но и антинейтрона. По-видимому, каждая элементарная частица имеет свою античастицу. Соединение частицы и античастицы в особых условиях (сильные ядерные поля) приводит к превращению их в соответствующие кванты излучений. Можно предполагать, что любая пара элементарных частиц — частица и ее античастица, — взаимодействуя друг с другом в сильных полях, претерпит превращение в кванты света. Эти превращения будут сопровождаться огромными энергиями, гораздо большими, чем те, которые связывают и отдают такие возбужденные физические системы, как молекулы, а темы и ядра.

В поисках условий, при которых протекают подобные процессы, физики создают мощные ускорители, в которых в огромном пустом внутри кольце периодически меняющиеся поля разгоняют элементарные частицы до очень больших скоростей. Эти частицы достигают на выходе огромных энергий, порядка миллиардов электрон-вольт. Так, в Дубне в Объединенном институте ядерных исследований уже несколько лет работает ускоритель, в котором получаются частицы с энергией до 10 миллиардов электрон-вольт. В Швейцарии вступил в строй ускоритель объединенных западных держав; элементарные частицы разгоняются в нем до 25 миллиардов электрон-вольт. В Советском Союзе проектируется еще более мощный ускоритель.

Для чего физики упорно стремятся получить частицы все более высоких энергий? Для того, чтобы с их помощью прощупать структуру ядер, элементарных частиц, взаимодействие их между собой, открыть новые возможные частицы, закономерности их взаимопревращений, их превращения га кванты света. Эти исследования должны раскрыть, какие превращения протекают в глубинах атома, выяснить, при каких условиях и какую энергию могут освободить в этих превращениях ядра или элементарные частицы.

Исследования физики в области атомной энергии тесно переплетаются с исследованиями астрофизиков. Результаты, полученные одними, помогают другим осмыслить наблюдаемые явления.

Долгое время астрофизики пытались разгадать, каков источник столь мощного излучения Солнцем световой энергии. В прошлом веке образование солнечной энергии пытались объяснить сильным сжатием Солнца, т. е. превращением механической энергии. Однако подсчеты показали, что величина энергии, которую возможно получить за счет сжатия, была бы ничтожно мала по сравнению с действительной. Точно так же было выяснено, что огромную величину излучаемой солнечной энергии нельзя объяснить никакими химическими реакциями окисления.

Только тогда, когда ученые постигли структуру атомов и их различные превращения, они поняли, что солнечная энергия образуется в результате ядерных реакций. В настоящее время полагают, что световая энергия Солнца получается в результате ядерной реакции, при которой 4 атома водорода превращаются в атом гелия и два позитрона; при этом выделяется около 27 миллионов электрон-вольт энергии в расчете на один грамм превращенного водорода. Количественный спектральный анализ показал, что на 80% Солнце состоит из водорода и на 18% из гелия. Расчеты показывают, что Солнцу с его огромным запасом водорода и при его теперешней интенсивности излучения хватило бы энергии, освобождаемой при превращении водорода в гелий, на сотни миллиардов лет.

Интерес физиков все более приковывается к процессам, происходящим во Вселенной. Ведь звезды представляют собой гигантские ядерные котлы, в которых природа создала исключительные условия высоких температур и давлений, недостижимые в земных условиях. Мы знаем об этих исключительных условиях опять-таки из анализа звездных спектров. В недрах звезд протекают реакции, о которых мы, быть может, еще не имеем представления и которые служат источником колоссальных энергий, излучаемых в мировое пространство. Какие колоссальные запасы энергий хранятся в звездах и испускаются в виде энергии света, трудно себе и представить. Энергия некоторых звезд превышает солнечную в десятки и сотни тысяч раз. Длительность излучения у каждой звезды исчисляется многими миллиардами лет. Только в одной нашей Галактике содержится более ста миллиардов звезд.

Замечательно, что вся эта информация прочитана путем расшифровки языка света, падающего на Землю.

 

Мощные источники энергии в ядрах радиогалактик

Не все явления, наблюдаемые астрофизиками, можно объяснить посредством ядерной реакции превращения водорода в гелий. Уже около полусотни лет ученые изучают космические лучи, приходящие к нам на Землю из далеких глубин Вселенной. Эти «лучи» представляют собой поток быстродвижущихся положительно заряженных частиц — протонов, а также в небольшом количестве альфа-частиц и других ядер. Энергия этих частиц огромна, она измеряется миллиардами электрон-вольт, а в отдельных случаях доходит до сотен миллионов миллиардов электрон-вольт.

Где и в каких условиях космические частицы получают такую колоссальную энергию? Ни в нашей Солнечной системе, ни в нашей Галактике таких условий не обнаруживается.

Быть может, ответ на этот вопрос даст анализ радиоизлучений, наблюдаемых с помощью радиотелескопов.

Как известно, все галактики испускают кроме видимого излучения еще и радиоизлучения. У большинства галактик мощность этих радиоизлучений невелика по сравнению с мощностью их видимого светового излучения. Но все же находятся и такие галактики, у которых мощность радиоизлучения сравнима с мощностью их видимого светового излучения. Естественно, что эти «радиогалактики» привлекли к себе внимание. Чем они отличаются от других, что за процессы там происходят?

Советские астрофизики установили, что источником мощных радиоизлучений радиогалактик является поток электронов весьма высоких энергий, движущихся в сильных магнитных полях. Этот поток электронов высоких энергий выбрасывается из ядра радиогалактик. Именно в ядрах галактик происходят какие-то, еще нам неизвестные, процессы, в результате которых возникают потоки частиц высоких энергий и испускаются мощные радиоизлучения.

Так исследование Вселенной с помощью света дает физикам возможность лучше понять природу и условия тех превращений, которые испытывают элементарные частицы и атомные ядра в галактиках и звездных системах. Оно открывает пути к новым практически неисчерпаемым источникам энергии.

Незаменимым орудием этого исследования является свет в широком смысле этого слова, т. е. электромагнитное излучение.