О чем рассказывает свет

Суворов Сергей Георгиевич

О природе света

 

 

Борьба материализма и идеализма в физике

В этой книжке мы уже видели, как сложен путь науки. Сколько было споров о том, что такое свет — поток частиц или череда волн! Казалось, что в XIX веке этот спор был решен окончательно, притом решен в пользу волновой природы света. Этот вывод подтверждали все опыты, об этом говорила и стройная систематика излучений — шкала электромагнитных излучений, отличающихся друг от друга только длинами волн. Однако в XX веке споры эти разгорелись вновь и на новой основе.

Казалось бы, что все это — чисто физические споры. И решаться они должны легко: в чью пользу говорит опыт, тот и прав. Сама природа дает ответ, разрешает все сомнения.

На самом деле вопрос не так прост. Ведь иногда новый экспериментальный материал приводит к необходимости менять старые представления. Происходит бурная ломка понятий. Возникает вопрос о том, какова же ценность тех представлений, которые мы сначала создаем, а затем сами должны менять. К чему они относятся — к объективному миру вне нас или же это только способ «упорядочить» наши собственные восприятия? Так наступает кризис познания.

Сомнения в объективности законов природы распространяют на общественное развитие: если в природе нет объективных законов и все развивается произвольно, то объективных законов в развитии общества не существует и подавно. Например, захотят властные люди, и общество будет развиваться не к коммунизму, а к феодализму! И напротив, кто заинтересован именно в таком толковании произвольного развития общества, тот заинтересован в том, чтобы такое же мнение распространялось и на толкование законов природы: нет объективной природы, нет ее законов, независимых от человека, а есть только человеческое восприятие, которое он «упорядочивает».

Это — позиция субъективного идеализма. В развитии подобных взглядов заинтересованы господствующие классы капиталистического общества.

Никто не может отрицать, что в процессе познания физических свойств природы возникают трудности. Это, как говорят философы, теоретико-познавательные, или гносеологические трудности. В ходе познания они всегда преодолеваются. Но коль скоро они возникают, вокруг них разгорается идеологическая борьба.

Раскрывая процесс познания свойств света, мы должны рассказать и о том, какие гносеологические трудности при этом возникали уже в нашем веке и как идеалисты пытались обратить их в свою пользу.

Мы снова возвращаемся к вопросу о том, что такое свет, какова его природа, но возвращаемся уже на новой основе.

Вопрос этот физики ставили двояко. Первый смысл вопроса таков: что такое свет — вещество или не вещество? И если не вещество, то что это такое? Второй смысл вопроса: что такое свет — частицы или волны?

Посмотрим, как отвечали физики на эти вопросы и какая идеологическая борьба шла вокруг их ответов.

 

Свет — это не вещество

Веществом физики издавна называли все окружающие нас тела, небесные и земные, а также те части, из которых они состоят, — молекулы и атомы. Вещество обладает рядом характерных для него свойств. В XIX веке эти свойства представляли в следующем виде. Вещество воспринимается нами непосредственно: например, все тела видимы, а если молекулы и атомы невидимы, то только в силу их чрезвычайной малости. Если же мы сложим эти «малости» в одно целое, то целое будет видимо. Вещество обладает механическими свойствами. Оно непроницаемо. Частицы и тела притягивают друг друга, а заряженные либо притягивают, либо отталкивают. Одно тело (или частица) передает энергию другому либо при помощи удара, либо при помощи упругих волн. Движение вещества — это перенос его из одного места пространства в другое. К веществу применимы законы сохранения массы, энергии, импульса (импульсом тела называют в механике меру механического движения, пропорциональную массе и скорости тела). Таково было представление о веществе в прошлом веке.

Когда было доказано, что свет обладает волновыми свойствами, ученые стали искать такое подходящее вещество, в котором можно создать упругие волны; с помощью таких волн в веществе они думали объяснить все световые явления.

Но такого вещества в природе не находилось. Свет распространяется даже там, где физики не находили никакого вещества. Многие известные свойства света (в частности, характер колебаний) оказалось невозможным совместить со свойствами любого из известных веществ. Тогда физики придумали некую мировую среду — мировой эфир. Эфир мыслился как вещество, но чтобы в нем могли протекать электромагнитные процессы, его пришлось наделить особыми свойствами. Считалось, что эфир заполняет сплошь все пространство, пронизывая также и тела. Непосредственно органами чувств он не воспринимается. Эфир мыслился неподвижным в целом и покоящимся во всех своих частях. Временами по нему пробегают упругие волны; их мы и воспринимаем как свет (вообще как электромагнитные излучения).

Ученые (в том числе и Максвелл) думали с помощью этого эфира создать механическую модель световых процессов. Но такая модель не получалась. Для объяснения одного свойства света эфир наделяли одним качеством, для объяснения другого свойства — другим качеством и т. д. Но все эти придуманные качества эфира вставали в противоречие друг с другом. Всякие новые попытки приводили только к нагромождению новых противоречий. Английский ученый Уипекер очень хорошо описал это нагромождение противоречий в двухтомной книге «История теорий эфира и электричества». Это очень поучительные страницы истории физики.

Итак, все многочисленные остроумные попытки крупнейших физиков XIX века построить теорию светоносного эфира пропали даром. Причина этого ясна. В самой задаче было внутреннее противоречие: механическая модель не могла выразить электромагнитные процессы. Никакими механическими свойствами придуманного вещества — эфира нельзя объяснить электромагнитные свойства света.

Свет — это не вещество и не его движение.

 

Толкование света как лучистой энергии

Физики стали думать над тем, что такое свет. В нем хотелось найти то, что сохраняется, что оставляет след, когда самого света уже нет, что может быть передано от одного тела к другому, скажем, от Солнца к Земле. Свет, действительно, можно характеризовать с этой стороны: он передает энергию. Солнечный свет передает на Землю огромную энергию, которая во много раз превышает энергию, добываемую человеком в окружающей природе.

С энергией физики знакомы давно. Но когда они имели дело с веществом, у энергии был носитель — вещество. Одно тело передавало энергию другому, по само тело — носитель — сохранялось как таковое, правда, с меньшей энергией. Попытки найти носитель световой энергии успеха не имели. Тогда физики самый свет стали называть «лучистой энергией». Вся природа разделилась ими на две стихии — на вещество и на лучистую энергию. Так писались и учебники на протяжении многих десятилетий.

Последствия этого шага не замедлили сказаться.

 

«Энергетизм» против материализма

В XIX веке большинство физиков были материалистами. Но они все еще не знали научного, диалектического материализма и лишь стихийно защищали позицию примитивного, механистического материализма. Из этого вытекали и их поиски вещественной среды — светоносного эфира с механическими свойствами. Многие физики думали: материя — это и есть вещество.

Но такое мнение подменяет широкое философское понятие материи более частным понятием — физическим понятием вещества. Оно ошибочно и ведет к серьезным последствиям. В частности, из него следует, что поскольку лучистая энергия — не вещество, постольку свет уже и не материя.

Такой именно логикой и воспользовались идеалисты. На рубеже XX века в естествознании образовалось особое направление — энергетизм. Его развивали химик Оствальд, физик и философ Мах, а также Гельм и другие. Энергетики пошли еще дальше. Они утверждали, будто современная физика доказывает, что энергией является не только свет, а вообще все в природе; в ней существует только энергия. Что такое палка? — спрашивали энергетики. И отвечали: мы знаем о существовании палки не по тому, что она есть вещество или материя, а по тому, что она сопротивляется нашему движению или же ударяет нас, словом, знаем ее по ее действию, в силу ее энергии. Стало быть, напрасно были многовековые споры о том, что прежде всего — материя или дух, ибо над ними (над материей и духом) стоит энергия. Материализму пришел конец, наступило господство энергетизма.

Но так думали только энергетики.

 

Критика энергетизма Лениным. Свет — одна из форм материи

Ленин увидел в энергетизме источник философской путаницы и подверг его критике. В своем труде «Материализм и эмпириокритицизм» (1908 г.) он показал, что подмена философского понятия материи физическим понятием вещества разоружает физиков в борьбе с идеализмом. Необходимо отойти от старого, примитивного, метафизического материализма и встать на почву научного, диалектического материализма, разработанного в трудах К. Маркса и Ф. Энгельса. А диалектический материализм, опираясь на все развитие науки, доказывает, что материя — это все то, что существует вне человека, независимо от того, существует ли сам человек. Применяя это марксистско-ленинское понимание материи, мы можем сказать, что материей является не только вещество, но и свет, любые электромагнитные излучения. Свет не есть вещество, но он существует вне человека и независимо от него, а потому и свет есть материя. И вещество, и свет — это суть различные формы материи.

Энергетики стремятся противопоставить энергию материи, оторвать ее от материи, поставить ее над материей. Но энергия есть только мера движения материи. Движение же не существует без материи. Отрывая энергию от материи, энергетики тем самым утверждают, будто движение существует без того, что движется, т. е. без материи. Но эта точка зрения бессмысленна, она противоречит всему развитию науки.

Ленин показал, что энергетизм — направление антинаучное. Оно вносит путаницу в трактовку основного философского вопроса — о материи как источнике нашего познания и потому должно быть отброшено.

 

П. Н. Лебедев открывает давление света

Против энергетического направления в физике выступали русские ученые — Д. И. Менделеев, П. Н. Лебедев и другие.

Петр Николаевич Лебедев (1866—1912), много сил отдавший изучению свойств света, отвергал энергетическое направление. Его физические исследования показали, что свет не только отличается от вещества, но и имеет с ним много общего.

Около двадцати лет своей жизни П. Н. Лебедев посвятил доказательству того, что свет обладает свойством оказывать давление на вещество. Он поставил чрезвычайно остроумные, до сих пор не превзойденные по технике выполнения опыты и доказал, что свет действительно оказывает давление как на твердые тела, так и на газы.

Это и говорит о том, что вещество и свет, отличаясь друг от друга, имеют вместе с тем много общего, что ряд свойств присущ как веществу, так и свету. Свет, как и вещество, обладает не только энергией, но и массой, а также импульсом. Он подчиняется тем же законам сохранения, как и вещество. Свет постоянно взаимодействует с веществом.

Физические исследования П. Н. Лебедева помогали физикам уяснять, что нельзя свет противопоставлять веществу, как нечто нематериальное — материи. Они подтверждали положение марксистской философии о том, что материя существует в различных формах, которые взаимосвязаны друг с другом.

А в наши дни ученые доказали, что вещество и свет при определенных условиях способны превращаться друг в друга. Но об этом мы расскажем позже.

 

Опыты А. Г. Столетова

Со времени Ньютона шел спор: что такое свет — волны или корпускулы (частицы). На рубеже XX века казалось, что спор подошел к концу. Все как будто говорило в пользу волновой природы видимого света. Все световые явления — прямолинейность распространения света, двойное лучепреломление, интерференция, дифракция и все другие — находили в волновых представлениях свое объяснение. Выяснилось, что видимый свет — только член целой семьи электромагнитных излучений. И все типы излучений обладают волновыми свойствами, как и видимый свет. Лишь природа рентгеновских излучений до некоторых пор была неясной.

Рис. 32. Опыты Столетова. Цепь между пластинкой АА и сеткой ВВ разорвана, ток не идет

Однако уже более десятка лет физикам были известны и такие световые явления, которые, по-существу, не укладывались в волновую теорию, хотя это и не было сразу разгадано. Еще Г. Герц, Гальвакс и другие физики в 80-х годах прошлого столетия обнаружили, что свет вырывает с поверхности металлов отрицательные электрические заряды. Русский физик А. Г. Столетов (1839—1896) подробно исследовал это явление и установил (1888 г.) его основные закономерности, которые позднее привели к открытию новых свойств света. Познакомимся с его опытами.

На рис. 32 АА — металлическая пластинка, а ВВ — металлическая сетка. Пластинка и сетка соединены с электрической батареей Б, пластинка — с отрицательным полюсом, сетка — с положительным. Г — включенный в цепь гальванометр — прибор, показывающий, проходит ли в цепи электрический ток.

В обычных условиях такая установка работать не будет; стрелка гальванометра стоит на нуле, тока в цепи нет. И это понятно: между пластинкой АА и сеткой ВВ цепь разорвана.

А. Г. Столетов осветил пластинку АА светом от вольтовой дуги (она же дуга Петрова). На рис. 33 схематически показано, как этот свет, пройдя через световой фильтр Ф (пропускающий лучи нужных нам длин волн), а затем сквозь сетку ВВ, падает на пластинку АА. При освещении пластинки АА светом через гальванометр проходит ток.

Из этого опыта Столетов заключил, что свет вырывает из металлической пластинки отрицательные электрические заряды. Эти заряды движутся к положительно заряженной сетке, и таким образом электрическая цепь замыкается, по ней идет ток.

Рис. 33. Опыты Столетова. Пластинка АА освещается светом от вольтовой дуги Д. С пластинки срываются отрицательные заряды, ток в цепи идет

Столетов освещал пластинку светом различного, цвета (различной частоты) и исследовал, как изменяется при этом сила тока в цепи. Обнаруженные Столетовым закономерности стали исходным пунктом развития новых представлений о свете.

Явления, которые наблюдал и описал А. Г. Столетов, ныне получили название фотоэлектрического эффекта или просто фотоэффекта (световое действие). Когда позднее (в 1895 г.) были открыты электроны, было установлено, что электрические заряды, вырываемые светом из пластинки, — это электроны. Электроны — это мельчайшие частицы вещества, обладающие наименьшим отрицательным электрическим зарядом. Фотоэффект состоит, следовательно, в том, что свет вырывает из металлической пластинки электроны. Физики научились измерять энергию (скорость) вырванных электронов.

 

Необычные закономерности фотоэффекта

Необычайность фотоэффекта заключается не в самом факте вырывания электронов светом, а в той закономерности, которая связывает энергию света и энергию вырванных электронов.

Сначала физикам казалось, что энергия фотоэлектронов должна зависеть от энергии падающих световых волн, а стало быть, от яркости света. Это вытекало из волновых представлений о природе света. Ведь казалось, что яркость света должна определяться амплитудой колебаний, а энергия в любой волне пропорциональна квадрату амплитуды.

Каково же было удивление ученых, когда они обнаружили, что от яркости падающего света зависит только общее количество вырванных им электронов, а вовсе не энергия каждого отдельного электрона. Энергия отдельного фотоэлектрона зависит от цветности, точнее говоря, от частоты падающего света: чем больше частота падающего света, тем больше энергия фотоэлектрона.

Эту закономерность никак нельзя объяснить с помощью волновых представлений о свете.

 

Свет как поток фотонов

Более пятнадцати лет прошло после первых опытов Столетова, прежде чем ученые нашли разгадку странных законов, связывающих энергию фотоэлектронов с частотой вызывающего их света.

За это время произошло еще одно важное событие. В 1900 году немецкий физик Макс Планк (1858—1947) исследовал условие, при котором устанавливается равновесие в спектре излучения «абсолютно черного тела». Он пришел к выводу, что этим условием является такое распределение энергии по спектру, при котором она пропорциональна частоте. Получается так, как будто энергия света может перемещаться только определенными порциями (квантами), каждая из которых пропорциональна частоте света.

Другой немецкий физик Альберт Эйнштейн (1879—1955) пошел дальше: он сделал вывод о том, что световой поток состоит из потока частиц с энергией, пропорциональной частоте; эти частицы получили наименование фотонов. Чем больше частота света, тем больше энергия фотона. Следовательно, энергия фотона фиолетового света почти в два раза больше энергии фотона красного света. Эйнштейн показал, что, только приняв представление о фотонной структуре света, можно объяснить странную закономерность фотоэффекта, открытого еще Столетовым.

При этом предположении механизм фотоэффекта представляется так. В металлах имеется много «свободных» (т. е. не связанных с определенными атомами металла) электронов. Когда фотон падающего света ударяется в один из них, он передает электрону всю свою энергию. Если эта энергия достаточно велика, то электрон может вылететь из пластинки. Ясно, что энергия вырванного электрона прямо зависит от энергии выбившего его фотона, т. е. от частоты падающего на пластинку света.

Таким образом, фотоэффект явился одним из первых явлений, указывающих на корпускулярное строение света.

Дальнейшее развитие физики подтвердило справедливость предположения, что свет излучается и поглощается в виде фотонов и что их энергия тем больше, чем больше частота света.

 

Что такое свет —волны или частицы?

Но что же в таком случае представляет собой свет — волны или частицы?

После открытия фотоэффекта этот вопрос казался окончательно запутанным и противоречивым. В прежние времена споры о природе света были ясными. Ньютон и его последователи считали, что свет — это корпускулы, т. е. частицы, а не волны. Иначе как же объяснить прямолинейность распространения света? Ломоносов, Эйлер, Юнг, Френель, а за ними все физики середины XIX века пришли к выводу, что свет — это волны, а не корпускулы. Физики нашли способ объяснить, исходя из волновой точки зрения, почему свет распространяется прямолинейно, и даже показали, что это не всегда так бывает; например, в явлениях дифракции свет огибает препятствия, как это делает и звук, только препятствия должны быть для этого очень малы, сравнимы с длиной волны света.

Словом, в прежние времена волновая точка зрения исключала корпускулярную, и наоборот. Казалось разумным отстаивать либо одну, либо другую из них. Но никто не отстаивал обе точки зрения одновременно.

Теперь дело обстояло иначе. Было ясно, что свет обладает волновыми свойствами. Об этом говорят опыты по интерференции и по дифракции света. Но также ясно и то, что свет обладает корпускулярными свойствами. Об этом говорят опыты по фотоэффекту. И те и другие опыты совершенно достоверны и неопровержимы. И выводы из тех и других опытов совершенно определенны: из первых следует, что свет обладает волновыми свойствами, а из вторых—что свет обладает корпускулярными свойствами.

Выходит, что все прежние представления о свете были односторонними; они подмечали только ту или иную его сторону и не видели все свойства света в их единстве. Ныне, в итоге многовекового развития физики, в результате тщательной опытной проверки, мы вправе сделать заключение: свет, т. е. электромагнитные излучения, является одной из форм материи, обладающей одновременно и свойствами частиц и свойствами волн.

Французский физик Луи де-Бройль (родился в 1892 году) высказал предположение, что это положение справедливо не только для одной формы материи — электромагнитных излучений, но и для другой — вещества, и можно ожидать, что поток микрочастиц вещества будет обладать волновыми свойствами. В 1927 году американские физики Дэвисон и Джермер проверили это предположение. Они направили поток электронов на кристаллическую решетку и получили на экране типично волновую интерференционную картину. Так было установлено, что поток микрочастиц обладает не только корпускулярными, но и волновыми свойствами. Если в случае света представления развивались от волновых к корпускулярным, то в случае вещества наоборот — от корпускулярных к волновым.

Таким образом, в XX веке физика показала, что любое одностороннее представление о свойствах природы оказывается неправильным.

Необходимо указать, что открытие фотонных свойств света ни в коей мере не означает возврата к ньютонианским представлениям о свете как о потоке частиц (корпускул). Новые представления о свете значительно более сложны, они точнее отражают объективные свойства света. Фотоны — это не корпускулы Ньютона; их отличает от корпускул Ньютона уже то, что фотонные свойства являются лишь одной стороной света, другой неотрывной стороной которого являются его волновые свойства.

 

Снова трудности и снова идеализм

Выводы о том, что свет обладает и волновыми и корпускулярными свойствами, доказаны опытом.

И все-таки эти выводы плохо укладывались в сознании: ведь мы привыкли считать эти свойства взаимоисключающими, а выходит, что в одном и том же объекте они сосуществуют и не исключают друг друга. Это трудно понять. И эту гносеологическую трудность попытались использовать некоторые физики-идеалисты (Филипп Франк, Паскуаль Иордан и другие).

Все трудности, говорят они, происходят оттого, что думают, что свет есть нечто, существующее вне нас и независимо от нас. Разумные философы давно предупреждали, что вне нас ничего нет, что свет, электроны, протоны и т. п. существуют только в наших представлениях. Мы придумали их, чтобы было удобнее работать с математическими уравнениями. Многие физики не слушали разумных философов и говорили о свете, электронах и т. п. как об объектах. До поры до времени это заблуждение сходило им с рук, с явной нелепостью раньше они не встречались. А теперь встретились. Что же из этого получилось?

Рассматривая явление дифракции или интерференции, эти физики говорят: из этого опыта следует, что свет, существующий вне нас, обладает волновыми свойствами. А наблюдая фотоэффект, заключают: стало быть, свет, существующий вне нас, обладает не только свойствами волн, но и свойствами частиц. Вот и возникают трудности, потому что противоречивые, взаимоисключающие свойства приходится относить к одному и тому же объекту — свету. А надо рассуждать так, учат идеалисты-физики: нет света как объекта, существующего независимо от нас. Мы имеем дело лишь с показаниями приборов; в одних приборах мы действительно наблюдаем волновые явления, а в других — корпускулярные. Но это не страшно: ведь налицо два различных прибора (точнее: два различных класса приборов), два различных опыта. В одном же опыте взаимоисключающие свойства никогда вместе не встречаются. А то, что различные классы приборов дают показания, исходя из которых человек строит различные, взаимоисключающие представления — либо волновые, либо же корпускулярные, вполне допустимо. Не делайте вывода о необходимости относить эти наблюдения к одному объекту, и все будет благополучно.

Так рассуждают физики-идеалисты.

Итак, на вопрос о том, что такое свет, идеалисты отвечают: свет — это лишь наше представление, фантазия нашей мысли. Правда, эту фантазию мы строим не произвольно, а на основе показаний приборов (точнее, на основе наших чувственных восприятий показаний этих приборов), которые мы как-то комбинируем удобным для нас образом. Свет — не материя, а создание нашей мысли, не больше.

 

Мнение академика Вавилова

Академик Сергей Иванович Вавилов (1891—1951), выдающийся советский ученый, всю жизнь посвятивший исследованию свойств света, открывший немало его закономерностей, не согласился с утверждениями физиков-идеалистов, будто волновые и корпускулярные свойства света встречаются лишь в различных опытах (в показаниях разных приборов) и никогда не встречаются вместе в одном опыте. Напротив, утверждает С. И. Вавилов, природа не разъединяет, а соединяет эти свойства в одном опыте. В последнем прижизненном издании своей популярной книжки «Глаз и Солнце» он писал: «Весьма распространено мнение, что в опытах одного типа (например, в опыте с кольцами Ньютона) свет полностью ведет себя как волновое движение, а в опытах другого типа (например, выцветание окрашенной ткани) свет целиком проявляет себя как поток частиц. Это, однако, ошибочно. Если опыт Ньютона производить с чрезвычайно слабым светом, то при некоторых условиях есть возможность наблюдать систематические беспорядочные колебания яркости светлых колец, свидетельствующие о том, что энергия света и в этом типично волновом явлении сосредоточена в отдельных центрах — фотонах. С другой стороны, если освещать окрашенную ткань через узкие отверстия, то при выцветании обнаруживаются дифракционные явления».

Вавилов привел здесь, как видим, пример с уже известными нам кольцами Ньютона. Физика считала их типично волновыми явлениями; Вавилов же указывает, при каких условиях (чрезвычайно слабый свет) это типично волновое явление обнаруживает одновременно и свойства фотонов. В случае же сильного светового потока его корпускулярные (фотонные) свойства скрадываются, не отмечаются нами, хотя и существуют.

Таков же и второй пример Вавилова: сначала физики рассматривали процесс выцветания тканей как процесс, в котором проявляются только фотонные свойства света, а Вавилов показывает, при каких условиях можно наблюдать в том же процессе и волновые свойства («дифракционные явления»).

 

Марксистская философия и современная физика

В этой книжке показывалось, как физики неоднократно обсуждали вопрос: что такое свет — волны или частицы? О чем шел спор? Спор шел о физическом строении света. Физики же идеалисты вопрос о физическом строении света подменили вопросом философским: существует ли свет как нечто объективное, независимо от познающего человека? Они пытались разрешить известные трудности познания сложной природы света (также и вещества) путем отказа от признания существования вне нас объективного, материального мира.

Но ту истину, что свет существует вне нас, объективно, нельзя опровергнуть словесной акробатикой. Правильность нашего познания объективного мира проверяется практикой. Практика же людей доказывает, что мир, природа и свет, как ее часть, существуют объективно, независимо от нас, что наше познание правильно отражает свойства природы, ибо на основе наших знаний о природе мы способны сознательно изменять ее. Существование света вне человека доказывается тем, что на основе познания объективных свойств света создана мощная современная техника — радиотехника, рентгенотехника, светотехника и т. д.

Конечно, нам трудно представить себе, как может свет или поток микрочастиц одновременно обладать волновыми и корпускулярными свойствами. Но что означают слова «наглядно представить себе»? Не означают ли они, что мы волей-неволей стремимся создать механическую модель микрообъекта, которую в принципе можно построить в механической мастерской? Тогда заранее можно сказать, что создать такую модель нам не удастся, как не удалось физикам в XIX веке построить механическую модель светоносного эфира.

Моделью объекта (любого) или его образом является теория, в которой отражается поведение или закономерности объекта от его возникновения, развития до его преобразования в другой объект. Но конечно, не всякая надуманная теория, а теория, подтвержденная целеустремленной практической деятельностью человека.

Обобщая результаты всех экспериментов со светом или микрочастицами, физики стремятся создать теорию, которая объединяла бы в себе закономерности поведения объекта во всех частных случаях — как волновое его поведение, так и корпускулярное. Эта теория может быть очень сложной и абстрактной (не наглядной). Но тем не менее она может быть правильной моделью микрообъекта, если только ее подтверждает практика. Практика, подтверждающая выводы теории, — высший критерий того, что теория правильно отображает объект со всеми его «взаимоисключающими» свойствами.

В этом и состоит суть материалистической теории познания. В этом — ответ современного научного материализма на гносеологические вопросы, поставленные современной физикой.