Загадки глубин Черного моря
В 1890–1892 гг. на Черном море работала русская гидрографическая экспедиция на судах «Донец» и «Запорожец». Ее руководителем был ученый И. Б. Шпиндлер. Когда в ходе работ впервые подняли на палубу опущенный в глубину на тросе медный батометр, то все присутствующие поразились его внешнему виду: медный цилиндр прибора почернел, а проба воды сильно пахла тухлыми яйцами.
Такими в дальнейшем оказались все пробы воды, поднятые с глубины более 150–200 м. Так было открыто наличие в глубинах моря мертвого слоя воды, насыщенного сероводородом – газом, присутствие которого в воздухе всего в количестве 0,002 % убивает птиц, а в количестве 0,1 % вызывает тяжелое заболевание людей.
Оказалось, что воды Черного моря состоят из двух слоев с разными соленостью, температурой и плотностью: верхнего, насыщенного кислородом, где возможна жизнь, и нижнего, более тяжелого и мертвого. Среди ученых преобладающим стало утверждение, что эти два слоя воды не перемешиваются и существуют как бы сами по себе.
Еще в. 1881–1882 гг. тогда еще капитан 2-го ранга С. О. Макаров (1849–1904, вице-адмирал, ученый и флотоводец) установил, что в Босфоре – проливе, соединяющем Черное и Мраморное моря, существует двойное течение: поверхностное за счет поступления более легких, менее соленых вод Черного моря в Мраморное, а по дну – за счет поступления более соленых и тяжелых средиземноморских вод из Мраморного моря в Черное.
Ученые предположили, что более соленая средиземноморская вода, поступая в Черное море, опускается на дно и вытесняет часть воды нижнего слоя наверх. В начале века было подсчитано, что, исходя из обьемов поступающих средиземноморских вод, полное обновление вод нижнего застойного слоя происходит не менее чем за 1500–2500 лет.
Отсюда ряд крупных ученых делали вывод, что Черное море является исключением из правил, в нем круговорот веществ явно нарушен, глубинные воды в течение значительного времени не обновляются. Далее они утверждали, что в результате этого содержание минеральных питательных веществ в верхнем слое незначительно и он не способен обеспечить расцвет производителя первичной органической продукции – фитопланктона (микроскопических водорослей), а как следствие и расцвет многих видов морских животных, находящихся на более высоких ступенях пищевой лестницы. Значит, зоной насыщенной жизни могут быть только прибрежные районы моря, где питательные минеральные вещества выносятся реками с суши.
Именно такую картину рисовала теория гидробиологу Владимиру Алексеевичу Водяницкому, член-корреспонденту АН УССР, когда в середине 30-х гг. он начал активно заниматься вопросами биологической продуктивности Черного моря.
Но сама жизнь, научные наблюдения явно свидетельствовали об ошибочности господствующей теории. Ведь и рыбаки, и ученые наблюдали в открытом море целые стаи дельфинов. В отдельные годы их количество еще более возрастало. А ведь дельфин – хищник, он питается рыбой. Согласно теории в открытом море рыбы очень мало, а дельфиньи стаи жили и процветали и своим существованием, своими веселыми играми у бортов проплывающих пароходов опровергали теоретические утверждения.
Все это и многие другие факты подталкивали вдумчивого ученого на размышления. Выкристаллизовывалась серьезная научная программа: определить поголовье дельфиньих стай в Черном море, установить, сколько они поедают рыбы, а затем двигаться вниз по пищевой цепи – определить, чем питаются рыбы, поедаемые дельфинами, сколько зоопланктона эти рыбы поедают, какова необходимая Концентрация фитопланктона – основной пищи зоопланктона. И наконец, подойти к основанию пищевой цепи и определить, сколько необходимо питательных минеральных веществ, чтобы фитопланктон, пища для зоопланктона, рос, образовывал органические соединения и размножался в необходимом количестве.
И сразу же возникал вопрос об источнике этих питательных веществ и механизме их выноса в верхние слои. Все расчеты приводили ученого к мысли о существовании механизма водообмена между нижними слоями воды, насыщенными питательными веществами, и верхними, где имелся кислород и существовала жизнь.
Как видим, рассмотрение вопросов биологической продуктивности черноморских вод требовало тщательного изучения характера водообмена между слоями: существует ли он в Черном море или нет, и если существует, то какова его интенсивность.
Профессор В. А. Водяницкий впоследствии рассказал, что в своих размышлениях он опирался на новую замечательную работу Николая Михайловича Книповича (1862–1939, почетный член АН СССР, известный русский и советский гидробиолог и гидролог) «Гидрологические исследования в Черном море». В ней были обобщены все опубликованные ранее материалы по Черному морю, а также результаты двух экспедиций – научно-промысловой под руководством самого Н. М. Книповича и гидрографической экспедиции Ю. М. Шокальского (1856–1940, известный русский и советский океанограф).
Еще до начала своей экспедиции Книпович тщательно проработал гидрологические материалы «первой черноморской глубомерной экспедиции» 1890–1892 гг. и установил, что во многих случаях глубинные поверхности равных температур и соленостей (изоповерхности) располагаются в Черном море не горизонтально, а в форме двух куполов – восточного и западного.
Из этого он сделал вывод, что в Черном море преобладают два кольцевых течения, движущихся против часовой стрелки (циклонально). Вследствие движений струй течений под воздействием вращения Земли их наружные области, обращенные к берегам, должны опускаться, а внутренние подниматься, что и вызывает куполообразное строение изоповерхностей в глубинах.
Это важнейшее открытие, сделанное чисто камеральным методом, получило среди океанологов название «велосипед Книповича» из-за сходства формы двух рядом расположенных кольцевых течений с колесами велосипеда и во многом определило направление дальнейших исследований на Черном море.
Оно подсказывало, что глубинные воды Черного моря не являются безнадежно застойными, а в какой-то мере подвижны и потому неизбежно подвержены медленным процессам перемешивания.
Книпович обратил большое внимание на существование довольно значительного промежуточного слоя, в котором содержание сероводорода постепенно уменьшается, а содержание кислорода увеличивается. Этот промежуточный слой является зоной смешения и взаимодействия сероводородной и кислородной водных масс, имеющей чрезвычайно большое значение для биологической продуктивности поверхностных слоев, пронизываемых солнечными лучами, в которых развивается фитопланктон.
Профессор В. А. Водяницкий все больше утверждался в мысли, что в глубинах Черного моря (как и в океанах) имеется высокое содержание питательных для фитопланктона веществ, образующихся в результате разложения падающих из поверхностных слоев отмерших организмов и экскрементов. А затем глубинные воды смешиваются с поверхностными и обогащают их питательными веществами.
Исследования, проведенные соратниками Владимира Алексеевича по Севастопольской биологической станции АН СССР, где он был директором, подтверждали эти предположения. Зоолог М. А. Галаджиев установил, что над большими глубинами моря наличие зоопланктона не меньше, чем в мелководном Каркинитском заливе. Особо порадовали В. А. Водяницкого работы микробиолога Ф. И. Коппа, который определил содержание в в поверхностных слоях моря микроорганизмов. Их оказалось в миллилитре воды до 2–3 млн. с биомассой 0,5 г, что вполне достаточно для питания и нормального развития зоопланктона. И что особенно важно, Ф. И. Копп обнаружил в верхнем слое воды мертвые нитевидные бактерии, происхождение которых явно связано с нижним бескислородным слоем. Значит, водообмен существует, раз их нашли в верхнем слое.
Выводы В. М. Водяницкого строги и бесспорны: дельфины съедают в год до 30Q млн. кг рыбы – это в полтора раза больше, чем ее вылавливали все рыбаки Черного моря в то время. Оттолкнувшись от этих цифр и от всех добытых фактов, Владимир Алексеевич высказывает соображения о биологическом балансе Черного моря уже исходя из новых соображений о масштабах водообмена слоев.
Эти и многие другие данные вошли в его статью «К вопросу о биологической продуктивности Черного моря», которая по независящим от него обстоятельствам и из-за цротиводействия недругов в те сложные годы появилась в печати только в мае 1941 г.
После окончания Великой Отечественной войны В. А. Водяницкий вернулся в Севастополь и вновь взялся за' решение проблемы водообмена в глубинах Черного моря. Предоставим слово ему самому: «Вновь берусь за черноморские проблемы, затронутые в моей работе 1935 г., опубликованной в 1941 г…Прежде всего вопрос о вертикальном перемешивании вод Черного моря, постановка которого могла показаться ересью…
Кстати, появляется и непосредственный повод для этого. В американском географическом журнале опубликована совместная статья двух гидрологов – американца Ф. Эллиота и турка О. Илгаза, в которой заново пересматривается вопрос о водообмене через Босфор, и в связи с этим подвергаются сомнению результаты босфорских исследований Макарова (1882) и Мерца-Меллера (1912). По мнению Илгаза и Эллиота, мраморноморские воды почти не попадают по дну Босфора в Черное море, так как путь им преграждает порог, расположенный в Черном море против устья пролива. Отсюда они сделали очень ответственные выводы и в отношении общей гидрологической структуры Черного моря, трактуя ее как устойчивую систему двух несмешивающихся водных масс – глубинной и поверхностной».
В. А. Водяницкий глубоко проанализировал баланс прихода средиземноморской воды через Босфор в Черное море, на котором основывались расчеты о 2500-летием периоде обновления глубинных слоев моря.
Галина Васильевна Воройская в своей книге о профессоре В. А. Водяницком ясно и доходчиво изложила основы расчетов водообмена, на которых основывались ученые ранее и которые разработал Владимир Алексеевич.
Первая схема была предельно проста: через Босфор из Средиземного моря в Черное за год поступает 200 км3 воды. Соленость ее – 36промилле (1 промилле соответствует содержанию 1 г солей в одном литре). Как Волее тяжелая и соленая, она опускается на дно и вытесняет столько же воды соленостью 21промилле из сероводородного слоя в верхний слой моря, который имеет соленость всего 18промилле. Если разделить количество воды в море (более 0,5 млн. км3) на количество вытесняемой (200 м3), то получится цифра 2500. При глубине моря в 2243 м выходит, что скорость перемешивания равна примерно 1 м в год.
Безусловно, эта схема водообмена не учитывала многих физических факторов, и это ясно видел В. А. Водяницкий. Ведь бассейн моря представляет собой глубокую впадину с зеркалом поверхности 420 тыс. км2. Учитывая климатический пояс, в котором расположено море, нельзя игнорировать фактор испарения морской воды и переноса в виде облаков, которые изливаются дождем здесь же или орошают земли на побережье и в глубине материка.
Выпавшие в виде дождевых осадков и не впитанные землей воды, а также талые воды при таянии снега и льда стекают в реки, которые несут их опять в море.
Часть морской воды уходит через Босфор в Средиземное море. Навстречу этому потоку по дну пролива идет более соленая и потому более тяжелая вода. Через Босфор уходит до 400 км3воды соленостью 18промилле, а поступает 200 км3с соленостью 33 – 34промилле. Ученый убедился, что солевой баланс сходится: море получает столько же соли, сколько отдает.
И далее Г. В. Воройская образно описывает конечный этап рассуждений ученого и его прозрение: «Но что-то в этом простом балансе было не так, что-то остается неучтенным. Что же?… Но ведь вода из рек поступает в море пресной!..
Владимир Алексеевич разыскивает специальную литературу, заново подсчитывает дебит Дуная, Днепра, Днестра, Буга, Риони и других рек, высчитывает, сколько потребуется воды соленостью в 21промилле, чтобы «подсолить» пресную воду до 18промилле. Результат таков: ежегодно в стадии смешивания находится не 200, а почти 3000 км3 воды… Он заново пересчитывает все, стремясь ничего не забыть, ничего не упустить. Расчеты показали: для полного обновления вод Черному морю требуется не 2500 лет, а меньше.
Но… Водяницкий решает новый каверзный вопрос: откуда уверенность, что речная вода смешивается с глубинными водами, а не остается в верхнем слое?
Новые столбцы цифр свидетельствуют: если бы речные воды смешивались только с верхним слоем, то за 60 лет кислородный слой должен был бы опресниться до 6промилле, а в нем все те же 18. Значит, происходит глубинное перемешивание воды со скоростью 15 м/год».
В. А. Водяницкий доказал, что вполне возможно привести в движение 3000 км3в год. Для этого вполне достаточно таких реальных факторов, как поверхностные течения, сточно-нагонные явления, перемешивание, вызванное охлаждением верхнего слоя и нагреванием глубинного, возникновение внутренних волн и вихревых образований.
И наконец он смог сделать окончательный вывод, что вертикальное перемешивание вод в Черном море происходит на всех его горизонтах, а период обновления воды сероводородного слоя равен 100–130 годам. Все это было изложено в статье «Водообмен и история образования солености Черного моря», опубликованной в 1948 г. и оказавшей глубокое воздействие на наших ученых-океанологов. А последние научные данные свидетельствуют о том, что полный водообмен в Черном море происходит всего за 60–80 лет.
Этот во многом академический, чисто научный вопрос об отсутствии или наличии вертикального водообмен! в одном из окраинных морей СССР в наш беспокойный век превратился в политический. Профессор В. А. Водяницкий получил письмо от академика Л. А. Зенкевича. В нем были такие строки: «…необходимость сбрасывать куда-то отходы радиоактивной промышленности привела к тому, что в США и Англии серьезно дебатировался вопрос об использовании для этой цели Черного моря как водоема с очень низкими показателями вертикальной циркуляции… В январе в Гетеборге я очень решительно возражал против подобного предложения, ссылаясь на Ваши данные. Однако этого мало…» Академик обратился к Владимиру Алексеевичу с просьбой представить дополнительные убедительные аргументы для возражений.
Подготовленные профессором материалы о водообмене в Черном море дали возможность представителю СССР академику Л. А. Зенкевичу на конференции МАГАТЭ в Вене в 1957 г. доказать недопустимость захоронения в нем ядерных отходов. И все же предложения о таком захоронении еще публиковались в Англии и США до 1962 г.
В расширении масштабов исследовательских работ на Черном море большую роль сыграли новые НИС, поступившие в распоряжение ученых в 50-х гг. Первым из них было НИС «Академик А. Ковалевский», принадлежавшее Севастопольской биологической станции АН СССР, которая затем была преобразована в Институт биологии южных морей АН УССР.
Начальник ОМЭР АН СССР И. Д. Папанин договорился с Министерством рыбного хозяйства СССР о передаче ученым трех среднетоннажных рыболовных траулеров для переоборудования в НИС. В 1954 г. заместитель начальника ОМЭР Е. М. Сузюмов и главный морской инспектор С. И. Ушаков подобрали для переоборудования траулер постройки 1949 г. Его срочно перевели в Севастополь, где на судоремонтном заводе в короткий срок переоборудовали в экспедиционное судно водоизмещением 455 т. Уже осенью 1954 г. НИС вышло в свой первый пробный рейс в Черное море. По предложению профессора В. А. Водяницкого ему присвоили имя «Академик А. Ковалевский» в память выдающегося русского биолога Александра Онуфриевича Ковалевского (1840–1901).
В течение двух последующих лет еще два таких же рыболовных траулера были переоборудованы в НИС и получили новые названия «Академик С. И. Вавилов» и «H. H. Миклухо-Маклай». Академик Сергей Иванович Вавилов (1891–1951) – выдающийся советский физик-оптик, президент АН СССР в 1945–1951 гг. Он сыграл важную роль в содействии организации океанологических исследований в послевоенный период. И вполне обоснованно его имя было присвоено новому НИС Института океанологии АН СССР.
Так же вполне объяснимо появление на борту второго НИС Института биологии южных морей имени Николая Николаевича Миклухо-Маклая (1848–1888) – выдающегося русского путешественника, этнографа и антрополога, навсегда оставившего о себе память как об ученом-гуманисте и ниспровергателе расистских теорий о «высших» и «низших» расах.
Профессор В. А. Водяницкий прозорливо выступал за расширение гидробиологических исследований в нашей стране, глубоко осознав их исключительно важную роль в фундаментальном и сугубо прикладном планах, особенно с учетом отставания советской биологической науки, вызванного негативными последствиями лысенковского поветрия.
В известном совместном программном письме академика Л. А. Зенкевича и профессора В. А. Водяницкого в адрес Бюро отделения биологических наук АН СССР говорилось, в частности, о том, что вопросы качественного состава и количественного развития жизни в водоемах, биологических циклов водных организмов, их соотношения со средой, структуры водных сообществ, колебания продуктивности имеют не только существенное значение для рыбной промышленности, морского флота, здравоохранения, климатологии и других отраслей народного хозяйства, но представляют огромный общебиологический интерес, касаясь закономерностей распределения и развития жизни в водоемах в зависимости от исторических и современных условий и хозяйственной Деятельности человека.
В письме ученые изложили конкретную программу развития гидробиологических исследований, предлагая в АН СССР особый упор сделать на изучение закономерностей биологической продуктивности водоемов в самом широком значении этого термина.
Ратуя о развитии гидробиологических исследований, профессор настойчиво доказывал необходимость расширения районов работ в южных морях. Он объяснял, что необходимы сравнительные исследования в цепи южноевропейских средиземноморских морей. Ему было ясно, что работы на Черном море должны обязательно проходить параллельно с соответствующими исследованиями в соседних морях, тем более что многие важные промысловые рыбы совершали регулярные миграции между Черным и Средиземным морями. Он видел, что именно в отношении биологической продуктивности бассейн Средиземного моря изучен очень слабо. Широкая и регулярная работа на больших пространствах моря с полным комплексом необходимых гидрологических, гидрохимических и ихтиологических наблюдений здесь к концу 50-х. гг. почти не проводилась, несмотря на обилие научных учреждений.
Важное место в работах на Черном море заняли наблюдения суточных и многосуточных станций. Они позволили получить непосредственное представление о ряде гидрологических и биологических процессов, протекающих в водоеме, в частности определить суточную продуктивность фитопланктона. К сожалению, для сравнения результатов можно было воспользоваться весьма немногочисленными работами иностранных ученых на Средиземном море, носящими по преимуществу частный или местный характер.
И настойчивость ученого победила. Уже в 1958 г. состоялась средиземноморская экспедиция на НИС «Академик А. Ковалевский», во время которой в 4 лабораториях судна напряженно работали 15 научных сотрудников. Это был переломный момент в работе Севастопольской биологической станции. До этого за 87 лет существования лишь пятеро ее сотрудников вели работы на Средиземном море, причем в те времена, когда проблема продуктивности морей еще не стояла на повестке дня. Собственно, экспедиция на НИС «Академик А. Ковалевский» может считаться первой отечественной гидробиологической экспедицией в Средиземном море.
Ученые работали в Эгейском, Ионическом и Адриатическом морях. Были выполнены важные исследования по гидрологии, гидрохимии, изучению планктона, бентоса (обитатели морского дна), ихтиологии и паразитологии. Удалось провести комплексные работы на нескольких круглосуточных станциях с постановкой судна на якорь на больших глубинах.
В следующем, 1959 г. в Средиземном море гидробиологи работали уже на двух НИС – «Академик А. Ковалевский» и «Академик С. И. Вавилов». Под руководством профессора В. А. Водяницкого ученые биостанции, а затем Института биологии южных морей в последующие годы провели серьезные исследования в Мраморном, Эгейском, Ионическом, Адриатическом, Тирренском, Лигурийском, Красном морях. А затем севастопольские гидробиологи опустили за борт планктонные сети и глубоководные тралы в Индийском и Атлантическом океанах, в Карибском море. По масштабу и глубине проводимых работ институт действительно стал ведущим центром страны по изучению биологии южных морей.
В 1961 г. АН Республики Куба обратилась в АН СССР с просьбой оказать ей содействие в изучении морских и океанских вод, омывающих Кубу. Руководство АН СССР поручило организовать это дело ОМЭР. После обсуждения просьбы кубинцев с участием ведущих советских ученых было решено поручить проведение экспедиции в кубинских водах Институту биологии южных морей АН УССР, учитывая, что кубинскую сторону интересует прежде всего биологическая продуктивность Карибского моря и прилегающих акваторий Атлантического океана.
Решили направить в экспедицию туда НИС «Академик А. Ковалевский». По договоренности с Министерством морского флота СССР судно было переведено на Кубу на буксире, так как самостоятельный переход туда вызвал бы неоправданно большой расход ресурса двигателя. «Академик А. Ковалевский» находился на Кубе три года. За это время советские и кубинские ученые провели на нем несколько экспедиций, которые помогли собрать богатейший материал. И как результат этих продуктивных экспедиций правительство Республики Куба вынесло решение создать в системе АН Кубы Институт океанологии. И он был организован при живейшем сотрудничестве с советскими океанологами.
Сошли с морских путей «Академик С. И. Вавилов» и «Миклухо-Маклай». В строю еще остался корабль-долгожитель «Академик А. Ковалевский». В 1988 г. он совершил свой очередной 109-й рейс в восточную часть Средиземного моря.
А рядом с ветераном работают новые НИС. 5 марта 1977 г. в Севастопольский порт впервые вошло новое НИС, на борту которого было имя» «Профессор Водяницкий». В распоряжении ученых института на новом НИС 9 лабораторий, помещения для биологических коллекций, траловые лебедки и другое научное оборудование.
Парадоксы магнитного поля Земли
То, что наша Земля является большим магнитом, впервые определил английский ученый-Вильям Гильберт, издавший в 1600 г. в Лондоне трактат «О магните, магнитных телах и о большом магните – Земле, новая физиология, доказанная множеством аргументов и опытов».
Но в практических целях люди научились использовать поле земного магнетизма с древних времен. В старинных китайских книгах есть намеки на то, что свойство подвижного естественного или искусственного магнита в виде магнитной стрелки устанавливаться в направлении север – юг вдоль магнитных силовых линий использовалось сухопутными путешественниками и, возможно, на кораблях уже в IV в. до н. э.
Пока найден китайский компас, изготовленный в XI в., более ранних образцов еще не обнаружено. Из Китая, видимо через арабов, сведения об использовании магнитной стрелки проникли в Европу. Первое упоминание о применении магнитной иглы для целей навигации у европейских авторов встречается в работах английского монаха Александра Неккама «Об орудиях» и «О природе вещей», датируемых приблизительно 1187 г.
Впервые поле земного магнетизма в океане исследовала научная экспедиция во главе с известным астрономом Эдмундом Галлеем. В 1698 г. экспедиция отправилась в Атлантический океан на английском корабле «Пэрамур Пинк» для изучения магнитного склонения. По ее результатам и собрав дополнительные сведения по остальным океанам, Галлей опубликовал первые морские карты магнитного склонения Мирового океана.
В дальнейшем ученые продолжили детальное изучение магнитного поля Земли и его изменения во времени. Уже к началу XX в. были определены общие характеристики поля земного магнетизма. Установлено, что все околоземное пространство заполнено силовыми линиями этого поля. Это невидимое, неслышимое и неосязаемое человеческими чувствами силовое поле можно обнаружить и изучать только с помощью специальных приборов, простейшим из которых является магнитный компас.
Воздействие этого поля на магнитную стрелку сейчас достаточно хорошо изучено. Установлено, что поле земного магнетизма заполняет все пространство, окружающее Землю, от ее поверхности до высот равных 36 – 120 тыс. км.
Стрелка магнитного компаса именно благодаря действию на нее этого поля всегда устанавливается вдоль магнитного меридиана так, что ее концы указывают направление на магнитный полюс. Известно, что в настоящее время магнитный полюс не совпадает с географическим примерно на 11°.
Ученые, наблюдая за магнитной стрелкой в различных точках материков и океанов, сумели определить направление магнитных меридианов в каждой точке. Более того, длительные и тщательные наблюдения за положением магнитной стрелки в определенных точках позволили заметить ее колебания в течение суток, года и более длительных интервалов времени.
В процессе подобных наблюдений ученые определили угловые характеристики магнитного поля: магнитное склонение, равное углу между географическим и магнитным меридианом, и магнитное наклонение, определяемое углом между плоскостью горизонта и горизонтальной осью стрелки.
Кроме этого, магнитное силовое поле характеризуется и силой своего воздействия, или магнитной индукцией. Значит, чтобы изучить распределение магнитного поля в пространстве и изменение его во времени, необходимо накопить громадное количество данных по значениям магнитного склонения, наклонения и магнитной индукции в различных точках поверхности нашей планеты.
Уже в XVIII в. определили, что изменение во. времени магнитного поля Земли носит закономерный характер. Ученые различают в первую очередь медленные изменения – вековые вариации. Из-за этого мировые карты магнитного поля Земли приходится периодически пересоставлять. Хуже всего вековой ход изучен на просторах океана, где магнитные обсерватории размещены только на отдельных островах. В будущем, возможно, магнитные съемки будут производить с борта искусственных спутников Земли. Но пока исключительно велика роль НИС, оснащенных приборами для измерения компонентов этого поля.
При изучении вариаций магнитного поля Земли установлено, что оно сейчас постоянно уменьшается. Увеличение и уменьшение напряженности поля обнаружено учеными и в прошлом. Видимо, эти изменения существенно повлияли на эволюцию живых существ Земли.
Затем ученые определили, что магнитное поле постоянно целиком смещается к западу. Это так называемый западный дрейф поля. За несколько тысяч лет поле, очевидно, делает полный оборот относительно магнитных полюсов. Но поле постепенно смещается и к северу. Наконец, существуют среднепериодичные изменения поля по величине напряженности с выделением двух характерных периодов 300–800 лет и 40–80 лет.
Безусловно, из-за наличия вековых и других вариаций поле земного магнетизма изучать исключительно сложно и, естественно, значительно сложнее, чем другие геофизические поля, такие, как тепловое, гравитационное и др. Установлено, что глубокое проникновение в законы формирования этого поля крайне важно для познания происхождения, устройства и развития планеты Земля, ее океанов и строения океанского дна. Об использовании знания этих законов для обоснования теории горизонтального перемещения материковых плит будет рассказано позже.
Как видим, изучение поля земного магнетизма необходимо для решения как чисто практических задач мореплавания, так и для объяснения фундаментальных законов природы. Недаром в связи с этим великий немецкий математик XIX в. Карл Ф. Гаусс, получивший выдающиеся результаты в теории земного магнетизма, отмечал: «Непрестанное усердие, с которым в новейшее время стремятся исследовать направление и величину земной магнитной силы во всех частях земной поверхности, представляет тем более радостное явление, чем очевиднее при этом проявляется чисто научный интерес. В самом деле, сколь ни важно для мореплавателя возможно точнее знать склонение, эта потребность не распространяется далее, и все, что лежит вне ее, остается для мореплавателя почти безразличным. Однако наука, которая охотно способствует материальным интересам, ими не ограничивается, а требует равного усердия для всех элементов своего исследования».
Громадное значение в изучении магнитного поля. Земли имели магнитные съемки океанских просторов. Значителен вклад в это важное дело советских ученых. К началу Международного геофизического года 1956–1957 гг. была построена немагнитная мотопарусная шхуна «Заря», экспедиции на которой в последующем позволили собрать поистине бесценный материал.
Даже опытных мореплавателей приводят в восхищение смелые рейсы этого судна. Надо обладать большим мужеством, чтобы на таком судне водоизмещением всего 600 т пересекать необозримые океанские просторы, бороться с холодными штормами в Гренландском и Норвежском морях, стойко переносить удушающую влажную жару тропиков, выдерживать неожиданные шквалистые ветры Индийского океана и выполнять при этом непрерывно изо дня в день, из месяца в месяц научные наблюдения.
Шхуна «Заря» – немагнитное судно. Это дает возможность фиксировать на ней истинные величины элементов магнитного поля Земли, что невозможно делать на судах другого типа из-за помех, вызываемых магнитным полем корабля. Буксируемые же за кораблем приборы не дают полного комплекса всех элементов магнитного поля Земли.
Проведенные на «Заре» магнитные наблюдения в Мировом океане являлись составной частью. международной программы по магнитной съемке Земли, которая выполнялась учеными разных стран. Использование полученных на «Заре» данных дало возможность построить магнитные карты на новом качественном уровне и более высокой точности, получить сведения о суммарном изменении магнитного поля Земли за многие десятилетия, о физических процессах, протекающих в недрах Земли, о связях между характером аномального магнитного поля на водной поверхности с крупнейшими структурными особенностями океанического дна.
Помимо магнитных наблюдений на «Заре», по всему маршруту следования судна проводились ионосферные наблюдения с помощью автоматической ионосферной станции и наблюдения за космическими лучами. Исключительно важен и непрерывный эхолотный промер глубин, запись рельефа дна в районе магнитных наблюдений.
Мировая научная общественность высоко оценила результаты исследований, проведенных с борта «Зари». Как отмечал многолетний научный руководитель магнитных наблюдений на «Заре» доктор физико-математических наук M. M. Иванов, результаты проведенных исследований показали, что на магнитных картах, составлявшихся в середине 50-х гг., характеристика больших участков Мирового океана (особенно в Южном полушарии, в частности, в Индийском океане) дана со значительными систематическими погрешностями. Было установлено также, что появление этих ошибок объясняется совершенно неудовлетворительным знанием действительного распределения векового хода магнитного поля в океанах. Сопоставление результатов наблюдений на «Заре» с данными прежних наблюдений позволило построить карты суммарных изменений поля за несколько последних десятилетий.
Как же устроена шхуна «Заря» и в чем ее принципиальное отличие от других НИС?
Конструкторам и судостроителям пришлось проявить большое искусство, чтобы создать судно без собственного магнитного поля. Корпус «Зари», шпангоуты, палубы, мачты – деревянные, все металлические соединения обшивки корпуса – медные, а многочисленные блоки такелажа – из меди и дерева. Ванты, крепящие мачты и стеньги, – из медных тросов. Более того, якорные цени, обычно изготовляемые из прочных стальных звеньев, здесь пришлось делать также из меди, как и якоря и брашпиль. Можно представить, какие трудности встретились при размещении заказов – ведь весь флот применяет эти изделия, изготовленные из стали, которая много прочнее, весит меньше и стоит дешевле.
Но ста большие трудности встретились при насыщении машинного отделения. Все насосы, трубопроводы, генераторы и сам главный двигатель также пришлось изготавливать из меди, бронзы или в крайнем случае из маломагнитной стали. И только гребной вал был изготовлен из стали с учетом предстоящей тяжелой работы, которая была бы не по силам медному валу такого же сечения. Винт на судне установлен бронзовый.
Насколько важно было до предела ограничить наличие на судне предметов, обладающих магнитным полем, свидетельствует такой пример. В 1964 г. жители Таллинна могли наблюдать довольно странную картину: старший помощник капитана В. И. Узолин ходил по универмагу и, пользуясь магнитом, подбирал немагнитные ложки, вилки, чайники и прочий кухонный и хозяйственный инвентарь. Поскольку кают-компания расположена над магнитометрическими датчиками, всегда приходится помнить пословицу: «Комар в твоей комнате страшнее льва, который в Африке».
Обычный срок службы деревянных судов 10–15 лет, но ветеран – шхуна «Заря» благодаря хорошей эксплуатации и заботе об ее техническом состоянии успешно плавает до сих пор.
Многолетние исследования позволили ученым наблюдаемое на поверхности Земли магнитное поле разделить как бы на три части и изучать эти части раздельно. Советские морские магнитологи А. Н. Пушков и Л. Г. Касьяненко в первую очередь выделяли главное геомагнитное поле, предполагая, что его истоки находятся глубоко в Земле и поэтому оно должно иметь существенно плавный, гладкий характер на земной поверхности.
Второй частью является аномальное геомагнитное поле или поле магнитовозмущающих источников, находящихся в земной коре. Верхней границей источников считается сама поверхность Земли, а нижней – глубина, на которой из-за высокой температуры исчезают магнитные свойства пород. Третьей частью является внешнее переменное геомагнитное поле, обусловленное источниками токовой природы, существующими в высокопроводящих слоях атмосферы (ионосфере и магнитосфере) на высотах от сотен до тысяч километров.
Как видим, почти 1000 лет используют моряки поле земного магнетизма для определения пути в океане, почти 400 лет изучают это поле ученые и уже многое известно о его распределении в пространстве и изменении во времени. Теперь следует сказать о главном парадоксе, связанном с магнитным полем Земли. Оказывается, что, несмотря на солидный срок практического использования и вполне приличный срок изучения, глубинные причины его возникновения и поддержания до сих пор точно не установлены.
Второй парадокс заключается в том, что, даже изучив в совершенстве его изменения и вариации, мы мало продвинемся к определению причин его возникновения и объяснению причин изменения. Дело в том, что, основываясь только на внешних проявлениях магнитного поля Земли, нельзя однозначно судить о его природе. Одно и то же магнитное поле может вызываться и электрическими токами в глубинных слоях Земли, и залегающими в литосфере магнитными породами. Все это крайне осложняет разработку теории, объясняющей причины возникновения и поддержания магнитного поля Земли.
На этот счет существует несколько гипотез. В настоящее время большинство геофизиков считает, что наибольшую вероятность стать строгой теорией имеет гипотеза гидромагнитного динамо. Исходная идея была изложена еще в 1919 г. английским физиком Дж. Лармором. Суть ее в следующем: предполагается, что в недрах Земли имеется жидкий проводящий слой земного ядра. Если в нем происходит движение вещества, то в результате возникает электрический ток, а следовательно, создается магнитное поле.
В последующие годы математически была доказана возможность самовозбуждения магнитного поля в результате движений спирального вида в проводящем слое. Ученые построили несколько моделей, которые приводят к появлению на поверхности Земли магнитного поля, схожего с фактически наблюдаемым. При этом в качестве двигателя, приводящего в движение проводящий слой ядра и поддерживающего это движение, принимаются такие физические процессы, как тепловая и гравитационная конвекция и даже прецессия земной оси (круговые движения полюсов).
Предполагается, что суммарный результат вызван действием на жидкий слой ядра многих сил, в частности гидростатических сил, наподобие сил поддержания в жидкостях, силы Кориолиса, происхождение которой связано со вращением Земли и многих других факторов.
Ученым абсолютно ясно, что до превращения гипотезы гидромагнитного динамо в строгую теорию еще далеко. Для этого гипотеза земного динамо должна четко ответить хотя бы на вопросы, которые сформулировал советский геофизик С. И. Брагинский еще в 1967 г. Л. Г. Касьяненко и А. Н. Пушков привели их в следующем виде.
Почему геомагнитное поле в основном представляет собой диполь, направленный вдоль оси вращения Земли?
Почему существует меньший, но довольно значительный поперечный диполь (наклон магнитной оси), а также сложного вида недипольные составляющие поля?
Почему эти отклонения от осевого диполя испытывают вариации с периодами порядка 1000 лет?
Почему происходят короткопериодные вековые вариации с периодами порядка 100 лет и менее?
Почему происходит западный дрейф поля и вековых вариаций и чем объясняется корреляция неравномерностей дрейфа с флуктуациями в скорости вращения Земли?
Почему основной диполь и другие характеристики поля испытывали колебания с периодом порядка 10 000 лет?
Почему происходили многократные изменения знака оси диполя в прошлом (то есть почему менялись местами Северный и Южный магнитные полюса)?
Почему переполюсовки поля происходили за время порядка 10 000 лет и как именно протекал этот процесс?
Почему за огромные промежутки времени 108– 109 лет величина магнитного поля сохранилась приблизительно неизменной?
Почему за время существования Земли происходили большие систематические перемещения магнитных полюсов по ее поверхности?
Вопросы, вопросы и еще раз вопросы. Со времени их постановки прошло более 20 лет. Но ни на один исчерпывающего, убедительного, количественного ответа еще нет. Как видим, парадоксы земного магнетизма до сих пор не разъяснены. Впереди у геофизиков непочатый край работы, впереди новые экспедиции в далекие моря и океаны.
Существуют ли глубинные реки в океане?
В середине XX в. океанологи в основном описали систему поверхностных течений Мирового океана. Ученые определили многие параметры этих течений: их мощность, то есть количество воды, переносимой в секунду; скорость; температуру поверхностного слоя и др. Но им было ясно, что знания характера движения поверхностных вод явно недостаточно для составления целостной картины движения водных масс в толще океана. А эти знания просто были, необходимы, без них нельзя было объяснить' многие парадоксы полей температур и солености океанических вод, нельзя было подойти к составлению прогнозных математических моделей поведения системы океан – атмосфера.
Первое крупное открытие, изменившее во многом представления океанологов о характере движения океанических масс воды, было сделано в Тихом океане. Как часто бывает, новое явление было обнаружено как бы случайно. В 1951 г. американские рыбаки начали лов рыбы на экваторе с помощью глубинных сетей. С удивлением они обнаружили, что их сети относит на восток, хотя мощное Южное Пассатное течение увлекало рыбацкие суда на запад.
Об этом загадочном явлении стало известно американскому океанологу Таунсенду Кромвеллу. Он организовал исследования в экваториальных водах Тихого океана, результатом которых явилось обнаружение под Южным Пассатным течением на экваторе противотечения со скоростью, достигающей местами 150 см/с.
Эта подводная река протянулась вдоль экватора от Соломоновых до Галапогосских островов на протяжении 8000 миль, имеет ширину 150–250 миль, причем толщина слоя воды, перемещающегося на восток, достигает 300 м. Вначале противотечение назвали Экваториальным. Позднее оно было переименовано в течение Кромвелла, который погиб в 1958 г. в авиационной катастрофе.
В дальнейшем течение Кромвелла исследовали и экспедиции на «Витязе». Чтобы исследовать течение по всему профилю и на разных глубинах, ученые использовали буйковые станции с самописцами течений. Выяснилось, что это течение в поперечном сечении имеет форму буквы «П». Внизу в ложбине этого течения, направленного на восток, обнаружен еще один самостоятельный и тоже мощный поток. И что поразительно, так это постоянство такой сложной гидродинамической модели. Даже если на пути течения оказываются острова, то оно лишь огибает их с двух сторон, сохраняя затем первоначальную структуру.
В 1959 г. на борту «младшего брата» «Витязя» – НИС «Михаил Ломоносов» работала в Атлантическом океане экспедиция под руководством Г. П. Пономаренко. В ходе исследований ученые сделали выдающееся открытие: ими было открыто экваториальное подповерхностное противотечение, названное именем Ломоносова.
В последующих рейсах это глубинное противотечение было детально исследовано. Ученые обнаружили поразительное природное явление: на глубине от 75 до 200–400 м в глубине океанских вод текла как бы мощная подводная река шириной 200–250 миль. По вертикали эта река простиралась приблизительно на 200 м. Течет она вдоль экватора со скоростью 100–120 см/с под поверхностным Южным Пассатным течением и направлена в противоположную сторону, то есть с запада на восток. Его мощность довольно значительна и равна примерно половине мощности Гольфстрима.
Глубинное противотечение Ломоносова представляет собой явно выраженный поток вод, пересекающий Атлантический океан от берегов Южной Америки до берегов Африки. Экспедициями «Михаила Ломоносова» оно было прослежено и изучено на протяжении более 2600 миль. Это открытие самым существенным образом изменило представление ученых о циркуляции водных масс тропической Атлантики и явилось также эпохальным событием в истории океанологии. Мало того, с борта «Михаила Ломоносова» в этот период было открыто и другое глубинное противотечение, струящееся в океане под поверхностным Бразильским течением. Так навсегда в историю океанологии вошло наше НИС «Михаил Ломоносов».
Это судно было построено в 1957 г. для Морского гидрофизического института АН СССР по инициативе его директора академика В. В. Шулейкина и являлось плавучим филиалом института с 17 лабораториями, где 65 ученых – гидрофизиков, морских геологов, гидрохимиков и др. – имели все условия для напряженной исследовательской работы. Судно, построенное в ГДР, было неплохо для того времени оснащено научным оборудованием и исследовательскими лебедками.
Интересно, что непосредственно в ходе экспедиционных рейсов на судне была создана и испытана одна из первых автоматизированных систем сбора, передачи и обработки данных экспедиционных гидрофизических исследований. Судно явилось первым НИС, на котором была установлена и применена для автоматизации сбора и обработки научных материалов ЭЦВМ «Днепр».
Вспоминая о раскрытых учеными «Михаила Ломоносова» загадках морских течений, уместно привести благородные пророческие слова великого Ломоносова, чье имя на борту судна, о пользе мирного научного мореплавания: «О, если бы все труды, заботы, издержки и бесконечное множество людей, истребляемые и уничтожаемые свирепством войны, были обращены на пользу мирного научного мореплавания! Не только бы уже открыты доныне неизвестные области обитаемого мира и соединенные со льдом берега у недоступных доныне берегов, но могли бы быть, кажется, обнаружены неустанным усердием людей тайны самого дна морского. Насколько возросло бы наше благосостояние от обмена избыточествующих вещей между народами и насколько бы ярче заблистал свет наук после раскрытия новых тайников природы!»
Открытие противотечения Ломоносова было воспринято мировой научной общественностью как крупная победа советской морской науки. На сессии Межправительственного океанографического комитета в Париже в сентябре 1962 г. была принята международная программа исследований противотечения Ломоносова. К его изучению, помимо океанологов СССР, подключились ученые США, Аргентины, Бразилии, Франции и других стран. За открытие и исследование этого противотечения тропической Атлантики группа ученых Морского гидрофизического института АН УССР во главе с директором института академиком АН УССР А. Г. Колесниковым была в 1970 г. удостоена Государственной премии СССР. В списке лауреатов достойное место занял первооткрыватель противотечения Ломоносова Георгий Петрович Пономаренко.
Раз уж рассказ идет а НИС «Михаил Ломоносов», то нельзя не коснуться одного научного исследования, связанного с благородной борьбой за полное запрещение испытаний ядерного оружия.
Ученые на борту НИС «Михаил Ломоносов», используя прекрасное научное оборудование, провели исследования по выяснению концентрации вредоносных искусственных радиоактивных изотопов в приводном слое атмосферы и плотности выпадания их на поверхности океана. Затем, реализуя накопленный опыт и знания динамики вод океана и законов перемещения водных масс течениями, ученые исследовали пространственное распределение в океане радиоактивных изотопов. Вывод советских ученых был однозначен: основным источником радиоактивной загрязненности воздуха над океаном, а значит, и самого океана являются продукты деления, образовавшиеся в результате предшествующих взрывов ядерного оружия и продолжающие поступать из стратосферы в нижние слои атмосферы и на земную поверхность. Это был весомый вклад советских океанологов в борьбу за запрещение испытаний ядерного оружия, в борьбу за мирное небо над нашей голубой планетой.
В 1959–1960 гг. советские ученые с борта «Витязя» открыли подповерхностное противотечение вдоль экватора, аналогичное противотечению Ломоносова и в Индийском океане. Его характеристики были следующими: глубина течения 100–400 м, ширина две-три сотни миль, скорость порядка 100 см/с.
В результате последующих исследований они установили, что противотечение не остается все время спокойным и постоянным. Вдоль него распространяются волны длиной порядка 1000 км, то есть течение иногда извивается, как шнур, если дернуть его за конец. Это противотечение было названо именем Б… А. Тарееаа, молодого советского ученого, преждевременно скончавшегося во Владивостоке перед выходом судна в экспедиционный рейс, во время которого были сделаны важные исследования, приведшие к его открытию.
В дальнейшем советские океанологи продолжили поиск глубинных рек в океане уже на судах нового поколения. В 1969 г. в одном из рейсов нового флагмана советского научно-исследовательского флота НИС «Академик Курчатов» проводились обширные исследования глубинных течений, в тропической Атлантике в районе Антильских и Багамских островов. В результате – но вое выдающееся открытие: в глубинах океана открыто неизвестное мощное течение – подводная река шириной 80 – 150 миль, текущая от берегов Флориды на юго-восток вдоль гряды Антильских островов и северо-восточных берегов Южной Америки до экватора, где оно соединяется с истоками противотечения Ломоносова. Это противотечение расположено на глубинах 600–800 м и несет воды, примерно равные по объему половине Гольфстрима. Его протяженность более 3500 миль, и названо оно Гвиано-Антильским подповерхностным противотечением.
В последующие годы неожиданно для ученых была зарегистрирована изменчивость подповерхностных экваториальных противотечений. На этих подводных реках обнаружили многочисленные извилины, ответвления – меандры. Таким образом, здесь все оказалось сложнее, чем первоначально думали ученые. В структуре этих противотечений большое значение играли элементы турбулентности, изменчивости.
Многолетние исследования течений, проведенные океанологами, позволили составить первые глобальные модели динамики водных масс Мирового океана, которые во многом отражали реальную картину поверхностных и глубинных течений. А ведь без такой работающей модели просто невозможно разобраться в грандиозных процессах взаимодействия океана и атмосферы, формирующих в основном климат нашей планеты.