Глава I
ЗВУК
Звук — конечный продукт всех радиоаппаратов, о которых будет рассказано в этой книге. Радиоузел, усилитель низкой частоты, радиограммофон, приемник, магнитофон, радиола — все они предназначены для создания определенных звуковых колебаний, чаще всего для воспроизведения музыки. Все эти аппараты, так сказать, работают на одного потребителя — на человеческое ухо. И в конечном счете наш слух выставляет им главную оценку — за качество звучания.
Качество звучания звуковоспроизводящей аппаратуры зависит от многого: в частности, от выбранной схемы и конструкции, от того, как собран усилитель, как он налажен. И конечно, качество звука очень сильно зависит от подбора и расположения самих излучателей звуковых волн — громкоговорителей. Именно с них мы и начнем знакомство со звуковоспроизводящей аппаратурой. Для этого прежде всего нужно изучить продукцию, которую должен выпускать громкоговоритель, выяснить, что представляют собой звуки, которые он воспроизводит. Попутно мы коротко познакомимся с настоящими источниками звука — с некоторыми музыкальными инструментами. Не сможем мы обойтись и без знакомства с потребителем излучаемого звука — слуховым аппаратом (органом слуха) человека. Очень важно знать, как наше ухо воспринимает звуки, по каким признакам их различает, какие искажения и в какой степени фиксирует. Конечно, нужно нам поговорить и о самом звуке, о том, как возникают звуковые колебания, какими величинами характеризуются, чем похожи и чем отличаются звуки, полученные от различных источников, в чем проявляются искажения звука, как можно оценить степень этих искажений.
Именно с этих вопросов мы, пожалуй, и начнем.
Вы тронули гитарную струну…
Когда нужно найти лаконичное и четкое объяснение какого-либо слова, люди обычно обращаются к энциклопедическому словарю. Поступив подобным образом, мы сразу же запишем: «Звук — распространяющиеся в упругих средах — газах, жидкостях и твердых телах — механические колебания, воспринимаемые ухом». Оставим пока в стороне жидкости и твердые тела и посмотрим, что представляют собой звуковые колебания в газах, в частности в воздухе.
Источником звука могут быть различные колеблющиеся тела: например, хорошо известная струна. Вы тронули гитарную струну, и она пришла в движение. Струна вибрирует, быстро отклоняется то в одну, то в другую сторону от своего среднего положения, от положения покоя. Это один из примеров очень интересного вида движений, которые мы называем свободными колебаниями. Вам наверняка хорошо знакомы и другие примеры свободных колебаний, движений туда-обратно — колебания маятника, качелей, стальной линейки, зажатой в тиски.
Отчего же возникают колебательные движения? Попробуем разобраться в этом хотя бы в самых общих чертах.
Вы тронули гитарную струну и передали ей некоторую порцию энергии. Мы часто производим подобную передачу энергии, например, когда вращаем педали велосипеда, передвигаем по столу книгу или ударяем ногой по футбольному мячу. И всякий раз отданная нами энергия расходуется на какое-нибудь важное дело — на создание тепла, на борьбу с трением или сопротивлением воздуха. Одним словом, энергия сразу находит своего главного потребителя, который в основном ее и поглощает.
Иначе обстоит дело с натянутой струной. Здесь имеется сразу несколько главных потребителей энергии, причем два из них представляют для нас особый интерес — именно они заставляют струну совершать колебательные движения.
Когда мы оттягиваем струну, отводим ее от условной средней линии (рис. 1), то, естественно, затрачиваем на это какую-то энергию. Ее сразу же захватывает первый потребитель, чтобы превратить в так называемую упругую деформацию. Явление это связано с изменением внутренней структуры вещества, с его упругостью.
Рис. 1. В процессе свободных колебаний струны энергия упругой деформации переходит в кинетическую энергию, которая затем опять переходит в энергию упругой деформации, и т. д. При этом струна отклоняется то в одну, то в другую сторону и изменяется скорость движения струны.
Когда мы сгибаем (деформируем, то есть изменяем форму) стальную пружину или сжимаем (деформируем) резиновый мяч, то затрачиваем свою энергию именно на то, чтобы преодолеть силы внутренней упругости. Но затраченная энергия не уходит безвозвратно. Упругое тело, как только у него появится возможность, вернется в первоначальное состояние и почти полностью отдаст полученную энергию.
Лучше всего это видно на примере обычных часов. Заведенная пружина запасает определенную порцию энергии, а затем постепенно отдает ее, вращая многочисленные шестеренки часового механизма. Таким же образом ведет себя и упругая струна: она не потребляет, а лишь накапливает энергию и при первой возможности возвращает ее обратно. Возвращает, но кому?
Спортсмен, который обычно прыгает в длину на 7–8 м, едва перепрыгнет 3–4 м, если его лишить возможности предварительного разбега, заставить прыгать с места. Дело в том, что при разбеге спортсмен создает некоторый запас энергии, который в момент прыжка добавляет к силе своих мускулов.
Физика весьма точно определяет этот запас: это не что иное, как кинетическая энергия, которой обладает любое движущееся тело, в том числе и бегущий человек. Чем больше масса тела и скорость его движения, тем больше запас кинетической энергии. Это хорошо поймет тот, кому приходилось, разогнав велосипед, долгое время катиться по инерции. Шоферы хорошо знают, что, чем больше скорость автомобиля и чем больше он нагружен, тем труднее его остановить.
Само собой разумеется, что во всех случаях кинетическая энергия не появляется сама собой. Ее накапливают с помощью мускулов, сожженного бензина, взорванного пороха, электрических сил, химических реакций, с помощью самых различных источников, способных работать, толкать, двигать, способных создавать скорость, а значит, и запасать кинетическую энергию.
Теперь можно назвать и второй потребитель энергии в колеблющейся струне. Это — движение. Энергия, которую вы передаете струне во время первого толчка, или какая-то часть ее должна быть затрачена на то, чтобы привести струну в движение, создать у нее некоторый запас кинетической энергии. Правда, запас этот струна долго в себе не хранит.
В процессе колебаний она очень часто останавливается: всякий раз, когда попадает в крайнее правое или крайнее левое положение и после этого начинает двигаться в обратную сторону. Остановка длится ничтожное, неуловимое мгновение, но это настоящая остановка, полная потеря скорости. О колеблющейся струне так и говорят: в крайних точках ее скорость равна нулю. А это означает, что, попав в крайнюю точку, струна полностью теряет свой запас кинетической энергии, точнее, полностью отдает его. Кому?
Мы с вами познакомились с двумя потребителями энергии, которые существуют в натянутой струне. Было отмечено, что ни один из этих потребителей полученную энергию вечно в себе не хранит. В обоих случаях мы сказали, что энергия куда-то передается, но не сказали, куда именно. Для того чтобы выяснить это, просмотрим (разумеется, условно) небольшой учебный кинофильм.
…В зале медленно гаснет свет. Звучит музыкальное вступление. На экране одна за другой появляются пляшущие буквы. Буквы постепенно вытягиваются в три ровные горизонтальные линии. Наконец, можно прочесть название фильма: «Свободные колебания струны». Буквы тускнеют, музыка стихает. Звучит голос диктора: «Замечательная техника современного кино позволяет показать колебания обычной струны, замедленные в несколько тысяч раз».
На экране героиня фильма — струна, натянутая вертикально между двумя массивными стойками. Струна неподвижна. Появляется рука с вытянутым указательным пальцем, который оттягивает струну в сторону. На том месте, где только что была струна, остается пунктирная прямая линия. Возле нее возникает надпись: «Положение покоя».
Голос диктора: «Натянув струну, мы затратили какую-то энергию».
Палец отпускает струну. Она начинает сначала медленно, а затем все быстрее и быстрее возвращаться к своему первоначальному положению, а затем сливается с пунктирной линией.
Диктор объясняет: «Под действием сил упругости струна вернулась в положение покоя. Но она уже не может остановиться: почти вся энергия, которую вы передали струне, теперь превратилась в кинетическую энергию движения. Только потеряв этот подарок, струна сможет вновь обрести покой».
Проскочив пунктирную линию, струна продолжает двигаться дальше и вновь изгибается, но уже в противоположную сторону. Скорость струны уменьшается.
Голос диктора: «Сейчас струна, истратив свою кинетическую энергию, остановится. Но покой будет непродолжительным. Кинетическая энергия израсходована на то, чтобы вновь деформировать струну, изогнуть ее в противоположную сторону. Силы упругости вновь заставят струну двигаться, вновь искать потерянный покой».
Струна остановилась. И тут же начинается движение в обратную сторону. Весь цикл повторяется сначала: струна совершает колебания…
Не будем утомлять себя этим однообразным зрелищем.
Покинем кинозал и попробуем обсудить то, что мы увидели, сделать некоторые выводы и ввести определения, которые нам впоследствии пригодятся.
Для начала честно признаемся, что мы придумали не совсем удачное выражение: «потребитель энергии». Во всяком случае, первые два потребителя, с которыми мы встретились, — упругая деформация и движение струны, совсем не потребляют энергии, а лишь на время накапливают ее. Чтобы восстановить справедливость, в дальнейшем мы их будем называть не «потребители», а «накопители».
Оба накопителя тесно связаны друг с другом. Когда один из них отдает энергию, другой ее с жадностью поглощает, но лишь для того, чтобы через некоторое время вернуть обратно. Таким образом накопители непрерывно обмениваются той порцией энергии, которую один из них получит при первом толчке струны. В процессе этого обмена струна и совершает движения «туда и обратно», совершает колебания.
О том, как происходят колебания, может довольно подробно рассказать особый рисунок — график (рис. 1).
Его основа — две взаимно перпендикулярные линии, которые называют осями координат. Горизонтальная ось размечена в единицах времени: например, в секундах или в долях секунд. Ось времени очень напоминает циферблат секундомера или часов, вытянутый в прямую линию. «Нулевое время», то есть точка, которая находится в начале координатной оси, на нашем графике соответствует началу колебаний — моменту, когда была отпущена предварительно натянутая струна.
Вертикальная ось размечена в единицах длины. По ней мы будем отсчитывать отклонение струны (точнее, отклонение точки А) от пунктирной линии «положение покоя».
Так, например, если известно, что через 0,01 сек струна отклонилась на 0,8 мм, то на графике мы поставим точку в том месте, где пересекаются две линии. Одна из них поднимается от оси времени — от деления «0,01 сек», другая линия идет от оси отклонений — от деления «0,8 мм». Таким образом, каждая точка на графике стоит на перекрестке «двух дорог» и одновременно указывает две величины: время и соответствующее этому времени отклонение струны.
Чтобы по графику можно было понять, в какую сторону отклонилась струна, мы пойдем на небольшую хитрость: проведем две одинаковые вертикальные оси — одну вверх от оси времени, другую вниз. По верхней оси будем отмечать отклонения вправо, по нижней — влево. Понятия «вправо» и «влево» в данном случае, разумеется, чистая условность. Мы вводим их лишь для того, чтобы подчеркнуть — струна отклоняется то в одну, то в другую сторону от пунктирной линии, которая соответствует положению покоя. Очень часто вводят условные положительное (+) и отрицательное (—) направления. Независимо от названия важно понимать одно: точки, которые находятся кверху от оси времени, и точки, расположенные ниже этой оси, соответствуют двум различным направлениям отхода от условной пунктирной линии.
Если регулярно отмечать отклонение струны, то в итоге на графике появится большое число точек. Соединив их, мы получим кривую линию, которая подробно расскажет о ходе колебаний. Эту линию так и называют — «кривая» и говорят: «Кривая пошла вверх…», «Кривая падает…», «Кривая сложной формы…» А иногда вместо слова «кривая» говорят «график».
Можно построить график не только для отклонения струны, но и для ее скорости. Можно также построить графики, которые покажут, как в процессе колебаний изменяются запасы энергии в каждом из двух накопителей (рис. 1).
Сравнивая все эти графики, нетрудно заметить, что в момент наибольшего отклонения скорость струны равна нулю. В этот же момент равна нулю и кинетическая энергия, а энергия упругой деформации максимальна. И наоборот, скорость движения, а значит, и кинетическая энергия достигают максимальной величины, когда струна проходит пунктирную линию нулевого отклонения.
Введем несколько важных определений. Наибольшее значение какой-либо величины, меняющейся в процессе колебаний, называется амплитудой. По графикам можно определить амплитуду отклонения, скорости, энергии упругой деформации (потенциальная энергия) и кинетической энергии струны. Две последние величины почти равны, так как накопители почти полностью передают друг другу запасы энергии. Для чего нам пришлось ввести слово «почти», будет сказано несколько позже.
Время, в течение которого проходит полный цикл колебаний и струна возвращается в исходное (крайнее) положение, называется периодом. В нашем примере период составляет 0,1 сек.
Иногда весь период колебаний рассматривают по частям. Например, говорят о положительном и отрицательном полупериодах, имея в виду разные направления движения струны.
Заметим, что в течение одного периода каждая из переменных величин — отклонение, скорость, запасы энергии — дважды достигает амплитудного значения: во время положительного и отрицательного полупериодов.
Период характеризует скорость колебательного процесса: чем больше период, тем медленнее протекают колебания.
Однако для характеристики скорости чаще пользуются другой величиной— частотой. Частота — это число периодов, которое приходится на единицу времени. Единицей измерения длины служит метр, веса — килограмм, а единицей частоты — герц. Один герц (сокращенно гц) соответствует одному периоду за одну секунду. Так, например, в нашем примере период длится 0,1 сек, значит, на 1 сек приходится 10 периодов и частота равна 10 гц. При более быстрых колебаниях частота выше. Например, если период равен 0,01 сек, частота составляет 100 гц.
Период, а значит, и частота собственных колебаний струны зависят от скорости обмена энергией между ее накопителями. Чем быстрее происходит этот обмен, тем выше частота колебаний. Это правило можно проиллюстрировать многими наглядными примерами. Чем толще струна, тем больше ее масса, тем медленнее она набирает и снижает скорость, дольше накапливает и отдает кинетическую энергию. Именно поэтому у толстых струн частота собственных колебаний меньше, чем у тонких. Частота собственных колебаний зависит и от натяжения струны. Чем сильнее струна натянута, тем резче действуют силы упругости, тем быстрее проходит процесс обмена энергией и, следовательно, выше частота колебаний этой струны.
В заключение нужно еще ввести понятие о мгновенном значении и о фазе.
С первым термином дело обстоит довольно просто: сам смысл слов «мгновенное значение» указывает, что речь идет о значении какой-то величины в какой-то определенный момент времени. Так, в нашем примере (рис. 1) для момента 0,01 сек мгновенное значение отклонения равно 0,8 мм, а для момента 0,02 сек струна отклонена на 0,3 мм. Для моментов: 0,025 сек и 0,075 сек мгновенные значения скорости достигают амплитуды, а для моментов 0,05 сек и 0,1 сек скорость равна нулю.
Теперь поговорим о фазе. Допустим, что мы едем в поезде, который идет точно по расписанию. Если следить за временем, то можно подсчитать, сколько километров мы уже проехали, отметить на карте то место, где в данный момент движется поезд, или, иными словами, определить мгновенное значение пройденного пути.
Но можно решить и обратную задачу: пользуясь расписанием, можно по названиям станций безошибочно отсчитывать время. Тот момент времени, когда поезд проходит мимо какой-либо станции, мы будем называть фазой этой станции. В своем блокноте вы сможете составить таблицу такого типа: станция I — фаза 14 час 25 мин, станция II — фаза 15 час 10 мин, станция III — фаза 16 час и т. д.
Рассматривая колебания струны для каждого мгновенного значения той или иной переменной величины (отклонение, скорость, энергия), можно указать соответствующий этому значению момент времени. Так, в частности, отклонение влево на 0,8 мм наступит в момент 0,01 сек, а такое же отклонение вправо — в момент 0,04 сек. Положительная амплитуда скорости наступает в момент 0,025 сек, а отрицательная — в момент 0,075 сек.
Каждый такой момент времени и есть фаза для данного мгновенного значения скорости или отклонения. Иными словами, фаза амплитуды отклонения вправо — 0 и 0,1 сек, влево— 0,05 сек, амплитудной скорости 0,025 сек и 0,075 сек и т. д.
В дальнейшем мы часто будем говорить о фазе, но измерять ее будем не в секундах, а в градусах. Нет, это не ошибка, именно в градусах принято указывать фазу для всех мгновенных значений и для всех величин, изменяющихся в процессе колебаний. В данном случае градусы — это совсем не те единицы, которые служат для измерения температуры. Для измерения фазы служит совсем другой градус (в переводе на русский язык это слово означает «шаг», «ступень»). Весь период разбивают на 360 равных частей, и каждую такую часть называют градусом. Иными словами, градус — это время, соответствующее 1/360 части периода. Теперь мы можем сказать, что фаза положительной амплитуды скорости равна 90°, отрицательной амплитуды — 270°, фазы нулевой скорости — 0°, 180° и 360°. Точно так же в градусах можно указать фазу для любого мгновенного значения на графиках отклонения кинетической энергии и энергии упругой деформации (рис. 2).
Рис. 2. Весь период, независимо от частоты колебаний, принято делить на 360 условных единиц времени — градусов. Половина периода делится на 180°, четверть периода — на 90° и т. д.
Вы, дорогой читатель, наверняка недовольны. Для чего вместо удобных и привычных единиц времени — секунд — вводить какие-то градусы? Да и зачем вообще нужно вводить понятие о фазе колебаний? На каждый из этих вопросов можно подготовить весьма обстоятельные ответы, высказать много «за», дать целый ряд пояснений. Но мы ограничимся только двумя пояснениями — по одному на каждый вопрос.
Первое. Наш поезд идет по кругу — все движения струны регулярно повторяются, период следует за периодом, переменные величины проходят одни и те же значения. Как правило, не нужно, а часто и невозможно следить за всем ходом колебаний, за всеми периодами. Достаточно выбрать один типичный период и познакомиться с ним. Ну, а для такого типичного периода уже неважно, когда он начался, когда кончился, и фазу удобно отсчитывать в долях целого периода, в градусах.
Второе. На практике нам обычно приходится иметь дело сразу с большим числом колебаний и очень часто необходимо знать, как они взаимодействуют друг с другом. Отвлечемся на время от нашей излюбленной струны и обратимся к графикам на рис. 3. На каждой паре этих графиков одновременно показан ход колебаний двух одинаковых маятников.
Рис. З. При наблюдении колебания двух маятников (струн, качелей и т. п.) может оказаться полезным оценить сдвиг фаз этих колебаний.
В первом случае маятники двигаются с одинаковыми фазами, как принято говорить, синфазно: амплитудные отклонения в обе стороны происходят в один и тот же момент времени.
На второй паре графиков показан случай сравнительно небольшого сдвига (небольшой разницы) фаз. Фаза второго маятника запаздывает на 1/8 часть периода, то есть на 45°.
И, наконец, на третьей паре графиков показан весьма распространенный случай противофазных колебаний. Фазы сдвинуты на 1/2 периода — положительная амплитуда второго маятника запаздывает по отношению к первому на 180°.
В любой момент времени оба маятника двигаются с одинаковой скоростью, но в противоположные стороны. Кстати, когда говорят о сдвиге фаз, то слова «запаздывает» и «опережает» имеют весьма относительный смысл. Так, например, сказать «запаздывает на 90°» — это то же самое, что сказать «опережает на 270°».
Приведенный пример колебаний двух маятников может иметь лишь чисто учебное значение, если они никак не связаны друг с другом. В этом случае можно не обращать внимания на существующие сдвиги фаз. А теперь представьте себе случай, когда оба маятника выполняют общую работу: например, совместно регулируют ход одних часов. Вот здесь-то фазовые сдвиги уже играют решающую роль. В первом случае маятники действуют согласованно. Во втором это согласование несколько нарушается. Ну, а в третьем случае маятники действуют друг против друга, и результаты их совместного труда равны нулю. Это лишь один из многочисленных примеров, показывающих, какую важную роль могут играть фазовые соотношения.
После двух частных пояснений хочется сделать еще одно — общее.
Все затраты времени на знакомство с колебаниями гитарной струны имеют весьма далекий прицел. Различные виды механических и электрических колебаний будут встречаться на протяжении всей книги, и всякий раз мы будем пользоваться уже знакомыми терминами, понятиями, характеристиками, такими, как «период», «амплитуда», «обмен энергией», «частота», «сдвиг фаз», и другими. Поэтому то, чем мы сейчас занимаемся, можно рассматривать как закладку фундамента, на котором предстоит построить целый архитектурный ансамбль с довольно солидными корпусами «Электроакустики», «Усилителей» и «Радиоузлов».
Мы уже рассмотрели все основные процессы, связанные с колебаниями струны, ввели их основные характеристики. Теперь остается выполнить данное обещание — пояснить, для чего раньше, рассказывая о том, что накопители полностью передают друг другу свои энергетические запасы, мы вынуждены были осторожно вставить слово «почти». За пояснениями придется еще раз отправиться в кинозал.
Звучит голос диктора:
«Струну заставляет двигаться энергия упругой деформации..»
«…она уже не может остановиться».
«Кинетическая энергия израсходована на то, чтобы вновь деформировать струну…»
«Струну заставляет двигаться энергия упругой деформации…»
На экране мелькают знакомые кадры, струна двигается туда и обратно точно так же, как и в момент возникновения колебаний. И все же что-то в ее движении изменилось, колебания проходят «так да не так». Внимательно присматриваемся… Ну что ж, кажется, ясно — за время нашего отсутствия заметно уменьшилась амплитуда колебаний. Теперь струна медленнее проходит мимо линии покоя, меньше отклоняется от нее. Колебания постепенно затухают. Это естественно — мы знаем, что ни одна струна не звучит вечно. Причину затуханий можно определить одним словом — «потери».
Всякий раз при перекачивании энергии из одного накопителя в другой какая-то ее часть теряется. Теряется на то, чтобы преодолеть сопротивление воздуха, преодолеть внутреннее трение в самой струне. Отобранная таким образом у струны энергия в итоге превращается в тепло, которое, как в бездонную бочку, уходит в просторы воздушного океана. При этом энергетические запасы струны постепенно уменьшаются, уменьшаются амплитуда скорости и амплитуда отклонения, колебания постепенно затухают.
Среди нескольких видов потерь энергии у струны есть, если можно так выразиться, полезные потери. Во всяком случае, эти потери, а точнее говоря, затраты энергии, полезны для настоящей струны, колебания которой дают звук.
Звук на анализе
Вы тронули гитарную струну. Она пришла в движение, увлекла за собой окружающий воздух, и во все стороны от колеблющейся струны пошли звуковые волны. В самых общих чертах процесс образования и распространения звуковых волн выглядит так.
Двигаясь, струна сжимает воздух впереди себя, создает повышенное давление. Разумеется, область с повышенным давлением не может оставаться изолированной. Давление передается соседним участкам, и от струны катится своеобразный вал сжатого воздуха.
Но струна не просто движется — она совершает колебания. Это значит, что через некоторое время струна пойдет в обратную сторону, и там, где только что происходило сжатие воздуха, начнется его разрежение. Пониженное давление также передается соседним участкам, и вслед за валом сжатия следует вал разрежения. Затем струна вновь меняет направление, и за разреженной областью появляется область сжатия, за ней опять разрежение и т. д., до тех пор пока струна колеблется. Бегущие одна за другой области сжатия и разрежения — это как раз и есть звуковые волны.
Звуковые волны чем-то напоминают волны на поверхности воды. Гребень морской волны можно сравнить с областью сжатого воздуха, впадину — с областью разрежения. В обоих случаях само вещество — воздух либо вода — не переносится вместе с волной, а лишь совершает колебание: поднимается — опускается, либо сжимается — разрежается.
У морских волн колебания происходят перпендикулярно направлению движения самой волны — волна движется горизонтально, а вода колеблется вверх-вниз. Такие волны называют поперечными. У звуковой волны колебания направлены вдоль линии распространения, проще говоря — вперед-назад. Поэтому звуковые волны называют продольными. Кстати, продольные волны могут распространяться в воде так же, как и в любой другой жидкости или твердом теле. При этом происходит ничтожное, измеряемое микронами и миллионными долями микрона, смещение вещества вперед-назад.
Вернемся к «учебной» струне, график колебаний которой приведен на рис. 1. Поместим на некотором расстоянии от струны манометр, который будет измерять давление воздуха, и будем записывать все результаты измерений (рис. 4).
Рис. 4. График изменения звукового давления как бы повторяет график колебаний струны. Запаздывание звука зависит от расстояния до звучащего тела (струна) и может быть подсчитано, исходя из того, что скорость звука в воздухе при 0° примерно равна 330 м/сек.
Мы вводим такой прибор, конечно, условно: для нас это как бы мысленный эксперимент. Но такие измерения все же можно сделать с помощью электронных приборов.
Отрегулируем манометр так, чтобы он показывал лишь отклонение давления воздуха от обычной величины. Это значит, что при нормальном атмосферном давлении прибор покажет нуль. Под действием звуковых волн стрелка манометра будет отклоняться то в одну, то в другую сторону, показывая то сжатие (+), то разрежение (—). График изменения звукового давления (часто его называют графиком звуковых колебаний) в точности повторяет график изменения скорости струны. Здесь, правда, нужно сделать оговорку. Все графики, приведенные на рис. 1 (отклонения, скорости, энергии), очень похожи, и поэтому график звука можно зачислить в «родственники» к любому из них. И все же мы будем считать, что звуковое давление следует за изменением скорости: чем быстрее движется струна, тем большее давление она создает.
Сравнивая графики колебаний струны и звуковых колебаний, сразу же введем уже знакомые нам основные характеристики, или, как принято говорить, параметры звука: период, частоту, фазу, мгновенное значение и амплитуду. Разумеется, все эти параметры теперь относятся к звуковым колебаниям, то есть к изменению давления воздуха. Что касается периода, частоты и фазы, то с этими параметрами дело обстоит довольно просто — они, как и прежде, измеряются в секундах, герцах, градусах. А вот амплитуда и мгновенные значения должны быть выражены в единицах давления.
Как известно, давление говорит о той силе, которая действует на определенную поверхность. Поэтому единица давления представляет собой единицу силы, или, что то же самое, единицу веса, отнесенную к единице площади. В новой международной системе единиц СИ давление измеряют в ньютонах на квадратный метр, или, сокращенно, н/м2. Ньютон (н) в системе СИ — это величина силы (веса), которая примерно равна 92 г. Таким образом, если на стандартный лист фанеры площадью около 2 м2 мы выльем стакан воды (вес около 200 г) и равномерно распределим эту воду по листу, то каждый его участок будет испытывать давление около 1 н/м2.
Единицей звукового давления н/м2 стали широко пользоваться сравнительно недавно, и в литературе прежних лет вы встретите другую единицу — бар (дин/см2), который в 10 раз меньше 1 н/м2, то есть 1 н/м2 = 10 бар; 1 бар = 0,1 н/м2.
Если вы захотите сказать, насколько сильный звук действует в какой-либо точке пространства, то наверняка назовете величину звукового давления в этой точке. Но какую величину надо назвать? Мгновенное значение ни о чем не скажет, так как оно непрерывно меняется. Называть амплитуду тоже не совсем правильно — ведь амплитудное давление бывает сравнительно редко, всего два раза за период, а все остальное время звуковое давление значительно меньше.
Когда говорят о звуковом давлении, то обычно имеют в виду его так называемую эффективную величину. Она учитывает тот эффект, который производит звуковая волна в среднем за весь период, и поэтому эффективная величина всегда меньше амплитуды. Так, в частности, для звуковых колебаний, график которых показан на рис. 4, эффективное звуковое давление меньше амплитудного на 30 %. В дальнейшем, когда мы будем говорить о звуковом давлении, то всегда будем иметь в виду эффективное, или действующее, значение.
Если поместить на пути звуковой волны легкую пластинку, например листок бумаги, то волна заставит эту пластинку двигаться, совершать колебания. Как мы увидим дальше, такие вынужденные колебания тонких пластинок-мембран лежат в основе работы многих музыкальных инструментов, микрофонов, человеческого уха.
О способности звуковой волны выполнять работу, например раскачивать листок бумаги, можно судить по звуковому давлению. Однако чаще работоспособность волны характеризуют так называемой интенсивностью или силой звука. Величина эта показывает, какая звуковая мощность приходится на единицу поверхности, на которую падает волна звука.
В системе СИ единицей силы звука служит ватт на квадратный метр — вт/м2. Раньше пользовались другой единицей: мощность относили к площади в квадратный сантиметр — 1 вт/см2 = 10000 вт/м2; 1 вт/м2 = 0,0001 вт/см2.
Если бы марсианину, прилетевшему на Землю, сказали, что у нас единицей длины служит метр, а единицей времени — секунда, то он наверняка попросил бы, чтобы ему пояснили, много это или мало. Так и вы, по-видимому, тоже хотите знать, как выглядят и «чего стоят» применительно к звуковым волнам единицы н/м2 и вт/м2. В дальнейшем мы часто будем встречаться с этими единицами, а пока для их характеристики приведем лишь три примера.
Шорох листьев на расстоянии 1 м создает звуковое давление около 0,0001 н/м2 (это в 10 тысяч раз меньше, чем давление стакана воды, распределенной по листу фанеры) и силу звука около 0,00000000001 (10-11) вт/м2. На шумной улице звук, конечно, намного громче. Звуковое давление здесь достигает 0,2 н/м2, а сила звука 0,0001 вт/м2. Наконец, мощный реактивный двигатель на расстоянии 5 м создает звуковое давление 20 н/м2 и силу звука около 1 вт/м2.
Следующие два параметра звука, с которыми нам предстоит познакомиться, — это скорость распространения и длина волны.
Если вы взглянете на график звука и график колебаний струны (рис. 4), то сразу же заметите их различие — звуковые колебания несколько запаздывают. В нашем примере они в точности следуют за всеми колебаниями струны, но следуют с опозданием на 0,1 сек. Это время необходимо звуковой волне для того, чтобы добежать от струны до той точки, где мы измеряем давление. Если измерить расстояние между струной и нашим воображаемым манометром, то можно подсчитать скорость распространения звуковой волны. Скорость звука, измеренная таким способом в различных веществах, приведена в табл. 1. Можно решить и обратную задачу. Взяв из этой таблицы скорость звука в воздухе (330 м/сек) и вспомнив, что опоздание звука составляет 0,1 сек, мы легко определим расстояние между струной и манометром. Оно составляет 33 м. Подобным же образом, заметив, на сколько секунд запаздывает гром, легко подсчитать расстояние до места вспышки молнии.
Что такое длина звуковой волны, легко понять, если вспомнить наше старое сравнение — с морскими волнами. Там длиной волны называют расстояние между двумя ближайшими гребнями или двумя ближайшими впадинами. Аналогично для звука длина волны — это расстояние между двумя ближайшими участками с максимальным (амплитудным) давлением или максимальным разрежением воздуха.
Длина звуковой волны зависит от частоты и скорости распространения звука. Чем выше частота, тем чаще следуют друг за другом области сжатия и разрежения, тем, следовательно, короче волна. А с увеличением скорости звука длина волны, наоборот, увеличивается. Чем быстрее распространяется звук, тем дальше успевает уйти один гребень от другого, тем больше расстояние между ними.
Нужно сказать, что акустика имеет дело со сравнительно короткими волнами. Так, например, при частоте 100 гц длина звуковой волны 3,3 м; частоте 500 гц соответствует волна 66 см, а частоте 20 кгц — 1,7 см. Данные эти относятся только к воздуху, к скорости звука 330 м/сек. В другой среде, с иной скоростью распространения звука, и длина волны будет иной. Так, в воде звук распространяется намного быстрее, и за время одного периода гребень звукового давления успевает пройти в четыре раза большее расстояние, чем в воздухе. Поэтому расстояние между гребнями, то есть длина волны в воде, также в четыре раза больше. Для приведенных выше значений частоты мы получим примерно такие длины волн: 14 м, 280 см и около 7 см.
Для распространения звука в плотной среде, в частности в жидкости, важна еще одна особенность. Звуковые волны, особенно самые длинные, не встречают значительного сопротивления, хорошо сохраняют энергию, полученную от излучателя, и поэтому проходят весьма большие расстояния. Это позволяет пользоваться звуком для дальней подводной звуковой связи, пеленгации и локации. Гидролокатор, подобно нашей струне, посылает в подводное царство звуковые волны и внимательно «слушает», когда и откуда вернется эхо. Своеобразным гидролокатором является широко распространенный прибор — эхолот. Улавливая отраженный от дна звук, он определяет глубину водоема. Эхолот используют также для обнаружения косяков рыбы.
Другой прибор — гидроакустический пеленгатор — только «слушает». Он обнаруживает на большом расстоянии невидимый источник подводного звука — например, работающий корабельный двигатель. Существуют и подводные звуковые маяки, по сигналам которых капитаны могут вести свои корабли.
Вы можете и сами понаблюдать, насколько хорошо вода проводит звуковые волны. Когда будете нырять в реке или в море, прислушайтесь к подводным звукам. Вы услышите, как у берега волна играет камешками, услышите, как стучит двигатель проходящего вдали парохода.
Легко убедиться и в том, что звук хорошо распространяется в твердых телах. Приложив ухо к железнодорожному рельсу, можно услышать шум приближающегося поезда задолго до его появления, когда звуки, идущие по воздуху, еще совсем не слышны. Подобным образом интересно послушать и водопроводную трубу — она может «донести» до вас много далеких шумов.
В технике широко используют специальные приборы — акустические дефектоскопы, которые следят за тем, как проходит звук по твердому телу. С их помощью удается обнаружить невидимый дефект в ответственной детали, например раковину в стальном вале электрогенератора или трещину в бетонном фундаменте будущего дома.
Можно рассказать много интересного о свойствах звуковых волн, о том, как акустика помогает самым различным областям науки и техники, о новых акустических приборах. Однако пора возвращаться к своей главной задаче — к знакомству с характеристиками звуковых колебаний. Сейчас предстоит познакомиться с еще одной характеристикой, еще одним и, кстати говоря, исключительно важным понятием. Имя ему — спектр.
Для начала поясним, почему мы назвали спектр «исключительно важным» понятием. Представьте себе, что несколько музыкантов, например, пианист, скрипач, баянист и трубач, взяли на своих инструментах одну и ту же ноту. Забегая немного вперед, скажем, что при этом все четыре инструмента создают звуковые волны с одним и тем же периодом. Можно рассадить музыкантов так, что в определенной точке все четыре звуковые волны будут создавать и одинаковое давление. Но никаким способом не удастся добиться, чтобы звуки, идущие от разных инструментов, были неотличимо похожи друг на друга. Вы прекрасно знаете, что скрипка и труба всегда звучат по-разному даже тогда, когда берут одну и ту же ноту.
Чем же отличаются, казалось бы, одинаковые звуки, исходящие из разных инструментов? Они отличаются пока еще загадочным для нас спектром.
Очень часто учебная модель какого-либо прибора или аппарата устроена намного проще оригинала. Делают это для того, чтобы сразу не запугивать ученика и сложность реальной техники раскрывать перед ним постепенно. Исходя из подобных побуждений, и мы выбрали для первого знакомства чрезвычайно упрощенный образец звуковых колебаний (рис. 1 и 4). В основном, было сделано два упрощения, два отклонения от истины, и, пожалуй, сейчас можно честно рассказать о каждом из них.
На рис. 5 приведено несколько графиков реальных звуков. Во многом все они похожи: имеют одинаковый период колебаний, одинаковую амплитуду. В то же время сразу видно, что все эти звуки сильно отличаются один от другого и от «учебного» (рис. 1 и 4). Они отличаются формой кривой. А за этими, казалось бы, сухими словами «форма кривой» скрывается очень многое — весь ход изменения звукового давления. Вы видите, что в одном случае (рис. 5, а) звуковое давление изменяется очень неуверенно — в течение каждого полупериода оно несколько раз становится то больше, то меньше. Второй график (рис. 5, б) показывает, что сжатие и разрежение существует лишь небольшую часть периода, а все остальное время звуковое давление близко к нулю. Совсем иначе проходят колебания в третьем случае (рис. 5, в). Здесь звуковое давление почти весь период действует с наибольшей амплитудной силой.
Рис. 5. Одинаковые по высоте (частоте) звуки, исполненные на различных музыкальных инструментах, звучат по-разному. Характер звучания определяется формой кривой (спектром).
Кроме уже знакомой струны, существует огромное множество источников звука, которые создают самые разнообразные звуковые колебания с самой причудливой формой кривой.
Наше ухо, а мы его назвали главным потребителем звуковых волн, довольно точно различает все эти звуки. Иными словами, ухо каким-то образом оценивает не только силу, не только частоту звука, но и форму кривой его графика.
Из всего сказанного придется сделать невеселый вывод. Путешествуя по зоопарку, мы не заметили слона; изучая звуковые колебания, не ввели очень важный для них параметр — форму кривой. Но как только захотим исправить эту ошибку, то сразу же столкнемся с серьезными, на первый взгляд даже непреодолимыми трудностями. Как можно точно оценить форму графика? В каких единицах ее измерять? Как сравнивать разные по форме кривые, отмечать их сходство или различие?
Для начала попробуем решить подобную задачу из другой области. Представьте себе, что вам нужно, пользуясь картой, измерить площадь какого-либо водоема, например Черного моря. В этом случае можно поступить так: разбить всю поверхность моря на квадраты, посчитать площадь каждого из них, а затем все полученные результаты сложить. При этом на карте разместятся два-три больших квадрата, несколько квадратов поменьше и, наконец, множество мелких и мельчайших квадратиков, которые точно воспроизведут сложные очертания морских берегов (рис. 6).
Рис. 6. Звук сложной формы можно представить в виде суммы простейших синусоидальных составляющих (гармоник) с разными частотами и амплитудами. Такой набор синусоидальных составляющих называется спектром сложного звука.
Подобным же образом для оценки формы кривой какого-либо звука его можно представить как сумму каких-то составляющих— звуков с разными амплитудами, частотами и фазами, но с одинаковой стандартной формой кривой. В этом случае сравнительно просто описать форму графика любого, самого сложного звука. Нужно лишь назвать набор стандартных составляющих, которые в сумме дадут этот сложный звук.
То, что сложную геометрическую фигуру можно представить в виде суммы более простых фигур, в частности квадратов, ясно и без особых рассуждений. А вот можно ли подобную операцию суммирования производить со звуковыми колебаниями? Оказывается, можно.
Если в точку, где расположен измеритель звукового давления, направить две звуковые волны, то прибор не будет в отдельности реагировать на каждую из них, а покажет суммарное давление. Это как раз и означает, что для получения звуковых колебаний сложной формы достаточно сложить, то есть заставить совместно работать, определенный набор простых по форме звуков. И наоборот, всякий сложный звук можно разложить на более простые составляющие.
Пока слово «можно» мы применили условно, имея в виду «в принципе можно». Однако в дальнейшем вы познакомитесь с приборами, которые без всяких условностей, в буквальном смысле слова могут разложить сложный звук на набор простых составляющих. Кстати, один из таких приборов — это наше ухо.
Из чего же нужно исходить при выборе стандартной составляющей для разложения сложных звуков? Какому из многочисленных простых графиков здесь следует отдать предпочтение?
Решать эти вопросы нам уже не придется — составляющая, наиболее удобная для разложения сложных колебаний, в том числе и сложных звуков, уже выбрана.
Выбор пал на простейшую кривую, известную под названием «синусоида». Примером синусоидальных (иногда говорят, гармонических) колебаний может служить «учебный» звук, а его график (рис. 4), так же как и график колебаний «учебной» струны и маятника (рис. 1 и 3), представляет собой типичную синусоиду. Чем же привлекла к себе внимание эта кривая?
Прежде всего нужно сказать, что синусоиду выбрала сама природа. Природа создала прибор — ухо животных и человека, которое может выделять из сложного звука простейшие составляющие, причем именно синусоидальные. Синусоида — очень популярная кривая. Графики бесчисленного множества различных колебаний — электрических, механических, световых, молекулярных, химических — имеют вид синусоиды или, во всяком случае, очень ее напоминают. Ну, и в заключение отметим, что, по-видимому, нужно было сказать в самом начале. Синусоида обладает рядом замечательных математических свойств, благодаря которым природа «считает» самым естественным, самым удобным, самым простым видом колебаний именно синусоидальные.
Итак, будем считать, что выбор сделан. Теперь, чтобы описать форму кривой сложного звука, достаточно указать эквивалентный ему набор синусоидальных колебаний, который называется спектром сложного звука. Спектр принято изображать в виде особого графика, напоминающего частокол (рис. 6). Из этого графика сразу же видно, каковы частоты отдельных составляющих и какую амплитуду имеет каждая из них.
В начале XIX века французский математик Жан Батист Жозеф Фурье предложил формулы, по которым можно вычислить амплитуды всех синусоидальных составляющих сложного звука. Одновременно было доказано: если рисунок на графике сложного звука периодически повторяется, то в спектре наверняка будут гармоники — синусоидальные (гармонические) составляющие с частотами, кратными основной частоте, то есть частоте сложного звука. Так, например, если основная частота f = 100 гц, то в спектре будут составляющие с частотами 100 гц (первая гармоника, частота f), 200 гц (вторая гармоника, частота 2f), 300 гц (третья гармоника, частота 3f) и т. д. Как правило, чем выше номер гармоники, тем меньше ее амплитуда. Математическое описание спектра, составленного из гармоник, носит название «ряд Фурье».
Потом мы в основном будем иметь дело с периодическими звуками, спектр которых состоит только из гармоник. Если же в спектр, кроме гармоник, придется вводить еще какую-нибудь составляющую, то мы будем считать, что это «ЧП» — чрезвычайное происшествие, и сразу же обратим на него внимание.
Научившись с помощью спектра — набора гармоник — точно описывать форму сложной кривой, мы в какой-то мере исправили первое упрощение, сделанное при знакомстве с «учебной» струной. Струна не создает синусоидальные колебания, как это показано на рис. 1, и спектр колебаний реальной струны содержит целый ряд гармоник (рис. 6).
Знакомясь с колебаниями струны, мы сделали еще одно упрощение, и его также следует исправить. Для этого достаточно сильней натянуть «учебную» струну, чтобы в несколько раз повысить частоту ее колебаний. Без этого колебания воздуха, которые создает струна, вообще нельзя будет считать звуком. Почему?
Как видно из графиков, период колебаний в нашем примере составляет 0,1 сек, а значит, частота равна 10 гц. В то же время ухо воспринимает акустические колебания с частотами от 16 гц до 22 кгц. Слышимым звуком можно называть только те колебания, которые укладываются в этот диапазон. Неслышимые акустические колебания с частотой ниже 16 гц называют инфразвуком, а выше 22 кгц — ультразвуком.
Более подробно об этом будет рассказано в следующем разделе, который в основном посвящен замечательному творению живой природы — органу слуха.
«Я вас слушаю!..»
Когда вы отвечаете на телефонный звонок или просто обращаетесь к собеседнику, то не задумываетесь о том, что стоит за простым выражением: «Я вас слушаю». За этими словами скрывается очень многое: тончайшие и во многом загадочные химические реакции, работа сложных, до сих пор не понятых инженерами физических приборов и вычислительных машин, о которых современная кибернетика пока только мечтает. Еще стоят за этими словами поражения и победы, борьба за право жить на Земле, полная драматизма бурная история, которая рассказывает о событиях, происходивших сотни миллионов лет назад.
Геологическая химия установила, что возраст Земли составляет примерно 5,3 миллиарда лет и что жизнь зародилась на нашей планете около миллиарда лет назад.
Миллиард лет — это очень большой срок. За это время можно было бы 300 миллионов раз пешком обойти вокруг земного шара или 15 миллионов раз «сходить» на Луну и обратно. За это же время обычным стаканом можно 200 раз вычерпать всю воду из Азовского моря. А если каждый день сбрасывать у своего дома хотя бы несколько десятков лопат земли, то через миллиард лет по соседству с вами появится гора, значительно более высокая, чем Эльбрус. Вот что такое миллиард лет.
И все же этот срок не кажется очень большим, когда вспоминаешь, как много он должен был вместить событий, связанных с развитием живой природы.
Сейчас на Земле найдено и описано более 500 тысяч видов растений и 1100 тысяч видов животных и насекомых, в том числе 50 тысяч видов позвоночных животных. Все это изумительное многообразие берет свое начало от простейших одноклеточных организмов, а может быть, даже от какого-нибудь одного типа самых примитивных живых клеток. Неутомимый мастер — природа усложняла простейшие клетки, создавала клеточные коллективы-организмы, прилаживала их к условиям окружающей среды, отбраковывала слабые и плохо приспособленные образцы. Природа закрепляла наиболее важные, полезные свойства и способности, повышала квалификацию отдельных клеток и формировала из клеток-специалистов органы особого назначения, такие, как плавник или крыло, глаз или сердце. Из поколения в поколение совершенствовался мир живого, управляемый железными законами изменчивости, наследственности и естественного отбора. В результате титанической, ни на секунду не прекращавшейся работы природа за миллиард лет создала такие шедевры, как организм человека, состоящий из 20 триллионов невидимых химических комбинатов — четко взаимодействующих живых клеток.
Растения развивались в сравнительно спокойной обстановке. Они прямо на месте получали все необходимое для жизни: от солнечных лучей — энергию, из почвы — строительный материал, разнообразные минеральные вещества, из дождевого облака — влагу. И поэтому, как ни совершенствовались растения, приспосабливаясь к морям и пустыням, зною и холоду, они так навсегда и остались неподвижными.
Другое дело животные. Они должны были сами искать для себя пищу и при этом еще не стать пищей какого-нибудь более сильного «коллеги». Вот почему в животном мире, начиная с его простейших представителей, выживало и развивалось то, что могло хорошо двигаться и ориентироваться.
Вот почему у животных до такой высокой степени развились органы движения и нервная система.
Нервная система — это сложный орган, а точнее, целый комплекс взаимосвязанных органов, с помощью которого организм изучает окружающий мир, непрерывно оценивает обстановку и на основе этого организует свое поведение. Развитие нервной системы и особенно ее главного штаба — головного мозга — в итоге оказалось решающим фактором в борьбе за существование, за прогресс того или иного вида животных.
Сбор информации об окружающем мире организм осуществляет с помощью рецепторов. Это специализированные клетки (Иван Петрович Павлов называл их клетками-осведомителями), которые под действием света, тепла, давления или химических веществ посылают определенные сигналы в нервную систему. Некоторые рецепторы появились на довольно ранних стадиях развития живого организма. Так, в частности, приемники света, фоторецепторы, разбросаны по всему телу дождевого червя, представителя древнейшего типа животных— кишечнополостных. Некоторое подобие фоторецепторов встречается даже у одноклеточных. У сложных животных рецепторные клетки объединяются в целые органы, такие, как глаз (знаете ли вы, что глаз человека содержит около 200 миллионов светочувствительных клеток?), органы обоняния и вкуса.
Рецепторы звуковых колебаний, а значит, и орган слуха появились намного позже других, так как острая необходимость в них возникла сравнительно недавно, «всего» 150–200 миллионов лет назад. К этому времени наиболее смелые представители подводного мира (а жизнь, как известно, зародилась и развивалась в океане), стали выбираться на берег, постепенно превращаясь в сухопутных животных.
В земных условиях звуковые волны приносят исключительно важные «сообщения» — журчание ручья, шаги приближающегося хищника, шорохи убегающей «пищи». Необходимость пользоваться этой информацией и привела к появлению и развитию слуха.
Слуховой аппарат развился из так называемой боковой линии рыб — своеобразного органа давления, точнее, цепочки органов, вытянувшихся от головы до хвоста по обеим сторонам рыбьего тела. Боковая линия реагирует на медленные изменения давления, позволяет рыбам огибать препятствия, чувствовать приближение других рыб и даже «слышать» некоторые звуки. В частности, установлено, что рыба голец слышит звуки с частотой до 3 кгц, гольян — до 7 кгц и сомик — до 12,4 кгц. В последнее время проведено много интересных опытов, в которых рыб приучали реагировать на различные звуки: например, двигаться за пищей, ориентируясь на источник звуковых волн.
Но услышать звук — это еще далеко не все, нужно проанализировать его, отличить одни звуки от других. Таким анализом занимается мозг, и именно от его развития в огромной степени зависит совершенство всего слухового аппарата.
Так у рыб наблюдаются простейшие реакции на звук — обычно они просто бегут от источника звуковых колебаний. Животные амфибии уже умеют выделять некоторые особо важные для них звуковые комплексы, еще лучше развит слух у птиц, и. наконец, у млекопитающих, к классу которых относимся и мы с вами, слуховой аппарат достигает высочайшей степени совершенства, становится одним из главных средств сбора информации об окружающем мире.
Слуховой аппарат человека можно условно разделить на три основные части (рис. 7, 5, б).
рис. 7, 5, б
1. Ухо принимает звуковые колебания и предварительно сортирует их по частоте и по мощности. Здесь же составляется и отправляется в мозг шифрованная «телеграмма», формируются серии сложных электрохимических сигналов — нервных импульсов, которые несут подробное описание принятого звука.
2. Анализ нервных импульсов, то есть фактически анализ звука, осуществляют специально для этого приспособившиеся участки коры головного мозга, расположенные в височных частях обоих больших полушарий. Левый и правый слуховые участки сложным образом связаны, и звук, принятый, например, правым ухом, попадает не только в «свое», но и в левое полушарие. Сопоставляя сигналы, принятые правым и левым ухом, мозг вычисляет место расположения источника звуковых волн. Интересно, что звуки разных частот изучаются в разных районах слуховых участков мозга, а если раздражать эти участки слабым электрическим током, то у человека возникает ощущение услышанного звука.
3. Третьим элементом слухового аппарата можно считать линию связи ухо — мозг, основа которой — слуховой нерв — состоит из многих тысяч нервных волокон. На этой линии имеется несколько промежуточных узлов связи, где, по-видимому, происходит предварительная обработка нервных импульсов, идущих в мозг.
Из всех элементов слухового аппарата для нас сейчас наибольший интерес представляет само ухо, и с ним мы познакомимся несколько подробнее.
Всякий, кому приходилось бывать в метро, знает, что наземная станция — это лишь небольшая часть всего сооружения и что самое главное — прекрасные дворцы, могучие машины, бесконечные туннели — находится под землей. Подобно этому орган, который мы привыкли называть ухом, — это лишь своего рода наземная станция, получившая название «наружное (внешнее) ухо» (рис. 7, 5, а). Главные же части нашего звукоприемника — среднее и внутреннее ухо — нам не видны. Они спрятаны довольно глубоко и защищены костями черепа.
рис. 7, 5, а
Звуковые волны, попавшие в ушную раковину, пробегают через извилистый слуховой проход (его длина около 2,5 см) и приводят в движение барабанную перепонку. Она, в свою очередь, связана с системой миниатюрных косточек — молоточком, наковальней и стремечком, которые все вместе весят около 0,05 г. Слуховые косточки расположены так, что образуют рычаг — своего рода усилитель. Конец этого рычага раскачивает барабанная перепонка, а на другом конце получаются колебания с меньшей амплитудой, но зато действующие с большей силой. Эти колебания попадают в самый главный «цех» внутреннего уха — в улитку. Название «улитка» этот орган получил потому, что у млекопитающих он действительно похож на спиралевидный домик улитки. У животных, которые стоят на более низкой ступени развития, в частности у птиц, улитки еще нет, ее место занимает более простой орган, немного похожий на изогнутую луковицу.
Улитку внутреннего уха человека удобно представить себе как постепенно сужающуюся трубку длиной около 3 см и закрученную в спираль на три, точнее, на 23/4 витка.
Итак, улитке передаются звуковые колебания от слуховых косточек. Наряду с этим к ней подходят нервные волокна, связанные со слуховым нервом. Отсюда можно сделать только один вывод: именно в улитке находятся звукорецепторы, находится орган, преобразующий звуковые колебания в серии нервных импульсов. Этот орган, по имени одного из его первых исследователей — А. Корти, получил название кортиева органа (орган Корти).
Кортиев орган надежно укрыт — он находится в спиральном лабиринте улитки (рис. 7, 5, г, поперечный разрез витка улитки) и чем-то напоминает плоский и длинный слоеный пирог, также закрученный в спираль.
Нижний слой, основание «пирога», — лента основной мембраны, сотканная из 25 тысяч поперечных тонких нитей. Эти нити часто сравнивают со струнами рояля или арфы. В направлении от основания улитки к ее вершине основная мембрана расширяется, и нити-струны становятся длиннее. У основания улитки (овальное окно), куда примыкает третья слуховая косточка — стремечко, длина нитей составляет 100 мк, а у вершины улитки — 500 мк (рис. 7, 5, в).
рис. 7, 5, в
На основной мембране расположились ткани из нескольких типов клеток. В самом наружном слое имеется пять рядов так называемых волосковых клеток (кончик каждой из них покрыт десятками тончайших волосков), к которым подходят нервные волокна (рис. 7, 5, д).
рис. 7, 5, д
Изучение устройства и работы слухового аппарата началось давно, но еще сегодня в этой области существует очень много загадок. Так до сих пор не удалось проследить все стадии преобразования звука в нервный импульс. Неясно также, каким образом кортиев орган анализирует форму кривой звука, как разделяет сложный звук на синусоидальные составляющие. Существует несколько теорий слуха, но, пожалуй, ни одна из них полностью не объясняет принцип действия нашего звукоприемника.
Долгое время широким признанием пользовалась так называемая резонансная теория слуха, которую около ста лет назад разработал известный физик и врач Герман Гельмгольц. Как говорит само название, в основе этой теории лежит хорошо известное явление — резонанс.
Существует много опытов для иллюстрации резонанса, но один из этих опытов особенно хорошо поясняет резонансную теорию слуха. Откройте крышку рояля или пианино, нажмите правую педаль и с большими паузами спойте над струнами несколько коротких звуков. Вы услышите, как рояль вторит пению, причем после разных нот звучат и разные струны.
Происходит это потому, что каждая струна в основном резонирует лишь на одну из синусоидальных составляющих сложного звука. Поэтому для различных сложных звуков, то есть для разных спектров, набор откликающихся струн оказывается различным.
Гельмгольц считал, что наш слуховой аппарат определяет спектр сложных звуков примерно таким же способом. Роль резонирующих струн он отводил нитям основной мембраны, которые имеют разную длину, а значит, и разную частоту резонанса. Эксперименты, казалось бы, полностью подтверждали резонансную теорию слуха. Так, например, при повреждении вершины улитки, где находятся сравнительно длинные низкочастотные волокна, подопытные животные теряют слух в области низших частот, а повреждение основания улитки приводит к потере слуха на высших частотах. В пользу резонансной теории говорили и многие другие эксперименты.
И все же под давлением фактов, особенно полученных в самое последнее время, от простой и, казалось бы, понятной модели уха-рояля пришлось отказаться. Вот лишь одно из затруднений резонансной теории. Простейшие расчеты показывают, что для того, чтобы перекрыть весь диапазон слышимых частот (16 гц— 22 кгц), сила натяжения крайних «струн» должна отличаться в 10 тысяч раз. О такой большой разнице не может быть и речи. Для «струн» из живой ткани она недопустима.
Сейчас главное внимание исследователей приковано к волосковым клеткам, где звук преобразуется в нервный сигнал. Установлено, что этот процесс включает в себя целые комплексы химических реакций, с которыми, по-видимому, связано и разделение сложного звука на составляющие. Обнаружены интересные особенности поведения некоторых частей волосковой клетки при воздействии различных звуков. Одним словом, стало ясно, что важнейшие проблемы слуха нужно рассматривать с позиций молекулярной биологии, которая исследует самые тонкие биологические механизмы.
Изумительная биологическая машина
Несмотря на неясности в работе слухового аппарата, его главные характеристики изучены весьма подробно. Так, в частности, установлена чувствительность, или, иначе, порог слышимости, уха — сила самых тихих звуков, которые мы еще в состоянии услышать. Оказалось, что на разных частотах порог слышимости различен, и лучше всего мы слышим звуки с частотами от 1 до 5 кгц. На краях диапазона слышимых звуков чувствительность уха резко — во много миллионов раз — падает.
Сила звука на пороге слышимости (для частоты 1000 гц) составляет около 10-12 вт/м2, а звуковое давление — 0,00002 н/м2. Под действием таких слабых звуков давление на барабанную перепонку не превышает 0,0000003 г, и амплитуда ее колебаний измеряется тысячными долями микрона. Амплитуда звуковых колебаний на входе улитки еще в 50–60 раз меньше, а размах колебаний основной мембраны оказывается в несколько раз меньше, чем диаметр атома водорода. Уже одно это говорит о том, какие сложные и тонкие процессы обеспечивают высокую чувствительность уха.
Самые громкие звуки, которые мы можем слышать, называют порогом болевых ощущений. Он соответствует силе звука около 10 вт/м2 и давлению около 65 н/м2. За этим порогом ухо действительно ощущает боль и громкость звука становится невыносимой. Для сравнения заметим, что чувствительные окончания кожи ощущают прикосновение уже при давлении 6 н/м2. Порог болевых ощущений неодинаков на разных частотах, хотя и меняется не так резко, как порог слышимости. Значение обоих порогов для разных частот вы найдете на графике (рис. 7, 1).
Области «речь» и «симфонический оркестр» показывают, в каких пределах находятся частоты и звуковые давления для этих источников звука. В табл. 2 указаны некоторые источники звуковых колебаний и соответствующие им звуки различной силы.
Приведенные цифры показывают, что ухо слышит звуки в огромном диапазоне громкостей. Самый сильный и самый слабый из слышимых звуков могут различаться по звуковому давлению в 3 миллиона раз, а это соответствует разнице силы звука в 10 триллионов раз! Измеритель длины с подобным диапазоном мог бы одинаково хорошо определить толщину человеческого волоса и расстояние до Луны. Этот, конечно, весьма условный пример в какой-то степени характеризует универсальность слуха, его способность воспринимать самые различные звуки.
Вас, наверное, интересует, с какой точностью ухо ориентируется в огромном диапазоне звуков различной громкости, из скольких ступенек состоит лестница, которая ведет от самого тихого к самому громкому звуку, от порога слышимости к порогу болевых ощущений. В качестве ответа можно привести результаты, полученные многими исследователями. Человек различает около четырехсот (точнее, 374) ступенек — звуков различной громкости. Но сама по себе эта цифра еще мало о чем говорит — она нуждается в целом ряде пояснений и дополнений. Вот некоторые из них.
Во-первых, речь идет об оценке громкости путем сравнения двух разных звуков. Если оценивать звуки поодиночке, то удается заметить значительно меньше ступенек (часто говорят: градаций) громкости.
Во-вторых, заметим, что приведенная цифра получена в результате проверки слуха у большого числа людей и относится к так называемому среднему человеку. Люди с натренированным слухом, например опытные музыканты, по-видимому, могут заметить меньшие интервалы громкости, и, таким образом, для них число ступенек окажется намного больше.
В-третьих, приведенная цифра относится лишь к средним частотам, например к частоте 1000 гц. С повышением и понижением частоты мы намного хуже различаем звуки разной громкости. Так, например, на частотах 150 гц и 9 кгц можно заметить лишь около ста, на частоте 16 кгц — меньше двадцати, а на частоте 30 гц — всего три различных ступеньки, различных уровня громкости.
В-четвертых, способность различать разные звуки в большой степени зависит от того, насколько мы к ним привыкли. Есть данные о том, что через 20 мин высота ступеньки — заметный интервал громкости — уменьшается в 1,35 раза, а через 2 часа — почти в 3,5 раза. Подобное явление — адаптация— наблюдается и у других органов чувств: всем хорошо известно, что наши глаза постепенно привыкают к темноте и видят то, что в первый момент было совершенно неразличимым.
В-пятых, высота ступенек увеличивается с высотой лестницы. По мере повышения силы звука ухо как бы грубеет: чтобы оно заметило изменение громкости, приходится резче менять звуковое давление. На этом свойстве стоит остановиться подробнее, так как в дальнейшем мы не раз будем его учитывать.
Совершенно ясно, что ощущение громкости прежде всего зависит от звукового давления на барабанную перепонку — чем больше это давление, тем более громким кажется звук. Ну, а насколько повышается громкость, если повысить звуковое давление на единицу, например на 1 н/м2, или увеличить силу звука на 1 вт/м2? Оказывается, что на вопрос, поставленный подобным образом, ответить невозможно. Если вас кто-нибудь спросит, много это или мало 1 л воды, то вы наверняка прежде всего захотите узнать, в сравнении с чем «много или мало». Действительно, если добавить литр воды в неполное ведро, то это сразу же станет заметным, и, конечно, вы ничего не заметите, если дольете литр воды в море.
Наш простой пример в какой-то степени помогает понять важнейший закон физиологии — закон Вебера — Фехнера. Названный именами открывших его ученых — физиолога и математика, этот закон говорит о том, что органы чувств — глаз, ухо — всегда замечают одинаковый прирост какого-либо воздействия (яркость картинки, сила звука), но прирост, одинаковый не по абсолютной, а по относительной величине, прирост не «на столько-то» единиц, а «во столько-то раз» или «на столько-то процентов». Чтобы заметить изменение громкости, нужно увеличить силу звука примерно на 10 %: если было 0,2 н/м2, добавить еще 0,02 н/м2; если было 20 н/м2, добавить 2 н/м2. Одним словом, в ведре заметен лишний литр воды, в цистерне — лишняя бочка.
Для иллюстрации закона Вебера — Фехнера построим график (рис. 7, 4 и рис. 8), который покажет, как изменяется уровень громкости (разумеется, это условная величина, оценка наших ощущений, выраженная в условных единицах) при изменении силы звука.
рис. 7, 4
Рис. 8. Зависимость между ощущением громкости и звуковым давлением носит логарифмический характер (закон Вебера — Фехнера ). Чтобы повысить громкость и без того громкого звука, нужно увеличить звуковое давление на весьма значительную величину.
Кривая, которую вы видите на этом графике, называется логарифмической — такая же по форме кривая показывает, как меняется значение логарифма по мере увеличения числа, к которому этот логарифм относится (рис. 7, 3). Отмеченное сходство не случайно. Путем ряда математических преобразований можно прийти к такой формулировке закона Вебера — Фехнера: «Ощущение пропорционально логарифму раздражения».
Поскольку зависимость между громкостью (ощущение) и звуковым давлением (раздражение) носит логарифмический характер, для оценки этих величин особенно удобно пользоваться самыми популярными единицами — децибелами.
Строго говоря, децибел не имеет никакого отношения ни к ваттам, ни к вольтам, ни к ньютонам. И в то же время с помощью этой единицы оценивают величину мощности и напряжения, тока и звукового давления, силы звука и электрического сопротивления. Децибел, «невзирая на лица», сравнивает две величины, например два напряжения или два звуковых давления, и показывает, во сколько раз одна из них больше другой. Вот поэтому-то децибелом пользуются всякий раз, когда нужен беспристрастный судья, когда нужно оценить относительное усиление, ослабление, рост, уменьшение, подъем, — одним словом, любое отличие или изменение независимо от того, что именно меняется.
Мы коротко рассказали, для чего нужен децибел, и уже, по-видимому, настал момент пояснить, что он собой представляет. Для этого прежде всего вспомним, что такое логарифм и, в частности, десятичный логарифм.
Любое число можно представить как число 10, возведенное в определенную степень. Вот несколько примеров: 100 = 102; 1 000000 = 106; 2=100,3. В данном случае показатель степени это и есть десятичный логарифм числа. Логарифмы приведенных чисел соответственно равны 2; 6 и 0,3. Сокращенно это записывают так:
lg 100 = 2; lg 1000000 = 6; lg 2 = 0,3.
Значение логарифма того или иного числа можно найти по графику или в специальной таблице. Таблицы и графики позволяют по значению логарифма определить и само число.
Довольно подробно о логарифмах и операциях с ними рассказано в учебнике алгебры для 10-го класса. Мы же буквально в двух словах скажем о тех операциях, с которыми в дальнейшем придется встретиться в этой книге.
Вот пример того, как с помощью логарифмов можно выразить отношение двух величин. Если есть два звука разной силы: один 0,05 вт/м2, а другой 5 вт/м2, то сразу же можно сказать, что второй звук сильнее первого в 100 раз. Можно сказать и иначе: логарифм отношения силы этих звуков равен двум (lg 100 = 2).
Сравнивая две величины, мы пользуемся своего рода единицей сравнения, которую можно было бы назвать «раз». Мы так и говорим: «сильнее в 100 раз», «слабее в 3 раза», «увеличился в миллион раз» и т. д. Когда результат сравнения выражают в виде логарифма, то единицей служит «бел», который соответствует логарифму числа 10, то есть единице. Так, в нашем примере можно сказать, что второй звук сильнее первого на две логарифмические единицы, то есть на 2 бела.
Обычно на практике пользуются более мелкой и поэтому более удобной единицей — децибелом. Из самого слова понятно, что децибел (сокращенно db или дб) составляет 0,1 часть бела (сравните с дециметром, который равен 0,1 м). В дальнейшем мы будем очень широко пользоваться децибелом, и вы постепенно привыкнете к этой единице. Ее «удельный вес» вам поможет понять табл. 3.
В первой (левой) колонке этой таблицы помещены некоторые наиболее часто встречаемые числа децибелов. В следующей, второй колонке приведены отношения (число раз) силы звука, соответствующие тому или иному числу децибелов. Сразу видно, что наш пример, где сила двух звуков отличалась в 100 раз, соответствует разнице в 20 дб (2 бела).
Если бы один звук был сильнее другого в миллион (106) раз, то мы сказали бы, что они отличаются на 60 дб. Если различие в силе звуков составляет 3 дб, то это значит, что один из них сильнее другого в два раза. В дальнейшем первой и второй колонками табл. 3 мы будем пользоваться для того, чтобы переводить в децибелы не только соотношения силы звука, но и соотношения электрической мощности, энергии, выполненной работы.
Некоторое недоумение у вас, по-видимому, вызовет третья колонка табл. 3. Здесь для того или иного числа децибелов (первая колонка) приведены соотношения звукового давления. Странным на первый взгляд кажется, что одному и тому же числу децибелов соответствуют разные соотношения силы звука и звукового давления. При 20 дб сила звука отличается в 100 раз, а звуковое давление только в 10 раз. Разница силы звука в два раза — это 3 дб, а такая же разница звуковых давлений — это уже б дб.
Сейчас мы попытаемся ликвидировать эту неясность.
Сила звука и звуковое давление — это взаимно связанные величины, подобно тому, как связаны между собой площадь квадрата и длина его стороны. Ни одна из этих величин не может измениться так, чтобы другая осталась неизменной. Без особых доказательств ясно, что если увеличить сторону квадрата в два раза, то площадь его возрастет в четыре раза, увеличим площадь в девять раз, и сторона станет длиннее в три раза. Подобная зависимость — она называется квадратичной— существует также между звуковым давлением и силой звука. Если звуковое давление увеличится в три раза, то сила звука обязательно возрастет в девять раз. Если сила звука повышается в 100 раз, то, значит, звуковое давление возросло в 10 раз. Вот почему в табл. 3 в одном горизонтальном ряду, то есть для одного и того же числа децибелов, приводятся соотношения и для силы звука, и для звукового давления, причем соотношения, связанные квадратичной зависимостью.
Кстати, зная одно из этих соотношений, всегда легко получить второе: звуковое давление нужно возвести в квадрат, а из силы звука извлечь квадратный корень. Путем подобных вычислений и построена третья колонка табл. 3.
Квадратичная зависимость связывает не только силу звука и звуковое давление. Такой же зависимостью связаны и многие другие величины, в частности электрическая мощность с величиной тока и электрическая мощность с величиной напряжения. Поэтому, для того чтобы перевести в децибелы соотношение токов или напряжений, нужно пользоваться третьей колонкой табл. 3,
В свое время мы назвали децибел самой популярной единицей, и вы уже, по-видимому, поняли, что для этого есть основания. Децибелами широко пользуются электрики, электронщики, радисты. Однако особую популярность эта единица завоевала у специалистов по акустике. Они часто забывают об истинных единицах звукового давления и силы звука и выражают эти величины прямо в децибелах. Чтобы понять, как это делается, нужно сопоставить первую, четвертую и пятую колонки табл. 3.
Самый тихий звук, который мы еще слышим (порог слышимости), соответствует звуковому давлению 0,00002 н/м2. Все более громкие звуки будут создаваться давлением, большим в определенное число раз, то есть на определенное число децибелов. Поэтому, приняв 0,00002 н/м2 за нулевой уровень давления (меньшее давление для нас действительно равносильно нулю, так как звук не слышен), можно все остальные величины звукового давления выражать прямо в децибелах.
Это и показано в пятой колонке табл. 3. Здесь приведены звуковые давления, соответствующие тому или иному числу децибелов при условии, что отсчет производится от порога слышимости (0 дб). Условившись об этом, мы в дальнейшем будем говорить: «Звуковое давление равно 40 дб» или «звуковое давление поднялось до 80 дб», имея в виду, что эти цифры соответствуют 0,002 н/м2 и 0,2 н/м2 (пятая колонка табл. 3). Аналогично, приняв за нулевой уровень силу звука на пороге слышимости, мы выражаем в децибелах и эту величину (четвертая колонка табл. 3). Из таблицы видно, что порогу болевых ощущений соответствует примерно 130 дб.
Для того чтобы вы поскорее привыкли к децибелам, мы начнем пользоваться этими единицами, рассказывая об основных характеристиках человеческого слуха.
Прежде всего советуем еще раз взглянуть на табл. 2. Здесь в третьей колонке, на которую вы раньше, по-видимому, не обратили внимания, приведены уровни громкости (в децибелах) для самых различных источников звука. Громкость в децибелах приводится и на вертикальной оси графика (рис. 7, 1), где показано, как меняются с частотой порог слышимости и порог болевых ощущений.
Обратите внимание, что, так же как и на многих других графиках, на графиках рис. 7, 1 и 7, 2 деления горизонтальной шкалы неодинаковы: чем выше частота, тем меньший участок приходится на каждый герц. Эта так называемая логарифмическая шкала вводится для того, чтобы уместить весь диапазон слышимых частот на небольшом участке и в то же время достаточно подробно показать участок средних и особенно низших частот. Логарифмическая шкала как бы приспособлена к особенностям слуха: чем ниже частота, тем меньшие ее изменения мы замечаем. В логарифмическом масштабе размечают не только ось частоты: на некоторых графиках, например, пользуются логарифмической шкалой силы звука.
рис. 7, 1
рис. 7, 2
Из графика рис. 7, 1 хорошо видно, что на средних частотах наше ухо воспринимает огромный диапазон громкостей — около 140 дб. Сравнительно небольшая часть этого диапазона — 40 дб — приходится на разговорную речь. Все многообразие голосов, от самого громкого, крикливого, до самого тихого, едва слышного, лежит в пределах от 60 до 100 дб.
Намного шире диапазон, в который укладывается звучание большого симфонического оркестра. Его высшая точка, 120 дб, соответствует самому громкому звуку — форте-фортиссимо — всех инструментов. Низшая точка, около 45 дб, соответствует самому тихому — пиано-пианиссимо — звучанию одной скрипки.
Несколько слов о том, как следует оценивать музыкальные термины «форте» и «пиано». Музыканты ввели для себя восемь уровней громкости и обозначают их так:
ррр — пиано-пианиссимо
рр — пианиссимо
р — пиано
тр — меццо-пиано
mf — меццо-форте
f — форте
ff — фортиссимо
fff — форте-фортиссимо.
Все эти уровни охватывают диапазон громкости примерно в 70–75 дб и делят его на семь равных частей, по 10 дб в каждой. Музыканты считают, что подъем на одну ступеньку, то есть повышение громкости на 10 дб, создает ощущение удвоенной громкости. Для подъема на одну такую ступеньку, то есть для перехода на следующий уровень громкости, нужно увеличить силу звука в 10 раз, то есть повысить звуковое давление в 100 раз. Из закона Вебера — Фехнера следует, что «ступеньки» по абсолютной величине неодинаковы. При низких уровнях громкости для подъема на 10 дб достаточно увеличить звуковое давление на сотые и даже тысячные доли н/м2. В области громких звуков для такого же увеличения громкости (10 дб) приходится повышать звуковое давление на единицы и даже на десятки н/м2. Многие музыканты собственными мускулами чувствуют справедливость закона Вебера — Фехнера. Скрипачи, пианисты, барабанщики очень легко переходят от пианиссимо к пиано, но переход от форте к фортиссимо требует от них значительных усилий, в буквальном смысле слова — тяжелой физической работы (рис. 8).
Мы уже отметили, что на частоте 1000 гц человек способен обнаружить около 400 (точнее, 374) различных уровней громкости. Каждой такой ступеньке соответствует изменение силы звука на 0,4 дб, то есть примерно на 10 %. На высших и особенно на низших частотах мы намного хуже различаем громкость звука. В значительной степени это связано с тем, что при понижении частоты резко падает чувствительность уха и вместе с этим как бы сжимается весь диапазон громкости.
Так, на частоте 1000 гц этот диапазон примерно равен 130–140 дб, а на частоте 50 гц всего 80 дб — порог слышимости повышается соответственно от 0 до 50 дб.
Более подробно об этой зависимости рассказывает график на рис. 7, 2. Здесь изображены так называемые кривые равной громкости, полученные при проверке слуха у большого числа людей. Каждая из этих кривых соответствует определенному уровню громкости, величина которого, разумеется условная, обозначена над кривой. По вертикальной оси отложены уровни силы звука, причем на частоте 1000 гц уровни громкости и силы звука совпадают. Каждая кривая показывает, как с изменением частоты нужно изменить силу звука, чтобы громкость осталась постоянной.
В области низших частот несколько кривых резко загнуты кверху. Это значит, что при уменьшении частоты нужно резко усилить звук, для того чтобы громкость осталась неизменной. Важно отметить, что для громких звуков (от 80 дб и выше) изменение силы звука на всех частотах дает примерно одинаковый эффект. В области слабых звуков (от 80 дб и ниже) даже небольшое уменьшение силы звука на низших частотах приводит к резкому снижению громкости вплоть до самого порога слышимости. Практически это значит, что если каким-нибудь способом постепенно ослаблять звуки, идущие от большого оркестра или многоголосого хора, то раньше всего мы перестанем слышать низшие частоты.
Можно было бы рассказать еще много интересного о том, как человек воспринимает звуки различной силы, об особенностях оценки громкости. Однако нам уже давно пора перейти к другому важному способу «сортировки» звуковых колебаний, пора рассказать, как мы различаем звуки по их частоте.
Начнем с так называемых простых звуков, график которых представляет собой синусоиду (рис. 1, 2, 4). Принято считать, что человек слышит звуки с частотой от 16 гц до 22 кгц. Однако эти граничные цифры не для всех одинаковы. Большинство взрослых людей не слышат звуки, частота которых выше 16–18 кгц, а для людей преклонного возраста предельная частота может снизиться даже до 10–12 кгц. В то же время встречаются, правда очень редко, и «рекордсмены», которые слышат ультразвук вплоть до 28 и даже до 30 кгц.
Кстати, способность слышать ультразвук хорошо развита у многих животных. Например, собака слышит почти до 40 кгц. Этим пользуются некоторые дрессировщики: с помощью ультразвукового свистка они подают собаке сигналы, не слышимые для зрителей. Есть животные, которые слышат инфразвук — колебания с частотой ниже 16 гц. Советский ученый академик В. В. Шулейкин обнаружил, что ветер, обдувая морские волны, создает «голос моря» — инфразвук с частотой от 0,1 до 6 гц. Из районов, где начался шторм, «голос моря» довольно быстро (звук движется несравненно быстрее морской волны) приходит к берегу. Благодаря этому некоторые моллюски, способные слышать инфразвук, заранее узнают о приближающейся непогоде.
Человеческий слух с исключительно высокой точностью различает частоту звука во всем доступном нам диапазоне. И хотя на самых низких частотах точность несколько падает, она все же остается достаточно высокой. Об этом свидетельствует полученная опытным путем табл. 4, где показано, какое отклонение частоты способен заметить слух среднего человека.
На низших частотах ухо определяет частоту с точностью до 1 %, а начиная с 500 гц и выше, точность возрастает до десятых долей процента. Точность определения частоты в некоторой степени зависит также от громкости звука. Так, при большой громкости (80 дб), в пределах от 16 гц до 22 кгц, человек способен обнаружить около 2200 частотных интервалов — градаций, а при тихом звуке (20 дб) таких интервалов обнаруживается всего около 500, то есть точность определения частоты падает. Табл. 4 соответствует средней громкости (40 дб), при которой мы различаем около 1300 градаций частоты.
Дирижер взмахнул палочкой
Человек довольно небрежно оценивает силу звука — мы редко обращаем внимание на то, что звук стал немного громче или немного слабее. Совсем иначе обстоит дело с частотой. При оценке частоты мы в ряде случаев бываем предельно точны и внимательны. Большая и интересная область человеческой деятельности в значительной степени основана на том, что звуки разной частоты создают у нас ощущение различной высоты тона. Вы уже, конечно, догадались, что здесь речь идет о музыке.
Из всего огромного диапазона слышимых частот в музыке в основном используется участок от 27,5 до 4190 гц. Лишь некоторые музыкальные инструменты-рекордсмены выходят за пределы этого диапазона. Ниже всех по частотной лестнице опустился орган — до 16 гц, выше всех поднялась маленькая флейта-пикколо — до 4500 гц.
На своей «территории» музыканты используют не все частоты и даже далеко не все слышимые частотные интервалы. Мы знаем, что в самых неблагоприятных условиях, при очень небольшой громкости, можно различить по частоте больше 500, а при нормальной громкости до 2200 различных звуков. В музыке используется всего 88 частотных интервалов, то есть 88 звуков разной высоты. Каждому из них соответствует вполне определенная частота, значение которой вы найдете на рис. 9. Частота указана рядом с клавишами современного рояля. Из рисунка ясно, какой частоты звук мы получим, ударив по той или иной клавише.
Рис. 9. Музыкальная шкала.
Музыкальные звуки различной высоты принято обозначать особыми значками — нотами, подобно тому, как звуки речи обозначают буквами. Основа нотного письма — нотации— пять основных горизонтальных линеек и расположенные над ними или под ними коротенькие дополнительные линейки. На рис. 9 видно, какому месту на нотных линейках соответствует звук той или иной частоты. Для записи всех 88 звуков на линейках места не хватает (больше шести дополнительных линеек вводить не принято), и поэтому приходится идти на хитрость — одни и те же линейки использовать дважды. Как видите, нота, расположенная на первой основной линейке, может соответствовать частоте 98 гц либо частоте 329,6 гц. Все зависит от того, какой знак стоит перед началом нотной записи — басовый или скрипичный ключ. Дополнением к скрипичному ключу служит цифра «8», применяемая при обозначении самых высоких (высокочастотных) звуков.
Музыканты почти никогда не говорят о частоте звука. Они присвоили каждой из 88 частот свое имя и только этим именем и пользуются, если нужно назвать звук той или иной высоты. Слоговые и буквенные имена каждого из 56 основных музыкальных звуков, соответствующих белым клавишам рояля, также приведены на рис. 9.
Названия дополнительных звуков (черные клавиши) образуются из основных путем прибавления частиц «диез» (обозначается значком #) или «бемоль» (обозначается значком b). Первая из них соответствует увеличению, а вторая уменьшению частоты на одну ступеньку. Так, например, звук с частотой 29,14 гц (крайняя левая черная клавиша) можно назвать «Ля2 диез» (ля2 #) либо «Си2 бемоль» (си2 b), причем оба названия равноправны. Если знак # или b появляется на нотных линейках, то, значит, последующую ноту (либо ноты — существуют дополнительные правила) нужно сдвинуть на одну ступеньку вверх или вниз.
Разделение всех музыкальных звуков на основные и дополнительные— это вопиющая несправедливость. Названия эти появились еще в средине века, когда звуки, соответствующие черным клавишам, в музыке почти не использовались. В наследство от тех времен и достались разноцветные клавиши и неоправданно сложная система обозначения дополнительных звуков.
Настройку музыкальных инструментов производят с помощью камертона, который совершает колебания подобно струне, но, в отличие от нее, имеет строго определенную, неизменную частоту колебаний. Опорной точкой музыкальной шкалы принято считать звук «ля'», имеющий частоту 440 гц.
Нужно сказать, что в свое время частота опорной точки «ля1» довольно часто и в значительных пределах менялась. Так, первый камертон, созданный около 250 лет назад, давал звук «ля1» с частотой 419, 9 гц. Первый камертон Парижской оперы для этой же ноты давал частоту 405 гц. Вскоре, правда, частота этого камертона была повышена до 425 гц, затем до 440 гц и, наконец, к 1857 году до 448 гц. В то же время в знаменитом Миланском оперном театре Ла Скала камертон звучал с частотой 451,5 гц, а в Лондонской опере — 455 гц. Сейчас музыканты избавлены от подобной путаницы — частота 440 гц для звука «ля1» узаконена международным стандартом.
В современной музыке все частотные ступеньки, то есть интервалы между соседними клавишами, равноправны и независимо от цвета клавиш имеют одинаковую высоту. Здесь, правда, необходимо пояснить, что мы имеем в виду под словом «одинаковая».
Так же, как и при оценке громкости, для нашего слуха важно не абсолютное, а относительное изменение частоты, то есть изменение не «на столько-то герц», а «во столько-то раз», или, что то же самое, «на столько-то процентов». Например, мы ощутим одинаковое повышение тона, если изменим частоту от 100 до 120 гц, или от 10 до 12 кгц. Как видите, по абсолютной величине прирост частоты получается разным — в первом случае на 20 гц, во втором на 2000 гц. И все-таки изменение тона будет казаться одинаковым, так как частота увеличилась в одно и то же число раз — в обоих случаях ее прирост составил 20 %.
При подъеме на любую последующую ступеньку частота музыкального звука повышается примерно на 6 %, и это всегда вызывает ощущение одинакового повышения тона. Вот почему мы говорим, что все частотные ступеньки имеют одинаковую высоту. В то же время по абсолютной величине расстояние между соседними музыкальными тонами резко меняется (сравните частоты соседних звуков на рис. 9).
Частотный интервал между соседними клавишами рояля, независимо от их цвета, получил название «полутон» (изменение частоты 6 %), а интервал в два полутона составляет «тон». Нетрудно подсчитать, что вся музыкальная шкала разбита на 87 полутонов, то есть 431/2 тона.
Вы уже, конечно, обратили внимание, что названия музыкальных звуков периодически повторяются и следуют друг за другом одинаковыми комплектами. Каждый такой комплект называется октавой и состоит из пяти дополнительных и семи основных звуков — «до», «ре», «ми», «фа», «соль», «ля», «си». Если вы сравните одинаковые по названию звуки из соседних октав, например «до» и «до1» или «ля1» и «ля2», то обнаружите изумительную вещь: одна из частот больше другой ровно в два раза. Вот это самое «в два раза» и лежит в основе любой, в том числе и современной, музыкальной шкалы.
Появление нот двойной (четырехкратной, восьмикратной и т. д.) частоты не случайность и не выдумка изобретателя. По требованию самой природы мы вводим именно это соотношение, подобно тому, как покупаем именно два ботинка, а не один, не три и не сорок. Соотношение частот «в два раза» (то есть на 100 %) слух ставит на особое место: для слуха это самое приятное, самое естественное соотношение.
В этом можно легко убедиться: ударьте одновременно по двум одноименным клавишам рояля, и вы услышите два очень похожих звука, точнее даже — один богато окрашенный звук. Частотный интервал между двумя ближайшими одноименными звуками, например «ля1» — «ля2», называется октавой. Поэтому мы говорим, что музыкальный диапазон включает в себя семь полных октав. Каждая октава, в свою очередь, разделяется на 12 полутонов, каждый из которых дает сдвиг частоты на 6 %.
Чем же замечательны звуки с интервалом в октаву? Почему слух по-особому ощущает двойную частоту, по-особому реагирует на сочетание звуков, если их частоты отличаются именно «в два раза»?
В поисках ответа мы опять обратимся к роялю. Очень осторожно, так, чтобы не извлечь звука, нажмите клавишу «ля2» (f 2 = 880 гц), а затем ударьте по клавише «ля1» (f1 = 440 гц) и сразу же ее отпустите. Когда звук «ля1» затихнет, вы еще довольно долго будете слышать более высокий тон «ля2». Тот же эффект можно получить с двумя любыми клавишами, которым соответствует частотный интервал в одну, две, три и так далее октавы. Чем объяснить этот эффект? Резонансом? Но почему струна с частотой собственных колебаний 880 гц резонирует на частоте 440 гц? Как увязать такой незаконный резонанс с тем, что мы знаем о колебаниях струны?
Рассматривая процесс колебаний струны, мы значительно упростили его. Струна колеблется не только целиком, но еще и отдельными своими частями — половинками, третями, четвертушками и т. д. (рис. 10).
Рис. 10. Струна колеблется не только целиком, но и отдельными своими частями; поэтому ее звук содержит большое число гармоник (обертонов).
Поэтому реальная струна создает звук сложной формы, спектр которого содержит синусоидальные составляющие с кратными частотами: двойной, тройной, четырехкратной и т. д. Пример: струна «ля1», кроме основного звука, с частотой 440 гц, создает призвуки, как говорят музыканты, — обертоны: первый обертон 880 гц, второй — 1320 гц, третий — 1760 гц и т. д.
В физике и технике обертоны называют гармоническими составляющими или, сокращенно, гармониками. Этим названием будем в дальнейшем пользоваться и мы. Учтите, что обертоны и гармоники нумеруются по-разному. Синусоидальный тон основной частоты (в нашем примере 440 гц) называют первой гармоникой, тон двойной частоты (880 гц), который у музыкантов числится первым обертоном, называется второй гармоникой, второй обертон (1320 гц) — третьей гармоникой и т. д. Проще говоря, в нумерацию обертонов не входит основной тон, а в нумерацию гармоник он входит. Чтобы подсчитать частоту той или иной гармоники, достаточно умножить частоту основного тона на ее порядковый номер. Легко подсчитать, что для нашего примера частота восьмой гармоники равна 3520 гц (440·8), десятой — 4400 гц (440·10) и т. д.
Теперь уже ясно, что резонанс, который мы наблюдали в своем последнем опыте, — явление вполне законное. Просто струну «ля2» (f 2 = 880 гц) привела в движение вторая гармоника колебаний струны «ля1» (2f 1 = 880 гц). Подобные явления могут сблизить звучание двух (или нескольких) тонов разной высоты. Причем главную роль в этом сближении играет ухо: оно само чуть-чуть искажает форму звукового сигнала, само создает и сравнивает гармоники какого-либо созвучия, то есть двух или нескольких звуков. При этом особое предпочтение отдается тем созвучиям, гармоники которых совпадают по частоте. Совершенно ясно, что первое место среди таких привилегированных созвучий занимают чистая прима (табл. 5) и октава — здесь гармоники согласованы наилучшим образом (рис. 10). Вот почему наш слух так хорошо выделяет интервал, соответствующий октаве, вот почему этот благозвучный интервал стал основой музыкальной шкалы.
Наряду с примой и октавой наш слух выделяет еще несколько благозвучных интервалов, так называемых консонансов. Прежде всего это чистая квинта (табл. 5), отчасти чистая кварта и в некоторой степени терция и секста. Остальные интервалы — это диссонансы, они звучат резко, даже неприятно, создают какие-то раздражающие призвуки (рис. 11).
Рис. 11. В зависимости от интервала между двумя звуками наш слух различает созвучия консонансы (благозвучные, приятные) и созвучия диссонансы (неприятные, раздражающие).
Первые исследователи музыкальной шкалы, а этой проблемой занимался еще Пифагор, ввели в нее консонирующие интервалы в чистом виде. Однако высота частотных ступенек при этом получалась неодинаковой, и в звучании музыки часто слышалась фальшь. Около 250 лет назад немецкий ученый и музыкант Лндреас Веркмейстер путем довольно сложных математических расчетов создал так называемую двенадцатиступенчатую, равномерно темперированную шкалу. На ней высота всех частотных ступенек одинакова (6 %), и в то же время имеются интервалы, очень близкие к консонирующим: к чистой квинте, терции, кварте и др. Этой шкалой пользуется и современная музыка, хотя время от времени предлагаются проекты более совершенной музыкальной шкалы: с большим числом ступенек в пределах октавы, большим приближением к естественным, продиктованным самой природой консонирующим интервалам. Пока эти проекты остаются только проектами. Но вряд ли стоит утверждать, что в будущем они не станут достоянием музыкального искусства.
В чем же состоит различие консонанса и диссонанса? Почему ухо по-разному реагирует на них? За счет чего одни созвучия мы относим к приятным, а другие едва в состоянии слушать? Впервые на эти вопросы попытался ответить Гельмгольц. Исследуя хорошо известное музыкантам явление — возникновение в самом ухе гармоник и комбинационных тонов, он построил довольно строгую теорию консонанса. Вот уже около ста лет ученые стремятся дополнить, развить, проверить или опровергнуть эту теорию и сами при этом открывают новые и интересные подробности анализа созвучий.
В качестве примера можно указать работы профессора С. Н. Ржевкина, который исследовал созвучия, подводя один чистый тон к правому уху, а второй — к левому. Оказалось, что в этом случае мы вообще не в состоянии заметить ни консонансов, ни диссонансов. Так еще раз было доказано, что истинное созвучие получается лишь тогда, когда оба звука попадают в одно ухо и там создают «гибридные» комбинационные тона.
Другую музыкальную проблему, привлекающую внимание физиков и физиологов, можно определить одним словом «ритмы». Марш, вальс, галоп, колыбельная. Даже эти простые примеры говорят о том, что ритмический рисунок — сложное чередование акцентов, пауз, звуков различной длительности — одно из главных выразительных средств музыки. Попутно хочется заметить, что не только в музыке, но в стихах, отчасти и в прозе, слух выделяет, а мозг оценивает созвучия (рифмы) и ритмы. Есть основание думать, что действие музыкальных и поэтических ритмов связано с ходом наших внутренних «биологических часов». Эти «часы» представляют собой сложные и пока еще во многом загадочные биологические и биохимические системы, которые отбивают такт работы отдельных клеток и целых органов — сердца, легких, мозга, определяют ритм жизни.
Наряду с изменением громкости и высоты звука, сложными ритмами, приятным и неприятным сочетанием тонов музыкальное искусство использует еще одно сильнейшее «оружие» — тембры. Мы уже знаем, что тембровая окраска определяется спектром звука — числом гармоник (обертонов) и их амплитудами. Ну, а сам спектр прежде всего зависит от того, каким способом создается звук, какой музыкальный инструмент является его источником [1]При быстрых колебаниях струны человек, разумеется, не успеет выполнить всех этих операций, но это не значит, что они вообще не выполнимы. Существуют электронные приборы, например, осциллографы, которые успевают «следить» за быстрыми процессами и строить их графики.
.
Из всех музыкальных инструментов принято выделять три основные группы: струнные, духовые и ударные (рис. 12).
Рис. 12. Музыкальные инструменты.
В струнных инструментах, как говорит само название, источником звука является колеблющаяся струна. Можно думать, что далеким предком этих инструментов была туго натянутая поющая тетива лука. В зависимости от того, каким образом струна приводится в движение, среди струнных инструментов выделяют смычковые (скрипка, альт, виолончель, контрабас), щипковые (арфа, гитара, гусли, мандолина, балалайка) и клавишно-ударные (рояль).
Сама по себе струна создает очень слабый звук — уже на расстоянии 2–3 м он почти не слышен. Это связано с тем, что струна, даже самая толстая, имеет очень небольшую площадь поперечного сечения и увлекает за собой малый объем воздуха. Чтобы получить заметную звуковую мощность, во всех струнных инструментах, струну объединяют с большим излучателем. Струна приводит в движение излучатель, а он уже, захватывая большие массы воздуха, создает достаточно мощное излучение. У скрипки, гитары, контрабаса основной излучатель звука — это сам корпус инструмента, у рояля основным излучателем является особой формы доска — резонансная дека, над которой натянуты струны.
У каждого типа музыкальных инструментов имеется свой характерный тембр. Более того, даже инструменты одного и того же типа создают звук с различной тембровой окраской. Так, например, прослушав несколько, казалось бы, одинаковых скрипок, человек с хорошим слухом у каждой из них обнаружит какую-либо особенность звучания.
Как уже говорилось, струна создает большое число гармоник. Излучатель-корпус, резонируя на разных частотах, усиливает те или иные гармоники, подчеркивает их, окончательно формирует тембр. Те области частотного диапазона, где происходит усиление, подчеркивание гармоник, называют формантами. Можно сказать, что форманта — это область, где частотная характеристика излучателя звука имеет заметный подъем.
В правой части рис. 12 показаны графики, характеризующие тембровые особенности некоторых музыкальных инструментов. Первые два графика — это резонансные характеристики различных по звучанию скрипок. Характеристики показывают, в какой степени тот или иной инструмент подчеркивает звуковые колебания разных частот. Из графиков видно, что различные по характеру звучания скрипки прежде всего отличаются своими формантами. Так, в частности, главная форманта в знаменитых скрипках старинного итальянского мастера Страдивариуса находится в области 3200–4200 гц, в то время как у плохой скрипки эта форманта сдвинута в область 2200–2800 гц.
На третьем графике показан спектр звука «до» (частота 130 гц) на современном рояле, а на следующем графике — спектр того же звука, воспроизведенного на фортепьяно эпохи Бетховена. В старинном фортепьяно применялись тонкие струны, и натянуты они были во много раз слабее, чем на современном рояле. Ударный молоточек был оклеен сравнительно жестким материалом, поэтому звук содержал большое число высших гармоник и имел звенящий («проволочный») оттенок.
В духовых музыкальных инструментах основным звучащим телом является столб воздуха. В зависимости от того, каким образом создаются колебания воздушного столба, различают духовые инструменты язычковые и безъязычковые. В язычковых инструментах (кларнет, гобой, саксофон, фагот) поток воздуха заставляет колебаться упругий язычок — тонкую металлическую, деревянную или тростниковую пластинку.
Сложная колебательная система «язычок — столб воздуха» и определяет «голос» инструмента. К язычковым духовым можно отнести баяны, гармони, аккордеоны. Здесь металлические язычки приводятся в движение воздухом, который нагнетают мехами. К язычковым часто относят и так называемые амбушюрные инструменты. Это трубы (труба, тромбон, валторна, пионерский горн), где роль колеблющегося язычка выполняют определенным образом сложенные губы музыканта.
Безъязычковые духовые инструменты (флейта, свирель, дудка) часто называют свистковыми — по принципу действия они напоминают обычный свисток. Источником колебаний в этих инструментах является воздушный вихрь — быстрый поток воздуха. Зацепившись за острый край так называемой губы, он создает ритмические вихревые движения, а они возбуждают звуковые колебания всего воздушного столба. Точно так же создается звук во многих органных трубах. В старинных органах воздух нагнетали большими мехами, а сейчас для этой цели используют мощные вентиляторы с электромоторами. Органист, нажимая на клавиши, переключает потоки воздуха, подает их на различные трубы.
В современном органе имеется несколько тысяч труб, которые создают звуки различной высоты и различных тембров. Частота звука зависит от размеров трубы. Большие органные трубы (длина до 11 м) создают низкочастотные звуки, а маленькие (длина до 10 мм) — высокочастотные. В духовых инструментах есть только одна труба, и для изменения высоты звука меняют ее действующую длину.
Для этого с помощью клапанов, а иногда и с помощью пальцев перекрывают отверстия в самой трубе (кларнет, фагот, гобой и др.), или направляют воздушный поток в ответвления основной трубы (валторна, кларнет, труба и др), или, наконец, меняют длину трубы с помощью выдвижного колена (тромбон). Кроме того, менять частоту звука можно, используя различные приемы вдувания воздуха, как это делают горнисты.
Особенность большинства ударных инструментов состоит в том, что они создают звук с большим числом сравнительно мощных гармоник, и, как правило, трудно говорить об основной частоте такого звука. Гармонические составляющие так близки, что их приходится рассматривать как сплошные полосы частот. Тембр ударного инструмента зависит от того, какие частоты входят в эту полосу и как распределяется мощность звука между участками полосы. Известно, что большой барабан явно «басит», а маленький создает резкий, звенящий звук, в который наряду с низкочастотными входят еще и высокочастотные составляющие. Эти особенности звучания отражены и в спектрах звука большого и малого барабанов (рис. 12).
У всякого музыкального звука различают три части: атаку, установившуюся часть и спад. Тембр любого музыкального инструмента зависит от того, как изменяется сила звука, от формы атаки и спада. Был проделан интересный опыт, который показал, насколько велико значение характера атаки. Музыкантам предложили прослушать через наушники несколько различных инструментов, причем наушники включались лишь после окончания атаки, через несколько десятых долей секунды после начала звучания. При этом даже опытные музыканты путали одни инструменты с другими.
Можно предположить, что подобные ошибки возникали с непривычки, так как слух музыкантов не приучен к обрубленным звукам, которые по своему спектру сильно отличаются от настоящего звука с нормальной атакой. Во всяком случае, ошибку никак нельзя отнести за счет плохой работы слухового аппарата — ухо анализирует и различает спектры сложных звуков с очень высокой точностью. Человек с натренированным слухом слышит каждую из 10–15 наиболее сильных гармоник сложного звука. Дирижеры и хормейстеры четко различают в многоголосом звучании хора и оркестра голоса певцов и звучание отдельных инструментов.
Рассказывают, что известный итальянский дирижер Артуро Тосканини однажды остановил репетицию большого симфонического оркестра и сделал замечание какому-то скрипачу — одна из струн его скрипки имела чуть-чуть пониженную частоту.
Изумительной способностью слухового аппарата анализировать спектры сложных звуков пользуется каждый из нас. Именно благодаря этой способности мы различаем звуки речи и можем обмениваться информацией по линиям акустической связи, проще говоря, можем разговаривать друг с другом.
Звуки речи имеют очень сложную форму кривой и очень сложный спектральный состав (рис. 7, 6). Формируются эти звуки голосовым аппаратом, который часто называют самым совершенным музыкальным инструментом. Звук образуется с помощью воздушного потока, который создают легкие.
После глубокого вдоха человек может выдохнуть около 4000 см3 воздуха, а при спокойном дыхании объем этот уменьшается в 5—10 раз. Когда мы поем, то расходуем 50—100 см3 воздуха в секунду, а при разговоре воздух расходуется еще экономнее. Интересно, что при тихом пении (пиано) опытные певцы расходуют в два раза больше воздуха, чем при громком (форте).
Легкие, подобно мехам баяна, продувают воздух через главный генератор звуковых колебаний — голосовые связки. Когда человек дышит, то голосовые связки раздвинуты, и образовавшаяся между ними щель легко пропускает воздух. Когда же мы говорим или поем, то щель сужается, а сами связки вибрируют и создают звук (рис. 7, 6, а, б). Управляют голосовыми связками особые мускулы, получающие сигналы из мозга. Меняя натяжение и длину связок, эти мускулы изменяют и основную частоту звуковых колебаний.
рис. 7, 6, а, б
Далее звуковая волна проходит через сложные резонансные полости (рот, носоглотка), где окончательно формируется спектр звука. В этом процессе главную роль играют губы, язык, зубы, нос, нёбо, с помощью которых подчеркиваются определенные составляющие сложного звука, то есть создаются определенные форманты. Так, в частности, для звука «о» характерна одна формантная область, середина которой может лежать в пределах от 550 до 850 гц; для звука «а» обнаружены две форманты — 550–850 гц и около 3 кгц; для звука «у» три форманты — около 550, 1900 и 2990 гц.
Сложнее обстоит дело с согласными звуками — некоторые из них произносятся без участия голосовых связок, а только с помощью полости рта. Для ряда согласных характерны составляющие сочень высокими частотами: для «ш» — до 4 кгц, для «с» — до 8 кгц. Для согласной «р» характерна составляющая с очень низкой частотой — около 20 гц.
Несколько слов о характеристиках певческого голоса. Прежде всего мы различаем голоса певцов по их частотному диапазону (табл. 6).
Приведенные в таблице цифры — это весьма условные границы, и их нельзя считать пределом. Так, например, около двухсот лет назад Моцарт слушал певицу Бастарделлу, которая довольно легко брала си третьей октавы (частота 1975 гц). А несколько лет назад в нашей стране гастролировала перуанская певица Има Сумак, которая пела не только в диапазонах женских голосов, но могла перейти в область тенора, баритона и даже баса [2]Как видите, слово «тон» имеет два значения: оно относится к высоте звучания и является своего рода музыкальной единицей частотного интервала. Два значения имеет и слово «октава»: определяет полный комплект звуков (нот) от «до» до «до», а также интервал между частотами, одна из которых в два раза больше другой.
.
Важная характеристика певческого голоса — вибрато. Так называют сравнительно медленное, с частотой около 6 гц, «качание» голоса. При меньшей частоте это качание кажется очень неприятным, при большей частоте в голосе слышится какая-то дрожь.
Красота звучания голоса в большей степени зависит от певческой форманты, которая лежит в области 2800 гц для мужских и в области 3200 гц для женских голосов. Значительное повышение частоты этой форманты придает голосу крикливость.
Процессы образования звуков речи и формирования певческого голоса еще далеко не изучены. Пока мы еще не можем полностью разобрать на части такую сложную характеристику, как красота певческого голоса. И вместе с тем такие точные показатели, как частота вибрато, сила голоса, частотные границы, средние частоты формантных областей, помогают оценивать голосовые данные, помогают формировать красивые голоса при обучении певцов.
При разговоре и пении человек расходует на создание звуковых волн очень небольшую мощность — даже для громких звуков она не превышает 1 вт. Но лишь очень небольшая часть этой небольшой мощности передается самим звуковым колебаниям, так как коэффициент полезного действия (к. п. д.) нашего речевого аппарата составляет 0,2–1 %. Таким образом, расходуя мощность 1 вт, мы излучаем звуковые колебания мощностью не более 0,01 вт (10 мет). Попутно заметим, что к. п. д. большинства музыкальных инструментов также очень мал: как правило, меньше 0,1 %.
По мере удаления от излучателя сила звука резко убывает. Здесь действует так называемая квадратичная зависимость: если увеличить расстояние в два раза, то сила звука уменьшится в четыре раза; при увеличении расстояния в десять раз сила звука падает в сто раз.
Все приведенные цифры говорят о том, что уху достаются очень слабые звуковые сигналы. Это особенно сильно ощущается, если собеседник находится далеко от нас и его голос теряется на фоне различных посторонних шумов. Когда уровень этих шумов невелик, например в ночное время, дальность разговорной связи заметно возрастает. Однако даже в самых благоприятных условиях наибольшее расстояние, на котором люди могут переговариваться или «перекрикиваться», не превышает нескольких тысяч метров.
Звуковой связью пользуются многие представители живого мира. Примитивной звуковой связью пользовались и первобытные люди. А затем она послужила основой для развития разумной речи, для развития мышления.
Очень четко об этом сказал Фридрих Энгельс: «Сначала труд, а затем и вместе с ним членораздельная речь явились двумя самыми главными стимулами, под влиянием которых мозг обезьяны постепенно превратился в человеческий мозг…»
Но если наших далеких предков вполне устраивала звуковая связь, то ее оказалось явно недостаточно в наш век — век больших скоростей, могучей промышленности, в век сложных экономических связей между отдаленными районами. На помощь медленному звуку пришел электрический сигнал, который мгновенно и без устали проходит огромные расстояния. С помощью такого замечательного союзника древнейшее изобретение природы — звуковая связь — начало совершенно новую жизнь.
В линиях акустической связи звуковые волны переносят информацию. Но каким образом записана эта информация, чем отличаются одни звуковые сигналы от других, как закодирована звуковая «телеграмма»?
Мы уже знаем, что различные звуки имеют разную форму кривой графиков, то есть различный спектральный состав. Именно в форме кривой звука, в его спектральном составе «записаны» знакомые слова, именно набором синусоидальных составляющих звук, несущий «да», отличается от звука, несущего «нет».
По образцу звуковых колебаний можно создать электрические колебания с такой же формой кривой, а значит, и с таким же спектром. В этом случае в электрических колебаниях будет записана та же информация, что и в звуковых. Электрическую копию звука можно передать на большие расстояния, отправить на длительное хранение («записать»), во много раз усилить ее мощность и, наконец, когда это понадобится, вновь превратить в звук.
В следующей главе мы познакомимся с некоторыми участниками этих интересных преобразований.