До сих пор при выборе схемы и конструкции усилителя низкой частоты мы обращали главное внимание на то, чтобы он усиливал электрический сигнал с минимальными искажениями. Это требование будет оставаться главным и в дальнейшем, когда мы займемся конструированием сравнительно мощных усилителей, например для радиоузлов. Однако по мере увеличения выходной мощности все большее значение приобретает еще один показатель работы усилителя — его к. п. д.
Этот коэффициент говорит о том, насколько продуктивно усилитель использует электроэнергию для создания мощной копии сигнала. Так, например, если к. п. д. равен 50 %, то это значит, что только половина потребляемой энергии превращается в мощную копию сигнала, а вторая половина безвозвратно теряется в различных цепях усилителя, в итоге превращаясь в тепло.
Чем меньше к. п. д., тем большую мощность нужно подвести к усилителю для создания каждого ватта выходной мощности. В нашем примере (к. п. д. = 50 %) на каждый ватт выходной мощности расходовалось 2 вт. При к. п. д. = 25 % этот расход увеличивается уже до 4 вт, а потери возрастают до 3 вт. Ясно, что с увеличением мощности усилителя пропорционально возрастает и мощность потерь. Вот почему борьба за высокий к. п. д. приобретает особое значение при разработке мощных усилителей. Важно также повышать к. п. д. и в электронных устройствах небольшой мощности, если они выпускаются большим тиражом. Так, например, если всего на 10 % уменьшить мощность, потребляемую каждым телевизором, то в целом по стране это даст гигантскую экономию электроэнергии — примерно 10 миллионов рублей в год! Этой суммы хватит на то, чтобы построить благоустроенные квартиры на 1000–1500 человек.
Наряду с экономией энергии повышение к. п. д. имеет еще одно важное достоинство. Уменьшается потребляемая мощность, и вместе с этим упрощается устройство анодного выпрямителя, фильтров, силового трансформатора. Для радиолюбителя это может иметь первостепенное значение. Так, например, если в вашем распоряжении есть силовой трансформатор мощностью 60 вт, то с его помощью можно питать усилитель мощностью 15 вт, если его к. п. д. составляет 25 %, или усилитель мощностью 30 вт с к. п. д. = 50 %. Иными словами, при ограниченной потребляемой мощности выходная мощность усилителя будет тем больше, чем экономнее мы научимся расходовать энергию, чем более высокий к. п. д. сумеем получить (рис. 52).
Рис. 52. Чем выше к. п. д. усилителя, тем больше выходная мощность при неизменной потребляемой мощности.
В усилителях НЧ главная арена борьбы за повышение к. п. д. — это анодные цепи ламп выходного каскада. Уменьшить мощность, потребляемую накальными цепями, мы не можем: для данного типа лампы напряжение и ток накала ни при каких обстоятельствах уменьшать нельзя. Экономить энергию, потребляемую в анодных и экранных цепях усилителя напряжения, не имеет особого смысла: на долю этих каскадов приходится сравнительно небольшая часть общего анодного тока, а значит, и небольшая часть мощности выпрямителя. Таким образом, остается единственная возможность заметно повысить к. п. д. всего усилителя — нужно уменьшить мощность, потребляемую в анодной цепи выходной лампы, точнее, повысить соотношение между выходной мощностью и потребляемой. Сейчас нам предстоит выяснить, какие существуют пути для того, чтобы улучшить это соотношение, и в какой степени повышение к. п. д. повлечет за собой рост (а может быть, и уменьшение?) искажений сигнала в выходном каскаде.
А, В и АВ с единицами и двойками
В этой странной, шифрованной записи скрыт секрет повышения к. п. д. усилителя. Ключ к шифру можно узнать, познакомившись с работой усилительного каскада, с теми событиями, которые происходят при изменении анодной нагрузки, смещения, напряжения сигнала, анодного и экранного напряжения— одним словом, при изменении режима лампы.
Еще раз нарисуем упрощенную схему выходного каскада и запишем, чему равна его выходная мощность Р вых и мощность, потребляемая в анодной цепи Р ао (рис. 53, 1, д, е). Теперь прямо в «лоб» начнем атаку на к. п. д. — попробуем увеличить полезную мощность, повышая переменное напряжение U а~ и переменную составляющую анодного тока I а~ .
Рис. 53, 1
Если увеличить сопротивление нагрузки R а , а это несложно сделать, изменив коэффициент трансформации Тр в (рис. 49), то одновременно возрастет и напряжение U а~ (закон Ома: U = I·R!). Казалось бы, найден путь повышения выходной мощности Р вых . Но, к сожалению, по этому пути мы далеко не уйдем.
Переменное напряжение на нагрузке U н , складываясь с постоянным анодным напряжением U aо , определяет напряжение на аноде лампы U а . Во время положительных полупериодов результирующее напряжение на аноде равно сумме U а0 и U а~ , а во время отрицательных полупериодов — их разности (рис. 53, 2). Поэтому вместе с напряжением на нагрузке U н растет максимальное напряжение на аноде (U макс = U а0 + U н. ампл ) и уменьшается минимальное напряжение (U мин = U а0 — U н. ампл ). Если в погоне за большой мощностью увеличить U н до такой степени, чтобы оно стало больше чем U а0 , то в некоторые моменты времени напряжение на аноде окажется отрицательным (рис. 53, 2, б, интервалы 1–2 и 3–4). При этом, естественно, и анодный ток станет равным нулю: при отрицательном напряжении на аноде он не притягивает электроны и они летят на управляющую, а в тетроде — на экранную сетку.
Прекращение анодного тока, пусть даже кратковременное, — это не что иное, как искажение формы сигнала, а его мы допустить не можем. Таким образом, и устанавливается предел повышения напряжения на нагрузке U н — оно не может быть больше чем U а0 . Об этом можно сказать и иначе, если ввести коэффициент использования анодного напряжения ζ. Искажений кривой тока можно избежать, если коэффициент ζ будет меньше единицы (рис. 53, 2, в, г).
Рис. 53, 2
Потерпев неудачу с увеличением U н , попробуем подступиться к задаче с другой стороны — увеличим переменную составляющую анодного тока I а~ . Сделать это довольно просто — достаточно увеличить переменное напряжение на сетке U вх , под действием которого меняется анодный ток. На рис. 53, 3, а вы видите встречавшийся раньше (рис. 30, 21) тройной график, на котором ламповая характеристика (динамическая) совмещена с графиками напряжения U c и тока I а . На графиках показан случай, когда амплитуда переменного входного напряжения U вх (ампл) равна постоянному отрицательному смещению на сетке. Ну, а что будет, если в погоне за большим переменным током увеличивать напряжение входного сигнала? Графики для этого случая показаны на рис. 53, 3, б. Присмотритесь к этим графикам и вы увидите, что результаты увеличения U вх оказались весьма печальными — форма графика тока сильно искажена. За счет захода в положительную область напряжений на сетке срезаны верхушки на графике тока (интервалы 1–2 и 5–6). Как только на сетке появляется «плюс», она перехватывает часть электронов и ток I с резко уменьшает входное сопротивление лампы.
Рис. 53, 3
Кроме того, анодный ток искажен и в области его минимальных значений. Отрицательное напряжение на сетке «перестаралось» — оно зашло слишком далеко, в ту область, где лампа оказывается запертой и анодного тока вообще нет. Из-за этого происходит так называемая отсечка анодного тока — напряжение на управляющей сетке меняется, а анодный ток равен нулю (интервал 3–4). Из графиков ясно видно, что во избежание искажений амплитуда переменной составляющей анодного тока I а~(ампл) не должна превышать постоянной составляющей I ао , а для этого напряжение на сетке U c не должно заходить ни в положительную область, ни в область, соответствующую запиранию лампы. Если ввести коэффициент использования анодного тока γ (рис. 53, 5, в), то можно сказать, что неискаженное усиление возможно тогда, когда у не превышает единицы. Работа усилителя при этих условиях называется классом усиления А.
Максимальная неискаженная мощность, которую можно получить в классе А, соответствует коэффициентам ζ = 1 и γ = 1, то есть U н (ампл) = U а0 и I а~(ампл) = I а0 . Таким образом, амплитуда наибольшей выходной мощности P вых (ампл) равна мощности Р а0 , потребляемой в анодной цепи от выпрямителя. Не забудьте, что здесь речь идет об амплитуде выходной мощности, а ее эффективное значение будет в два раза меньше (рис. 30, 9). Иными словами, эффективная выходная мощность P вых не превышает половины потребляемой мощности Р а0 . Это значит, что максимально возможный к. п. д. анодной цепи в классе А не превышает 50 %. Практически к.п.д. для этого класса усиления составляет 20–30 %.
рис. 30, 9
Сейчас вам предстоит стать свидетелями того, как будет найден выход из, казалось бы, безвыходного положения. Мы познакомимся со схемами усиления, в которых к. п. д. анодной цепи выше и даже значительно выше, чем 50 %. При этом мы пойдем по только что забракованному пути повышения мощности Р вых — будем увеличивать переменную составляющую анодного тока. Как и раньше, этот путь приведет нас к недопустимым нелинейным искажениям. Но для схем, о которых пойдет речь, — это не слишком большое зло. Искажая форму анодного тока, они (чудеса, да и только!) дают на выходе неискаженный сигнал. Правда, это относится не ко всем искажениям, а лишь к некоторым их видам. Вот почему прежде, чем рассматривать «чудесные» схемы, нам целесообразно подробнее познакомиться с самим механизмом искажений.
На рис. 53 и 54 показаны тройные графики основных режимов работы усилителя, основных классов усиления. Переход из одного класса в другой можно осуществить, изменяя напряжение входного сигнала и отрицательное смещение на сетку.
График рис. 53, 3, а относится к классу А, для которого характерны низкий к. п. д. и малые искажения.
Класс усиления АВ (рис. 54, 55 и 56, 1, б, в) характеризуется отсечкой анодного тока.
В отличие от класса А, рабочую точку (начальное отрицательное смещение U cм ) выбирают не в середине прямолинейного участка ламповой характеристики, а сдвигают ее влево — в сторону больших отрицательных напряжений. Проще говоря, отрицательное смещение U cм в классе АВ больше, чем в классе А (рис. 55).
Рис. 55. Изменяя уровень входного сигнала ( U вх ) и постоянное смещение на сетку ( U см ), можно менять режим усилителя, переводить его из одного класса усиления в другой.
Одновременно со смещением увеличивают напряжение входного сигнала. В результате всего этого и появляется отсечка — какую-то часть периода лампа заперта и анодный ток равен нулю. При переходе в класс АВ мы дважды выигрываем в борьбе за к. п. д. Во-первых, растет переменная составляющая анодного тока I а~ , а во-вторых, уменьшается его постоянная составляющая I а0 . Происходит это потому, что под действием большого смещения U cм уменьшается постоянный ток при отсутствии сигнала — ток покоя I пок . Постоянная составляющая I а0 в классе АВ несколько больше, чем I пок , но все же она меньше, чем в классе А.
Теперь, не меняя смещения U cм , будем увеличивать переменное напряжение на сетке U вх . После того как амплитуда U вх превысит U cм , на сетке в некоторые моменты времени будет появляться «плюс», а вместе с ним и небольшие импульсы сеточного тока I с . Это уже будет класс АВ 2 . Индекс «2» как раз и говорит о том, что каскад работает с сеточным током. Индекс «1» (A 1 и AB 1 ) соответствует классам усиления, при которых каскад работает без сеточных токов.
Индекс «1» часто не пишут, и поэтому, если вы встретите запись «класс А» или «класс АВ», знайте, что это относится к классам усиления A 1 и AB 1 . Если же каскад работает с сеточными токами, то индекс «2» пишут обязательно.
Рис. 54, 2
Класс АВ — понятие весьма расплывчатое. Ему может соответствовать и очень большая и очень небольшая по длительности отсечка анодного тока, а значит, большие и малые нелинейные искажения. Согласитесь сами, что одно дело, когда напряжение на сетке запирает лампу ненадолго, ну, скажем, на сотую долю периода, и совсем другое дело, когда лампа заперта чуть ли ни на целую половину периода. Поэтому в ряде случаев недостаточно указать, что каскад работает в классе АВ (иногда говорят: в режиме АВ или даже в режиме класса АВ), а нужно добавить, что анодный ток существует такую-то часть периода.
В теории усилителей для оценки времени существования тока применяют особую меру — угол отсечки θ (рис. 55, 56). Этот угол, как и угол сдвига фаз, измеряется в градусах (единица времени) и соответствует половине времени существования анодного тока. Так, например, если в результате отсечки ток существует лишь 3/4 периода, то угол отсечки равен 135° (время существования тока 270°). Для класса А, где никакой отсечки вообще нет, угол θ равен 180° (время существования тока 360°, то есть весь период). Ясно, что с уменьшением угла отсечки θ импульсы анодного тока становятся все более кратковременными, а паузы между ними растут, то есть резко возрастают искажения формы сигнала (ничего не поделаешь — знали, на что шли!). Одновременно с этим уменьшается I а0 и повышается к. п. д.
Увеличивая угол отсечки, можно дойти до того, что анодный ток будет существовать лишь половину периода (θ = 90°). Такой режим усиления выделяют особо и называют классом В (рис. 54, 55 и 56, 1, г). Теперь вам, очевидно, понятно и название класса АВ — оно говорит о том, что этот класс является промежуточным между классом А (время существования тока 360°, то есть угол отсечки 180°) и классом В (время существования тока 180°, то есть угол отсечки 90°). Класс В 2 — это тот же класс B1, но в случае, когда каскад работает с сеточными токами. Реальный к. п. д. анодной цепи в классе В достигает 70 % (в два раза больше, чем в классе А).
Рис. 54, 1
Отличительной особенностью класса В является то, что отрицательное смещение U cм полностью запирает лампу (U cм = U зап ), и поэтому при отсутствии сигнала анодный ток равен нулю (I пок = 0). Только во время положительного полупериода лампа отпирается, и в анодной цепи появляется ток. Постоянная составляющая анодного тока Iа0 зависит от уровня входного сигнала: чем больше U вх , тем больше импульсы анодного тока, тем больше I а0 . Поэтому во время реальной передачи, когда уровень входного сигнала резко меняется (именно в этом и отражено изменение громкости звука), постоянная составляющая анодного тока также не остается постоянной.
Если, работая в классе В, еще больше увеличить отрицательное смещение, то мы перейдем в класс С (C 1 или С 2 , рис. 54, 55, 56, 1, д), где угол отсечки меньше 90°, то есть время существования импульсов тока меньше половины периода (меньше 180°). Хотя этот класс характеризуется весьма высоким к. п. д., в усилителях низкой частоты он не применяется.
Рис. 54, 3
Дело в том, что искажения, которые появляются в классе С, не могут быть устранены даже в тех «волшебных» схемах, с которых мы начали разговор. В то же время подобные схемы если не полностью устраняют, то во всяком случае резко уменьшают искажения, возникающие при усилении в классах АВ и В. Сейчас мы с вами посмотрим, как все это происходит.
Рис. 56. Зависимость формы анодного тока и амплитуд его составляющих (гармоник) от угла отсечки.
Усилительная схема "Тянитолкай"
Все вы, конечно, знаете сказку в стихах Корнея Чуковского «Доктор Айболит». Но, помимо этой стихотворной сказки про Айболита, есть еще одна — в прозе. Ее Корней Иванович пересказал нашим ребятам по мотивам сказочной повести английского писателя Гью Лофтинга «Доктор Дулитл».
Среди героев этой повести есть одно необычное животное, по имени Тянитолкай. Это животное чем-то похоже на горного козла с большими рогами. Только у Тянитолкая две рогатые головы, одна спереди, а другая сзади, и он одинаково хорошо ходит, рычит, бодает и вперед и назад. В повести рассказано, как головы Тянитолкая по очереди спят и кушают, как следят, чтобы не подкрался охотник. Поэтому-то Тянитолкая до сих пор не удалось поймать, и его нет ни в одном цирке, ни в одном зоологическом саду.
Существуют усилительные схемы, которые чем-то напоминают двухголового Тянитолкая. Это схемы двухтактных усилителей, которые по-английски так и называются «тянитолкай» (пуш-пул). Двухтактный усилительный каскад состоит из двух одинаковых каскадов (каждый такой каскад-половинку называют плечом), которые, подобно головам сказочного Тянитолкая, могут работать поочередно, могут одинаково хорошо создавать в нагрузке ток вперед и назад (рис. 57).
Рис. 57. Двухтактная схема позволяет из двух сильно искаженных (с большой отсечкой) сигналов «сшить» один неискаженный.
Схемы усилителей, приведенные в предыдущей главе, в отличие от двухтактных, называют однотактными.
Знакомство с двухтактной схемой мы начнем с самого «страшного» случая — с работы усилительных каскадов в классе В (рис. 58, 1, 2).
рис. 58, 1, 2
Обе лампы двухтактного каскада Л' и Л" работают на общую нагрузку — громкоговоритель Гр. Он включен в анодные цепи через выходной трансформатор Трв с двумя первичными обмотками, точнее, с одной обмоткой, имеющей вывод от средней точки. По одной половине первичной обмотки (левой) проходит анодный ток лампы Л', по другой половине (правой) — анодный ток лампы Л". На сетки ламп подается одинаковое по величине отрицательное смещение — U см и одинаковое по величине переменное напряжение сигнала U вх . Напряжения эти подобраны так, что в каждом плече лампа работает с углом отсечки 90° (ток существует только половину периода), а это и является признаком класса В (рис. 56, 1, г).
В двухтактных схемах, работающих в любом из классов усиления, обязательно нужно выполнить такое условие: напряжения на управляющие сетки необходимо подавать в противофазе. Это значит, что в тот момент, когда на сетке лампы Л' действует положительный полупериод, на сетке Л" должен быть отрицательный полупериод входного напряжения.
В данном случае «положительный» и «отрицательный» — это уже не условные понятия: напряжение на сетках оценивается относительно одной общей точки: относительно шасси, куда обычно подключены катоды обеих ламп. Для нашего примера (рис. 58, 1, 2, 3) во время нечетных полупериодов 1–2, 3–4, 5–6 «плюс» сигнала подводится к сетке Л', а во время четных 2–3, 4–5, 6–7 — к сетке Л". Это значит, что Л' заперта во время четных полупериодов, а Л" — во время нечетных.
Поскольку лампы работают в классе В и работают поочередно, то в первичной обмотке Тр в поочередно будут проходить импульсы тока длительностью в половину периода каждый. Если рассматривать первичную обмотку как единое целое, то можно сказать, что эти импульсы будут иметь разное направление — импульсы от лампы Л' пойдут по обмотке слева направо (по схеме), импульсы от лампы Л" — справа налево. Направление магнитного поля катушки зависит от того, в какую сторону течет по ней ток. Поэтому магнитное поле в выходном трансформаторе Тр в будет переменным и, значит, будет переменным наведенное во вторичной обмотке выходное напряжение U вых . Одно плечо двухтактной схемы обеспечит положительный полупериод выходного напряжения, другое плечо — отрицательный полупериод этого напряжения. Выходная мощность равна сумме полезных мощностей каждой лампы. «Сшитый» из двух разных анодных токов выходной сигнал совершенно не отличается от того сигнала, который мы получили бы при усилении в классе А. Иными словами, двухтактная схема позволяет работать в экономичном классе В и в то же время дает неискаженный выходной сигнал.
К сожалению, все сказанное в полной мере относится лишь к идеальному, теоретическому усилителю, где работают лампы с характеристиками, не имеющими нижнего загиба.
К теоретическому классу В в какой-то степени приближаются триоды. Что же касается наиболее важных для нас выходных ламп — пендотов и лучевых тетродов, то из-за сильного нижнего загиба эти лампы, работая в классе В, заметно искажают сигнал (рис. 56, 3). Особенно сильно искажаются слабые сигналы, которые полностью попадают на нижний изогнутый участок ламповой характеристики.
Чтобы уменьшить вредное влияние нижнего загиба, двухтактный усилитель переводят в класс АВ. При этом несколько снижается к. п. д., но зато уменьшаются нелинейные искажения сигнала. Нужно сказать, что наибольшую мощность усилительный каскад отдает в классе АВ при угле отсечки 120°, а к. п. д. при этом достигает 50–60 %. Именно в таком режиме работает большинство двухтактных выходных каскадов. В тех случаях, когда от лампы хотят получить очень высокий к. п. д., используют классы усиления В2 и АВ2. Но, конечно, увеличение мощности в этом случае не достается даром — за него приходится платить дополнительными нелинейными искажениями, возникающими при появлении сеточных токов. Кроме того, с появлением сеточных токов увеличивается мощность, потребляемая от предыдущего каскада. Именно он поставляет энергию, которая теряется в сеточной цепи выходной лампы.
Довольно часто двухтактные схемы работают не только в экономичных классах АВ и В, но и в классе А, для которого вполне пригодны и однотактные усилители. Применение двухтактных схем для усилителей класса А объясняется тем, что «сшивание» выходного сигнала из двух кусков не единственное достоинство этих схем. Они обладают еще целым рядом других ценных особенностей, которые проявляются во всех классах усиления, в том числе и в классе А.
Для начала отметим, что постоянные составляющие анодных токов проходят по первичной обмотке Тр в в разных направлениях и создают магнитные поля, направленные одно против другого (рис. 58, 2, а, б, в). В итоге, постоянного магнитного поля вообще нет, и сердечник выходного трансформатора в двухтактной схеме работает без постоянного подмагничивания. Теперь уже не нужно делать в сердечнике зазор, ослабляющий магнитное поле, и сборку пластин следует производить в перекрышку. При сравнительно небольших размерах сердечника без зазора можно получить весьма большую (во всяком случае, значительно большую, чем для сердечника с зазором) индуктивность первичной обмотки, а это улучшает воспроизведение низших частот.
Другая особенность двухтактной схемы состоит в том, что ее анодные цепи можно питать выпрямленным напряжением со значительными пульсациями. Пульсации питающего тока, так же, как и его постоянные составляющие, проходят по первичной обмотке Тр в в разных направлениях и создают компенсирующие друг друга магнитные поля. Поэтому в цепи громкоговорителя не наводится напряжение пульсаций, и для питания анодных цепей двухтактного каскада может быть использован сравнительно простой фильтр.
Еще одно достоинство двухтактных схем: нелинейные искажения в них при прочих равных условиях всегда меньше, чем в однотактных схемах. Конечно, это имеет особенно большое значение для классов АВ и В, где мы сознательно идем на искажение формы сигнала. Так, например, если в классе В однотактный усилительный каскад дает совершенно недопустимый К н.и — около 40 %, то двухтактный каскад при тех же условиях позволяет снизить нелинейные искажения до 10–12 %. Для класса А только переход на двухтактную схему выходного каскада может привести к снижению К н.и с 7—10 % до 3–5 %. В сочетании с отрицательной обратной связью двухтактная схема позволяет уменьшить К н.и в классе А до 1 %, а в классе АВ — до 4–5 %.
За счет чего же уменьшаются нелинейные искажения в двухтактной схеме? Каким образом ослабляются (а может быть, исчезают?) посторонние гармоники, появившиеся в выходном сигнале из-за нелинейности ламповой характеристики, из-за отсечки анодного тока? Секрет здесь опять-таки во взаимодействии магнитных полей, которые создаются в выходном трансформаторе токами ламп Л' и Л".
Первая гармоника (I' a1 и I'' a1 ) и остальные нечетные гармоники анодных токов первого и второго плеча создают в первичной обмотке магнитные поля, которые всегда действуют в фазе (рис. 58, 2, а, б, г). Ток первой гармоники — это и есть выходной сигнал в чистом виде, и именно благодаря сложению магнитных полей первой гармоники суммируется полезная выходная мощность обеих ламп двухтактного каскада. Вторая (I' a2 и I'' a2 ) и остальные четные гармоники, подобно постоянным составляющим (I' a0 и I'' a0 ), создают в сердечнике магнитные поля, которые действуют друг против друга и взаимно уничтожаются (рис. 58, 2, а, б, д). Таким образом, в двухтактной схеме из искаженного выходного сигнала исчезают четные гармоники, а это равносильно резкому уменьшению нелинейных искажений.
Не забудьте, что для упрощения мы рассматриваем случай усиления чисто синусоидальных колебаний, и появившиеся в выходном сигнале гармоники — это вовсе не тембровая окраска усиливаемого звука (рис. 5). Здесь гармоники — это совершенно новые, посторонние составляющие, которых не было во входном сигнале и которым есть только одно название— искажение спектра. Что же касается полезных гармоник, то есть таких, которые поступают на вход каскада и определяют тембр звучания, то они образуют основной сигнал. Оба плеча двухтактной схемы суммируют его, складывают в первичной обмотке Тр в любые составляющие этого сигнала независимо от их частоты и фазы.
Мы коротко рассмотрели некоторые достоинства двухтактных схем. Справедливость требует, чтобы были упомянуты и их основные недостатки.
Прежде всего отметим такой очевидный и не очень приятный факт: в двухтактной схеме должны работать две лампы (или одна двойная). Еще одно неудобство — на сетки этих ламп усиливаемый сигнал нужно подавать в противофазе. А поскольку с микрофона, звукоснимателя, магнитной головки и т. п. мы получаем лишь один сигнал, то в усилителе должно быть устройство для сдвига фазы на 180.
Если не к недостаткам, то уж наверняка к трудностям нужно отнести необходимость строгой симметрии плеч двухтактного каскада. Симметрия нужна для того, чтобы выходной сигнал был «сшит» из одинаковых половинок, чтобы пульсации, постоянные составляющие и четные гармоники токов ламп с равной силой выходили на «поле боя» (в первичную обмотку выходного трансформатора) и полностью уничтожали друг друга. Для получения симметрии нужно, чтобы в двухтактном каскаде работали совершенно одинаковые лампы, причем в одном и том же режиме, и чтобы в обоих плечах применялись одинаковые детали. Главная трудность здесь состоит в изготовлении симметричной обмотки и выходного трансформатора и в подборке ламп — даже одинаковые по названию лампы могут иметь заметный разброс параметров.
Что касается трансформатора, то с ним связана еще одна трудность: его индуктивность рассеяния L pac должна быть очень небольшой. Для уменьшения L pac в ряде случаев приходится принимать специальные меры (стр. 203).
Значительные неудобства возникают, если двухтактный выходной каскад работает в классе В. В этом случае ток покоя ламп равен нулю (рис. 54), а постоянная составляющая анодного тока I а0 меняется в зависимости от уровня входного сигнала. Чем больше U вх , тем больше импульсы тока в анодной цепи, тем, следовательно, больше и постоянная составляющая этих импульсов I а0 . С этим связаны сразу две неприятности. Во-первых, изменение I а0 означает, что меняется ток, потребляемый от выпрямителя, и падение напряжения U ф на дросселе или сопротивлении фильтра (рис. 30, 18). В итоге меняется и постоянное напряжение на выходе выпрямителя, которое подается и на другие лампы. Вывод — анодные цепи ламп, работающих в классе В, и все остальные лампы усилителя не стоит питать через общий фильтр выпрямителя.
рис. 30, 18
Во-вторых, из-за отсутствия тока покоя и непостоянства постоянной составляющей I а0 в выходном каскаде нельзя применить удобную схему автоматического смещения — нельзя включить сопротивление в катодную цепь лампы. Смещение приходится подавать от отдельного источника, который обычно «выкраивают» в схеме питания (рис. 45, блок 5 В).
Оба последних недостатка в какой-то мере относятся к классу АВ. В этом случае, правда, ток покоя не равен нулю, однако постоянная составляющая I а0 все же меняется, причем тем сильнее, чем меньше угол отсечки. И хотя в большинстве случаев для усилителей, работающих в классе АВ, все же применяют автоматическое смещение, его, по возможности, следует заменить независимым смещением, то есть напряжением, которое не зависело бы от анодного тока выходных ламп.
Достоинства двухтактных схем привлекают конструкторов намного сильнее, чем отпугивают их недостатки. Вот почему, когда мощности одной лампы не хватает и речь идет об использовании в выходном каскаде двух ламп (кстати, для увеличения выходной мощности лампы можно включать параллельно), то этот каскад всегда собирают по двухтактной схеме. Распространенные выходные лампы развивают мощность до 4–5 вт, и поэтому двухтактный выходной каскад вы встретите во всех промышленных и любительских усилителях низкой частоты, в том числе, конечно, в усилителях радиоузлов, с выходной мощностью более 4–6 вт. В ряде случаев и выходные каскады очень небольшой мощности собирают по двухтактной схеме. Она незаменима, когда особо важно снизить потребляемую мощность (переносная аппаратура с питанием от батарей), а также в усилителях, к которым предъявляются очень жесткие требования в отношении нелинейных искажений.
Поскольку мы высказались за применение двухтактных схем, то нужно выяснить, как и в какой степени можно устранить их недостатки, какими путями можно преодолеть трудности, стоящие на пути применения двухтактных усилителей. Начнем с самого необходимого — со схем, которые позволяют подать на сетки ламп противофазные напряжения.
"Кру-гом!“
На уроках физкультуры вы наверняка видели, как выполняется эта команда, а может быть, даже выполняли ее сами. «Кру-гом!» — командует преподаватель. И тот, к кому это относится, четко поворачивается на 180°. Что-то похожее придется проделать с усиливаемым сигналом. Нужно и его научить поворачиваться на 180°, то есть сдвигать фазу на полпериода. При этом получится два сигнала: один с еще не сдвинутой фазой, а другой — со сдвинутой. Именно такие сигналы и нужны для подачи их на управляющие сетки ламп двухтактного усилителя. Электрические цепи или электронные схемы, которые заставляют переменное напряжение выполнять команду «кру-гом!» и выдают на выходе два одинаковых по величине и противофазных напряжения, называются фазоинверторами (рис. 59).
Рис. 59. На сетки ламп двухтактного выходного каскада сигналы необходимо подавать в противофазе. Для этой цели фазоинвертор каким-либо способом делит напряжение сигнала на две равные части и поворачивает на 180° фазу одной из них.
Один из простых фазоинверторов — это предоконечный каскад, в анодную цепь которого включен междуламповый трансформатор Тр м. л (рис. 58, 3, а).
Рис. 58, 3
Междуламповым он называется потому, что через него сигнал передается из анодной цепи предоконечной лампы на сетки выходных ламп. Вторичную обмотку трансформатора Тр м. л можно разделить на две части, и тогда мы получим два выходных напряжения. Сдвинуть фазу одного из этих напряжений на 180° не составляет труда: фаза напряжения на выходе любого трансформатора зависит от того, какой из выводов вторичной обмотки заземлен (рис. 39, 1). Вторичную обмотку междулампового трансформатора выполняют как одно целое и делают вывод от средней точки. Заземлив этот средний вывод, мы получим на краях вторичной обмотки два одинаковых по величине и противоположных по фазе напряжения. Чтобы убедиться в этом, попробуйте провести рассуждения с помощью «плюсов» и «минусов» (рис. 58, 3, б, в).
Несмотря на простоту, фазоинвертор с трансформатором применяют довольно редко: сам трансформатор считается сложной деталью, и там, где это возможно, стараются обходиться без него. Кроме того, лишний трансформатор — это лишний источник частотных и нелинейных искажений.
Другой простой фазоинвертор — это усилительный каскад с двумя нагрузками: анодной R a и катодной R к (рис. 60, 1, а). Известно, что при увеличении анодного тока напряжение на аноде Uа уменьшается, а напряжение U к на катодном сопротивлении R к увеличивается (рис. 60, 1, б).
рис. 60, 1
Это значит, что напряжения Uа и U к будут изменяться в противофазе и поэтому противофазными будут переменные составляющие этих напряжений U'вх 2 и Uвх 2 . Их-то мы и подаем на сетки ламп двухтактного выходного каскада. Для того чтобы оба сигнала не отличались по величине, нужно сделать R а и R к одинаковыми. Обычно каждое из этих сопротивлений составляет несколько десятков килоом. За счет такого большого R к каскад охвачен очень глубокой отрицательной обратной связью, сильно снижающей усиление. Обратите внимание на то, что сопротивление утечки R c1 подключено не к шасси, а к сопротивлению R * к . В противном случае на Л 1 подавалось бы не только постоянное смещение, появляющееся на R * к , но весьма большая (обычно десятки вольт) постоянная составляющая напряжения U к1 .
Существует и другая схема (рис. 60, 2, а, б), где постоянную составляющую U ко все же подают на сетку. Но одновременно с помощью делителя на сетку подают положительное напряжение U c0 . В этом случае смещение будет равно разнице между постоянным положительным и отрицательным напряжением. При налаживании такой схемы нельзя допустить, чтобы лампа даже на какое-то мгновение осталась без отрицательного смещения — «плюс» на сетке может вывести ее из строя.
рис. 60, 2
Напряжение сигнала на сетке лампы и переменное напряжение на ее аноде сдвинуты по фазе на 180° (рис. 30, 24), и это используется в целом ряде фазоинверсных схем. Обычно такие схемы выполняют на двух триодах, один из которых приносится в жертву — от этого триода не требуют усиления, он должен только сдвигать фазу.
рис. 30, 24
Один из вариантов фазоинвертора на двойном триоде показан на рис. 60, 3, а. Выходное напряжение U' вых с первого каскада Л' 1 подается прямо на сетку одной из ламп двухтактного усилителя. Часть этого напряжения с делителя R с2 , R * с2 , R б , подается на сетку второго триода Л'' 1 . Делитель во столько же раз уменьшает напряжение, во сколько лампа Л'' 1 его усиливает. Таким образом, на сетках ламп двухтактного каскада действуют одинаковые по величине, но противоположные по фазе напряжения U' вых и U'' вых . Эти напряжения сдвинуты по фазе на 180°, потому что первое из них действует в сеточной цепи, а второе получено из анодной цепи одной и той же лампы Л'' 1 ; лампа, как уже не раз отмечалось, сдвигает фазу на полпериода. Эта схема получила название автобалансной (самобалансирующейся). Напряжение с выхода Л' 1 так же как и с выхода Л'' 1 , подается на сопротивление R б . Детали схемы подобраны так, что при идеальном балансе, то есть когда U' вых = U'' вых , напряжение на R б равно нулю. В случае если одно из двух выходных напряжений изменится (например, из-за изменения параметров лампы или данных деталей), то на R б появится разностное напряжение, которое вновь сбалансирует схему. Аналогичный, но более простой автобалансный фазоинвертор вы найдете на схеме рис. 60, 3, б.
рис. 60, 3
В фазоинверсных схемах на двойном триоде катодное сопротивление не нужно шунтировать конденсатором, так как по нему проходят одинаковые по величине и противоположные по фазе анодные токи обеих ламп, и переменные составляющие этих токов компенсируют друг друга. В случае же если одна из переменных составляющих увеличится, то на Як сразу же появится напряжение отрицательной обратной связи, которое будет действовать против «выскочки». Таким образом, сопротивление R к можно рассматривать как элемент автобалансировки.
Это свойство используется и в фазоинверторе с катодной связью (рис. 62, 4), где переменные составляющие анодных токов Л' 1 и Л'' 1 несколько отличаются. Здесь переменное напряжение U' c1 на сетку Л'' 1 снимается с катодного сопротивления R к (точнее, R к + R * к ), так как сетка для переменного напряжения соединена непосредственно с корпусом через конденсатор С'' с1 .Для получения идеальной симметрии, то есть для того чтобы соблюдалось равенство U' вых = U'' вых , сопротивление анодной нагрузки R' a1 должно быть несколько меньше, чем R'' a1 . Только в этом случае при одинаковых выходных напряжениях токи ламп не будут равны и на R к появится переменное напряжение, необходимое для работы каскада. Это напряжение будет и при одинаковых сопротивлениях анодной нагрузки, но анодные токи ламп Л' 1 и Л'' 1 , а значит, и переменные напряжения U' вых и U'' вых в этом случае будут несколько отличаться. При достаточно большом сопротивлении R к необходимая величина U'' c1 получается при незначительной разнице между выходными сигналами, и асимметрия фазоинвертора лежит в допустимых пределах. Каскад охвачен отрицательной обратной связью и хорошо поддерживает начальную степень симметрии.
На практике находят применение все рассмотренные схемы фазоинверторов; каждая из них имеет свои достоинства и недостатки. Трансформаторная схема, несмотря на все ее минусы, незаменима в том случае, когда двухтактный выходной каскад работает с сеточными токами. Фазоинвертор с разделенной нагрузкой (рис. 60, 1, а) имеет хорошую частотную характеристику, однако не дает никакого усиления. Фазоинвертор с катодной связью мало чувствителен к пульсациям анодного напряжения и почти не создает нелинейных искажений.
К его недостаткам относят некоторые трудности получения идеальной симметрии, в частности при одинаковых сопротивлениях анодной нагрузки. Автобалансная схема дает значительно большее выходное напряжение по сравнению с двумя предыдущими, однако и она не лишена недостатков — здесь появляется асимметрия на высших частотах, частотная характеристика хуже, чем в схеме с разделенными нагрузками, и коэффициент нелинейных искажений выше, чем в схеме с катодной связью. Выбор той или иной схемы фазоинвертора зависит от требований, предъявляемых ко всему усилителю и к фазоинверсному каскаду, в частности.
От двух до пятидесяти
Выбор схемы усилителя низкой частоты и путей для получения той или иной выходной мощности, как правило, зависит от имеющихся у радиолюбителя основных деталей: силовых и выходных трансформаторов, вентилей и фильтров для выпрямителя, усилительных ламп и, в первую очередь, выходных ламп. Самое широкое распространение получили выходные пентоды и лучевые тетроды (для обоих типов второй элемент в названии — буква «П»), такие, как 6ПЗС, 6П6С, 6П1П, 6П14П и др. Каждая из этих ламп, разумеется, имеет свои особенности. Так 6П14П обладает весьма высокой крутизной, и поэтому на сетку ее можно подавать значительно меньшее напряжение сигнала, чем это требуется для других ламп; лампы 6П1П и 6П6С, по сравнению с другими, позволяют получить несколько меньшие нелинейные искажения.
Что же касается выходной мощности, то у всех сетевых ламп (так называют лампы, накал которых можно питать переменным током) эта мощность примерно одинакова и составляет 5–6 вт (рис. 80). Конечно, существуют и более мощные лампы, выходная мощность которых достигает десятков, сотен ватт и даже многих киловатт. Но все это лампы специального назначения — для мощных радиостанций и радиоузлов. Радиолюбители в своих конструкциях усилителей и радиоузлов такие лампы используют очень редко — любителям, как правило, хватает обычных приемо-усилительных ламп, то есть ламп, предназначенных для приемников, телевизоров, усилителей магнитофонов, радиограммофонов и т. п.
Наряду со многими ценными качествами (небольшие габариты, экономичность и др.) у приемо-усилительных ламп, есть одно совершенно бесспорное достоинство — можно зайти в радиомагазин и легко купить любую из них. Мощность, указанная среди параметров выходной лампы, относится к случаю, когда она работает в классе А при номинальном анодном напряжении — для большинства сетевых ламп 250 в. Изменив режим работы лампы и класс усиления, можно получить совсем другую величину Р вых . Минимальная мощность, как вы сами понимаете, не ограничена — можно довести лампу до того, что ее выходная мощность будет равна нулю. Выходные лампы обычно работают при анодных напряжениях не менее 150–180 вив этом случае дают мощность около 2 вт.
Что же касается верхней границы, то здесь основным ограничением является допустимая для данной лампы мощность рассеивания на аноде. Постоянная составляющая анодного тока I а0 и постоянное напряжение на аноде U а0 , если их перемножить, покажут ту постоянную мощность P а0 , которую лампа потребляет от выпрямителя. Часть этой мощности расходуется на создание усиленного сигнала — хорошо знакомой нам мощной копии. Та часть потребляемой мощности P а0 , которая не идет в дело, естественно, в лампе теряется: в основном она затрачивается на нагревание анода.
Тепло, которое анод может рассеять без чрезмерного перегрева, ограничено, и, таким образом, ограничена мощность потерь Р а.п . Это и кладет предел увеличению выходной мощности: чтобы больше выдавать, нужно больше брать и, к сожалению, больше терять.
Кстати говоря, в классе А наибольшая мощность теряется при отсутствии сигнала. Ввиду постоянства I а0 (I пок ) в классе А от выпрямителя потребляется всегда одна и та же мощность. И естественно, что вся она теряется на аноде, если нет никаких полезных затрат (если нет входного сигнала, то и выходная мощность равна нулю). В классе В, наоборот, при отсутствии сигнала лампа заперта и ничего не потребляет от выпрямителя, а с увеличением сигнала растет I а0 , и потери тоже возрастают. Наибольшая мощность потерь на аноде в классе АВ зависит от ряда факторов и обычно соответствует некоторому среднему уровню выходного сигнала.
Неудачно рассчитанный или плохо налаженный каскад, в котором мощность, теряемая на аноде, превышает допустимую величину, в буквальном смысле слова, виден издалека. Аноды ламп накаляются до красного свечения, объявившиеся в баллоне остатки газа усиленно ионизируются. Ионный ток создает в баллоне фиолетовое свечение, а положительные ионы бомбардируют и разрушают катод. Лампа не в состоянии долго работать в таких тяжелых условиях. Она очень быстро (при сильной перегрузке буквально через несколько минут) выходит из строя и часто заодно приводит в негодность такие ответственные узлы усилителя, как блок питания или выходной трансформатор.
С учетом возможностей той или иной лампы, в том числе с учетом ее допустимой мощности рассеивания на аноде и экранной сетке, рассчитаны типовые режимы для наиболее распространенных выходных ламп. Некоторые из этих режимов приведены в табл. 13, из которой видно, что две лампы 6ПЗС, работая в двухтактной схеме в классе АВ2 с фиксированным смещением от отдельного источника, развивают выходную мощность около 50 вт. Примерно такую же мощность, но в более легком режиме (класс AB1, автоматическое смещение создается на катодном сопротивлении) можно получить, если в каждом плече двухтактной схемы установить две соединенные параллельно лампы 6ПЗС. Не забудьте, что в этом случае вдвое уменьшается оптимальное сопротивление нагрузки и вдвое возрастает постоянная составляющая анодного тока (вместо двух стало четыре лампы!). Для получения нужного смещения в катодную цепь следует включить уже не 250 ом, как указано в табл. 13, а 125 ом.
Как видите, существующий ассортимент выходных (приемо-усилительных) ламп позволяет строить усилители самой различной мощности: от 1–2 до 50—100 вт.
Возможность получения той или иной мощности прежде всего зависит от схемы и режима выходного каскада и, конечно, от источника питания — от величины выпрямленного напряжения и от наибольшего тока, который может дать выпрямитель.
Усилители напряжения, работающие с выходными каскадами различной мощности, можно условно разделить на три группы: усилители для однотактных и двухтактных выходных каскадов, а также усилители для двухтактных каскадов, работающих с сеточными токами. Отличительная особенность третьей группы состоит в том, что последний каскад усилителя напряжения должен развивать сравнительно большую мощность — до 0,1–0,2 вт, которую потребляет сеточная цепь выходного каскада. Кроме того, напряжение сигнала на лампы выходного каскада обязательно должно подаваться через переходной трансформатор (рис. 58, 3, а).
Все, что было сказано до сих пор, стоит рассматривать как практический совет — не считайте параметры усилителя незыблемыми, а его схему неприкосновенной. При желании можно создавать усилители из готовых элементов разных схем. Взяв за основу какой-либо усилитель, довольно просто ввести в его схему новые регуляторы тембра, корректирующие элементы, цепи обратной связи или даже целые каскады, например фазоинвертор. Без существенных изменений схемы можно несколько изменить выходную мощность усилителя.
Повысить мощность однотактного усилителя можно только одним путем: поднять постоянное напряжение на аноде (и соответственно на экранной сетке) выходной лампы. Таким же образом можно увеличить выходную мощность и в двухтактном каскаде. Здесь, правда, существует еще один путь: если каскад работал в классе А, то его можно без особых изменений схемы перевести в класс AB 1 . Для этого, как правило, достаточно увеличить сопротивление в катодной цепи выходных ламп, то есть подать на сетку большее отрицательное смещение U cм (рис. 59). Кроме того, конечно, нужно увеличить и напряжение сигнала U вх , чтобы полностью использовать прямолинейный участок ламповой характеристики — дойти до границы сеточных токов (U c = 0).
Если усилитель напряжения имеет некоторый запас усиления, то, чтобы повысить U вх , достаточно лишь повернуть ручку регулятора громкости. Во всех случаях изменения режима выходного каскада полезно руководствоваться данными табл. 13, в которой вы найдете исходные данные (оптимальное сопротивление нагрузки R a.опт ) для изменения числа витков вторичной обмотки выходного трансформатора. Весь выходной трансформатор следует менять лишь в том случае, когда вы резко увеличиваете выходную мощность и тем самым резко повышаете ток, который проходит по первичной обмотке.
Справедливость требует, чтобы в заключение этих рекомендаций было высказано положение, которое кое-кого из вас обрадует, а кое-кого, может быть, и огорчит. Повышение мощности на 10–15 % и даже на 20 % дает сравнительно небольшое увеличение уровня громкости, и ради него не стоит идти на серьезные жертвы: перематывать трансформаторы, искать новые детали, в корне переделывать усилитель. Если вас не устраивает мощность 3 вт, то вряд ли устроит 4 вт, если мало иметь на выходе 10 вт, то будет мало и 12 вт. Вот почему неписаный закон делит любительские усилители НЧ в зависимости от их мощности на несколько основных групп: до 5 вт, до 10 вт, до 15 вт, порядка 25 вт и порядка 50 вт. К двум последним группам в основном относятся усилители для небольших, в частности школьных, радиоузлов.
В предыдущей главе мы познакомились с однотактными усилителями, выходная мощность которых составляет 2–4 вт. Повысив анодное напряжение и допустив несколько большие нелинейные искажения, можно повысить выходную мощность этих усилителей до 5,5 вт, а применив в оконечном каскаде лампу 6ПЗС, — до 6,5 вт (табл. 16). При замене выходных ламп учтите, что лампы 6П1П, 6П6С и 6ПЗС имеют меньшую крутизну, чем 6П14П, и поэтому для них требуется в два-три раза большее напряжение сигнала. Применение этих ламп в описанных однотактных усилителях может потребовать некоторых изменений и в усилителе напряжения: наверняка придется значительно повысить усиление первого каскада усилителя, увеличив для этого в два-три раза сопротивление анодной нагрузки и в полтора-два раза гасящее сопротивление в цепи экранной сетки. В некоторых случаях при замене выходной лампы понадобится изменить число витков во вторичной обмотке выходного трансформатора с учетом новой величины оптимального сопротивления нагрузки (рис. 49).
В этой главе будет описано несколько двухтактных усилителей мощностью 8 вт (15 вт) и 25 вт (50 вт). Последний усилитель предназначен для школьного радиоузла.
Схема усилителя на 8 вт приведена на рис. 65, а на рис. 64 упрощенно показано его устройство и монтаж. Основные характеристики усилителя: коэффициент нелинейных искажений не более 1 %; чувствительность не хуже 250 мв; полоса воспроизводимых частот от 30 гц до 30 кгц; глубина регулировки тембра на частоте 30 гц от +20 до —20 дб, а на частоте 10 кгц от +12 до —16 дб; частотная характеристика усилителя для среднего и крайних положений регуляторов тембра приведена на рис. 66, б.
Рис. 64. Двухтактный усилитель — монтажная схема.
Схема усилителя, по-видимому, не требует подробных пояснений, так как все ее элементы и узлы нам уже знакомы. Так, в частности, выходной каскад собран по ультралинейной схеме (рис. 39, 4): часть переменного напряжения с первичной обмотки выходного трансформатора через небольшие сопротивления R 28 и R 29 подается на экранные сетки ламп Л 3 Л 4 . Совершенно очевидно, что этим же путем на экранные сетки поступает и постоянное напряжение. В катодные цепи выходных ламп включена цепочка автоматического смещения, а в цепи управляющих сеток — небольшие (по сравнению с сопротивлением утечки) антипаразитные сопротивления R 25 , R 26 . Они препятствуют паразитному самовозбуждению выходного каскада на высоких частотах.
Четырехкаскадный усилитель напряжения собран на двух двойных триодах. Значительный запас усиления позволяет включить в схему (между первым и вторым каскадами) эффективные раздельные регуляторы тембра, а также ввести несколько цепей отрицательной обратной связи. Обратной связью по току охвачены все каскады усилителя напряжения, так как ни одно из сопротивлений автоматического смещения не зашунтировано конденсатором. Три последних каскада, в том числе главный источник искажений — выходной каскад, охвачены глубокой обратной связью по напряжению. Обратная связь подается со вторичной обмотки Тр 1 в катодную (сеточную) цепь правого триода Л 1 . В следующем каскаде есть цепочка обратной связи R 14 C 7 . Эта цепочка, так же как и сопротивления R 26 R 25 , вводится для того, чтобы предотвратить самовозбуждение усилителя на сверхзвуковых частотах. Фазоинвертор выполнен по схеме с разделенными нагрузками (рис. 60, 1, а) на правом триоде Л 2 . Напряжение смещения на сетку этой лампы снимается с небольшой части катодной нагрузки (R 20 ). Цепочки R 22 C 13 и R 5 C 12 — это обычные развязывающие фильтры, которые препятствуют возникновению паразитной обратной связи между каскадами через общие цепи питания.
Данные выходного трансформатора. Сечение сердечника 6,5 см2 (пластины Ш-22, толщина набора 30 мм). Первичная обмотка содержит 3000 витков провода ПЭ-0,15. В процессе ее намотки делают три отвода с таким расчетом, чтобы секции Iа и I г содержали по 900 витков, а секции Iб и Iв — по 600 витков. Обмотка II содержит 92 витка провода ПЭ-0,86, причем на секции IIа, IIб, и IIв приходится соответственно 24, 44 и 24 витка. Для того чтобы уменьшить индуктивность рассеивания и тем самым улучшить воспроизведение высших частот, первичная и вторичная обмотки разделены на части, которые при намотке трансформатора чередуются (рис. 64, б). Не забудьте, что вторичная обмотка заземлена, а на первичной действует большое (до 600 в) напряжение. Во избежание пробоя первичной обмотки, а значит, и всей «плюсовой» цепи нужно тщательно изолировать эту обмотку от вторичной, а также от сердечника трансформатора.
Акустический агрегат выбран с некоторым запасом мощности — 12 вт вместо 8 вт. Высокочастотные громкоговорители Гр 3 и Гр 4 подключены через разделительный конденсатор С 14 .
На рис. 65, 2, 3 показан другой вариант изготовления выходного трансформатора с весьма низкой индуктивностью рассеивания. Здесь вся первичная обмотка разделена на шесть секций, а вторичная на четыре секции. Секции чередуются таким образом, чтобы получилось наиболее сильное сцепление магнитных полей первичной и вторичной обмоток и чтобы трансформатор в то же время получился симметричным. Последнее условие улучшает общую симметрию двухтактного выходного каскада.
Каркас трансформатора разделен перегородкой на две равные части. Вначале наматывают все секции в одной из половин каркаса, а затем, перевернув его на 180°, наматывают вторую половину. Соединение секций выполнено в расчете на то, что левая и правая половины намотаны в разные стороны.
Рис. 65. Двухтактный усилитель — принципиальная схема.
Так же как и в предыдущем случае, необходима хорошая изоляция между секциями первичной и вторичной обмоток. Вторичная обмотка разбита на секции искусственно лишь для уменьшения индуктивности рассеивания. Данные секций: Iа', Iа", I г' и I г" — по 450 витков ПЭ-0,15; Iб и Iв — по 600 витков того же провода. Все четыре секции обмотки II одинаковые, и каждая из них содержит по 46 витков провода ПЭ-0,59. Сердечник с сечением 7,5 см2, пластины Ш-25, набор 30 мм. Сборка сердечника «встык», без зазора.
В усилителе можно применить и какой-либо готовый выходной трансформатор, например высокочастотный и низкочастотный трансформаторы от радиолы «Дружба». В этом случае, разумеется, нужно отказаться от ультралинейной схемы выходного каскада.
Усилитель, выполненный по схеме рис. 65, совершенно спокойно может отдать и большую мощность: до 12–15 вт. Для увеличения мощности в первую очередь нужно увеличить напряжение входного сигнала. Для этого проще всего ликвидировать некоторые цепи обратной связи, зашунтировав конденсаторами катодные сопротивления R 3 , R 11 и R 16 . Если понадобится перейти в класс АВ, то необходимо увеличить на 30–50 % сопротивление автоматического смещения R 27 .
Кстати, вместо того чтобы увеличивать уровень входного сигнала на сетках выходных ламп, можно заменить сами лампы — включить вместо 6П1П лампы 6П14П. Обладая более высокой крутизной, они требуют меньшего напряжения сигнала, однако в виде «расплаты» создают несколько большие нелинейные искажения.
Если понадобится несколько уменьшить выходную мощность, то достаточно понизить анодное напряжение. При пониженном напряжении усилитель может развивать номинальную мощность, но с несколько большими искажениями. Так при U в = 250 в можно получить те же 8 вт, но уже с К н.и = 5 %. Здесь уместно заметить, что указываемая в числе параметров выходная мощность усилителя часто бывает умышленно занижена лишь для того, чтобы похвастаться малыми нелинейными искажениями. В действительности же усилитель может отдать на 30–50, а то и на все 100 % большую мощность, разумеется, при большем значении К н.и (рис. 66).
Радиоузлы: вход и выход
Основа школьного радиоузла (РУ) небольшой мощности — это усилитель низкой частоты, очень похожий на уже знакомые нам усилители радиограммофонов и радиол. Отличительные особенности радиоузла — это его входные и выходные цепи (рис. 67, 68). Вход конструируется так, чтобы можно было вести через радиоузел несколько видов передач — подавать на усилитель сигналы с микрофона, звукоснимателя, магнитофона, радиоприемника или с линии радиотрансляционной сети. Что же касается выходных цепей, то они должны быть рассчитаны на подключение разных потребителей: абонентских громкоговорителей (радиоточек), а также мощных излучателей звука — звуковых колонок или рупорных громкоговорителей.
Рис. 67. Радиоузел представляет собой обычный усилитель низкой частоты с необычными входными и выходными цепями; ко входу могут подключаться различные источники сигнала (микрофон, звукосниматель, приемник, трансляционная линия, магнитофон), а к выходу — различные потребители (группы абонентских громкоговорителей, мощные рупорные громкоговорители, звуковые колонки).
Прежде чем рассматривать возможные схемы входных цепей, несколько слов о тех требованиях, которые к ним предъявляются.
Переход с одного вида передач (программ) на другой должен осуществляться быстро и легко. Лучше всего, если смену программ можно будет производить какими-либо переключателями. При этом нужно так уравнять входные сигналы, чтобы при смене программ не менялась выходная мощность усилителя и не приходилось всякий раз подгонять уровень громкости. Очень удобно, если, помимо общего регулятора усиления (уровня) — так в радиоузле принято называть регулятор громкости, каждый источник сигнала будет иметь свой самостоятельный регулятор. Такие регуляторы, в частности, позволят вести эффектный вид передач — речь на фоне музыки. В этом случае одновременно включаются микрофон и звукосниматель (магнитофон), причем в то время, когда диктор говорит, уровень музыкальной программы устанавливают очень небольшой, а во время пауз повышают его, и музыка звучит во весь голос. И, наконец, последнее требование— схема и конструкция входной цепи должны быть продуманы так, чтобы вход радиоузла был как можно лучше защищен от наводок и не превратился в источник сильного фона.
Одна из возможных схем входной цепи показана на рис. 68, 1. Эта схема построена в расчете на применение динамического микрофона, который дает напряжение порядка 3 мв (табл. 7). Все остальные источники входного сигнала — звукосниматель, приемник, радиотрансляционная сеть, — как известно, дают значительно большее напряжение, и поэтому они подключены ко входу усилителя через делители, составленные из двух сопротивлений: R' и R". Каждый делитель подобран так, что уменьшает напряжение источника примерно до 3 мв, до того уровня, который дает микрофон. Благодаря этому при переключении программ низкочастотное напряжение, поступающее на вход усилителя радиоузла, практически не меняется.
рис. 68, 1
Если известно, какое напряжение дает источник сигнала (U сиг ), то легко рассчитать делитель по простейшим формулам (рис. 68, 2, а, б, в), задавшись величиной R'. Это сопротивление следует выбирать достаточно большим (10 ком — 1 Мом), чтобы оно не шунтировало источник сигнала, не снижало величину U сиг . Включив в качестве R" переменное сопротивление, мы получим для каждого источника сигнала отдельный регулятор уровня. Он позволит плавно изменять входное напряжение от нуля до величины Uвх (3 мв). Каждый такой регулятор полезно снабдить простейшей шкалой, а на оси переменного сопротивления закрепить стрелку — указатель уровня.
рис. 68, 2
Смена программ в нашей схеме осуществляется обычным переключателем (П 1 ) с двумя подвижными контактами. Установив этот переключатель в верхнее (по схеме) положение, можно вести передачу — речь на фоне музыки. При этом, разумеется, хотелось бы плавно менять уровень сигнала, который идет от звукоснимателя, то есть регулировать уровень музыки. Для такой регулировки можно использовать переменное сопротивление R'' зв (рис. 68, 3, а). Но одновременно с ним необходимо ввести сопротивление R м . Если этого сопротивления не будет (рис. 68, 3, б), то, уменьшая уровень музыки, то есть опуская вниз (по схеме) движок R'' зв , мы будем все сильнее и сильнее шунтировать микрофон, так как он фактически подключен непосредственно к нижней части R'' зв . Опустив движок в крайнее нижнее положение, мы замкнем микрофон накоротко и не услышим ни музыки, ни речи. Сопротивление R м должно быть в 5—10 раз больше чем R'' зв . В этом случае общее сопротивление цепочки, подключенной параллельно микрофону (R м + R зв ), всегда будет оставаться достаточно большим и при регулировке уровня музыки напряжение, поступающее с микрофона, практически меняться не будет.
Несколько сложнее выглядит схема, где раздельно регулируется уровень сигналов с микрофона и со звукоснимателя (рис. 68, 4). Здесь уже в схему вводятся два постоянных сопротивления: R 2 и R 5 . Первое из них предохраняет от закорачивания звукосниматель, второе — микрофон. Сопротивление R 6 — общий регулятор уровня.
Можно предложить еще одну схему одновременного включения микрофона и звукоснимателя, где их взаимное влияние друг на друга практически исключено (рис. 68, 5). Здесь каждый из сигналов действует в своей сеточной цепи, а встречаются они лишь в общем сопротивлении анодной нагрузки.
рис. 68, 5
Другая схема раздельного включения микрофона и звукоснимателя приведена на рис. 68, 6.
рис. 68, 6
Она построена, исходя из того, что сигнал с микрофона во много раз слабее, чем сигнал со звукоснимателя. Первый каскад (Л 1 ) — микрофонный усилитель — поднимает уровень сигнала, поступающего с микрофона (3 мв), и доводит его до уровня сигнала, который дает звукосниматель (150 мв). После этого оба сигнала совместно путешествуют по всему усилительному тракту на равных правах. Сопротивление R c2 играет примерно ту же роль, что и R м в схеме 68, 3, а, — оно ослабляет влияние регулятора R зв на уровень сигнала, поступающего с микрофонного усилителя. Если бы не было R c2 , то, опустив движок R зв в крайнее нижнее положение, мы одновременно замкнули бы накоротко (для переменного тока) анод лампы Л 1 .
рис. 68, 3
На первый взгляд может показаться, что R c2 заметно ослабляет сигнал звукоснимателя. В действительности это не так. На эквивалентной схеме входной цепи (рис. 68, 6, в) видно, что R c2 вместе с условным входным сопротивлением лампы R вх и входной емкостью С вх образует делитель напряжения. Если лампа работает без значительных сеточных токов (для усилителя напряжения это условие обязательное — напряжение на сетке никогда не заходит в положительную область и I с составляет доли микроампер), то величина R вх чрезвычайно велика. Обычно она составляет несколько мегом. Это непосредственно следует из закона Ома (рис. 30, 5, ж): чем меньше ток в каком-либо участке цепи, тем, следовательно, выше его сопротивление.
Емкостное сопротивление конденсатора С вх также весьма велико. Если предположить, что входная емкость составляет 2 пф (входная емкость лампы обычно не превышает десятых долей пикофарады, но мы делаем прибавку на емкость монтажа), то даже на частоте 10 кгц емкостное сопротивление составит 8 Мом (рис. 30, 10, е). Одним словом, сопротивление верхней части делителя оказывается во много раз меньше, чем сопротивление участка сетка — катод, и поэтому напряжение, которое поступает со звукоснимателя, в основном действует на этом участке, то есть между сеткой и катодом.
Схема рис. 68, 6, а применяется почти во всех небольших радиоузлах, рассчитанных на подключение динамического микрофона. В тех случаях, когда почему-либо к радиоузлу нужно подключить микрофон с более высоким уровнем сигнала (пьезоэлектрический, электромагнитный), может быть применена одна из ранее приведенных схем, в частности схема рис. 68, 4. Дополнительный каскад (микрофонный усилитель) при этом, разумеется, не нужен. Сигнал с микрофона можно подавать на тот же вход, что и сигнал со звукоснимателя.
рис. 68, 4
Одна из возможных схем включения угольного микрофона показана на рис. 68. 7. На этой схеме питание микрофона осуществляется от анодного выпрямителя. Элементы делителя R' м и R'' м подбираются так, чтобы на микрофоне действовало заданное постоянное напряжение.
рис. 68, 7
Несколько слов о подключении к радиоузлу приемника и магнитофона. Проще всего, конечно, подвести к входной цепи радиоузла сигнал прямо с выхода приемника или магнитофона. Напряжение можно снять непосредственно со вторичной обмотки выходного трансформатора (рис. 68, 8, а) и, уменьшив его в 10–20 раз, подать на тот же вход, к которому подключен звукосниматель. Такой способ имеет один существенный недостаток: все искажения, которые возникают в выходном каскаде усилителя НЧ приемника (магнитофона) — а именно этот каскад является основным источником частотных и нелинейных искажений, — будут подаваться на вход радиоузла.
рис. 68, 8, а
Уменьшить искажения можно двумя путями. Во-первых, можно так рассчитать делитель R' п и R'' п ,чтобы сам приемник мог работать при очень небольшом уровне выходного сигнала. В этом случае, как известно, нелинейные искажения в выходном каскаде невелики (рис. 66).
Рис. 66. Для оценки усилителя важно сопоставить выходную мощность и соответствующий ей коэффициент нелинейных искажений; при пониженной мощности нелинейные искажения уменьшаются.
Другой путь несколько сложнее: сигнал следует отводить не от выходного, а от какого-либо предварительного каскада. Удобно снимать низкочастотное напряжение с катодного сопротивления R к предоконечного каскада (рис. 68, 8, б), если, разумеется, от этого сопротивления можно отключить блокировочный конденсатор С к .
рис. 68, 8, б
Напряжение на R к может составлять несколько десятых долей вольта, и, значит, его смело можно подавать на вход звукоснимателя. Можно получить необходимый сигнал в сеточной цепи выходного каскада, включив последовательно с существующим сопротивлением R' c дополнительное сопротивление R'' c и создав таким образом делитель напряжения R' c R'' c . Делитель этот необходим для того, чтобы емкость соединительных проводов С вх не оказалась подключенной непосредственно к сетке лампы и не шунтировала сеточную цепь в области высших частот (рис. 37).
Радиоузел, как правило, ретранслирует передачи только местной радиостанции, и поэтому вместо настоящего приемника можно применить простенький самодельный приемник с фиксированной настройкой на одну волну. При достаточно сильном сигнале местной станции можно обойтись детекторным приемником (рис. 68, 9, а). С хорошей антенной удается получить на нагрузке детектора низкочастотное напряжение в несколько милливольт, и его вполне можно подавать на микрофонный вход радиоузла. В качестве L 1 можно взять длинноволновую либо средневолновую катушку (в зависимости от того, на какой волне работает местная радиостанция) от любого фабричного приемника. Можно намотать катушку самому на картонном каркасе, например на охотничьей гильзе. Для длинных волн нужно намотать 300 витков, для средних — 90 витков провода диаметром 0,12—0,15 мм.
рис. 68, 9, а
Настройку контура производят подбором числа витков L 1 и емкости С 2 , а окончательную подстройку — конденсатором С 3 . Если в контуре имеется сердечник, то можно обойтись и без подстроечного конденсатора. Чтобы хоть приближенно можно было судить о необходимой емкости С 2 , удобно вместо него временно подключить обычный конденсатор переменной емкости. После того как вы добьетесь резонанса, по положению ротора (подвижные пластины) можно будет ориентировочно определить необходимую емкость конденсатора С 2 . Напоминаем, что увеличение емкости, так же, как и увеличение индуктивности, снижает резонансную частоту контура (удлиняет волну).
При недостаточно сильном сигнале местной станции можно собрать приемник с усилителем высокой частоты (рис. 68, 9, б). Улучшение избирательности и чувствительности такого приемника легко получить с помощью положительной обратной связи. Катушка обратной связи L 2 содержит 5—25 витков любого провода и расположена рядом с контурной катушкой. При налаживании следует менять местами концы катушки L 2 и подбирать величину сопротивления R 3 , добиваясь наибольшей громкости и устойчивой работы каскада. Для повышения устойчивости наряду с положительной обратной связью введена еще и отрицательная за счет сопротивления R 4 .
рис. 68, 9, б
Уделив внимание входным цепям радиоузла, посмотрим теперь, каковы особенности его выходных цепей.
Очень часто выходной каскад усилителя радиоузла работает на два вида нагрузки: на линию, к которой подключены абонентские громкоговорители, и на линию, к которой подключен мощный рупорный громкоговоритель или звуковая колонка (рис. 68, 10, а). В связи с этим в выходном трансформаторе имеются, как минимум, две вторичные обмотки, которые дают два разных по величине напряжения: 30 в (для некоторых типов абонентских громкоговорителей 15 в), и 120 в (240 в). Если рупорный громкоговоритель предполагается установить на небольшом расстоянии, скажем, не более 10–15 м, — то его можно питать напряжением 30 в и, таким образом, ограничиться выходным трансформатором с одной обмоткой.
рис. 68, 10, а
Все абонентские громкоговорители подключаются к линии параллельно, подобно тому, как подключаются потребители (лампочки, плитки, холодильники и т. п.) к электросети. При таком подключении каждый из потребителей может стать источником аварии на всей линии. Стоит, например, произойти короткому замыканию в одном из громкоговорителей, как сразу же замолчат все его «коллеги», так как вся линия окажется замкнутой накоротко. Чтобы предотвратить такую неприятность, в электросетях широко пользуются плавкими предохранителями. Как только произойдет короткое замыкание (в патроне лампочки или в проводе утюга), немедленно сгорит предохранитель на щитке электросчетчика или даже в одной из штепсельных розеток, и поврежденный (короткозамкнутый) участок отключится от общей линии.
В радиотрансляционных сетях предохранители применяют только для больших групп громкоговорителей или для сравнительно мощных потребителей (рупор). Отдельные абонентские громкоговорители снабжают ограничительными сопротивлениями (рис. 68, 10, г, д).
рис. 68, 10, г, д
В этом случае при коротком замыкании в цепи самого громкоговорителя линия уже не будет замкнута, так как между ее проводами окажутся включенными ограничительные сопротивления. Внутри помещения провода абонентской линии прокладывают на большой высоте (под потолком) и непосредственно возле проводов линии устанавливают коробочку с ограничительными сопротивлениями. Обычно в каждый провод включают сопротивление R ог около 70 ом. На линиях школьного радиоузла в виде исключения ограничитель можно и не ставить, рассчитывая на то, что все радиоточки расположены поблизости и любое повреждение можно сравнительно быстро найти и устранить. Правда, по «закону бутерброда» (бутерброд падает на пол всегда маслом вниз!) повреждение может произойти во время самой интересной, самой важной передачи. И вот тут-то вы пожалеете о том, что в свое время поленились поставить ограничительные коробки.
Весьма удобно, когда абонентские громкоговорители разбиты на сравнительно небольшие группы. Так, например, целесообразно сгруппировать громкоговорители, расположенные на одном этаже школьного здания (рис. 68, 10, б).
рис. 68, 10, б
Это позволит в случае необходимости целиком отключать ту или иную группу. Кроме того, конечно, в каждом громкоговорителе должны быть предусмотрены возможность отключения от линии (штепсельная розетка) и регулировка громкости (рис. 68, 11). Вместо обычной штепсельной розетки можно применить простейший выключатель, вмонтированный в корпус громкоговорителя. Некоторые типы регуляторов громкости одновременно являются и выключателями (рис. 68, 11, а).
рис. 68, 11
Работу усилителя проще всего контролировать с помощью обычного громкоговорителя, установленного в помещении радиоузла. Если в выходном трансформаторе имеется низковольтная обмотка, то непосредственно к ней можно подключить звуковую катушку громкоговорителя. Можно использовать и трансляционный громкоговоритель с выходным трансформатором, подключив его к общей абонентской линии.
Когда ведется передача с микрофона и он установлен в самом помещении радиоузла, то пользоваться контрольным громкоговорителем уже нельзя (рис. 69).
Рис. 69. Звуковые волны, попадая из громкоговорителя в микрофон, создают акустическую обратную связь — связь выходных цепей усилителя с входными через воздушную среду. При сильной акустической связи возникает самовозбуждение звуковоспроизводящей системы.
Созданные им мощные звуковые колебания попадут в микрофон и, усилившись, вновь пойдут на громкоговоритель. Так возникнет обратная связь громкоговоритель — микрофон. На какой-то частоте эта связь наверняка окажется положительной, и вся система возбудится (проще говоря, «завоет») — радиоузел превратится в генератор. Вот почему при работе с микрофонами контроль следует вести только с помощью головных телефонов-наушников.
Очень удобно контролировать работу радиоузла с помощью какого-либо оптического индикатора. Это может быть стрелочный прибор, например миллиамперметр постоянного тока с выпрямителем (рис. 68, 12, а) из любых полупроводниковых диодов. Такой индикатор можно подключить ко вторичной, а через конденсатор и к первичной обмотке выходного трансформатора. При этом сопротивление R * д подбирается с таким расчетом, чтобы при нормальной громкости стрелка совершала колебания на среднем участке шкалы. Чтобы ослабить рывки стрелки, можно зашунтировать прибор конденсатором емкостью в несколько десятков тысяч пикофарад.
Другой простейший индикатор — неоновая лампочка (рис. 68, 12, б). Она загорается лишь после того, как напряжение превысит некоторый порог зажигания. Для распространенных неоновых лампочек этот порог составляет 60–80 в, и поэтому лампочку нужно подключать только к той обмотке, где действует достаточно большое напряжение. Если в выходном трансформаторе нет высоковольтной обмотки для рупорного громкоговорителя, то лампочку-индикатор можно подключить непосредственно к аноду выходной лампы. При небольшом напряжении (тихий звук) лампочка не загорается, а непрерывно вспыхивает и меняет яркость в такт с изменением выходного сигнала. Характер свечения устанавливают подбором сопротивлений делителя R 1 R 2 .
Можно собрать индикатор выходного сигнала с «глазком» — лампой 6Е5С или 6Е1П (рис. 68, 12, в). Питается лампа от выпрямителя самого радиоузла, и на ее сетку подается предварительно выпрямленный низкочастотный сигнал. Сопротивления делителя подбирают с таким расчетом, чтобы теневой сектор почти полностью закрывался при номинальном напряжении на выходе радиоузла. Несколько уменьшив R 3 и С 3 , можно добиться того, что во время передачи ширина теневого сектора будет непрерывно меняться в такт с изменением уровня выходного сигнала.
рис. 68, 12
Расчет выходного трансформатора для радиоузла производится так же, как и расчет обычного выходного трансформатора, к которому подключаются два разных громкоговорителя (рис. 74). Роль одного из них будет играть рупор или звуковая колонка, роль другого — все абонентские громкоговорители.
Общее сопротивление абонентской цепи вычисляют, исходя из того, что сопротивление каждого громкоговорителя равно 8 ком. Строго говоря (рис. 30, 8, г), это сопротивление составляет 9 ком (напряжение 30 в, мощность 0,1 вт), но мы считаем, что нагрузка несколько больше, и таким образом учитываем потери. Если применяются громкоговорители мощностью 0,25 вт, то сопротивление каждого из них составляет 3 ком. Нетрудно подсчитать сопротивление и для линейного напряжения 15 в. Чтобы подсчитать входное сопротивление всей линии, а именно оно и служит нагрузкой выходного каскада, нужно сопротивление одного громкоговорителя разделить на общее их число. Это обычный прием для вычисления общего сопротивления одинаковых элементов, соединенных параллельно. Так, например, 20 громкоговорителей мощностью 0,1 вт (сопротивление 8 ком) следует рассматривать как нагрузку с сопротивлением 400 ом, потребляющую мощность немногим более 2 вт.
Сопротивление десятиваттного рупорного громкоговорителя при напряжении 240 в составляет 5,8 ком, при напряжении 120 в— 1,45 ком и, наконец, при 30 в — 90 ом.
В случае когда к радиоузлу подключаются и рупор, и абонентские громкоговорители, выходной трансформатор удобно рассчитывать следующим упрощенным способом.
Сначала нужно проверить, хватит ли мощности усилителя на то, чтобы «прокормить» всех своих потребителей. При нехватке выходной мощности громкоговорители будут работать тише, чем в нормальных условиях. Избыток мощности также нежелателен, так как в этом случае сопротивление анодной нагрузки будет отличаться от оптимального, и в результате несколько повысятся искажения.
Проверив мощность, можно подсчитать примерную величину номинального переменного напряжения U I на первичной обмотке выходного трансформатора.
Для однотактной схемы оно составляет 60 % от постоянного (U I ~= 0,6U а0 ), а для двухтактной схемы на 20 % больше постоянного (U I ~= 1,2U а0 ). Откуда взялись эти цифры?
Уже говорилось (рис. 53, 2), что коэффициент использования анодного напряжения не может быть больше единицы. Для выходных каскадов усилителей НЧ этот коэффициент обычно составляет 0,9, то есть можно считать, что переменное напряжение на аноде составляет 90 % от постоянного. Но ведь здесь речь идет об амплитуде переменного напряжения — именно она входит в определение коэффициента. Чтобы получить эффективное значение, нужно амплитуду умножить на 0,7 (рис. 30, 9, г). В итоге и получается, что эффективное переменное напряжение на первичной обмотке выходного трансформатора равно 0,6 от постоянного напряжения U а0 на аноде (0,9·0,7 ~= 0,6). Это для однотактной схемы, а для двухтактной переменное напряжение вдвое больше (0,6·2 = 1,2).
Если известно переменное напряжение на первичной обмотке трансформатора U I , то нетрудно подсчитать, каким должен быть коэффициент трансформации n, чтобы получить то или иное напряжение на вторичной обмотке (или вторичных обмотках).
Пример. На двухтактный выходной каскад подается постоянное анодное напряжение 250 в; первичная обмотка выходного трансформатора содержит 2000 витков (с отводом от середины). Находим: эффективное переменное напряжение на первичной обмотке U I = 1,26; U а0 = 300 в; обмотка абонентской линии (30 в) должна иметь 200 витков (коэффициент трансформации n = 0,1), а обмотка рупорного громкоговорителя на 120 в — 800 витков (n = 0,4).
Проверку расчета можно произвести так: по полученным данным выходного трансформатора пересчитать все сопротивления нагрузки в первичную цепь и посмотреть, насколько полученная величина соответствует оптимальному сопротивлению анодной нагрузки для выбранного режима (табл. 13).
Так, если считать, что в предыдущем примере к выходному трансформатору подключается 20 абонентских громкоговорителей по 0,1 вт (U II = 30 в; R н(II)общ = 400 ом) и «колокольчик» (U III = 120 в; R н(III) = 1450 ом), то получится, что общая потребляемая мощность составит 12 вт, а общее сопротивление анодной нагрузки 7,5 ком. Эта цифра получена следующим образом. Сначала мы нашли каждое из сопротивлений, пересчитанных в первичную цепь: R a(II) = 400 ом: (0,1) 2 = 40 ком; R a(III) = 1450 ом: (0,4)2 ~= 9 ком. Затем было найдено общее сопротивление в цепи первичной обмотки, исходя из того, что все элементы нагрузки нужно рассматривать как параллельно соединенные сопротивления (рис. 30, 7, г).
Несмотря на то что предложенный путь расчета дает весьма приближенные результаты, им можно пользоваться на практике, особенно тогда, когда есть готовый выходной трансформатор и нужно проверить или пересчитать его вторичную обмотку.
Усилитель, выходные трансформаторы, блок питания радиоузла выбираются из расчета его полной нагрузки — подключения всех потребителей. Однако в реальном случае сопротивление нагрузки радиоузла может резко меняться. Как только из сети выключится несколько громкоговорителей, общее сопротивление немного возрастет. Особенно резко будет меняться сопротивление нагрузки при включении или выключении главного потребителя энергии — звуковой колонки или рупорного громкоговорителя. При этом заметно изменится выходное напряжение и громкость звучания громкоговорителей у оставшихся радиоточек. Кроме того, изменится режим выходных ламп, а из-за этого могут возрасти искажения. В некоторых случаях изменение нагрузки может резко ухудшить тепловой режим ламп. Так, например, при полном отключении нагрузки мощность потерь на аноде будет равна всей потребляемой от выпрямителя мощности. В результате аноды могут сильно раскалиться и лампы выйдут из строя.
(Внимание редактора радиогазеты! Вот к чему могут привести неинтересные передачи!) Поэтому усилитель, особенно мощный, нельзя оставлять без нагрузки, а при налаживании следует включать некоторый ее эквивалент.
Кстати говоря, мы уже встречались с неприятными последствиями изменения сопротивления нагрузки — ведь сопротивление любого электродинамического громкоговорителя меняется с частотой (рис. 14, 4). Было отмечено, что хорошим «лекарством» в этом случае является отрицательная обратная связь, она как бы стабилизирует режим усилительного каскада, ослабляет вредное влияние изменяющейся нагрузки.
5 + 10 + сколько угодно
Сейчас мы с вами рассмотрим конкретную схему простого школьного радиоузла (рис. 45). Одна из главных задач, которая ставилась при разработке этой радиолюбительской конструкции, состояла в том, чтобы максимально использовать детали, имеющиеся в продаже. Прежде всего это касалось силовых и выходных трансформаторов, для изготовления которых любителю не всегда легко найти нужные трансформаторные пластины и намоточный провод.
Из многих типов силовых трансформаторов, как правило, легче всего достать трансформаторы от радиоприемников первого или второго класса, таких, как «Дружба», «Байкал», «Октава» и др. Эти трансформаторы могут обеспечить мощность выпрямленного тока 10–20 вт, и поэтому с их помощью можно питать усилитель с выходной мощностью 3—12 вт. Нужно сказать, что для школьного радиоузла такой мощности может и не хватить. Так, в частности, даже такая небольшая нагрузка, как 20 радиоточек, установленных в классах, и один «колокольчик», вывешенный у входа в школу, уже требует 12–15 вт. А что делать, если понадобится установить в школьном зале еще две-три звуковые колонки или радиофицировать спортивную площадку? Здесь может понадобиться усилитель с выходной мощностью 20, а то и все 50 вт. Но как совместить требование большой мощности с возможностью использовать только маломощные силовые трансформаторы?
Одним из возможных решений задачи является блочная схема, которая и была выбрана для нашего радиоузла.
В радиоузле имеются два усилительных блока: однотактный усилитель мощностью 5 вт, который мы в дальнейшем будем называть «блок 5У», и двухтактный десятиваттный усилитель — «блок 10У». Первый рассчитан на подключение 20 громкоговорителей, второй — на десятиваттный рупор. Без особых изменении схемы мощность блока 10У может быть повышена до 15 и даже до 20 вт. Для каждого усилительного блока есть свой выпрямитель сравнительно небольшой мощности: для блока 5У — выпрямитель 5В, для блока 10У — выпрямитель 10В. Каждый имеет свой выключатель сети, и поэтому блок 10У можно выключить, не выключая 5У.
Особенность схемы состоит в том, что блок 5У является вполне законченным маломощным радиоузлом и может работать самостоятельно. Именно в этом блоке сосредоточены все регулировки, к нему подключаются все источники сигнала. Что же касается блока 10У, то это лишь своего рода умощнитель. Он получает программу с выхода пятиваттного усилителя и без него работать не может. В случае необходимости к пятиваттному усилителю 5У можно подключить не один, а несколько одинаковых блоков 10У (разумеется, каждый со своим выпрямителем!) и таким образом в несколько раз повысить общую выходную мощность радиоузла.
Выходной каскад блока 5У собран на лампе 6ПЗС, которую при необходимости без каких-либо изменений схемы блока можно заменить и другой аналогичной лампой, например, 6П14П. Такая «старая» лампа 6ПЗС выбрана потому, что, по сравнению с другими широко распространенными выходными лампами, она отдает несколько большую мощность. А в блоке 5У каждый лишний ватт выходной мощности — это возможность дополнительного подключения еще 10 громкоговорителей. Попутно заметим, что к усилителю можно подключить и большее число громкоговорителей, чем это следует из нормы 0,1 вт на каждый громкоговоритель. Однако не забудьте, что при значительной перегрузке усилителя вам придется мириться с заметным уменьшением громкости каждой радиоточки. Это произойдет не только за счет увеличения числа «едоков», но также из-за уменьшения «общего котла» — дело в том, что при перегрузке падает выходная мощность усилителя.
Первый каскад в блоке 5У — это микрофонный усилитель, собранный на пентоде 6Ж8. Два последующих каскада — обычные усилители напряжения, собранные на двойном триоде 6Н8С. Микрофонный усилитель «по совместительству» является еще и простейшим приемником. Детектирование сигнала происходит в сеточной цепи лампы, а в анодной цепи на сопротивлении R 3 выделяется усиленное низкочастотное напряжение. Конденсатор С 20 «срезает» и не пропускает к следующему каскаду высокочастотные составляющие продетектированного сигнала.
С анодной нагрузки Л 1 низкочастотное напряжение (это может быть усиленный сигнал с приемника либо с микрофона) подается на второй, затем и на третий каскад усилителя напряжения. Напряжение со звукоснимателя подается непосредственно на сетку второго каскада (левый триод лампы Л 2 ). В сеточную цепь третьего каскада включен общий регулятор уровня R 12 . Кроме того, имеются отдельные регуляторы уровня в цепи микрофона (R 1 ) и звукоснимателя (R 8 ). Регулировка уровня при приеме радиостанций осуществляется сопротивлением R 12 . Напряжение на анод лампы Л 1 подается через дополнительный фильтр R 4 C 4 , так как для первого каскада требуется особо тщательная фильтрация выпрямленного напряжения. Кроме того, фильтр R 4 C 4 предотвращает паразитную, обратную связь между каскадами через цепи питания. Без этого фильтра, а часто, к сожалению, и с ним может возникнуть самовозбуждение усилителя.
Все сопротивления регуляторов уровня объединены с выключателями. Один из них, Вк 3 , объединенный с общим регулятором уровня R 12 , включает радиоузел в сеть, то есть подает напряжение на силовой трансформатор Тр 3 . Два других выключателя, Вк 1 и Вк 2 (совмещены с регуляторами уровня R 1 и R 8 ), замыкают накоротко колебательный контур приемника. Контакты обоих выключателей разомкнуты только тогда, когда движки регуляторов находятся в крайнем нижнем положении, то есть тогда, когда ни с микрофона, ни со звукоснимателя на вход усилителя сигнал не поступает. Схема позволяет вести передачу — речь на фоне музыки. Для выключения микрофона либо звукоснимателя достаточно опустить в крайнее нижнее положение соответствующий регулятор уровня R 1 или R 8 . Магнитофон можно включить в те же гнезда, что и звукосниматель. Лучше, конечно, установить для магнитофона дополнительную пару гнезд, а его сигнал с помощью делителя уравнять с сигналом звукоснимателя (рис. 68). Таким же образом подводится к радиоузлу сигнал с настоящего радиоприемника. Весьма удобно ввести в схему переключатель программ (рис. 68, 1). Но не забывайте, что этот переключатель находится в цепи с низким уровнем сигнала и поэтому очень «боится» наводок. Все провода, идущие к нему, а иногда сам переключатель нужно тщательно экранировать.
Питание блока 5У осуществляется от обычного кенотронного выпрямителя, в котором используется силовой трансформатор от приемника «Урал-57». Как уже говорилось, возможно использование любого другого аналогичного трансформатора. Фильтр выпрямителя трехзвенный. В первое звено желательно вместо сопротивления R 19 включить дроссель. Теперь несколько слов об особенностях схемы и конструкции блоков 5У и 5В.
Выбранная упрощенная схема переключения программы имеет некоторые недостатки: сопротивления R 1 и R 8 нужно подобрать с таким расчетом, чтобы они полностью выключали микрофон и звукосниматель. В некоторых экземплярах сопротивлений движок не доходит до самого конца графитовой дужки, и вместо полного выключения они будут давать лишь резкое уменьшение уровня входного сигнала.
При включении микрофона к входной цепи лампы Л 1 оказывается подключенным конденсатор С 3 , который несколько заваливает частотную характеристику в области высших частот. Для того чтобы свести к минимуму этот завал, емкость С 3 должна быть как можно меньше. Кроме того, желательно уменьшить сопротивление R 2 , а также включить между ним и конденсатором еще одно сопротивление в 20–50 ком. Данные всех перечисленных деталей лучше всего уточнить при налаживании приемника, так как эти данные в значительной степени зависят от частоты принимаемой станции. В некоторых случаях может понадобиться включить между анодом и конденсатором дополнительное фильтрующее сопротивление 10–20 ком.
Если окажется, что в усилителе имеется значительный запас усиления, то имеет смысл несколько уменьшить сопротивления нагрузки R 3 и R 9 . Можно ввести отрицательную обратную связь, исключив конденсаторы С 8 и С 10 . И конечно, при первой же возможности следует охватить отрицательной обратной связью выходной каскад. Для этого нужно сопротивление R15 заменить делителем и на нижнюю его часть подать (через гасящее сопротивление, рис. 39, 6) напряжение с низковольтной обмотки трансформатора Тр 1 .
Выходной трансформатор Тр 1 блока 5У должен давать напряжение 30 в, которое поступает на абонентскую линию. В этом трансформаторе имеется низковольтная обмотка II на 2–5 в для включения контрольного громкоговорителя или головных телефонов. К этой обмотке можно также подключить стрелочный индикатор уровня. В тридцативольтовой обмотке имеются две одинаковые секции IIIa и IIIб, каждая из которых дает напряжение 15 в относительно средней точки. Это сделано в расчете на то, что с Тр 1 противофазные (опять-таки относительно средней точки) напряжения будут подаваться непосредственно на сетки двухтактного выходного каскада мощного усилителя. Таким образом, выходной каскад блока 5У одновременно является фазоинвертором для блока 10У. При анодном напряжении 250 в и классе усиления АВ переменное (эффективное) напряжение на сетке каждой лампы 6П14П должно составлять 7,5 в. Оно снимается с отводов (на схеме не указаны) от половины каждой секции IIIa и IIIб. Но если вы захотите получить от блока 10У большую мощность (при более высоком анодном напряжении, вплоть до 20–30 вт), его необходимо перевести в класс усиления АВ2 или даже В2. Для этого нужно увеличить отрицательное смещение (до 15–17 в) и повысить переменное напряжение на сетках. В этом случае сигнал на сетки ламп нужно будет подавать не с отводов, а с крайних выводов обмотки III, и в сеточную цепь каждой лампы включить последовательное ограничительное сопротивление 200–500 ом.
В качестве Тр 1 используется выходной трансформатор от радиолы «Дружба» («Люкс»). Его первичная обмотка остается без изменений — она полностью включается в анодную цепь лампы 6ПЗС. Вторичную обмотку нужно частично заменить. Дело в том, что вторичная обмотка этого трансформатора разбита на две части и одна из них для уменьшения индуктивности рассеивания помещена между секциями первичной обмотки. Внутренняя часть вторичной обмотки, естественно, остается, и она используется в качестве обмотки II. Наружная часть вторичной обмотки удаляется, и вместо нее укладывается обмотка III с тремя отводами. После переделки трансформатор Тр 1 имеет следующие данные: сердечник Ш-19Х28; обмотки I — 2280 витков провода ПЭ-0,15; II — 70 витков провода ПЭ-0,38; III (новая обмотка) — 150 + 150 + 150 + 150 витков провода ПЭ-0,31. Совершенно очевидно, что для изготовления Тр 1 можно взять и любой другой трансформатор с аналогичным сечением сердечника и аналогичной по числу витков и сечению провода первичной обмоткой. Во всех случаях обмотка III (полностью) должна содержать примерно в четыре-пять раз меньше витков, чем обмотка I. Иными словами, коэффициент трансформации должен быть примерно равен 0,25—0,2.
К особенностям выпрямителя 5В нужно отнести сопротивление R 20 . По нему проходит весь анодно-экранный ток усилителя 5У, и на этом сопротивлении возникает постоянное напряжение 12–16 в. Точная величина этого напряжения определяется режимом ламп усилителя, а значит, и данными силового трансформатора Тр 3 .
Напряжение, возникающее на R 20 , «минусом» подается на сетки ламп блока 10У и служит у них отрицательным смещением. Это напряжение не зависит от режима самого блока 10У, и поэтому его принято называть независимым или, иначе, фиксированным смещением. Независимое смещение, в отличие от автоматического (за счет анодного тока, проходящего по сопротивлению, включенному в катодную цепь), позволяет установить любой класс усиления, в том числе и класс В. Кроме того, переход с автоматического смещения на независимое несколько повышает выходную мощность усилительного каскада (табл. 13). Напряжение, которое терялось на катодном сопротивлении, теперь добавляется к общему напряжению между анодом и катодом. Чтобы тщательно отфильтровать постоянное напряжение, которому суждено попасть на управляющие сетки ламп, применяется эффективный фильтр C 18 R 21 . На частоте 100 гц (самая низкая, а значит, и самая опасная частота пульсации) емкостное сопротивление конденсатора примерно в 1000 раз меньше, чем сопротивление фильтра R 21 .
Блок 10У представляет собой двухтактный усилитель, собранный по обычной схеме. В качестве выходного трансформатора без всякой переделки используется силовой трансформатор от приемника «Рекорд-53». Его сетевая обмотка выполняет роль обмотки I выходного трансформатора Тр 2 ; средней точкой служит отвод «110 в». С повышающей обмотки (в нашем трансформаторе Тр 2 это обмотка II) снимается низкочастотное напряжение 120 в, которое подводится к рупорному громкоговорителю. Вполне возможно применение и другого трансформатора в качестве Тр 2 . Если в анодные цепи ламп Л 1 и Л 2 будет включаться сетевая обмотка бывшего «силовика», то нужно убедиться в том, что обе ее секции намотаны одним и тем же проводом. Если же на роль Тр 2 будет выбран силовой трансформатор, рассчитанный на двухполупериодный выпрямитель, то повышающую обмотку, имеющую отвод от средней точки, можно использовать в качестве обмотки I, а сетевую — в качестве обмотки II. Во всех случаях накальная обмотка силового трансформатора (обмотка III трансформатора Тр 1 ) нужна для того, чтобы охватить усилительный каскад отрицательной обратной связью по напряжению.
Обратная связь подается с выхода блока 10У на вход оконечного каскада блока 5У. Такая схема обратной связи весьма проста и удобна: подбором сопротивления R 16 можно легко менять напряжение обратной связи. Однако приведенная схема обладает одним серьезным недостатком — посторонние гармоники, которые возникают в блоке 10У в чистом виде, попадают на выход блока 5У. Здесь эти гармоники совсем не нужны — им «не в кого стрелять», нечего компенсировать. Вот почему при такой схеме отрицательная обратная связь уменьшает искажения в блоке 10У и, к сожалению, увеличивает искажения в блоке 5У. Опыт показывает, что искажения возрастают не очень сильно, всего на 1–2 %, и с этим, пожалуй, можно мириться. Но после того как радиоузел налажен, можно попробовать избавиться от этих добавочных искажений, изменив схему отрицательной обратной связи. Проще всего применить схему, где анод и управляющая сетка связаны непосредственно через последовательную RC-цепочку (рис. 39, 6). Емкость конденсатора должна составлять около 0,001 мкф, а сопротивление — 50—200 ком.
Существует и другой, более радикальный путь: можно снабдить блок 10У отдельным фазоинвертором и освободить от этой работы выходной каскад 5У. Для этого на самой панели 10У устанавливается еще одна лампа — любой триод или пентод небольшой мощности, и в его анодную цепь включается междуламповый трансформатор с сечением сердечника 2–3 см2. Первичная обмотка трансформатора должна содержать около 1000–1500 витков провода ПЭ-0,1 (и толще), вторичная — примерно столько же витков, но с отводом от середины. Чтобы трансформатор не вносил значительных частотных искажений, его первичную обмотку нужно сильно зашунтировать, подключив параллельно ей сопротивление 10–20 ком. Такой трансформатор можно изготовить на базе любого выходного трансформатора, удалив с него вторичную обмотку и несколько уменьшив число витков первичной обмотки. Напряжение на сетку фазоинвертора подается с делителя, включенного в сеточную цепь лампы Л 3 вместо R 15 . В качестве R 15 целесообразно применить переменное сопротивление. С его помощью можно менять переменное напряжение на сетках ламп Л 4 и Л 5 .
Основная схема усилителя (рис. 45) позволяет менять режим только подбором постоянного смещения (регулируется сопротивлением R 20 ).
Схема выпрямителя 10В, по-видимому, не требует никаких пояснений. Здесь, так же как и в блоке 5В, используется силовой трансформатор от приемника «Байкал». Возможно применение любого другого аналогичного трансформатора. В частности, силовой трансформатор от «Дружбы» позволит заметно поднять постоянное напряжение, а значит, и выходную мощность.
Конструктивно радиоузел выполнен в виде четырех блоков, размещенных на деревянной раме. Панели для каждого блока изготовлены из трехмиллиметровой фанеры. Панель блока 5У желательно сделать из листового алюминия или стали толщиной 1–2 мм. В этом случае основные детали размещаются на фанерной плите с лепестками. В каждом блоке имеются монтажные гребенки (на рис. 45 они обозначены зеленым), через которые блоки соединяются между собой. Кроме того, на панелях имеется большое число монтажных лепестков.
Рис. 45, 1
Рис. 45, 2
Рис. 45, 3
Рис. 45, 4
Рис. 45, 5–7
Рис. 45, 8
Рис. 45. Простой школьный радиоузел.
Сверху весь радиоузел закрывают кожухом, в котором обязательно должны быть сделаны вентиляционные отверстия. Однако верхняя панель (точнее, верхние панели — у каждого блока своя небольшая панель) закрывается кожухом не полностью. Остается открытой передняя часть панелей, где установлены регуляторы уровня, выключатели, сигнальные лампочки. Здесь же удобно установить какой-либо из индикаторов выхода. Лучше, конечно, для каждого усилительного блока иметь свой индикатор, но в крайнем случае можно обойтись и одним индикатором, подключая его то к одному, то к другому выходу. Сзади усилителя остается открытой небольшая часть верхних панелей, где находятся зажимы для подключения абонентской линии, идущей к мощному громкоговорителю, и предохранители блоков питания.
Радиоузел может быть установлен в любом помещении, но, конечно, помещение это нужно выбирать так, чтобы в пего попадало как можно меньше шума [18]. Дверь нужно тщательно обить плотной материей. Над дверью надо повесить светящийся транспарант: «Тише. Микрофон включен».
С помощью простейшего реле можно сделать так, что этот транспарант будет включаться одновременно с микрофоном. Кроме хорошей изоляции от посторонних внешних шумов, полезно также улучшить акустические характеристики самого помещения радиоузла. Когда передача идет из обычной, не приспособленной для этого комнаты, у звука появляется неприятная гулкость. Происходит это потому, что в микрофон попадают звуковые волны, отраженные от стен, потолка, пола. Вот эти отраженные волны, которые особенно сильны в пустом помещении, попадают в микрофон с некоторым опозданием и ухудшают качество звучания.
Помещение, специально подготовленное для радио- или телевизионных передач, называют студией. Акустическая подготовка студии весьма сложна: в ней устанавливают большие щиты, с помощью которых направляют движение звуковых волн; стены студии закрывают многослойными звукопоглощающими покрытиями. Да и сама архитектура студии определяется необходимыми акустическими характеристиками.
Разумеется, для школьного радиоузла трудно построить студию со сложным акустическим оформлением, однако установить в ней несколько звукопоглощающих щитов весьма полезно. Простые щиты можно сделать из двух деревянных реек, на которые набиты листы фанеры или картона. В фанере (или картоне) нужно сделать большое число отверстий диаметром около 1 см. Вместо дырчатой фанеры (картона) еще лучше применить материал с неровной поверхностью, например картонные (бугристые) прокладки для упаковки яиц.
Нужно сказать, что акустические характеристики таких прокладок весьма высоки, и они представляют собой прекрасный материал для покрытия стен студии.
Настоящие студии отделены от помещения, где находится усилительная аппаратура, и техник может видеть дикторов и артистов только через звуконепроницаемое окно. На школьном радиоузле можно обойтись и без этой «роскоши» — установить всю аппаратуру в самой студии (рис. 67, 70).
Рис. 70. Помещение, откуда ведутся радиопередачи (студия), полезно оборудовать звукопоглощающими щитами; звукопоглощающим материалом целесообразно покрыть стены; студия должна быть тщательно изолирована от внешних шумов.
И, наконец, последнее замечание.
Очень плохо, если велосипедист невнимателен на дороге, — это может иметь весьма неприятные последствия. Но, конечно, в десять, в сто раз опаснее, если растяпа сядет за руль автомобиля или автобуса, в котором едет много пассажиров. Вот почему на автобусах могут работать только водители высокого класса, имеющие большой опыт. Всякий, кто решился построить школьный радиоузел, может сравнить себя с шофером автобуса — в ваши руки попадает техника, оценку которой будет выставлять большое число людей. Вы можете как угодно относиться к постройке своего собственного приемника, но к изготовлению и монтажу радиоузла должны отнестись с максимальным вниманием, все работы выполнять аккуратно, тщательно проверять надежность креплений, паек, не жалеть времени на налаживание усилителей.
С некоторыми простейшими методами налаживания, позволяющими «выжать» из усилителя нужную мощность и свести к минимуму различные виды искажений, вы познакомитесь в конце следующей главы.