Благодаря резонансу контур может выбрать из общего числа радиостанций одну, нужную нам. Для этого, как уже было отмечено, необходимо подобрать индуктивность и емкость с таким расчетом, чтобы получить резонанс на нужной частоте. Захотите послушать другую станцию — измените емкость конденсатора или индуктивность катушки, сместите резонансную частоту. Одним словом, для плавной перестройки с одной станции на другую в контуре нужно иметь конденсатор переменной емкости или катушку переменной индуктивности. В реальном приемнике есть и то и другое. Плавным изменением емкости осуществляется настройка в пределах диапазона, а при переходе с одного диапазона на другой происходит резкое изменение индуктивности — включение в контур различных катушек.

Конденсатор настройки состоит из двух групп пластин: неподвижных — статорных и подвижных — роторных. При повороте ротора его пластины все больше углубляются в статор, реальная, «работающая» площадь пластин увеличивается и вместе с этим возрастает емкость конденсатора. В распространенных типах конденсаторов емкость изменяется от 10–20 пф (ротор полностью выведен) до 450–520 пф (ротор полностью введен). При этом удается полностью перекрыть один из радиовещательных диапазонов ДВ, СВ или КВ. Что же касается диапазона УКВ, то здесь используется особый агрегат настройки.

Чтобы окончить разговор о плавном изменении резонансной частоты контура, еще несколько слов о растянутой настройке (рис. 31).

Рис. 31

Когда-то мы с вами хвалили коротковолновый диапазон — в нем можно разместить намного больше станций, чем на длинных и средних волнах. Однако у этой медали есть и обратная сторона — в огромном океане КВ-диапазона не только трудно найти нужную станцию, но и не совсем просто настроиться на нее. Вместо пояснений — несколько цифр.

Плавная настройка на всех диапазонах осуществляется одним и тем же конденсатором, и ротор этого конденсатора при изменении емкости от минимальной до максимальной поворачивается на 180 градусов. Это значит, что на длинных волнах изменению частоты на 10 кгц, то есть перестройке с одной станции на другую, соответствует в среднем поворот ротора на б градусов. На средних волнах эта цифра уменьшается до 1 градуса, а на коротких — почти до нескольких угловых минут. Сами понимаете, что повернуть ротор рукой на такой небольшой угол довольно трудно, и поэтому точная настройка на коротковолновую станцию обычно требует терпения.

Значительное облегчение дают механические верньеры — системы из шкивов и тросиков (а иногда из шестерен), замедляющие вращение ротора конденсатора по сравнению с вращением ручки настройки. Часто применяют разбивку коротковолнового диапазона на две примерно равные части. В каждой из них полному повороту ротора соответствует вдвое меньшее число станций, чем на одном «полном» диапазоне. Наконец, в некоторых, как правило, высококачественных приемниках, помимо обзорного (общего) коротковолнового диапазона имеется еще несколько так называемых растянутых. Это те самые участки («25 метров», «31 метр» и др.), которые отведены радиовещательным станциям. Каждый из них растянут на всю шкалу. Это значит, что если вы хотите пройти один такой участок, нужно повернуть ротор на все 180 градусов. При этом «плотность населения», то есть число станций, которое приходится на весь поворот ротора, оказывается примерно такой же, как и в диапазоне длинных волн.

Среди нескольких способов растянутой настройки наиболее широко используется включение для каждого поддиапазона отдельной катушки и уменьшение так называемого перекрытия по частоте. Полному повороту ротора на ДВ, СВ и обзорном KB-диапазонах должно соответствовать изменение частоты примерно в 3 раза. При разделении коротковолнового диапазона на две части в каждой из них частота меняется примерно в 1,5 раза. На растянутых же участках при полном повороте ротора частота должна меняться всего на несколько процентов.

Для того чтобы уменьшить перекрытие по частоте, нужно сделать изменение емкости контура не столь резким. С этой целью параллельно конденсатору настройки и последовательно с ним включают, конденсатор постоянной емкости (рис. 31, б). Известно, что при соединении конденсаторов каждый из них определяет величину общей емкости. Поэтому с появлением «постоянного конкурента» конденсатор настройки уже не будет так сильно влиять на резонансную частоту контура. И хотя емкость этого конденсатора при повороте ротора меняется, как и прежде, резонансная частота относится к этому спокойнее, изменяясь в меньших пределах.

* * *

ПРИЕМНИК РОБИНЗОНА

Если бы Даниель Дефо писал историю Робинзона сегодня, то, по-видимому, он обогатил бы жизнь отшельника многими новыми деталями и уж во всяком случае снабдил бы его радиоприемником. Но представьте себе, что Робинзон вывез на берег судовой радиоприемник, а источников питания захватить не успел. Как и следовало ожидать, они затонули вместе с кораблем. Здесь автор, по-видимому, предоставил бы своему герою возможность еще раз проявить изобретательность, а мы с вами могли бы подготовить подходящую иллюстрацию к этому рассказу, нарисовав схему радиоприемника Робинзона Крузо.

Изобретательный моряк присоединил детектор и телефон ко входной цепи лампового супергетеродина, и в результате получится детекторный приемник с плавной настройкой, который за счет контуров входной цепи обладает некоторой избирательностью. Такой приемник с хорошей антенной и заземлением обычно принимает несколько станций и, естественно, не требует никакого питания. Вы сами можете собрать подобную схему на базе любого радиовещательного приемника. Может быть, вам даже будет приятно на время почувствовать себя современным Робинзоном и, прижав к уху головной телефон, вслушиваться в слабые сигналы далеких станций.

* * *

Переходим к катушкам.

На коротких волнах, где резонансная частота контура довольно высока, нужны контурные катушки небольшой индуктивности, обычно около 1–2 мкгн. Такие катушки намотаны на круглом или ребристом каркасе и содержат всего несколько витков сравнительно толстого (диаметр 0,6–0,8 мм) медного провода (рис. 24, а). Катушки СВ и ДВ-диапазона содержат десятки, а иногда и сотни витков тонкого (0,1–0,15 мм) провода. Для улучшения добротности всю катушку часто разбивают на несколько секций, которые располагаются одна возле другой (рис. 24, в).

В процессе настройки и налаживания приемника на заводе возникает необходимость в некоторых пределах изменять индуктивность катушек хотя бы потому, что изготовить две одинаковые катушки невозможно. Подстройка осуществляется с помощью сердечников, которые ввинчиваются в каркас и таким образом постепенно вводятся в магнитное поле.

Уже было отмечено (стр. 74), что стальной сердечник, намагничиваясь, усиливает магнитное поле самой катушки и таким образом увеличивает ее индуктивность. Что же касается материала, из которого изготовлены сердечники контурных катушек, то о нем можно будет рассказать, как только мы познакомимся с трансформатором (рис. 24, г).

Нам уже известно явление самоиндукции — меняется ток в катушке, меняется ее магнитное поле, и в результате этих изменений, еще раз подчеркнем — только в результате изменений, на самой катушке наводится э. д. с. самоиндукции. Теперь давайте расположим рядом вторую катушку так, чтобы изменяющееся магнитное поле охватывало и ее витки. Совершенно ясно, что и на этой, никуда не подключенной катушке изменяющееся магнитное поле также наведет электродвижущую силу. Она получила название э. д. с. взаимоиндукции. Подобное устройство, в котором электрическая энергия передается из одной катушки в другую без непосредственного их соединения, а только за счет связывающего обе катушки переменного магнитного поля, называется трансформатором. Нам еще предстоит несколько встреч с трансформатором, и в самое ближайшее время мы познакомимся с ним более подробно.

Та обмотка — так обычно называют катушки трансформатора, — в которой мы сами создаем переменный ток, то есть обмотка, к которой подключен генератор, получила название первичной. Обмотка, в которую передается энергия и где наводится электродвижущая сила взаимоиндукции, называется вторичной.

Вставленный внутрь контурной катушки стальной сердечник — это своего рода вторичная обмотка трансформатора. На самом сердечнике наводится э. д. с., в нем появляется вихревой ток, он отбирает у контурной катушки какую-то мощность, а значит создает в контуре дополнительные потери. Терять энергию всегда жалко, но для контура потери неприятны вдвойне. Из-за них снижается добротность, уменьшается резонансное напряжение, ухудшается избирательность. Одним словом, использовать стальной сердечник для подстройки колебательного контура нельзя.

Между прочим, аналогичная проблема возникает не только в высокочастотной аппаратуре. При сравнительно медленном изменении тока, даже при промышленной частоте 50 гц, вихревые токи, наводимые в стальном сердечнике, слишком велики и отбирают много энергии. Если вы посмотрите на сердечник трансформатора, на ротор электродвигателя или на любую другую стальную деталь, которая «по роду своей работы» находится в переменном магнитном поле, то заметите, что все эти детали сделаны не из одного массивного куска стали, а собраны из тонких стальных пластин. Такая пластинчатая конструкция — верное средство уменьшения вихревых токов. Токи наводятся в каждой пластинке и, что самое интересное, каждый из них мешает соседу — своим магнитным полем резко уменьшает соседний ток. В итоге общая энергия, отбираемая сердечником, оказывается сравнительно небольшой.

Если сердечник предназначен для катушки, где протекает ток высокой частоты, в частности, для контурной катушки, то разделение на пластины уже оказывается недостаточным. Приходится сталь или другой подобный материал измельчать в порошок, покрывать каждую его крупинку изолирующим лаком, а затем из этой пыли прессовать сердечник необходимой формы. Такой сердечник усиливает магнитное поле, то есть увеличивает индуктивность, заметно хуже, чем стальной, но зато не вносит дополнительных потерь и значит не снижает добротности контура. Более того, при использовании сердечника добротность даже повышается. Если бы катушка не имела сердечника, то пришлось бы намотать большее число витков и сопротивление такой катушки было бы больше.

Прессованные материалы, из которых делают сердечники для катушек, называют магнитодиэлектриками. Первая часть названия говорит о том, что материал обладает магнитными свойствами и подобно стали усиливает магнитное поле. Вторая часть поясняет, что материал не проводит электрического тока, обладает электрическими свойствами изолятора. Происходит это потому, что отдельные крупинки металла тщательно изолированы друг от друга. Из магнитодиэлектриков в последнее время наиболее широко применяются ферриты — черные и темно-серые материалы с крупинчатой структурой.

Для средневолновых и длинноволновых катушек иногда используют горшкообразные (броневые) сердечники, внутри которых располагается сама катушка (рис. 24, б). При этом сердечник охватывает практически все магнитное поле катушки и во много раз повышает ее индуктивность. Дальним родственником броневого сердечника является ферритовое кольцо, надеваемое на катушку (рис. 24, в).

Теперь мы готовы к тому, чтобы разобрать практическую схему включения колебательного контура. В хорошем и даже в не очень хорошем приемнике всегда имеется несколько контуров, но один из них, как правило, включен во входную, то есть в антенную цепь. Этот контур так и называется входным или, иначе, преселектором. В переводе на русский язык это примерно означает «предварительный избиратель». Преселектор действительно встречает весь поток сигналов, попадающих в антенну, и, как может, ослабляет действие мешающих станций, осуществляет их предварительный отсев.

Одна из возможных схем входной цепи двухдиапазонного приемника показана на рис. 32, а. Через конденсатор С 1 осуществляется связь антенны с контуром — это так называемая схема емкостной связи. В зависимости от диапазона к конденсатору настройки С 2 подключается одна из катушек L 3 (ДВ) или L 4 (СВ). Несколько иная схема коммутации (переключения) показана на рисунке 32,б. Схема построена исходя из того, что общая индуктивность двух катушек, так же как и двух сопротивлений, равна их сумме.

Рис. 32

На длинных волнах в контур входят две соединенные последовательно катушки, в сумме дающие необходимую индуктивность, а на средних волнах катушка L 4 замыкается накоротко и в контуре остается только L 3 , рассчитанная на средневолновый диапазон.

Наиболее широко распространена схема входной цепи с индуктивной или трансформаторной связью (рис. 32, в). Здесь в цепи антенны также имеется конденсатор С 1 , но выполняет он уже совсем другую роль — предохраняет катушки от случайного попадания высокого напряжения, например, из-за замыкания антенны с каким-нибудь сетевым проводом. Сам контур непосредственно с антенной не связан — высокочастотный ток в нем наводится через своеобразный трансформатор, первичной обмоткой которого являются катушки L 1 и L 2 . Эти катушки всегда расположены на одном каркасе с контурными L 3 и L 4 , и переключаются они отдельной секцией переключателя диапазонов. Катушки связи (L 1 , L 2 ) всегда можно отличить по внешнему виду — они имеют значительно большую индуктивность, а значит и большее число витков по сравнению с соответствующей контурной катушкой. Подстроечные конденсаторы С 3 и С 4 , подключенные параллельно к катушкам, вместе с ними включаются и в контур. Так же как и сердечники катушек, они помогают точно установить граничные частоты контура.

Несколько слов о переключателе. Коммутация высокочастотных цепей дело довольно тонкое, и здесь применяются специальные переключатели с небольшими посеребренными контактами. Раньше были распространены галетные переключатели, а теперь клавишные. Как правило, переключатели диапазонов всегда имеют много групп, то есть одновременно происходит замыкание большого числа контактов. Различные контактные группы одного и того же переключателя обозначают буквами-индексами. Так, на схеме 32, в видны две контактные группы одного переключателя П 1 . Группа П 1а переключает катушки связи, а группа П 1б соответствующие контурные катушки. Совершенно ясно, что в трехдиапазонном приемнике во всех секциях переключателя должно быть по три неподвижных контакта — третий для коротковолновых катушек.

На всех схемах вы видите линию со стрелкой, которая недвусмысленно говорит о том, что со входного контура высокочастотное напряжение передается куда-то дальше. Но куда? Можно, конечно, построить очень простой приемник, где сигнал с контура пойдет прямо на детектор (стр. 96). Такие детекторные приемники обычно строят школьники, начиная практические занятия по радиотехнике. Что же касается настоящего приемника, с которым мы хотим познакомиться, то здесь на пути от входной цепи до детектора встретится еще много важных и сложных узлов, много интересных преобразований сигнала и среди них в первую очередь усиление.