Язык программирования Python

Сузи Роман Авриевич

Лекция #5: Численные алгоритмы. Матричные вычисления.

 

 

Numeric Python — это несколько модулей для вычислений с многомерными массивами, необходимых для многих численных приложений. Модуль Numeric вносит в Python возможности таких пакетов и систем как MatLab, Octave (аналог MatLab), APL, J, S+, IDL. Пользователи найдут Numeric достаточно простым и удобным. Стоит заметить, что некоторые синтаксические возможности Python (связанные с использованием срезов) были специально разработаны для Numeric.

Numeric Python имеет средства для:

• матричных вычислений LinearAlgebra;

• быстрого преобразования Фурье FFT;

• работы с недостающими экспериментальными данными MA;

• статистического моделирования RNG;

• эмуляции базовых функций программы MatLab.

 

Модуль Numeric

 

Модуль Numeric определяет полноценный тип–массив и содержит большое число функций для операций с массивами. Массив — это набор однородных элементов, доступных по индексам. Массивы модуля Numeric могут быть многомерными, то есть иметь более одной размерности.

 

Создание массива

Для создания массива можно использовать функцию array() с указанием содержимого массива (в виде вложенных списков) и типа. Функция array() делает копию, если ее аргумент — массив. Функция asarray() работает аналогично, но не создает нового массива, когда ее аргумент уже является массивом:

>>> from Numeric import *

>>> print array([[1, 2], [3, 4], [5, 6]])

[[1 2]

 [3 4]

 [5 6]]

>>> print array([[1, 2, 3], [4, 5, 6]], Float)

[[ 1. 2. 3.]

 [ 4. 5. 6.]]

>>> print array([78, 85, 77, 69, 82, 73, 67], 'c')

[N U M E R I C]

В качестве элементов массива можно использовать следующие типы: Int8–Int32, UnsignedInt8–UnsignedInt32, Float8–Float64, Complex8–Complex64 и PyObject. Числа 8, 16, 32 и 64 показывают количество битов для хранения величины. Типы Int, UnsignedInteger, Float и Complex соответствуют наибольшим принятым на данной платформе значениям. В массиве можно также хранить ссылки на произвольные объекты.

Количество размерностей и длина массива по каждой оси называются формой массива (shape). Доступ к форме массива реализуется через атрибут shape:

>>> from Numeric import *

>>> a = array(range(15), Int)

>>> print a.shape

(15,)

>>> print a

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]

>>> a.shape = (3, 5)

>>> print a.shape

(3, 5)

>>> print a

[[ 0  1  2  3  4]

 [ 5  6  7  8  9]

 [10 11 12 13 14]]

 

Методы массивов

Придать нужную форму массиву можно функцией Numeric.reshape(). Эта функция сразу создает объект–массив нужной формы из последовательности.

>>> import Numeric

>>> print Numeric.reshape("абракадабр", (5, -1))

[[а б]

 [р а]

 [к а]

 [д а]

 [б р]]

В этом примере –1 в указании формы говорит о том, что соответствующее значение можно вычислить. Общее количество элементов массива известно (10), поэтому длину вдоль одной из размерностей задавать не обязательно.

Через атрибут flat можно получить одномерное представление массива:

>>> a = array([[1, 2], [3, 4]])

>>> b = a.flat

>>> b

array([1, 2, 3, 4])

>>> b[0] = 9

>>> b

array([9, 2, 3, 4])

>>> a

array([[9, 2],

       [3, 4]])

Следует заметить, что это новый вид того же массива, поэтому присваивание значений его элементам приводит к изменениям в исходном массиве.

Функция Numeric.resize() похожа на Numeric.reshape, но может подстраивать число элементов:

>>> print Numeric.resize("NUMERIC", (3, 2))

[[N U]

 [M E]

 [R I]]

>>> print Numeric.resize("NUMERIC", (3, 4))

[[N U M E]

 [R I C N]

 [U M E R]]

Функция Numeric.zeros() порождает массив из одних нулей, а Numeric.ones() — из одних единиц. Единичную матрицу можно получить с помощью функции Numeric.identity(n):

>>> print Numeric.zeros((2,3))

[[0 0 0]

 [0 0 0]]

>>> print Numeric.ones((2,3))

[[1 1 1]

 [1 1 1]]

>>> print Numeric.identity(4)

[[1 0 0 0]

 [0 1 0 0]

 [0 0 1 0]

 [0 0 0 1]]

Для копирования массивов можно использовать метод copy():

>>> import Numeric

>>> a = Numeric.arrayrange(9)

>>> a.shape = (3, 3)

>>> print a

[[0 1 2]

 [3 4 5]

 [6 7 8]]

>>> a1 = a.copy()

>>> a1[0, 1] = -1 # операция над копией

>>> print a

[[0 1 2]

 [3 4 5]

 [6 7 8]]

Массив можно превратить обратно в список с помощью метода tolist():

>>> a.tolist()

[[0, 1, 2], [3, 4, 5], [6, 7, 8]]

 

Срезы

Объекты–массивы Numeric используют расширенный синтаксис выделения среза. Следующие примеры иллюстрируют различные варианты записи срезов. Функция Numeric.arrayrange() является аналогом range() для массивов.

>>> import Numeric

>>> a = Numeric.arrayrange(24) + 1

>>> a.shape = (4, 6)

>>> print a # исходный массив

[[ 1  2  3  4  5  6]

 [ 7  8  9 10 11 12]

 [13 14 15 16 17 18]

 [19 20 21 22 23 24]]

>>> print a[1,2]     # элемент 1,2

9

>>> print a[1,:]     # строка 1

[ 7 8 9 10 11 12]

>>> print a[1]       # тоже строка 1

[ 7 8 9 10 11 12]

>>> print a[:,1]     # столбец 1

[ 2 8 14 20]

>>> print a[-2,:]    # предпоследняя строка

[13 14 15 16 17 18]

>>> print a[0:2,1:3] # окно 2x2

[[2 3]

[8 9]]

>>> print a[1,::3]   # каждый третий элемент строки 1

[ 7 10]

>>> print a[:,:: -1] # элементы строк в обратном порядке

[[ 6  5  4  3  2  1]

 [12 11 10  9  8  7]

 [18 17 16 15 14 13]

 [24 23 22 21 20 19]]

Срез не копирует массив (как это имеет место со списками), а дает доступ к некоторой части массива. Далее в примере меняется на 0 каждый третий элемент строки 1:

>>> a[1,::3] = Numeric.array([0,0])

>>> print a

[[ 1  2  3  4  5  6]

 [ 0  8  9  0 11 12]

 [13 14 15 16 17 18]

 [19 20 21 22 23 24]]

В следующих примерах находит применение достаточно редкая синтаксическая конструкция: срез с многоточием (Ellipsis). Многоточие ставится для указания произвольного числа пропущенных размерностей (:,:,...,:):

>>> import Numeric

>>> a = Numeric.arrayrange(24) + 1

>>> a.shape = (2,2,2,3)

>>> print a

[[[[ 1  2  3]

   [ 4  5  6]]

  [[ 7  8  9]

   [10 11 12]]]

 [[[13 14 15]

   [16 17 18]]

  [[19 20 21]

   [22 23 24]]]]

>>> print a[0,...] # 0–й блок

[[[ 1 2 3]

  [ 4 5 6]]

 [[ 7 8 9]

  [10 11 12]]]

>>> print a[0,:,:,0] # срез по первой и последней размерностям

[[ 1  4]

 [ 7 10]]

>>> print a[0,...,0] # то же, но с использованием многоточия

[[ 1  4]

 [ 7 10]]

 

Универсальные функции

Модуль Numeric определяет набор функций для применения к элементам массива. Функции применимы не только к массивам, но и к последовательностям (к сожалению, итераторы пока не поддерживаются). В результате получаются массивы.

Функция Описание
add(x, y) , subtract(x, y) Сложение и вычитание
multiply(x, y) , divide(x, y) Умножение и деление
remainder(x, y) , fmod(x, y) Получение остатка от деления (для целых чисел и чисел с плавающей запятой)
power(x) Возведение в степень
sqrt(x) Извлечение корня квадратного
negative(x) , absolute(x) , fabs(x) Смена знака и абсолютное значение
ceil(x) , floor(x) Наименьшее (наибольшее) целое, большее (меньшее) или равное аргументу
hypot(x, y) Длина гипотенузы (даны длины двух катетов)
sin(x) , cos(x) , tan(x) Тригонометрические функции
arcsin(x) , arccos(x) , arctan(x) Обратные тригонометрические функции
arctan2(x, y) Арктангенс от частного аргумента
sinh(x) , cosh(x) , tanh(x) Гиперболические функции
arcsinh(x) , arccosh(x) , arctanh(x) Обратные гиперболические функции
exp(x) Экспонента (e x )
log(x) , log10(x) Натуральный и десятичный логарифмы
maximum(x, y) , minimum(x, y) Максимум и минимум
conjugate(x) Сопряжение (для комплексных чисел)
equal(x, y) , not_equal(x, y) Равно, не равно
greater(x, y) , greater_equal(x, y) Больше, больше или равно
less(x, y) , less_equal(x, y) Меньше, меньше или равно
logical_and(x, y) , logical_or(x, y) Логические И, ИЛИ
logical_xor(x, y) Логическое исключающее ИЛИ
logical_not(x) Логические НЕ
bitwise_and(x, y) , bitwise_or(x, y) Побитовые И, ИЛИ
bitwise_xor(x, y) Побитовое исключающее ИЛИ
invert(x) Побитовая инверсия
left_shift(x, n) , right_shift(x, n) Побитовые сдвиги влево и вправо на n битов

Перечисленные функции являются объектами типа ufunc и применяются к массивам поэлементно. Эти функции имеют специальные методы:

accumulate() Аккумулирование результата.
outer() Внешнее «произведение».
reduce() Сокращение.
reduceat() Сокращение в заданных точках.

Пример с функцией add() позволяет понять смысл универсальной функции и ее методов:

>>> from Numeric import add

>>> add([[1, 2], [3, 4]], [[1, 0], [0, 1]])

array([[2, 2],

       [3, 5]])

>>> add([[1, 2], [3, 4]], [1, 0])

array([[2, 2],

       [4, 4]])

>>> add([[1, 2], [3, 4]], 1)

array([[2, 3],

       [4, 5]])

>>> add.reduce([1, 2, 3, 4])        # т.е. 1+2+3+4

10

>>> add.reduce([[1, 2], [3, 4]], 0) # т.е. [1+3 2+4]

array([4, 6])

>>> add.reduce([[1, 2], [3, 4]], 1) # т.е. [1+2 3+4]

array([3, 7])

>>> add.accumulate([1, 2, 3, 4])    # т.е. [1 1+2 1+2+3 1+2+3+4]

array([ 1, 3, 6, 10])

>>> add.reduceat(range(10), [0, 3, 6]) # т.е. [0+1+2 3+4+5 6+7+8+9]

array([ 3, 12, 30])

>>> add.outer([1,2], [3,4])         # т.е. [[1+3 1+4] [2+3 2+4]]

array([[4, 5],

       [5, 6]])

Методы accumulate(), reduce() и reduceat() принимают необязательный аргумент — номер размерности, используемой для соответствующего действия. По умолчанию применяется нулевая размерность.

Универсальные функции, помимо одного или двух необходимых параметров, позволяют задавать и еще один аргумент, для приема результата функции. Тип третьего аргумента должен строго соответствовать типу результата. Например, функция sqrt() даже от целых чисел имеет тип Float.

>>> from Numeric import array, sqrt, Float

>>> a = array([0, 1, 2])

>>> r = array([0, 0, 0], Float)

>>> sqrt(a, r)

array([ 0. , 1. , 1.41421356])

>>> print r

[ 0. 1. 1.41421356]

Предупреждение:

Не следует использовать в качестве приемника результата массив, который фигурирует в предыдущих аргументах функции, так как при этом результат может быть испорчен. Следующий пример показывает именно такой вариант:

>>> import Numeric

>>> m = Numeric.array([0, 0, 0, 1, 0, 0, 0, 0])

>>> add(m[:-1], m[1:], m[1:])

array([0, 0, 1, 1, 1, 1, 1])

В таких неоднозначных случаях необходимо использовать промежуточный массив.

 

Функции модуля Numeric

Следующие функции модуля Numeric являются краткой записью некоторых наиболее употребительных сочетаний функций и методов:

Функция Аналог функции
sum(a, axis) add.reduce(a, axis)
cumsum(a, axis) add.accumulate(a, axis)
product(a, axis) multiply.reduce(a, axis)
cumproduct(a, axis) multiply.accumulate(a, axis)
alltrue(a, axis) logical_and.reduce(a, axis)
sometrue(a, axis) logical_or.reduce(a, axis)

Примечание:

Параметр axis указывает размерность. 

 

Функции для работы с массивами

Функций достаточно много, поэтому подробно будут рассмотрены только две из них, а остальные сведены в таблицу.

Функция Numeric.take()

Функция Numeric.take() позволяет взять часть массива по заданным на определенном измерении индексам. По умолчанию номер измерения (третий аргумент) равен нулю.

>>> import Numeric

>>> a = Numeric.reshape(Numeric.arrayrange(25), (5, 5))

>>> print a

[[ 0  1  2  3  4]

 [ 5  6  7  8  9]

 [10 11 12 13 14]

 [15 16 17 18 19]

 [20 21 22 23 24]]

>>> print Numeric.take(a, [1], 0)

[ [5 6 7 8 9]]

>>> print Numeric.take(a, [1], 1)

[[ 1]

 [ 6]

 [11]

 [16]

 [21]]

>>> print Numeric.take(a, [[1,2],[3,4]])

[[[ 5  6  7  8  9]

  [10 11 12 13 14]]

 [[15 16 17 18 19]

  [20 21 22 23 24]]]

В отличие от среза, функция Numeric.take() сохраняет размерность массива, если конечно, структура заданных индексов одномерна. Результат Numeric.take(a, [[1,2],[3,4]]) показывает, что взятые по индексам части помещаются в массив со структурой самих индексов, как если бы вместо 1 было написано [5 6 7 8 9], а вместо 2 — [10 11 12 13 14] и т.д.

Функции Numeric.diagonal() и Numeric.trace()

Функция Numeric.diagonal() возвращает диагональ матрицы. Она имеет следующие аргументы:

a Исходный массив.
offset Смещение вправо от «главной» диагонали (по умолчанию 0).
axis1 Первое из измерений, на которых берется диагональ (по умолчанию 0).
axis2 Второе измерение, образующее вместе с первым плоскость, на которой и берется диагональ. По умолчанию axis2=1 .

Функция Numeric.trace() (для вычисления следа матрицы) имеет те же аргументы, но суммирует элементы на диагонали. В примере ниже рассмотрены обе эти функции:

>>> import Numeric

>>> a = Numeric.reshape(Numeric.arrayrange(16), (4, 4))

>>> print a

[[ 0  1  2  3]

 [ 4  5  6  7]

 [ 8  9 10 11]

 [12 13 14 15]]

>>> for i in range(-3, 4):

... print "Sum", Numeric.diagonal(a, i), "=", Numeric.trace(a, i)

...

Sum [12] = 12

Sum [ 8 13] = 21

Sum [ 4  9 14] = 27

Sum [ 0  5 10 15] = 30

Sum [ 1  6 11] = 18

Sum [ 2  7] = 9

Sum [ 3] = 3

Функция Numeric.choose()

Эта функция использует один массив с целыми числами от 0 до n для выбора значения из одного из заданных массивов:

>>> a = Numeric.identity(4)

>>> b0 = Numeric.reshape(Numeric.arrayrange(16), (4, 4))

>>> b1 = -Numeric.reshape(Numeric.arrayrange(16), (4, 4))

>>> print Numeric.choose(a, (b0, b1))

[[  0  1   2   3]

 [  4 -5   6   7]

 [  8  9 -10  11]

 [ 12 13  14 -15]]

Свод функций модуля Numeric

Следующая таблица приводит описания функций модуля Numeric.

Функция и ее аргументы Назначение функции
allclose(a, b[, eps[, A]]) Сравнение a и b с заданными относительными eps и абсолютными A погрешностями. По умолчанию eps равен 1.0e–1 , а A = 1.0e–8 .
alltrue(a[, axis]) Логическое И по всей оси axis массива a
argmax(a[, axis]) Индекс максимального значения в массиве по заданному измерению axis
argmin(a[, axis]) Индекс минимального значения в массиве по заданному измерению axis
argsort(a[, axis]) Индексы отсортированного массива, такие, что take(a, argsort(a, axis), axis) дает отсортированный массив a , как если бы было выполнено sort(a, axis)
array(a[, type]) Создание массива на основе последовательности a данного типа type
arrayrange(start[, stop[, step[, type]]]) Аналог range() для массивов
asarray(a[, type[, savespace]]) То же, что и array() , но не создает новый массив, если a уже является массивом
choose(a, (b0, ..., bn)) Создает массив на основе элементов, взятых по индексам из a (индексы от 0 до n включительно). Формы массивов a , b1 , …, bn должны совпадать
clip(a, a_min, a_max) Обрубает значения массива a так, чтобы они находились между значениями из a_min и a_max поэлементно
compress(cond, a[, axis]) Возвращает массив только из тех элементов массива a , для которых условие cond истинно (не нуль)
concatenate(a[, axis]) Соединение двух массивов (конкатенация) по заданному измерению axis (по умолчанию — по нулевой)
convolve(a, b[, mode]) Свертка двух массивов. Аргумент mode может принимать значения 0 , 1 или 2
cross_correlate(a, b[, mode]) Взаимная корреляция двух массивов. Параметр mode может принимать значения 0 , 1 или 2
cumproduct(a[, axis]) Произведение по измерению axis массива a с промежуточными результатами
cumsum(a[, axis]) Суммирование с промежуточными результатами
diagonal(a[, k[, axis1[, axis2]]]) Взятие k –й диагонали массива a в плоскости измерений axis1 и axis2
dot(a, b) Внутреннее (матричное) произведение массивов. По определению: innerproduct(a, swapaxes(b, -1, -2)) , т.е. с переставленными последними измерениями, как и должно быть при перемножении матриц
dump(obj, file) Запись массива a (в двоичном виде) в открытый файловый объект file . Файл должен быть открыт в бинарном режиме. В файл можно записать несколько объектов подряд
dumps(obj) Строка с двоичным представлением объекта obj
fromfunction(f, dims) Строит массив, получая информацию от функции f() , в качестве аргументов которой выступают значения кортежа индексов. Фактически является сокращением для f(*tuple(indices(dims)))
fromstring(s[, count[, type]]) Создание массива на основе бинарных данных, хранящихся в строке
identity(n) Возвращает двумерный массив формы (n, n)
indices(dims[, type]) Возвращает массив индексов заданной длины по каждому измерению с изменением поочередно по каждому изменению. Например, indices([2, 2])[1] дает двумерный массив [[0, 1], [0, 1]] .
innerproduct(a, b) Внутреннее произведение двух массивов (по общему измерению). Для успешной операции a.shape[-1] должен быть равен b.shape[-1] . Форма результата будет a.shape[:-1] + b.shape[:-1] . Элементы пропадающего измерения попарно умножаются и получающиеся произведения суммируются
load(file) Чтение массива из файла file . Файл должен быть открыт в бинарном режиме
loads(s) Возвращает объект, соответствующий бинарному представлению, заданному в строке
nonzero(a) Возвращает индексы ненулевых элементов одномерного массива
ones(shape[, type]) Массив из единиц заданной формы shape и обозначения типа type
outerproduct(a, b) Внешнее произведение a и b
product(a[, axis]) Произведение по измерению axis массива a
put(a, indices, b) Присваивание частям массива, a[n] = b[n] для всех индексов indices
putmask(a, mask, b) Присваивание a элементов из b , для которых маска mask имеет значение истина
ravel(a) Превращение массива в одномерный. Аналогично reshape(a, (-1,))
repeat(a, n[, axis]) Повторяет элементы массива a n раз по измерению axis
reshape(a, shape) Возвращает массив нужной формы (нового массива не создает). Количество элементов в исходном и новом массивах должно совпадать
resize(a, shape) Возвращает массив с произвольной новой формой shape . Размер исходного массива не важен
searchsorted(a, i) Для каждого элемента из i найти место в массиве a . Массив a должен быть одномерным и отсортированным. Результат имеет форму массива i
shape(a) Возвращает форму массива a
sometrue(a[, axis]) Логическое ИЛИ по всему измерению axis массива a
sort(a[, axis]) Сортировка элементов массива по заданному измерению
sum(a[, axis]) Суммирование по измерению axis массива a
swapaxes(a, axis1, axis1) Смена измерений (частный случай транспонирования)
take(a, indices[, axis]) Выбор частей массива a на основе индексов indices по измерению axis
trace(a[, k[, axis1[, axis2]]]) Сумма элементов вдоль диагонали, то есть add.reduce(diagonal(a, k, axis1, axis2))
transpose(a[, axes]) Перестановка измерений в соответствии с axes , либо, если axes не заданы — расположение их в обратном порядке
where(cond, a1, a2) Выбор элементов на основании условия cond из a1 (если не нуль) и a2 (при нуле) поэлементно. Равносилен choose(not_equal(cond, 0), (y, x)) . Формы массивов–аргументов a1 и a2 должны совпадать
zeros(shape[, type]) Массив из нулей заданной формы shape и обозначения типа type

В этой таблице в качестве обозначения типа type можно указывать рассмотренные выше константы: Int, Float и т.п.

Модуль Numeric также определяет константы e (число e) и pi (число пи).

 

Модуль LinearAlgebra

Модуль LinearAlgebra содержит алгоритмы линейной алгебры, в частности нахождение определителя матрицы, решений системы линейных уравнений, обращение матрицы, нахождение собственных чисел и собственных векторов матрицы, разложение матрицы на множители: Холецкого, сингулярное, метод наименьших квадратов.

Функция LinearAlgebra.determinant() находит определитель матрицы:

>>> import Numeric, LinearAlgebra

>>> print LinearAlgebra.determinant(

... Numeric.array([[1, -2],

...                [1,  5]]))

7

Функция LinearAlgebra.solve_linear_equations() решает линейные уравнения вида ax=b по заданным аргументам a и b:

>>> import Numeric, LinearAlgebra

>>> a = Numeric.array([[1.0, 2.0], [0.0, 1.0]])

>>> b = Numeric.array([1.2, 1.5])

>>> x = LinearAlgebra.solve_linear_equations(a, b)

>>> print "x =", x

x = [-1.8 1.5]

>>> print "Проверка:", Numeric.dot(a, x) - b

Проверка: [ 0. 0.]

Когда матрица a имеет нулевой определитель, система имеет не единственное решение и возбуждается исключение LinearAlgebraError:

>>> a = Numeric.array([[1.0, 2.0], [0.5, 1.0]])

>>> x = LinearAlgebra.solve_linear_equations(a, b)

Traceback (most recent call last):

 File "", line 1, in ?

 File "/usr/local/lib/python2.3/site–packages/Numeric/LinearAlgebra.py", line 98,

  in solve_linear_equations raise LinAlgError, 'Singular matrix'

LinearAlgebra.LinAlgError: Singular matrix

Функция LinearAlgebra.inverse() находит обратную матрицу. Однако не следует решать линейные уравнения с помощью LinearAlgebra.inverse() умножением на обратную матрицу, так как она определена через LinearAlgebra.solve_linear_equations():

def inverse(a):

 return solve_linear_equations(a, Numeric.identity(a.shape[0]))

Функция LinearAlgebra.eigenvalues() находит собственные значения матрицы, а LinearAlgebra.eigenvectors() — пару: собственные значения, собственные вектора:

>>> from Numeric import array, dot

>>> from LinearAlgebra import eigenvalues, eigenvectors

>>> a = array([[-5, 2], [2, — 7]])

>>> lmd = eigenvalues(a)

>>> print "Собственные значения:", lmd

Собственные значения: [-3.76393202–8.23606798]

>>> (lmd, v) = eigenvectors(a)

>>> print "Собственные вектора:"

Собственные вектора:

>>> print v

[[ 0.85065081 0.52573111]

 [-0.52573111 0.85065081]]

>>> print "Проверка:", dot(a, v[0]) - v[0] * lmd[0]

Проверка: [ -4.44089210e–16 2.22044605e–16]

Проверка показывает, что тождество выполняется с достаточно большой точностью (числа совсем маленькие, практически нули): собственные числа и векторы найдены верно.

 

Модуль RandomArray

В этом модуле собраны функции для генерации массивов случайных чисел различных распределений и свойств. Их можно применять для математического моделирования.

Функция RandomArray.random() создает массивы из псевдослучайных чисел, равномерно распределенных в интервале (0, 1):

>>> import RandomArray

>>> print RandomArray.random(10) # массив из 10 псевдослучайных чисел

[ 0.28374212 0.19260929 0.07045474 0.30547682 0.10842083 0.14049676

  0.01347435 0.37043894 0.47362471 0.37673479]

>>> print RandomArray.random([3,3]) # массив 3x3 из псевдослучайных чисел

[[ 0.53493741 0.44636754 0.20466961]

 [ 0.8911635  0.03570878 0.00965272]

 [ 0.78490953 0.20674807 0.23657821]]

Функция RandomArray.randint() для получения массива равномерно распределенных чисел из заданного интервала и заданной формы:

>>> print RandomArray.randint(1, 10, [10])

[8 1 9 9 7 5 2 5 3 2]

>>> print RandomArray.randint(1, 10, [10])

[2 2 5 5 7 7 3 4 3 7]

Можно получать и случайные перестановки с помощью RandomArray.permutation():

>>> print RandomArray.permutation(6)

[4 0 1 3 2 5]

>>> print RandomArray.permutation(6)

[1 2 0 3 5 4]

Доступны и другие распределения для получения массива нормально распределенных величин с заданным средним и стандартным отклонением:

>>> print RandomArray.normal(0, 1, 30)

[-1.0944078   1.24862444  0.20415567 -0.74283403  0.72461408 -0.57834256

  0.30957144  0.8682853   1.10942173 -0.39661118  1.33383882  1.54818618

  0.18814971  0.89728773 -0.86146659  0.0184834  -1.46222591 -0.78427434

  1.09295738 -1.09731364  1.34913492 -0.75001568 -0.11239344  2.73692131

 -0.19881676 -0.49245331  1.54091263 -1.81212211  0.46522358 -0.08338884]

Следующая таблица приводит функции для других распределений:

Функция и ее аргументы Описание
F(dfn, dfd, shape=[]) F–распределение
beta(a, b, shape=[]) Бета–распределение
binomial(trials, p, shape=[]) Биномиальное распределение
chi_square(df, shape=[]) Распределение хи–квадрат
exponential(mean, shape=[]) Экспоненциальное распределение
gamma(a, r, shape=[]) Гамма–распределение
multivariate_normal(mean, cov, shape=[]) Многомерное нормальное распределение
negative_binomial(trials, p, shape=[]) Негативное биномиальное
noncentral_F(dfn, dfd, nconc, shape=[]) Нецентральное F–распределение
noncentral_chi_square(df, nconc, shape=[]) Нецентральное хи–квадрат распределение
normal(mean, std, shape=[]) Нормальное распределение
permutation(n) Случайная перестановка
poisson(mean, shape=[]) Пуассоновское распределение
randint(min, max=None, shape=[]) Случайное целое
random(shape=[]) Равномерное распределение на интервале (0, 1)
random_integers(max, min=1, shape=[]) Случайное целое
standard_normal(shape=[]) Стандартное нормальное распределение
uniform(min, max, shape=[]) Равномерное распределение

 

Заключение

В этой лекции рассматривался набор модулей для численных вычислений. Модуль Numeric определяет тип многомерный массив и множество функций для работы с массивами. Также были представлены модули для линейной алгебры и моделирования последовательностей случайных чисел различных распределений.

 

Ссылки

Сайт, посвященный Numeric Python: http://www.pfdubois.com/numpy/