Есть два способа научить человека управлять автомобилем. Первый способ такой. Нужно посадить будущего водителя за руль и дать ему конкретную инструкцию: «Хочешь ехать вперед — опусти эту ручку вниз, хочешь ехать назад — подними ее вверх, прежде чем переставлять ручку — нажми на эту педаль, а когда переставишь — отпусти педаль, хочешь ехать быстрее — нажимай на ту длинную педаль, хочешь остановиться — нажми на эту квадратную педаль. Вот и все. Поехали…»

А вот другой способ. Человеку, который хочет водить автомобиль, сначала нужно рассказать, хотя бы коротко, хотя бы в самых общих чертах, о том, как этот автомобиль устроен. Рассказать, как работает двигатель, что значит «включить зажигание», как мы изменяем количество рабочей смеси, поступающей в цилиндры, а значит, и число оборотов двигателя.

Нужно рассказать, каким образом, через какие промежуточные механизмы двигатель вращает колеса автомобиля, что происходит при переключении скоростей, для чего нужно сцепление, и так далее. И уже только после такого рассказа можно показать, какие ручки и педали управляют теми или иными агрегатами, и пояснить, в каких случаях какую педаль нужно нажимать.

Вряд ли стоит тратить время на анализ и сравнение этих двух способов обучения. Совершенно ясно, что первый из них не покажется разумным ни учителям, ни ученикам. И все же есть такая область техники, которую часто начинают изучать не головой, а руками. О чем идет речь? Представьте себе, что о радиоэлектронике.

Разве мало людей, не зная основ электроники, пытаются построить какой-нибудь сложный электронный прибор — радиоуправляемую модель или телевизор? А сколько карманных приемников было построено любителями, не имеющими представления о принципах радиоприема, не знающими, зачем нужен тот или иной элемент в собранной ими схеме! И нужно сказать, что большинство этих приемников работало, а некоторые работали просто хорошо. (А вы думаете, водитель, которого учили лишь ручки переставлять да педали нажимать, не будет ездить на машине? Будет. Да еще как!)

Так, может быть, отправляясь на завоевание страны Электронии, в самом деле нужно прежде всего вооружиться паяльником? Может быть, в этой загадочной стране все двери открывает пароль «делай сам»?

На оба эти вопроса нужно ответить утвердительно. Но с оговоркой. Если вы не хотите понапрасну терять время на разгадывание известного или бросать работу, отчаявшись найти неисправность в схеме, когда обнаружить ее дело одной минуты, если вы не хотите повторять чужие ошибки и слепо копировать плохонькую схему, в то время как есть тысяча простых способов улучшить ее, одним словом, если вы не хотите блуждать впотьмах по путаным дорогам Электронии, запомните: пароль «делай сам» обязательно нужно дополнить словами «знай» и «думай».

Эта книжка по возможности построена так, что описания конкретных электронных приборов, которые можно построить своими силами, переплетаются с рассказом об «архитектуре» и налаживании схем, об электрических цепях, их отдельных элементах. Однако все, что хотелось рассказать об основах радиоэлектроники, не удалось равномерно «перемешать» с описаниями приборов-самоделок. Потому что о некоторых вещах нужно знать еще до того, как вы возьмете в руки паяльник. Так появились в этой книге большие «блоки» основ электротехники и радиоэлектроники, в том числе и эта первая глава. А если кому-нибудь особенно не терпится «сесть за руль», если кто захочет сразу же пустить в ход паяльник, то пусть он, этот нетерпеливый человек, сразу берется за описания конкретных схем — а их в книге немало — и пропускает те разделы, которые покажутся слишком общими. Только заранее предупреждаем: выиграть на этом ничего не удастся!

СЛОВА, СЛОВА, СЛОВА…

Прежде чем начинать рассказ о транзисторных усилителях, приемниках и генераторах, прежде чем чертить планы монтажа простых и сложных транзисторных аппаратов и писать формулы для расчета их узлов, одним словом, прежде чем знакомиться, как это обещано, со схемами на транзисторах, мы несколько отклонимся от своей цели. Мы совершим короткую, буквально на пять — десять минут, экскурсию совсем в другое государство — в языкознание. Цель этой экскурсии — познакомиться с несколькими необычными применениями нескольких обычных слов.

По-видимому, в каждом языке существуют одинаково звучащие, но имеющие разное значение слова. Официальное название таких слов — омонимы. За примерами русских омонимов не нужно далеко ходить: это ключ— родник, ключ от замка, телеграфный ключ, гаечный ключ и ключ для чтения шифрованного письма. А вот еще примеры: три — число и три — глагол; нос на лице и нос корабля; совет — рекомендация, указание, как поступать, и Совет — орган власти (например, городской Совет).

Омонимы, может быть, и полезны в каких-то случаях, например при сочинении шуточных стихов, но, в общем-то, конечно, существование одного общего слова для двух совершенно разных понятий очень неудобно. И, к сожалению, такие неудобства мы часто создаем сами. Причем не то чтобы по ошибке, не то чтобы случайно, а в силу какой-то небрежности, какого-то неуважения к чистоте и четкости родного языка.

Примером такой небрежности может служить и слово «транзистор», которое с чьей-то легкой руки, к сожалению, стало омонимом.

Слово «транзистор» родилось около двадцати лет назад. Именно так был назван новый усилительный прибор — полупроводниковый, или, как его еще тогда называли, кристаллический, триод. Само слово транзистор является своеобразным гибридом двух радиотехнических терминов — трансфер и резистор. Первое из этих слов (оно очень похоже на трансформатор) означает «преобразователь», «переносчик», «передатчик». Второе слово относится к электрическому сопротивлению, тому самому, на котором электрический ток выделяет мощность и которое входит в закон Ома, определяет ток в цепи и т. д. В общем же, слово «транзистор» можно расшифровать как «преобразователь сопротивлений», прибор, который передает, переносит сопротивление из одной цепи в другую.

С чем связано такое название, мы увидим несколько позже, а пока лишь заметим, что оно, это название, характеризует главную «профессию» транзистора — его умение усиливать слабый электрический сигнал. Со способностью транзистора проделывать ряд «фокусов» и как бы изменять сопротивление цепи, по которой проходит электрический ток, как раз и связано то, что транзистор увеличивает мощность слабого сигнала, то есть усиливает его. По своему устройству транзистор— это миниатюрный полупроводниковый кристаллик (помещенный в пластмассовый или металлический корпус) с подпаянными или приваренными к нему тремя тонкими проволочками. Именно с их помощью транзистор включается в ту или иную электрическую цепь.

Существует множество людей, которые возмутятся, познакомившись с нашим описанием транзистора. И совсем не за краткости или поверхностности этого описания. Существует множество людей, которые уверенно скажут, что наше описание в принципе неверно, что транзистор — просто маленький, переносный приемник, который можно слушать на пляже, на прогулке, в лесу, на рыбалке.

Откуда взялось это второе значение слова «транзистор»?

Скорее всего его автором был небрежный, малограмотный и, конечно уж, нелюбознательный человек. Увидел он впервые маленький приемник, услышал, краем уха, что в нем есть какие-то транзисторы, и, даже не узнав, что это такое, почему приемник так мал, чем он отличается от всех других, дал этому приемнику название «транзистор». И пошло оно гулять по свету. Невежество было закреплено печатным словом: транзистор-приемник появился в газетных и журнальных статьях.

Авторы этих статей, по-видимому, не подозревали, что похитили имя «транзистор» у одного из самых замечательных изобретений нашего времени.

Конечно, спору нет — для маленьких приемников удобно иметь какое-нибудь специальное название, удобно пользоваться одним коротким словом вместо длинных и скучных «приемник на транзисторах» или «миниатюрный переносный приемник». Но вряд ли стоит создавать это удобство за счет введения словесной путаницы. Пользуясь тем, что второе значение слова «транзистор» пока не встречается в словарях и не признано ни радистами, ни языковедами, мы будем считать это значение незаконным. И в дальнейшем, говоря о транзисторах, будем иметь в виду только полупроводниковый усилительный прибор, только полупроводниковый триод.

Несколько сложней обстоит дело с другим словом — схема.

Строго говоря, схема — это рисунок, чертеж. На схеме (точнее, на принципиальной схеме) электронной установки условными обозначениями показано, из каких элементов состоит эта установка, как эти элементы соединены, а часто и в каком режиме они работают. И в то же время схемой радисты называют и сам прибор, его электрические цепи. Так и говорят: «Схема работает неустойчиво…» или: «Попробую наладить схему…»

Эта книга посвящена схемам, в которых работают полупроводниковые триоды. Но здесь будет рассказано не только о схемах-чертежах, а о том, как их составлять, как читать, как по схемам оценивать возможности, достоинства и недостатки того или иного электронного прибора. Речь пойдет о транзисторных схемах в широком смысле слова, и о самих схемах, начерченных на бумаге, и о схемах, собранных, налаженных и работающих. Об этом как раз и хотелось предупредить, «придравшись» к двойственному значению самого слова «схема».

И, наконец, еще об одном слове — о слове «барьер».

Прямое его значение, конечно, ни у кого не вызывает сомнений. Но очень часто мы говорим о барьере в переносном смысле. Например, говорим, что только реактивная авиация сумела преодолеть звуковой барьер, сумела превысить скорость звука. Или говорим, что при операциях по пересадке органов самое сложное — преодолеть барьер несовместимости: преодолеть сопротивление, которое организм оказывает всякой чужой ткани. Подобных примеров много. Вы наверняка слышали о барьерах тепловом, экономическом, технологическом и других.

С преодолением многих препятствий, многих барьеров связана судьба транзисторов. И об одном из них — о психологическом барьере — хочется сказать несколько слов.

Первые сообщения об изобретении транзистора появились летом 1948 года. Уже через два-три года стало ясно, что полупроводниковый триод — это не уникальный лабораторный прибор, что его можно выпускать в промышленных масштабах, и что транзистор наверняка заменит электронную лампу во многих областях электроники.

А нужно сказать, что электронная лампа в те времена находилась в зените своей славы. Мировая электронная промышленность ежегодно выпускала много миллионов самых различных ламп, от миниатюрных «пальчиков» до сверхмощных генераторных гигантов. Ламповые схемы были той основой, на которой строились автоматика, телевидение, локации — словом, вся радиоэлектроника, Радисты обучили лампу десяткам разнообразных профессий, создали для нее тысячи схем, разработали методы их расчета и налаживания. И все это создавалось десятилетиями, создавалось упорным трудом ученых и инженеров.

Но что поделаешь, преимущества транзистора перед лампой были бесспорны, по крайней мере в некоторых областях. В частности, в конструировании экономичной переносной аппаратуры за транзисторной электроникой было будущее. А значит, надо было создавать эту новую электронику, надо было привыкать к ней. Вот здесь-то и встал на пути радиоспециалистов трудный психологический барьер. Отказаться от привычного не так-то просто. Многим специалистам понадобились годы, чтобы убедиться в окончании ламповой монополии и выбраться на транзисторный путь.

Психологический барьер на пути транзисторов сказывался еще и в том, что молодое поколение радистов свое знакомство с транзисторами по инерции начинало с лампы. «Лампа работает так… а теперь посмотрим, чем похож на нее транзистор…»— такой была типичная последовательность при знакомстве с электронными схемами. В наши дни это знакомство сплошь и рядом выглядит совсем по-другому: «Транзистор работает так… А теперь посмотрим, чем на него похожа лампа…»

Наш рассказ — о транзисторах, и мы не будем поэтому вспоминать о лампах. Даже этого слова вы почти не встретите дальше. И совсем не потому, что во многих областях радиоэлектроники транзистор стал главным действующим лицом. (У лампы еще остается и, по-видимому, навсегда останется немало своих областей, куда транзисторам «вход воспрещен»).

Мы начнем этот рассказ о транзисторах с самих транзисторов только потому, что к ним уже все привыкли и на пути транзисторной электроники давно нет никакого психологического барьера.

Вот и закончилось наше короткое лингвистическое путешествие. Начав с разговора о словах «транзистор», «схема», «барьер», мы поговорили и о своих будущих делах. А начав деловой разговор, не будем от него отклоняться. Сейчас нам предстоит выяснить, для чего вообще нужен транзистор, какая роль ему отводится в электронной аппаратуре.

Рис. 1. Тому, кто привык к ламповой электронике, переход к транзисторным схемам зачастую казался трудным делом.

ГЛАВНАЯ РОЛЬ

Всякое электронное устройство — это своеобразный мир электрических сигналов. Здесь они зарождаются и умирают, сюда сигналы приходят, чтобы, пробежав по многочисленным электрическим цепям, претерпев множество самых удивительных превращений, обернуться прекрасной мелодией, картинкой на телевизионном экране или включением тормозного двигателя на космическом корабле.

Среди многих интересных преобразований электрического сигнала — с ними нам так или иначе предстоит познакомиться — одним из наиболее важных является усиление. Вот лишь один пример, один случай, когда без усиления обойтись просто невозможно.

Мощность радиосигнала, который, проделав долгий путь, попадает наконец в антенну приемника, довольно редко достигает нескольких миллиардных долей ватта. Обычно же эта мощность еще в миллионы раз меньше. В то же время мощность, которую нужно подвести к динамику (так сокращенно называют динамические громкоговорители), чтобы он создавал достаточно громкий звук, должна составлять несколько ватт или по крайней мере несколько десятых долей ватта.

Отсюда и следует, что во время путешествия с входа радиоприемника к его выходу, электрический сигнал должен увеличить свою мощность в миллиарды раз. А увеличение мощности как раз и называется усилением сигнала.

Похожие результаты мы получим, если сравним мощность, которую дает фотоэлемент, с мощностью, которая нужна, чтобы двинуть стальную руку контролера-автомата в метро. Или если сравним входную и выходную мощность электронного регулятора температуры, прибора для записи биотоков мозга, установки для регистрации землетрясений, электронных блоков радиоуправляемой модели или, наконец, обычного магнитофона.

Рис. 2. Любой электронный прибор — это целый мир электрических сигналов.

Итак, в электронной аппаратуре необходимо усиливать слабые электрические сигналы, увеличивать их мощность. Но как в принципе можно осуществить такое усиление? И что вообще нужно понимать под этим словом? Прежде чем отвечать на эти вопросы по существу, позвольте вспомнить рассказанную уже однажды историю из другой области.

Некоторое время назад известная футбольная команда «Шайба» неожиданно для всей спортивной общественности начала вписывать в турнирную таблицу один ноль за другим. И ее болельщики только о том и говорят — как усилить свою любимую команду, как улучшить ее игру.

Из всех высказанных предложений остановимся на двух.

Первое предложение. Ввести регулярные круглогодичные тренировки и занятия по тактике футбола, улучшить физическую подготовку, условия отдыха и питание игроков. Результат — усиление команды.

Второе предложение. Тренера сменить, команду расформировать, пригласить новых, более сильных игроков. Результат — усиление команды. Правда, в этом случае фактически произойдет не усиление, а замена команды. Но это уже деталь, которая в данном случае никого не интересует. Болельщикам важен только результат — футбольная команда «Шайба» стала играть лучше. А разве это не усиление команды «Шайба»?

Примерно в таком же смысле применяется слово «усиление» и в радиоэлектронике. Если у нас был слабый электрический сигнал, а затем был создан такой же, но более мощный сигнал, то мы говорим, что произошло усиление сигнала, хотя правильнее было бы говорить о замене. Самым сложным здесь, так же как и при усилении футбольной команды путем замены игроков, является сам процесс создания «мощной копии» усиливаемого сигнала. Об этом процессе мы сейчас и поговорим.

Итак, при усилении слабого электрического сигнала создается такой же, но только более мощный сигнал. Но что означает в данном случае понятие «такой же»? Какие черты слабого, усиливаемого сигнала должны сохраниться в мощном, в усиленном? Если эти сигналы — слабый и усиленный — различаются по мощности, то в чем же они тогда должны быть похожи?

При усилении нужно сохранить форму сигнала, характер его изменения. Дело в том, что электрический сигнал — это изменяющийся ток. И именно в характере его изменения — в скорости, в «резкости» или «плавности» нарастания (или убывания) тока — и записана та информация, те сведения, которые этот сигнал переносит. Только характером изменения отличается ток, который возникает в микрофонной цепи, когда вы произносите «а», от тока, который возникает при произнесении звука «о». Только характером изменения отличается ток, создающий на экране телевизора изображение лошади, от тока, создающего на том же экране портрет осла. Отсюда вывод: при усилении нужно сохранить сам характер усиливаемого сигнала, характер изменения электрического тока.

Согласитесь, что «характер изменения» очень уж расплывчатое понятие. И если мы хотим не потерять при усилении этот самый «характер», то должны научиться описывать его конкретно и точно.

Описывать характер изменения тока словами не только неудобно, но просто невозможно. Представьте себе такое описание. «Достигнув двух миллиампер, ток в течение половины микросекунды оставался неизменным, затем начал равномерно нарастать и уже через пять тысячных микросекунды достиг трех с четвертью миллиампер. После этого ток плавно, но со все возрастающей скоростью в течение четырех микросекунд уменьшался, приближаясь, но так и не приблизившись к величине, от которой он начал возрастать, после чего…» и т. д.

Много томов понадобилось бы, чтобы подобным способом рассказать, что происходит с каким-нибудь одним электрическим сигналом в течение нескольких секунд. Нет, описывать электрический сигнал словами, конечно, не стоит: для этого есть более простые и наглядные способы описания. И среди них прежде всего графики (рис. 3).

Рис. 3. Информация, которую несет электрический сигнал, записана в изменениях тока (напряжения) в форме графика этого сигнала.

График — это особый деловой рисунок, такой же, скажем, как географическая карта или чертеж. График тока показывает, как меняется этот ток с течением времени, каких значений он достигает в тот или иной момент. Горизонтальная ось графика, подобно циферблату часов, размечена в единицах времени, а по вертикальной оси откладывается значение тока или напряжения. Разумеется, это относится лишь к графику, описывающему характер электрического сигнала. Существует множество других графиков, которые показывают совершенно другие зависимости и соответственно имеют другую разметку осей. Встреча с некоторыми из них у нас еще впереди.

Сама линия, показывающая, как изменяется ток с течением времени, называется кривой тока или графиком тока. Это, конечно, не очень строгие выражения, но они уже давно существуют в языке математиков и инженеров, и мы будем этими выражениями пользоваться без всяких оговорок.

Итак, сохранить характер сигнала при усилении — это значит создать более мощный сигнал, график которого по форме был бы таким же, как и график слабого, усиливаемого сигнала. Иными словами, график усиливаемого сигнала и построенный в ином масштабе график усиленного сигнала (деления на вертикальной шкале нужно сжать во столько же раз, во сколько усиливается сигнал) должны быть одинаковыми (рис. 4).

Рис. 4. Усилить сигнал — это значит создать более мощный сигнал, но с неизменной формой графика.

Теперь уже, пожалуй, можно определить, из каких основных узлов должен состоять любой электронный усилитель сигналов. Во-первых, в нем должен быть источник энергии, которая и пойдет на создание мощного, усиленного сигнала. Во-вторых, в усилителе должен быть своего рода копировальный аппарат — устройство, которое, используя энергию имеющегося источника и взяв за образец слабый усиливаемый сигнал, создаст по его подобию новый, мощный сигнал.

Здесь уместно такое сравнение. Представьте, что у вас есть маленькая скульптурка и вам хочется сделать такую же точно скульптуру больших размеров. Что для этого нужно?

Во-первых, нужен большой кусок глины или другого материала, из которого можно было бы слепить большую скульптуру.

Ну, а во-вторых, нужен скульптор, который сумеет, глядя на маленький образец, создать его большую копию из бесформенного куска. В электронном усилителе энергию, которую дает мощный источник, можно сравнить с большим куском глины, а «копировальный аппарат» должен делать примерно то же, что и скульптор в нашем примере.

Что касается источника энергии, то здесь дело обстоит просто: его роль прекрасно выполняет батарея или выпрямитель, дающий постоянный ток. Из постоянного тока сравнительно просто можно «лепить» самые сложные по форме сигналы. Был бы только «скульптор». А вот с ним-то дело обстоит намного сложнее.

Сейчас мы начнем поиски скульптора, начнем поиски устройства, которое может слепить из постоянного тока мощную копию слабого сигнала. Поиски в итоге приведут к транзистору: усиление сигнала, точнее, лепка мощного сигнала по образцу слабого, — это и есть главная роль, которую играет транзистор в электронной аппаратуре.

Конечная цель наших поисков недалека. Но не будем торопиться. Давайте пройдем свой путь, как подобает настоящим следопытам. Давайте внимательно присматриваться к дороге, при любой остановке задумываться, куда идти дальше, и, конечно, отмечать на карте все интересное, что встретится в пути.

Прежде чем отправляться в дорогу, попытаемся как-то изобразить на путевой карте свои исходные позиции.

Начнем с того, что нарисуем источник энергии для создания усиленного сигнала — батарею Б (рис. 5).

Рис. 5. Источником энергии для создания усиленного сигнала может служить батарея.

Подключим к батарее резистор R вых (почему мы назвали этот резистор «выходным» — сокращенно «вых», — будет объяснено немного позже) и создадим таким образом замкнутую цепь. Теперь батарея Б не бездействует, а гонит по этой цепи постоянный ток. Из него-то мы и будем лепить мощную копию слабого сигнала.

Источником слабого сигнала, который нам предстоит усилить, может быть антенна приемника или телевизора, звукосниматель, движущийся по пластинке, микрофон, фотоэлемент и масса других устройств. Но мы не будем вдаваться в подробности — сейчас они несущественны — и договоримся, что слабый сигнал поступает из какого-то условного генератора, из закрытой «коробочки» с надписью «Слабый сигнал». Мы видим лишь две клеммы этого условного генератора, между которыми и действует непрерывно меняющееся напряжение U сиг . Если подключить к клеммам генератора электрическую цепь, в простейшем случае одиночный резистор R вх (почему это сопротивление названо входным, мы скажем позже), то в этой цепи пойдет меняющийся ток I сиг .

Итак, источник слабого сигнала дает напряжение U сиг , а по резистору R вх проходит ток I сиг . А что является тем самым сигналом, который нужно усилить, — ток или напряжение? И что в результате усиления должно возрасти — U сиг  или I сиг ?

Какой-либо физический процесс может характеризоваться несколькими связанными между собой показателями. Движение автомобиля, например, характеризуется скоростью, пройденным расстоянием и временем, в течение которого машина находится в пути. А то, что происходит на каком-нибудь участке электрической цепи, характеризуется напряжением U на этом участке, его сопротивлением R и током I. Все три величины связаны между собой: величина тока I зависит от U и от R. Описание этой зависимости (словами или в алгебраическом виде, то есть в виде формул) называется законом Ома.

Этот закон всем вам наверняка известен, но мы все же уделим ему несколько строк. Как-никак это главный закон электрических цепей, и не зря радисты шутят: «Не знаешь закон Ома — сиди дома!»

Электрическое напряжение, грубо говоря, создается неравновесием электрических зарядов на каком-нибудь участке цепи, например на концах наших резисторов R вх или R вых .

Если в самом резисторе имеется одинаковое количество положительных и отрицательных зарядов и если распределены они равномерно, то никакого напряжения на этом резисторе не будет. А вот если на одном конце резистора отрицательных зарядов — электронов — больше, чем на другом конце, то между этими концами как раз и будет действовать напряжение. Чем больше неравенство, неравновесие зарядов, тем больше и напряжение.

Разумеется, электрическое напряжение само по себе не появляется. Его создают, затрачивая на это определенную энергию. Напряжение на выходе батареи, например, создается за счет химической энергии. Напряжение на выходе звукоснимателя появляется за счет работы, которую совершает игла, двигаясь по извилистой звуковой дорожке. Напряжение на выходе микрофона создается энергией звуковых колебаний. Напряжение в цепи антенны приемника или телевизора возникает от воздействия на эту антенну электромагнитных волн.

Напряжение, действующее на каком-либо участке цепи, создает на этом участке ток — упорядоченное движение свободных электрических зарядов. Довольно часто током называют движение свободных электронов. И действительно, во многих случаях в электрической цепи движутся только одни электроны. Но если в каком-либо элементе цепи имеются и другие положительные либо отрицательные свободные (то есть не привязанные к определенному месту) заряды, то под действием напряжения и они начнут двигаться. Заряды всегда двигаются оттуда, где их слишком много, туда, где их не хватает. Образно говоря, электрический заряд всегда ищет, где посвободнее, где меньше таких же, как и он сам, зарядов-конкурентов. Так, положительные заряды двигаются от «плюса» к «минусу», а отрицательные — от «минуса» к «плюсу» (см. стр. 142. Воспоминание № 2).

Чем больше напряжение, тем больше ток, тем интенсивнее движение свободных зарядов. Об этом и говорит первая часть закона Ома: «Ток I прямо пропорционален напряжению U…»

На второй части закона — «ток I обратно пропорционален сопротивлению R» — мы остановимся более подробно. Хотя бы потому, что само слово «сопротивление» — «резистор» — входит (и не случайно!) в имя нашего главного героя.

Сопротивление, а точнее, электрическое сопротивление представляет собой характеристику какого-либо элемента или участка электрической цепи, подобно тому как диаметр труб является характеристикой нефтепровода, угол наклона — характеристикой шоссейной дороги, концентрация молекул — характеристикой газа. О каких же свойствах участка электрической цепи (или всей цепи в целом) говорит величина сопротивления? Сопротивление говорит о том, насколько большой ток может возникать на участке цепи под действием напряжения.

Если в двух разных участках электрической цепи под действием одного и того же напряжения возникают разные токи, то это может быть только потому, что сопротивление участков различно.

Существует еще одна характеристика цепи, которая называется проводимостью и представляет собой величину, обратную сопротивлению. О каком-либо участке цепи можно сказать, что у него малая проводимость, или, что то же самое, большое сопротивление. Проводимостью иногда пользуются при описании или расчете электрических цепей.

Упростив картину, можно сказать, что сопротивление какого-либо элемента цепи зависит от того, сколько в нем свободных зарядов. Если в участке цепи нет свободных зарядов, то по ней ток не пойдет. Да и какой может быть ток, если некому двигаться! Цепь разорвана, в нее включен изолятор, сопротивление которого бесконечно велико. Чем больше свободных зарядов в проводящем участке цепи, тем большим будет ток при одном и том же напряжении, тем, иными словами, меньше сопротивление этого участка цепи. Именно в этом смысле и нужно понимать вторую часть закона Ома: «…ток обратно пропорционален сопротивлению». А если вам понадобится определить сопротивление участка цепи, то для этого можно воспользоваться простой расчетной формулой, вытекающей из закона Ома (Воспоминание № 3).

Закон Ома говорит о том, что при неизменном сопротивлении R вх величина тока I вх зависит только от напряжения U сиг . Увеличивается напряжение — растет и ток, уменьшается напряжение — и в такой же степени падает ток. А это значит, что график тока I сиг будет точной копией графика U сиг . Поэтому понятие «электрический сигнал» в данном случае относится в равной степени и к напряжению, и к току, к этим спаренным характеристикам единого процесса.

Мы постепенно приближаемся к тому, чтобы выяснить, как работает транзисторный усилитель, как он усиливает слабый электрический сигнал. Но еще до этого нам предстоит задуматься над тем, что должно возрасти в результате усиления сигнала — ток или напряжение? Ответить на этот вопрос по существу не просто, и в поисках ответа нам придется еще раз оглянуться назад.

Кроме закона Ома, есть еще одно очень важное соотношение, без понимания которого нечего и думать о знакомстве с электрическими цепями и тем более с электронными усилителями. Это соотношение касается мощности: электрическая мощность Р равна произведению напряжения U на ток I (Воспоминание № 4). Строго доказать справедливость этого равенства не составляет труда, но для экономии времени мы докажем его с помощью нескольких упрощенных рассуждений.

Мощность — это работа, выполняемая за единицу времени. Единица мощности ватт (вт) соответствует работе в 1 джоуль (дж), которая выполнена за 1 секунду (сек).

Теперь о напряжении и токе.

Электрическое напряжение — например, напряжение на каком-либо резисторе — говорит о том, какую работу выполнит электрический заряд, пройдя по этому резистору. Если заряд в 1 кулон (к) (для того чтобы получить такой единичный заряд, достаточно собрать вместе 6,3·1018 электронов) пройдет по участку цепи, на котором действует напряжение в 1 вольт (в), то этот заряд совершит работу 1 джоуль (дж).

Приложите к тому же участку цепи напряжение 5 в, и работа, которую совершит каждый движущийся заряд, также увеличится в пять раз.

Что же касается тока, то его величина показывает, насколько интенсивно, насколько быстро и «густо» заряды двигаются по цепи. Чем больше зарядов проходит через какое-либо условное сечение цепи за единицу времени, тем больше ток.

Единица тока — ампер (а) — соответствует одному кулону (6,3·1018  электронов), проходящему через это условное сечение за одну секунду.

Итак, напряжение — это работа, совершаемая одним кулоном, а ток — число кулонов в секунду. Для того чтобы подсчитать мощность Р — полную работу, выполненную за секунду, — нужно работу одного кулона умножить на число работавших кулонов, то есть нужно напряжение U умножить на ток I.

Кстати, если увеличить напряжение на участке цепи в два раза, то выделяемая на этом участке мощность возрастет в четыре раза. И это вполне понятно: увеличение напряжения в два раза само по себе увеличит мощность в два раза да еще (согласно закону Ома!) вдвое увеличит ток в цепи. А увеличение тока приведет к тому, что мощность возрастет еще в два раза. Поэтому мы и получим увеличение мощности в четыре раза, и попробуйте против этого возразить!

Мощность, выделяемая на каком-нибудь резисторе, зависит и от его сопротивления. Но это, если можно так сказать, уже вторичная зависимость, поскольку от сопротивления зависят ток и напряжение, определяющие мощность. Зависимость мощности Р от сопротивления R может оказаться довольно сложной. Придет время, и мы вынуждены будем поговорить об этой сложности. А пока, закончив экскурс в прошлое, в область основ электротехники, вернемся к поискам скульптора, к поискам копировального устройства, которое позволит из постоянного тока, идущего от батареи Б, создать мощную копию слабого сигнала.

Мы остановились на вопросе: «Что должно возрасти при усилении слабого сигнала — ток или напряжение?» Ответ прост: должна возрасти мощность.

Именно об этом и говорил приведенный ранее (стр. 9) пример с приемником. Именно об этом говорит и простая логика. Нам нужен сигнал-работник, способный с достаточной силой раскачивать диффузор громкоговорителя или поворачивать антенну прилунившейся космической лаборатории. Нам нужен сигнал-работник, и в принципе безразлично, чем будет обеспечиваться его работоспособность — большой работоспособностью каждого движущегося заряда (то есть большим напряжением) или большим числом работающих зарядов (то есть большим током). А поэтому нам в принципе безразлично, что произойдет при усилении сигнала — увеличится ли ток I сиг при неизменном напряжении U сиг , увеличится ли U сиг при неизменном I сиг , возрастут ли обе эти величины, произойдет ли увеличение одной из них и уменьшение другой. Для нас важен результат: при усилении должна возрасти мощность сигнала.

Обратите внимание, что, говоря о своем безразличии к соотношению между током и напряжением, мы всегда оговариваемся — «в принципе». Эта оговорка нужна потому, что в каждом конкретном случае нам все-таки желательно получать мощность в «удобном виде». Например, при большом напряжении или при большом токе. Но прежде всего нам, конечно, необходимо получить мощность. А если потребителю сигнала понадобится изменить соотношение между током и напряжением, то это можно будет сделать, например, с помощью обычного трансформатора.

Заговорив о трансформаторе, хочется попутно сделать небольшое замечание, которое должно пролить свет на одну из заманчивых и, конечно, обманчивых возможностей совершить переворот в электронике.

Если бы можно было довольствоваться усилением только одной из составляющих мощности — только током или только напряжением, — то нечего было бы городить весь этот огород с батареей Б и не с найденным нами пока еще скульптором. Роль усилителя мог бы выполнять трансформатор — повышающий, если нужно увеличить напряжение, или понижающий, если нужно увеличить ток. Однако трансформатор в принципе не может повысить мощность подведенного к нему сигнала — закон сохранения энергии не позволено нарушать никому. Повышая напряжение, трансформатор во столько же раз уменьшает ток, и наоборот: увеличивая ток, он понижает напряжение. А поэтому мощность на выходе трансформатора такая же (практически даже немного меньше из-за разного рода потерь), как и на его входе. Иными словами, трансформатор не может быть усилителем.

Следующий этап наших поисков можно было бы назвать «приручением» батареи. Не думая пока ни о каком усилении, нам нужно научиться отбирать от батареи Б энергию не в виде постоянного, а в виде меняющегося тока. Образно говоря, нужно научиться сминать наш кусок глины, научиться менять его форму, чтобы в дальнейшем можно было создать из него большую скульптуру.

Каким образом можно менять идущий от батареи Б постоянный электрический ток? Мы не зря повторяли закон Ома — именно он и подсказывает ответ на этот вопрос. Поскольку ток зависит от напряжения и сопротивления и поскольку напряжение, которое дает батарея, практически не меняется, то нам остается только одно — менять сопротивление R вых .

Менять это сопротивление можно разными способами (рис. 6).

Рис. 6. Изменяя сопротивление в цепи батареи, можно отбирать от нее энергию не в виде постоянного, а в виде меняющегося тока, «рисуя» таким образом сигнал нужной формы.

Проще всего, конечно, включить в качестве R вых обычный реостат и, двигая его ручку, «рисовать» ток с нужной формой графика. Можно вместо резистора ввести в цепь сосуд с каким-нибудь жидким проводником и управлять сопротивлением, а значит, и током, меняя химический состав жидкости. Можно включить в цепь устройства, которые меняют свое сопротивление под действием тепла, света, радиоактивных излучений, растяжения или сжатия.

Представителем этого последнего типа устройств является хорошо всем знакомый угольный микрофон. В упрощенном варианте — это коробочка с угольным порошком, который под действием звуковых волн сжимается то сильнее, то слабее. Чем сильней сжат порошок в коробочке, тем лучше контакт между отдельными его крупинками, тем меньше общее электрическое сопротивление порошка. Вот почему под действием звуковых волн сопротивление угольного микрофона меняется, послушно следуя за всеми изменениями звукового давления. В результате график изменения сопротивления, а значит, и график изменения тока (все тот же закон Ома!) полностью повторяет, копирует график звука. Батарея, в цепь которой включен микрофон, отдает энергию уже не в виде постоянного, а в виде меняющегося тока, в виде сложного электрического сигнала.

Итак, нам кое-что уже известно о загадочном скульпторе. По крайней мере, мы знаем, как работают его руки, как они меняют форму глиняной глыбы. Мы знаем — для того чтобы создать из постоянного тока сложный электрический сигнал, нужно менять сопротивление цепи. Но как сделать, чтобы сопротивление R вых менялось по команде слабого, усиливаемого сигнала, подобно тому как сопротивление микрофона меняется по команде звуковых колебаний? Решение этой задачи осложняется тем, что на изменение сопротивления R вых мы можем расходовать ничтожную мощность. Затрачивая доли ватта, усиливаемый сигнал должен менять сопротивление в такой степени, чтобы электрическая мощность, выделяемая на R вых менялась на единицы, а то и на десятки ватт. Возможно ли это в принципе? Не противоречит ли законам природы?

Внимательно посмотрев вокруг, вы увидите, как в некоторых случаях небольшие затраты энергии приводят к огромным энергетическим всплескам. Вы увидите, как в результате сложившейся обстановки, сложной взаимосвязи явлений или, наконец, благодаря искусственно созданным условиям «слабый» может управлять «сильным». Вот несколько примеров (рис. 7).

Рис. 7. Существует много различных процессов, в которых, затрачивая небольшую энергию, можно управлять большими энергетическими потоками.

Давайте столкнем с горы лежащую на самом краю массивную каменную глыбу. Разогнавшись во время падения, она совершит работу (разумеется, не в житейском, а в физическом смысле слова), которая во много раз превысит затраты труда на сталкивание этой глыбы. Другой пример. Представьте себе взрывника, который легким нажатием на кнопку сносит огромную, весом в тысячи тонн, гору, вставшую на пути строителей дороги. И еще пример. С легкостью вращая водопроводный кран, вы управляете довольно сильным потоком воды и создаете своего рода мощную копию слабого механического сигнала, исходящего от вашей руки.

Мы не будем сейчас говорить об общих свойствах и закономерностях систем, в которых какое-либо слабое воздействие управляет большой энергией. Нам предстоит решить более важную для дела задачу: самим создать такую систему, создать управляющее устройство, которое позволит менять сопротивления R вых с помощью слабого сигнала, протекающего в цепи R вх .

В качестве первого шага сделаем некое формальное, не раскрывающее существа дела изображение такого управляющего устройства (рис. 8).

Рис. 8. В отличие от трансформатора, усилитель должен повышать мощность сигнала, а не только один ток или одно напряжение.

Пока еще это «черный ящик» — неизвестный прибор, в котором встречаются друг с другом резисторы R вх и R вых . Электрическую цепь нашего «черного ящика», куда включен R вх назовем входной цепью, а цепь, куда включен R вых ,— выходной цепью. Такие названия вполне оправданы. В «черный ящик» со стороны условного генератора «Слабый сигнал» должен войти этот слабый сигнал, а со стороны мощного источника энергии — батареи Б — должен выйти мощный, усиленный сигнал. Отсюда и ясно, где нужно вешать табличку «Вход», а где «Выход».

Давайте представим себе, что наш управляющий прибор, наш «черный ящик» уже работает. Что мы знаем о нем и что должны узнать?

Мы знаем, что в цепи R вх действует слабый сигнал, что он каким-то образом меняет величину R вых и в результате в цепи этого сопротивления появляется усиленный сигнал. Теперь нужно выяснить, что скрывается за словами «каким-то образом». Нужно найти такой физический процесс, который позволил бы слабому входному сигналу в нужной степени менять величину выходного сопротивления.

Итак, дальнейший маршрут ясен. Путешествие продолжается. Сейчас нам предстоит «по пути» заглянуть в мир молекул и атомов.

ВЕЛИКОЛЕПНАЯ ЧЕТВЕРКА

Мы часто представляем себе атом как некую, разумеется, чрезвычайно маленькую, планетарную систему. В центре ее находится ядро — сравнительно тяжелый шар с положительными электрическими зарядами. Вокруг ядра, как планеты вокруг Солнца, вращаются шарики-электроны. Картина эта наглядна, ее легко себе представить, но, конечно же, такая планетарная модель весьма примитивна. Она, по-видимому, не больше похожа на настоящий атом, чем вылепленная из пластилина фигурка на настоящего, живого человека.

Электроны — это вовсе не шарики, а скорее какие-то во многом еще загадочные сгустки материи, которые иногда ведут себя как частицы, а иногда — как волны. Кроме того, движутся электроны совсем не по спокойным круговым или эллиптическим орбитам — они как бы размазаны по сферам, распределены в пространстве вокруг ядра в виде своего рода электронных оболочек. Ну, а само ядро — это непрерывно бурлящий котел, где происходят самые непонятные превращения материи и энергии, рождаются и умирают известные и неизвестные пока частицы. Да что там говорить! Планетарная модель — это примитивная игрушка, которую можно признать за атом, только находясь в крайне тяжелом положении. И именно в таком положении мы сейчас находимся.

Наш путь к транзистору проходит через многие области науки. В каждой из них, как в самостоятельной стране, есть свой язык, свои обычаи и законы, свои достопримечательности. И если мы хотим с минимальными потерями времени и сил прийти к своей конечной цели, то не должны, как это ни печально, подробно знакомиться с каждой встречной страной. Вот почему, отказавшись от знакомства с современными представлениями о строении атома, мы будем пользоваться его упрощенной планетарной моделью. Она нужна нам для того, чтобы показать, как атомы соединяются друг с другом.

Прежде всего отметим, что электронные орбиты располагаются не где угодно, а лишь на определенных расстояниях от ядра. И количество электронов на той или иной орбите тоже строго ограничено — таковы непоколебимые законы атомной архитектуры. На первой орбите- счет идет от ядра — может находиться не больше двух электронов. (Фактически следовало бы говорить о первом слое орбит, о двух очень близких орбитах. Но раз уж мы пошли на упрощения, то представим себе, что оба электрона вращаются по одному и тому же кругу.) На второй орбите не может быть больше восьми электронов, на третьей — не больше восемнадцати, и так далее.

Нас сейчас будет интересовать только последняя, внешняя орбита. Во-первых, потому, что именно внешние электроны участвуют в соединении атомов. Во-вторых, именно внешние электроны, сорвавшись со своих орбит, включаются в электрический ток. И, как вы увидите чуть дальше, именно события, происходящие на внешних орбитах некоторых атомов, используются в транзисторах при усилении слабых сигналов.

Число электронов на внешней орбите тоже ограничено: ни в одном атоме их не может быть больше восьми. Причем атом всегда стремится, чтобы его внешняя орбита была полностью заселена, чтобы число электронов на ней было доведено до максимума, то есть до восьми. Либо — пусть лучше будет так — чтобы этих электронов не было вообще. Вот почему, если у какого-нибудь атома на внешней орбите мало электронов, то он стремится их отдать. А если электронов много и нужно лишь чуть-чуть потрудиться, чтобы довести их количество до восьми, то атом стремится притянуть к себе чужой электрон, причем желательно вместе с его атомом.

Но зачем же, спросите вы, тащить к себе электроны вместе с атомами (это все равно, что принести домой пирожное вместе с прилавком магазина), если вокруг довольно часто бегают свободные, сорвавшиеся со своих орбит электроны?

А дело в том, что для атома нет смысла сажать к себе на орбиту свободный электрон. Во-первых, он не сядет, а если даже сядет, то все равно долго не усидит. Ведь атом в целом электрически нейтральная система — общий отрицательный заряд его электронов уравновешивается суммарным положительным зарядом ядра. Поэтому электрические силы, несмотря на желание атома иметь заполненную внешнюю орбиту, вытолкнут попавший туда свободный электрон с его лишним отрицательным зарядом.

Другое дело, если пустующее место на внешней орбите займет электрон, вращающийся одновременно по своей собственной орбите в своем собственном атоме. В этом случае возникает некая объединенная орбита, охватывающая оба атома. И они будут прочно соединены этим теперь уже общим, бегающим по объединенной орбите электроном. Причем такое объединение не встретит противодействия электрических сил ни одного из атомов, потому что число электронов в каждом из них осталось без изменений и электрическое равновесие атомов не нарушилось.

ПРИМЕЧАНИЕ. Здесь, пожалуй, чаще, чем в других местах книги, рассказывая об атомах, электронах и других физических объектах, мы применяем такие, например, выражения, как «электрон стремится», «для атома нет смысла», «ядро не хочет», «заряды бегают». Разумеется, все, в том числе и автор, понимают, что ни о каком беге электронов или желаниях атомного ядра в действительности не может быть и речи. Автор позволяет себе столь свободное обращение с житейскими, бытовыми понятиями только лишь из боязни выпустить на эти страницы огромное количество слов и символов, которое необходимо для достаточно аккуратного, достаточно строгого изложения сути дела.

Итак, объединенные орбиты — это своего рода нити, сшивающие атомы между собой (рис. 9). И именно со способностью создавать разнообразные и устойчивые объединенные орбиты связано исключительное многообразие, например, углеродистых соединений. Дело в том, что на внешней орбите атома углерода — четыре электрона и четыре свободных места. А это является хорошей предпосылкой для прочного соединения атомов углерода друг с другом и с такими распространенными элементами, как водород и кислород. При этом возникают симметричные и, главное, устойчивые пространственные конструкции.

Рис. 9. Создавая объединенные орбиты, внешние электроны связывают атомы друг с другом.

Один из таких архитектурных шедевров — кристаллическая решетка алмаза, в которой каждый атом углерода отдает свои четыре внешних электрона четырем соседям и четыре электрона получает от них — по одному от каждого соседнего атома. И тот электрон, который отдается, и тот, который берется, становятся общими для того, кто дает, и для того, кто берет. Поэтому на внешней орбите атома оказывается восемь электронов (полностью заселенная орбита), и все они прочно связывают этот атом с его четырьмя соседями. Так и возникает красивая и исключительно прочная кристаллическая решетка алмаза — решетка алмазного типа.

Кроме углерода, есть еще несколько элементов с четырьмя электронами, а значит, и с четырьмя вакантными местами на внешней орбите. Два таких элемента — германий и кремний — интересуют нас больше всего. Оба они образуют кристаллическую решетку алмазного типа, оба по своим электрическим свойствам являются полупроводниками. Как это ни странно, но, продвинувшись уже довольно далеко на пути к полупроводниковому триоду, мы только сейчас получили возможность выяснить, что же такое полупроводник.

Уже говорилось, что электрическое сопротивление того или иного элемента электрической цепи, а значит, и вещества, из которого этот элемент сделан, зависит от количества свободных электрических зарядов в нем. Еще очень давно все вещества по их электрическим свойствам разделили на две группы: проводники (металлы, целый ряд растворов, газы в определенном состоянии) и изоляторы, или диэлектрики (стекло, резина, дерево и масса других веществ). Такое деление, разумеется, не отражает многих сложных процессов, с которыми связано появление свободных электрических зарядов. И все же, рассматривая атом в упрощенном виде, попытаемся выяснить, чем проводники отличаются от изоляторов.

Главная особенность всякого твердого проводника состоит в том, что у огромного числа его атомов электроны убежали (см. примечание на стр. 26) с внешних орбит и гуляют в межатомном пространстве. Обычно электроны легче всего срываются с внешней орбиты в том случае, когда их на этой орбите мало. У атомов таких прекрасных проводников, как медь и серебро, на внешней орбите всего по одному электрону, у цинка и ртути — по два, у атомов алюминия — три электрона.

Атомы изолятора, напротив, очень устойчивы. Электроны в них прочно связаны с ядром и своих орбит не покидают. Конечно, нет правил без исключения. Бывает, что и в изоляторе какой-нибудь электрон нарушит дисциплину и сорвется со своей орбиты. В разных изоляторах среднее число таких нарушений неодинаково — изоляторы бывают хорошими и плохими, а идеальных изоляторов вообще нет.

Выскакивание электронов из атома — это результат его тепловых колебаний. Чем выше температура, тем энергичнее колеблется атом на своем месте в кристаллической решетке, тем больше вероятность выскакивания его электронов с внешней орбиты. Лишь при температуре абсолютного нуля (—273,2 °C) тепловые колебания атомов полностью прекращаются, и в любом изоляторе, даже в самом плохом, вообще не оказывается свободных зарядов.

Для того чтобы не пользоваться такими расплывчатыми понятиями, как «хороший» и «плохой», можно организовать точный учет электронов, которые, срываясь со своих орбит, блуждают в межатомном пространстве изолятора.

Вырежем из проверяемого изоляционного материала кубик со стороной 1 см, подведем к нему напряжение в 1 в и будем измерять ток в созданной нами электрической цепи (рис. 10).

Рис. 10. Проводники, полупроводники и изоляторы в основном различаются количеством и подвижностью свободных электрических зарядов.

Если кубик сделан из идеального изолятора, в котором ни один электрон не покидает своей орбиты, то свободных зарядов в кубике не будет, а значит, не будет и тока в цепи. В цепи, куда включен реальный изолятор, ток обязательно появится, и чем хуже изоляционные свойства кубика, чем больше в нем электронов-нарушителей, тем больше этот ток.

Для начала включим в нашу испытательную цепь кубик из чистого каучука. Прибор покажет ток 1 пикоампер, то есть 0,000 000 000001 ампера. Легко подсчитать (нужно лишь вспомнить, что 1 а = 1 к/1 сек и 1 к = 6,3·1018 зарядов электрона), что при таком токе через поперечное сечение каучукового кубика ежесекундно проходит около 6 300 000 свободных электронов. Пусть вас не пугает эта цифра — она не так уж велика. Если бы мы испытывали кубик из проводника, например, из серебра, то ток в цепи достиг бы 1000 000 ампер, и каждую секунду через поперечное сечение серебряного кубика проходило бы 6 300 000 000 000 000 000 000 000 свободных электронов. В сравнении с этой астрономической цифрой число свободных электронов в каучуковом кубике, конечно, очень мало, и его смело можно считать изолятором.

Согласитесь, что не очень удобно каждый раз подсчитывать число свободных электронов, двигающихся в кубике проверяемого материала. Во всяком случае, это не принято — вместо того чтобы считать заряды, обычно вычисляют электрическое сопротивление кубика. Сделать это довольно просто. Мы знаем напряжение U, подведенное к кубику (1 в), знаем ток I, который по нему проходит, а значит, можем по одной из формул закона Ома (рис. 10) подсчитать и сопротивление R. Полученную величину называют удельным сопротивлением, подобно тому как удельным весом называют вес одного кубического сантиметра вещества. Величина удельного сопротивления — она измеряется в омах на сантиметр (ом·см) — показывает, какое сопротивление имеет сделанный из того или иного материала кубик с ребром в 1 см.

Удельное сопротивление четко характеризует изоляционные свойства материала, дает представление о наличии в нем свободных зарядов и, в частности, о «свободолюбии» (см. примечание на стр. 26) входящих в атомы электронов. Чем меньше свободных зарядов в том или ином веществе, тем хуже оно проводит электрический ток, или, если говорить об этом другими словами, тем больше удельное сопротивление вещества.

В арсенале природы имеются вещества с самым различным значением удельного сопротивления — от миллиарда миллиардов ом до миллиардных долей ома.

Еще недавно их делили на две группы, и условная граница между ними проходила где-то в районе удельного сопротивления 0,01 —100 ом·см. Все вещества с большим сопротивлением относили к изоляторам, а с меньшим — к проводникам.

В дальнейшем оказалось удобным выделить в имеющемся «наборе» некоторую промежуточную группу веществ с удельным сопротивлением от 0,0001 ом-см до 10 000 000 ом·см. Эти вещества и получили название полупроводников, хотя с таким же успехом их можно было назвать полуизоляторами.

Удельное сопротивление германия составляет примерно 50 ом·см, кремния — 1000 000 ом·см. Обе эти цифры относятся лишь к химически чистым веществам: даже небольшие доли примесей могут менять удельное сопротивление германия и кремния во много тысяч раз. Чтобы понять, как происходит такое резкое изменение электрических свойств полупроводника, нам придется несколько дополнить свои представления о возникновении и передвижении свободных электрических зарядов. Для этого мы сейчас мысленно нарисуем две очень упрощенные картинки, которые хотя и несколько искажают действительность, но зато позволяют в простом виде представить себе очень сложный процесс.

Для начала попробуем представить себе электрический ток в полупроводнике как упорядоченное движение одних только свободных электронов. Выглядит оно примерно так.

Под действием электрического напряжения электроны сравнительно медленно движутся в межатомном пространстве, не переставая при этом совершать свои (см. примечание на стр. 26) беспорядочные рывки в разные стороны. Сами же атомы неподвижны, так как они прочно связаны друг с другом в кристаллической решетке. Дав свободу некоторым своим электронам, пустив их путешествовать в межатомное пространство, атомы утратили тем самым былое электрическое равновесие и превратились в положительные ионы.

Кроме длинных, безостановочных путешествий, свободные электроны, создающие ток, могут совершать и короткие перебежки. Выскочит такой слабенький (с небольшим запасом энергии) электрон из своего атома и тут же попадет на пустующее место в соседнем атоме. В результате свой собственный атом превратится в положительный ион, а положительный ион, давший приют электрону-беглецу, станет нейтральным атомом.

Представьте себе, что электрон перебежал из атома в атом очень быстро и вы даже не успели заметить, когда все это произошло. Как в этом случае воспримете вы происшедшее событие? Вы увидите, как в твердом полупроводнике сдвинулся с места положительный ион (рис. 11).

Рис. 11. Переход электрона из одного атома в другой можно рассматривать как движение положительного заряда в противоположную сторону — движение дырки.

Положительный заряд, двигающийся в полупроводнике в результате коротких перебежек электронов, называют дыркой. Это весьма образное название. В результате коротких перебежек электронов действительно двигаются пустующие на внешней орбите места, двигаются дырки в электронных оболочках атомов. И несмотря на то что первопричиной всего, что происходит, является движение электронов, несмотря на то что при этом сами атомы в твердом теле своих мест не меняют (движение положительных и отрицательных ионов наблюдается лишь в жидких и газообразных веществах, где атомы и молекулы слабо связаны друг с другом и сравнительно легко передвигаются с места на место), мы все же будем считать, что в твердом полупроводнике имеются свободные положительные заряды — подвижные дырки.

Атомы-то ведь все одинаковые — не поймешь, кто кем был и кто кем стал, не поймешь, у кого чей электрон вращается на орбите. (Еще раз просим прочесть примечание на стр. 26, хотя читатель уже, по-видимому, сам знает, в каких случаях нужно обращаться к этому примечанию, и будет это делать без лишних напоминаний.) И поэтому, не пытаясь разобраться в поведении отдельных электронов-перебежчиков, мы будем оценивать лишь конечный результат их деятельности. А таким результатом как раз и является движение положительных зарядов, движение дырок.

Совершенно ясно, что под действием приложенного напряжения в полупроводнике будут упорядоченно двигаться не только электроны-путешественники, но и электроны-перебежчики. Бросаясь из стороны в сторону, они все чаще будут сдвигаться в сторону «плюса» батареи. А это значит, что в хаотическом движении дырок появится некоторая упорядоченность — они медленно и планомерно будут смещаться в сторону «минуса».

Здесь нельзя не вспомнить хорошо известную аналогию. В театре во время спектакля освободилось место в первом ряду. На него сейчас же пересел зритель со второго ряда. На место, освободившееся во втором ряду, пересел зритель из третьего ряда. На его место пересел кто-то из четвертого ряда, и так продолжалось до тех пор, пока свободное место не оказалось в самом последнем ряду. С места на место перебегали люди (электроны-перебежчики), а в результате по залу от первого ряда до последнего переместилось свободное место (дырка).

Теперь, чтобы окончательно не запутаться, давайте вообще забудем о существовании наших электронов-перебежчиков и будем считать, что в полупроводнике электрический ток представляет собой движение двух сортов зарядов — свободных электронов и дырок, что полупроводник обладает электронной и «дырочной» проводимостью.

Подобный прием — исключение из игры электронов-перебежчиков— можно считать вполне оправданным: нельзя же всякий раз начинать свои рассуждения «от печки». Изучая автомобиль, например, вы только один раз подробно познакомитесь с двигателем. А потом, разбираясь в устройстве коробки скоростей или в передаче вращения от двигателя к задним колесам, вы уже не будете начинать с того, как в карбюраторе образуется горючая смесь.

Вас ни в какой мере не должно смущать, что участвующие в электрическом токе свободные электроны и дырки движутся в разные стороны. В твердом теле настолько просторно, что эти движения друг другу не мешают.

При этом каждый из движущихся зарядов, независимо от своих коллег (вы не забываете о примечании на стр. 26?), выполняет свою работу. Поэтому, определяя ток в цепи или мощность на каком-либо ее участке, необходимо учитывать движение и отрицательных, и положительных зарядов. Так, например, если через поперечное сечение проводника (или полупроводника) в каком-либо определенном направлении за одну секунду прошел кулон электронов, а в другую сторону одновременно прошел кулон дырок, то ток в цепи равен 2 а.

В чистом, беспримесном полупроводнике число свободных электронов и число дырок одинаково. Однако для создания транзисторов нужны полупроводниковые материалы с разными типами проводимости — только с электронной или только с дырочной. Это значит, что у одних материалов число свободных электронов должно во много раз превышать число дырок, чтобы в этих полупроводниках возникал в основном электронный ток. А у других материалов, наоборот, дырок должно быть намного больше, чем свободных электронов, и ток в них должен создаваться в основном только дырками. При этом общий заряд куска германия или кремния должен быть равен нулю — в целом в нем не должно быть никаких лишних зарядов.

Вот так задача! Это уже почти то же самое, что залезть в шар и стать там в угол. Как можно, например, добавить в полупроводник свободные положительные заряды, не меняя общего числа зарядов в этом полупроводнике? Каким образом, не нарушая электрического равновесия полупроводника, можно получить в нем избыток тех или иных свободных зарядов? Это можно сделать, добавляя в чистый полупроводник определенные примеси.

Дело в том, что в кристаллах углеродного семейства — в германии и кремнии — действует неписаный закон: «Структура важнее всего». Это значит, что если ради сохранения своей прекрасной алмазоподобной кристаллической решетки атомы должны, принести какие-либо жертвы, то эти жертвы будут принесены: «Структура важнее всего».

Вот что произойдет, например, если в чистый германий во время его плавки добавить атом мышьяка. Такой большой предмет, как атом мышьяка, не может находиться где-то в межатомном пространстве, и поэтому при затвердевании расплава он займет место в кристаллической решетке наравне с атомами самого германия. Но у мышьяка на внешней орбите не четыре электрона, а пять. И этот пятый электрон никак не сможет найти себе места в четкой системе межатомных связей — ведь каждый атом, который входит в решетку алмазного типа, может отдать соседям только четыре электрона. И, подчиняясь закону «Структура важнее всего», пятый электрон уйдет с орбиты в дальние странствия, а сам атом мышьяка превратится в положительный ион (рис. 12).

Рис. 12. При введении донорной примеси в полупроводниковом кристалле появляются свободные электроны и неподвижные положительные ионы.

Обратите внимание — мы не называем этот ион дыркой. Вцепившись своими четырьмя электронами в соседей, атом мышьяка не сможет ни взять электрон со стороны, ни отдать его. Этот положительный ион — атом мышьяка — будет неподвижно стоять на месте, не участвуя в создании электрического тока. Вот почему, добавляя в германий или кремний атомы с пятью электронами на внешней орбите, мы создаем в этих полупроводниках дополнительную электронную проводимость, не увеличивая дырочной проводимости и не нарушая общего электрического равновесия кристалла.

Примеси, которые увеличивают электронную проводимость полупроводника, называются донорными примесями. Слово «донор» означает «отдающий» и говорит о том, что примесь как бы добавляет в полупроводник свободные электроны.

Обратный результат можно получить, если добавить в чистый германий (или кремний) атомы с тремя электронами на внешней орбите; например, атомы лития. Для того чтобы не показаться чужаком и не испортить структуры — «Структура важнее всего!» — такой атом поместит к себе на орбиту чужой электрон, естественно, украденный у нейтрального атома германия. А поскольку этот чужой, четвертый электрон будет для лития лишним, то атом лития превратится в неподвижный отрицательный ион. Сам же атом германия, отдавший электрон пришельцу, станет дыркой — этот атом всегда с радостью примет на свободное место в своей внешней орбите любой электрон-перебежчик.

Вывод прост: добавляя в германий или кремний атомы с тремя электронами на внешней орбите, мы создаем в этих полупроводниках дополнительную дырочную проводимость, не увеличивая электронной проводимости. И опять-таки не нарушая общего электрического равновесия (рис. 13).

Рис. 13. При введении акцепторной примеси в полупроводниковом кристалле появляются свободные положительные заряды (дырки) и неподвижные отрицательные ионы.

Примеси, которые увеличивают дырочную проводимость полупроводника, называются акцепторными примесями. Слово «акцептор» означает «отбирающий» и говорит о том, что примесь как бы отбирает у полупроводника свободные электроны и основным типом свободных зарядов становятся дырки.

После долгих блужданий по трудным дорогам физики и химии мы получили наконец те самые бесценные материалы, которые нужны для изготовления нашего управляющего прибора, нашего скульптора. Именно эти материалы — полупроводники с электронной или дырочной проводимостью — позволят нам искусственно создать процесс для управления мощными потоками энергии с помощью слабого электрического сигнала. Прибор, в котором будет осуществляться такое управление, как вы уже, конечно, догадались, и есть полупроводниковый триод — транзистор. Но, получив наконец возможность непосредственно познакомиться с главным героем нашей книги — с полупроводниковым триодом, мы в интересах дела ненадолго отложим это знакомство и сначала выясним, как устроен и как работает полупроводниковый диод.