Лекции

Тесла Никола

4. О свете и других высокочастотных явлениях [9]

 

 

Введение

Некоторые мысли о глазе

Когда мы смотрим на мир вокруг нас, на природу, нас впечатляют ее красота и великолепие. Каждый предмет, который мы воспринимаем, каким бы малым он ни был, есть уже мир сам по себе, как и вся Вселенная, материя и сила, которыми управляет закон, — мир, размышления о котором наполняют нас чувством восхищения и который побуждает нас мыслить и исследовать. Но во всём огромном мире, из всех предметов, доступных нашим органам чувств, самым удивительным и возбуждающим воображение является, несомненно, высокоразвитый организм, мыслящее существо. Если какое-то творение Природы и достойно восхищения, то это наверняка то самое непостижимое создание, что производит бесконечное множество движений в ответ на внешние раздражители. Понять его работу, глубже проникнуть в этот шедевр Природы — вот что всегда было делом жизни мыслителей, и после столетий титанически трудных исследований человечество пришло к более или менее правильному пониманию функций его организма и органов чувств. И вот, из всего совершенства и гармонии частей тела, частей, которые составляют материальную, осязаемую часть нашего существа, из всех органов глаз — особенно удивителен. Из всех органов чувств, или органов познания, он наиболее ценен, он — великие врата, через которые всё знание проникает в наш разум, он состоит в самых тесных отношениях с тем, что мы называем интеллектом. Эти отношения настолько интимны, что мы иногда говорим: глаза — это зеркало души.

Можно принять как факт, подразумеваемый теорией функции глаза, что при каждом внешнем воздействии, то есть при каждом воздействии образа на сетчатку, кончики глазных нервов, задействованные в передаче этого образа мозгу, должны находиться под напряжением, или вибрировать. Теперь уже не является неправдоподобным то, что когда силой мысли вызывается образ, кончики глазных нервов испытывают отчетливое, хотя и слабое рефлекторное воздействие, а следовательно, его испытывает и сетчатка. Будет ли человечество способно когда-нибудь анализировать состояние сетчатки, когда на нее оказано воздействие усилием мысли или рефлекторно, при помощи каких-либо оптических или иных устройств, обладающих такой чувствительностью, что с их помощью можно в любое время получить представление о состоянии сетчатки? Если бы это было возможно, тогда проблему чтения мыслей человека с точностью, равной чтению букв в книге, можно было бы решить легче, чем многие проблемы позитивной физики, в решение которых большинство ученых, если не все, безоговорочно верят. Гельмгольц доказал, что глазное дно само по себе способно светиться, и что он мог видеть, в полной темноте, движение собственной руки при свете его собственных глаз. Это один из самых замечательных опытов в истории науки и, возможно, немногие смогли его успешно повторить, так как скорее всего свечение глаз связано с необычно мощной мозговой деятельностью и большой силой воображения. Это флюоресценция мозговой активности, так сказать.

Еще одним фактом, имеющим особенное значение в связи с нашим предметом, и который замечен многими, так как он упоминается в поговорках и пословицах, хотя я и не припомню, чтобы этот факт был описан как положительный результат наблюдений, это то, что иногда, когда на ум приходит неожиданная идея или образ, мы видим перед глазами вспышку света, бывает и болезненную, даже при дневном свете.

Таким образом, выражение «Глаза — это зеркало души» имеет под собой основу, и мы видим, что оно несет в себе истину. Глубокое значение оно имеет для того, кто, подобно поэту или художнику, лишь следуя врожденному чувству любви к природе, находит радость в бесконечном процессе мышления и простом созерцании природных явлений, но еще более глубокое значение оно имеет для того, кто, ведомый духом научного эксперимента, пытается установить причины явлений. Именно для философа, естествоиспытателя, физика глаз является предметом наиболее полного восхищения.

Два факта должны неумолимо поражать разум физика, несмотря на его предположения, что глаз — это несовершенный оптический прибор, забывая при этом, что и само понятие о том, что совершенно, а что нет, он получает через этот самый прибор. Первое, глаз — это единственный орган, который непосредственно испытывает влияние той тонкой среды, которая, как учит нас наука, пронизывает всё пространство; второе, это наиболее чувствительный из наших органов, несравненно более чувствительный к внешним воздействиям, чем все остальные.

Орган слуха должен подвергнуться воздействию массивных предметов, орган обоняния — улавливает передаваемые свободные материальные частицы, органы вкуса и осязания или силы, ощущают прямой контакт, или, по крайней мере, воздействие ощутимых предметов, и это верно даже для живых организмов, у которых некоторые из перечисленных органов развиты почти до совершенства. При всём при этом удивительно, что орган зрения один способен возбуждаться тем, что все остальные органы, вместе взятые, не в силах заметить, и что всё же играет важнейшую роль во всех природных явлениях, что передает энергию и поддерживает движение, и, что самое удивительное, жизнь, но обладает такими качествами, что даже разум самого опытного ученого не может не провести границу между ним и всем, что именуется материей. Одна лишь мысль о том, что глаз своей удивительной властью раздвигает горизонты нашего восприятия — обычно такие узкие — далеко за пределы нашего небольшого мира, и оно становится способным объять мириады иных миров, солнц и звезд в неисчерпаемых глубинах Вселенной, — приводит к предположению, что глаз — это орган высшего порядка. Его возможности находятся за пределами нашего понимания. Насколько мы знаем, природа еще не создавала ничего более удивительного. Мы можем получить слабое представление о его поистине колоссальных возможностях путем анализа и сравнения. Когда волны эфира накатываются на тело, они вызывают чувства тепла или холода, удовольствия или боли, а, может быть, они вызывают иные ощущения, которых мы не знаем, и эти ощущения могут быть любой степени, и количество этих степеней бесконечно, как бесконечно количество определенных ощущений. Но наше осязание не может нам раскрыть различных степеней этих ощущений, если только они не очень сильны. Теперь мы можем легко себе представить, как организм, например человеческий, в бесконечном процессе эволюции, или, выражаясь более философски, адаптации к природным условиям, при условии возможности пользоваться только чувством осязания, например, мог бы развить это чувство до такой степени, что смог бы различать мельчайшие различия нагрева предмета даже на некотором расстоянии с точностью до сотой, тысячной или миллионной доли градуса. И всё же, даже такая, очевидно невозможная степень совершенства не сравнится с работой глаза, который способен различить и мгновенно передать в мозг бесчисленные подробности предмета: форму, цвет или нечто иное. Такая способность глаза основывается на двух вещах, а именно: на его способности линейно отображать источник раздражения и на его чувствительности. Сказать, что глаз чувствителен — значит, не сказать ничего. В сравнении с ним остальные органы чудовищно грубы. Орган обоняния, ведущий пса по следу оленя, орган осязания, ведущий насекомое в его скитаниях, орган слуха, реагирующий на малейшие колебания воздуха, — всё это чувствительные органы несомненно, но что они по сравнению с человеческим глазом! Без сомнения, он реагирует на самые слабые отголоски и отзвуки среды; без сомнения, он доносит до нас эхо других миров, бесконечно далеких, но делает это так, что мы не всегда можем понять. Почему же мы не можем? Потому что мы живем в среде, наполненной воздухом, газами, испарениями и плотной массой твердых частиц, летающих в воздухе. Они играют важную роль в различных явлениях; они распыляют энергию колебаний до того, как они смогут достичь глаза; они — микробы разрушения, они попадают в наши легкие и другие органы, забивают каналы и незаметно, но неотвратимо, тормозят ток жизни. Если бы мы могли избавиться от взвешенных частиц на линии окуляра микроскопа, перед нами бы открылись невообразимые чудеса. Даже невооруженный взгляд, я полагаю, смог бы различить в чистой среде небольшие предметы на расстоянии, возможно, сотен, а то и тысяч миль.

Но есть нечто, что впечатляет нас гораздо больше, чем все эти удивительные способности, которые мы описали с точки зрения физика, рассматривая этот орган лишь как оптический прибор, — нечто, что завораживает нас больше, чем его чудесная способность прямо воспринимать колебания среды, без вмешательства грубой материи, и больше, чем его непостижимая чувствительность и избирательность. Это его важность для жизненных процессов. Независимо от того, каковы взгляды человека на природу и жизнь, он должен поразиться, когда впервые его мысль постигнет важность глаза для физических процессов и умственной деятельности человеческого организма. Да и как может быть иначе, если глаз — это средство, при помощи которого человечество получило все имеющиеся у него знания, которое контролирует все наши эмоции и, более того, все наши поступки.

Знания можно получать только при помощи глаз. Какова основа всех философских систем прошлого и современности, фактически, всей философии человека? Я существую, я мыслю, я мыслю, следовательно, я существую. Но как бы я мыслил, и откуда бы мне было известно, что я существую, если бы у меня не было глаз? Ибо знание подразумевает сознание; сознание означает идеи, понятия; понятия подразумевают картинки или образы, а образы — зрение, а следовательно, и орган зрения. Но вот вопрос, а как быть со слепыми людьми? Да, слепой человек может создавать великолепные поэмы, формы и сцены настоящей жизни, из того мира, который он физически не видит., Слепой человек может трогать клавиши инструмента с безошибочной точностью, может спроектировать самое быстроходное судно, он может открывать и изобретать, считать и строить, может выполнять и более поразительные задачи, но все слепцы, которые творили такое, произошли от тех людей, у которых были зрячие глаза. Природа может достигать цели разными путями. Как в физическом мире, в безбрежном океане той среды, что пронизывает всё, так и в мире организмов, в жизни заданный импульс распространяется временами, может быть, со скоростью света, а иногда так медленно, что веками он кажется застывшим на месте, претерпевая процессы, неподвластные человеческому разуму, но во всех его формах, на всех стадиях энергия его сохраняется. Одинокий луч света далекой звезды, в незапамятные времена коснувшийся глаз тирана, возможно, изменил течение его жизни, изменил судьбы народов, может быть, изменил лик Земли, настолько сложны, настолько непостижимо запутаны природные процессы. Только тогда мы можем получить представление о величии Природы, когда понимаем, что в соответствии с законом сохранения энергии, где бы то ни было, силы находятся в совершенном равновесии, и поэтому энергия одной мысли может определить движение Вселенной. Совсем необязательно, чтобы отдельный индивидуум, или даже поколение, или несколько поколений имели орган зрения, то есть формировали идеи и понятия; но в какой-то момент эволюции глаз должен существовать, а иначе мысль, как мы ее понимаем, будет невозможна; иначе понятия, такие, как дух, разум, интеллект, называйте их как хотите, будут невозможны. Понятно, что в каком-то ином мире, у каких-то других существ глаз заменен другим органом, таким же или более совершенным, но эти существа не могут быть людьми.

Итак, что подталкивает всех нас к намеренным движениям разного рода? Снова глаз. Если я осознаю движение, я должен иметь идею или понятие, а значит — глаз. Если я не совсем осознаю движение, то это происходит потому, что образы расплывчаты и смазаны, наложены один на другой. Но когда я произвожу движение, импульс, который меня толкает, происходит изнутри или извне? Величайшие физики не считали для себя зазорным попытаться ответить на этот и подобные ему вопросы и иногда полностью отдавались восторгу чистой и ничем неограниченной мысли. Такие вопросы обычно не относят к сфере позитивной физики, но вскоре станут относить. Гельмгольц, возможно, думал о жизни больше, чем любой из современных ученых. Лорд Кельвин высказал мысль о том, что жизнь имеет электрическую природу, и что есть сила, которая является неотъемлемой частью организма, определяющая его движения. Так же, как я убежден в каждой физической истине, я убежден в том, что исходный импульс должен поступать извне. Ибо рассмотрим простейший организм, известный нам, — возможно, имеется нечто более простое — скопление всего лишь нескольких клеток. Если он может совершать намеренное движение, то он совершает бесчисленное количество движений, все они определенны и точны. Но механизм, состоящий из конечного числа частей, которых и не очень много, не способен совершать бесчисленное количество определенных движений, поэтому импульсы, руководящие его движениями, должны поступать из окружающей среды. Так, атом, мельчайший элемент в структуре Вселенной, постоянно мечется в пространстве, как игрушка в руках внешних сил, как лодка в бушующем море. Прекратись его движение — он умрет. Материя в покое, если бы такое могло существовать, была бы мертвой материей, лишенной смысла! Никогда еще мысль, более наполненная философским смыслом, доселе не звучала. Именно так выразился профессор Дьюар, описывая свои восхитительные опыты, где с жидким кислородом обращаются как с водой, а воздух при нормальном давлении сгущается и даже твердеет под воздействием крайнего холода. Эти опыты призваны проиллюстрировать, как он выражается, последние слабые проявления жизни, последние судороги материи, которая вот-вот умрет. Но человеческий глаз не засвидетельствует такую смерть. Материя бессмертна, ибо на всех просторах Вселенной она должна двигаться, колебаться, то есть жить.

Всё это я говорил, ступая по зыбкой почве метафизики, в надежде сделать вступление в предмет моей лекции перед уважаемой аудиторией не совсем скучным. Но теперь, возвращаясь к этому предмету — этому божественному органу — зрению, этому неотъемлемому инструменту мысли и интеллектуального восторга, который открывает нам чудеса Вселенной, при помощи которого мы получили все знания, которыми располагаем, и который стимулирует и контролирует всю нашу физическую и умственную деятельность. Что на него влияет? Свет! А что есть свет?

В последние годы все мы были свидетелями огромных успехов во всех областях науки. Прогресс настолько велик, что мы не можем не задаться вопросом, так ли всё это или это просто сон? Столетиями люди жили, мыслили, делали открытия, изобретали и верили в то, что они парят, тогда как они двигались со скоростью улитки. Также и мы можем ошибаться. Но принимая за истину наблюдаемые события, как нечто неоспоримое и научно подтвержденное, мы должны радоваться огромному прогрессу, но еще более грядущему, судя по тому, какие возможности открылись перед нами благодаря современным исследованиям. Это не открытия, изобретения или достижения в одном направлении. Это — продвижение во всех областях научной мысли и эксперимента. Я имею в виду обобщение естественных сил и явлений, проявляющиеся очертания некоей широкой идеи на научном небосклоне. Именно к этой идее, которая давно завладела прогрессивными умами, я намерен привлечь ваше внимание, и которую я проиллюстрирую опытами в качестве первого шага для ответа на вопрос: «Что есть свет?», и для современного понимания этого слова.

В мою задачу сегодня не входит рассуждать о свете в общем, цель моей сегодняшней лекции — представить вашему вниманию определенную группу световых явлений и ряд феноменов, наблюдавшихся при изучении этих явлений. Но для того чтобы быть последовательным в своих высказываниях, надо отметить, что в соответствии с той идеей, ныне принятой большинством научного сообщества как положительный результат теоретических и практических изысканий, что различные формы проявления энергии, которые обычно именуются «электрические» или более точно — «электромагнитные», есть проявления энергии того же свойства, что и лучистое тепло или свет. Следовательно, явления света и тепла, а также некоторые другие могут быть названы электрическими явлениями. Так наука об электричестве стала матерью всех наук, и ее изучение стало наиважнейшим. В тот день, когда мы поймем, что такое «электричество», станем свидетелями события еще более великого и более важного, чем все события в истории человечества. Придет время, когда удобства, а, может быть, и само существование человека, станет напрямую зависеть от этого удивительного фактора. Для нашего существования нам требуются тепло, свет и механическая энергия. Как нам получить всё это? Мы получаем всё это из топлива. Мы получаем всё это, расходуя материалы. Что будет делать человек, когда исчезнут леса, когда иссякнут угольные залежи? Исходя из наших сегодняшних знаний останется только одно — передавать энергию на огромные расстояния. Люди отправятся к водопадам, к местам приливов, которые являются самой малой частью бесконечно огромных запасов природной энергии. Там они обуздают энергию и направят ее в свои поселения, чтобы согреть свои дома, дать свет и заставить упорно трудиться своих послушных рабов — машины. Но как они передадут энергию, если не при помощи электричества?! Вот и посудите, правда ли, что тогда удобства, нет, само существование человечества будет зависеть от электричества? Я понимаю, что это не мнение инженера-практика, но это и не мнение мечтателя, так как совершенно точно, что передача энергии, которая сейчас всего лишь стимул для предпринимательства, однажды станет насущной необходимостью.

Для студента, начинающего изучать световые явления, более важно тщательно познакомиться с современными взглядами, чем штудировать целые книги о свете как таковом, которые не имеют ничего общего с этими взглядами. Так что если бы мне пришлось демонстрировать мои опыты перед студентами, ищущими информацию, — а ради нескольких таковых, которые здесь присутствуют, позволю себе это предположить, — моей главной задачей стало бы внедрить эти взгляды в их разум посредством нескольких экспериментов.

Для этого, возможно, было бы достаточно произвести один очень простой и широко известный опыт. Я мог бы взять знакомое устройство, лейденскую банку, зарядить ее от фрикционной машины, а затем разрядить. Объясняя вам ее стабильное состояние во время зарядки и переходное состояние во время разряда, и обратив ваше внимание на силы, которые вступают в игру и на те явления, которые они вызывают к жизни, я мог бы полностью описать эту современную идею. Без сомнения, на мыслителя этот простой опыт произвел бы такое же впечатление, как самая красочная демонстрация. Но это должна быть и экспериментальная демонстрация, такая, что кроме целей обучения преследует и цели развлечения, а в этом случае простой опыт, вроде описанного, вряд ли бы достиг целей, которые имеет в виду лектор. Следовательно, мне должно выбрать другой путь показа, может быть, более броский, но, возможно, не менее поучительный. Вместо фрикционной машины и лейденской банки я буду пользоваться в течение этих опытов индукционной катушкой, обладающей определенными свойствами, детально описанными мной во время лекции, прочитанной перед аудиторией Лондонского электротехнического института в феврале 1892 года. Эта катушка способна вырабатывать токи огромного напряжения, колеблющиеся с огромной скоростью. С помощью этого устройства я попытаюсь показать вам три особых класса эффектов, или явлений, и намереваюсь в ходе этих опытов не только проиллюстрировать их, но и сделать так, чтобы эти опыты научили нас какой-либо новой истине или показали нам какой-либо новый аспект этой захватывающей науки. Но прежде чем мы приступим, было бы полезно описать используемые устройства, а также методику получения высоких потенциалов и высокочастотных токов, которые работают во время этих опытов.

 

Об устройствах и методах преобразования тока

Эти высокочастотные токи получаются особым способом. Применяемая методика была предложена мною около двух лет назад во время лекции в Американском институте электроинженеров. Несколько способов, практикуемых в лабораторных условиях, получения таких токов из постоянного или низкочастотного переменного тока показаны на рисунке 1, который будет позже подробно описан. В целом необходимо заряжать конденсаторы от источника постоянного или переменного тока, желательно высокого напряжения, и разряжать их пробивным разрядом, соблюдая при "этом необходимые условия колебания тока. Ввиду всеобщего интереса, проявляемого к токам высокой частоты и эффектам, которые они порождают, мне кажется желательным немного задержаться на этом методе преобразования. Для того чтобы дать вам ясную картину происходящего, я предположу, что применение источника постоянного тока, часто очень удобно. Желательно, чтобы генератор давал такое высокое напряжение для возможности произвести разряд между контактами на небольшом расстоянии в воздухе. Если этого не происходит, следует прибегнуть к помощи вспомогательных устройств, некоторые из которых будут описаны позже. Когда конденсаторы заряжаются до определенного потенциала, воздух, или изолирующее пространство, пробивается и происходит разряд. Тогда происходит резкий бросок тока, то есть расходуется большое количество накопленной электрической энергии. Затем конденсаторы заряжаются, и такой же процесс повторяется более или менее быстро. Для производства таких резких бросков тока необходимо соблюдать определенные условия. Если скорость разряда конденсаторов соответствует скорости зарядки, то в таком случае ясно, что конденсаторы в процессе не участвуют. Если скорость разряда меньше скорости зарядки, то и тогда конденсаторы не могут играть важной роли. Но если, напротив, скорость разряда выше скорости зарядки, тогда достигается последовательность резких бросков тока. Очевидно, если скорость, с которой энергия рассеивается во время разряда, намного выше скорости подачи энергии на конденсаторы, внезапные разряды будут немногочисленными, между ними будут большие интервалы. Это всегда происходит, когда конденсатор большой емкости заряжается сравнительно слабым устройством. Если скорости заряда и рассеивания не различаются сильно, тогда разряды будут происходить более быстро и часто, и тем быстрее и чаще, чем меньше разница в скорости, до тех пор, пока скорость и частота разрядов не достигнут ограничений, присущих каждому отдельному случаю и зависящих от ряда причин. Таким образом, от источника постоянного тока мы можем получить последовательность разрядов желаемой скорости. Конечно, чем выше напряжение, выдаваемое генератором, тем меньше должна быть емкость конденсаторов и, в основном, по этой причине лучше использовать генератор высокого напряжения. Кроме того, такой генератор позволяет получить более высокую скорость колебаний.

Броски тока могут быть одного направления, но в описанных условиях обычно формируемые колебания накладываются на основные. Когда условия опыта определены таким образом, что наложенных колебаний нет, импульсы тока следуют в одном направлении, и мы имеем средство преобразования постоянного тока высокого напряжения в постоянный ток низкого напряжения, что, как я полагаю, может найти прикладное применение.

Этот способ преобразования крайне интересен и я был сильно впечатлен его красотой, когда впервые применил его. Он идеален во многих отношениях, и не требует применения никаких механических устройств, позволяет получать токи нужной частоты от обычной схемы постоянного или переменного тока. Частоту базовых разрядов в зависимости от относительной скорости подачи энергии и рассеивания можно широко изменять путем несложной регулировки этих показателей, а частоту наложенных колебаний — путем определения емкости, самоиндукции и сопротивления цепи. Потенциал же схемы можно поднять до нужной величины настолько, насколько может выдержать изоляция, путем соотнесения показателей емкости и самоиндукции во вторичной обмотке, которая может состоять из нескольких витков.

Рис. 2

Поскольку условия проведения опыта часто таковы, что прерывистость или колебания сразу не устанавливаются, особенно при использовании источника постоянного тока, полезно связать прерыватель с дугой, как я применял некоторое время назад дутьё или магнит, если такие приспособления есть под рукой. При преобразовании постоянного тока особенно эффективен магнит. Если первичным источником является генератор переменного тока, то желательно, как я указывал ранее, чтобы частота была низкой, а сила тока, формирующего дугу, высокой.

Вариант такого разрядника, который оказался удобным в использовании и применялся в нескольких опытах, в частности, для преобразования постоянного тока, показан на рисунке 2. NS — это полюса очень сильного магнита, возбуждаемого катушкой с. Полюсные наконечники имеют отверстия для регулировки и закрепляются в нужном положении винтами ss 1 Штоки разрядника dd 1 , заостренные на концах, для того чтобы приблизиться к зубцам полюсов, проходят через медные муфты bb 1 и крепятся винтами s 2 s 2 Пружины rr 1 шайбы сс, надеты на штоки, причем шайбы служат для установки концов штоков на определенном приемлемом расстоянии при помощи винтов s 3 s 3 , а пружины — для разведения концов. Когда необходимо получить дугу, надо ударить легонько по одной из резиновых рукояток hh 1 тогда концы штоков соприкасаются, но сразу разводятся пружинами rr 1 Такая конструкция хорошо зарекомендовала себя, когда эдс была недостаточна для пробоя между контактами, она также позволяет избежать короткого замыкания генератора металлическими концами штоков. Скорость прерывания тока магнитом зависит от напряжения магнитного поля и разности потенциалов на концах дуги. Прерывания обычно столь часты, что вызывают музыкальный сигнал. Несколько лет назад было замечено: когда мощная катушка индуктивности разряжается между полюсами сильного магнита, во время разряда раздается звук сродни пистолетному выстрелу. Было сделано туманное замечание относительно того, что искра усиливалась наличием магнитного поля. Теперь стало ясно, что ток пробоя, текущий некоторое время, прерывается много раз, что и порождает звук. Это явление особенно заметно, когда цепь возбуждения большого магнита или динамо-машины разрывается мощным магнитным полем.

Когда сила тока разряда относительно высока, желательно, чтобы на концах разрядных штоков были укреплены очень жесткие кусочки углерода, и дуга бы играла между ними. Это предохраняет разрядные штоки и, кроме того, имеет то преимущество, что пространство между ними имеет более высокую температуру, поскольку тепло не так быстро рассеивается через углерод, в результате чего для поддержания той же последовательности разрядов требуется меньшая эдс.

Разрядник другой формы, также с успехом применяемый в отдельных случаях, показан на рисунке 3. В данном случае стержни разрядника dd f проходят через отверстия в деревянном коробе В, который на внутренней поверхности имеет толстый слой слюды, что обозначено на рисунке жирными линиями. Отверстия снабжены слюдяными гильзами mm 1 некоей толщины, которые, по возможности, не должны касаться стержней dd. Короб снабжен крышкой с, окружность которой несколько больше самого короба. Искровой промежуток подогревается лампой l, установленной внутри короба. Пластина р над лампой позволяет потоку воздуха проходить только через воздуховод лампы е, а подача воздуха происходит через отверстия оо над днищем короба, причем воздух движется в направлении, указанном стрелками. Во время работы разрядника крышка короба закрыта, так что свет дуги не виден снаружи. Желательно исключить свечение, насколько это возможно, так как оно мешает проведению некоторых экспериментов. Разрядник такой конструкции очень прост и эффективен, если с ним правильно обращаться. Когда воздух нагревается до определенной температуры, он теряет свои свойства изолятора; становится слабым диэлектриком, и последствия этого таковы, что дуга устанавливается на большем расстоянии. Дуга, естественно, должна быть в достаточной степени изолятором, чтобы разряд проходил резко. Дуга, сформированная при таких условиях, довольно длинная, может быть достаточно чувствительной, и слабого тока воздуха через воздуховод с достаточно, чтобы произвести быстрые прерывания. Настройка производится путем регулирования температуры и скорости потока воздуха. Вместо использования лампы целей эксперимента можно достичь, добиваясь потока теплого воздуха другими способами. Очень простой метод, который уже применялся, — поместить дугу в длинную вертикальную трубку, сверху и снизу ограниченную пластинами для регулировки температуры и скорости потока воздуха. Следует предпринять меры для устранения звука.

Ослабить диэлектрические свойства воздуха можно путем его разрежения, применяя и магнит. Для этой цели берется большая трубка с мощными углеродными или металлическими электродами, между которыми возникает разряд, причем трубка помещается в мощном магнитном поле. Воздух из трубки откачивается до такой степени, что разряд проходит легко, но давление в ней должно быть более 75 мм, когда происходит обычный нитевидный разряд. В разряднике другого типа, совмещающем в себе все описанные особенности, разряд возникает между двумя подвижными полюсными наконечниками, причем пространство между ними нагревается до определенной температуры.

Следует отметить, что при использовании таких или подобных разрядных устройств пробойного типа ток проходит через первичную обмотку катушки, при этом нежелательно, чтобы число прерываний тока в секунду было больше, чем естественная частота колебаний тока в цепи питающей динамо-машины, а она обычно мала. Следует также обратить внимание аудитории на то, что хотя устройства, упомянутые в связи с пробойным разрядом, и полезны при определенных условиях, они всё же могут быть источниками проблем, так как создают прерывания и другие неполадки, с которыми следует бороться.

Вынужден признать, к сожалению, что этот прекрасный способ преобразования имеет один недостаток, который не является, впрочем, жизненно важным, и его я постепенно преодолеваю. Лучше всего мне обратить на него ваше внимание и указать перспективное направление движения, сравнив электрический процесс с его механическим аналогом. Этот процесс можно проиллюстрировать следующим образом. Представьте себе бак, в днище которого имеется широкое отверстие, которое закрыто пружинной задвижкой так, что она открывается внезапно, когда жидкость, поступающая в бак, достигает определенного уровня. Пусть жидкость поступает в бак через трубу, подающую ее с определенной скоростью. Когда уровень жидкости в баке достигает критической отметки, пружина подается и днище открывается. Через широкое отверстие жидкость моментально выливается и пружина, встав на место, снова запирает отверстие. Бак снова наполняется, и через некоторое время процесс повторяется. Ясно, если жидкость поступает в бак быстрее, чем она успевает слиться сквозь отверстие в днище, отверстие будет всегда открытым, но бак будет переполнен. Если скорость наполнения и скорость слива будут одинаковы, то задвижка будет частично открыта, и в целом колебания уровня жидкости и задвижки не будут наблюдаться, хотя их и можно определенным способом инициировать. Но если бак будет наполняться медленнее, чем освобождаться, то колебания всегда будут присутствовать. И опять же, каждый раз, когда днище открывается и закрывается, пружина и уровень жидкости, если эластичность пружины и инерция движущихся частей выбраны правильно, будут совершать независимые колебания. В данном примере жидкость можно сравнить с электричеством или электрической энергией, бак с конденсатором, пружину — с диэлектриком, а трубу — с проводом, подающим электричество к конденсатору. Для того чтобы аналогия была более полной, следует предположить, что задвижка, каждый раз когда резко открывается, сильно бьется о неупругий ограничитель, и в результате этого удара происходит некоторая потеря энергии, и, кроме того, энергия частично рассеивается, в результате фрикционных потерь. В приведенном примере жидкость находится под постоянным давлением. Если давление жидкости ритмично меняется, то это следует уподобить переменному току. Тогда процесс становится непростым для понимания, но механический и электрический процессы в принципе идентичны.

Желательно, для экономичного поддержания колебаний, насколько это возможно, исключить потери от трения и удара. Что касается трения, что в варианте электрическом соответствует потерям от сопротивления в цепи, то от него нельзя избавиться полностью, но их можно свести к минимуму, правильно выбрав размер цепи и применив тонкие проводники в форме ленты.

Но потери, вызванные первым пробоем диэлектрика, в механическом варианте это соответствует сильному удару о неэластичный ограничитель, преодолеть гораздо важнее. В момент пробоя воздух в зазоре имеет определенное, очень высокое сопротивление, величина которого сильно снижается, когда ток достигает какого-то значения и воздух в зазоре нагревается. Потери энергии можно существенно снизить, если поддерживать температуру пространства зазора на высоком уровне, но тогда не будет прерывания разряда. Когда мы умеренно нагреваем зазор при помощи лампы или иным способом, экономия в отношении дуги ощутимо возрастает. Но магнит или другое прерывающее устройство не снижает потерь в дуге. Точно так же поток воздуха только увеличивает рассеивание энергии. Воздух, да и вообще газ, в таких условиях ведет себя любопытно. Когда два тела, заряженные до очень высокого потенциала, пробойно разряжаются сквозь воздух, последний может рассеять любое количество энергии. Эта энергия, очевидно, уносится физическими носителями при столкновениях и соответствующих молекулярных потерях. Молекулярный обмен в пространстве происходит с непостижимой скоростью. Когда между двумя электродами происходит мощный разряд, они могут оставаться совсем прохладными, и всё же потери в воздухе могут достигать любой величины. На практике часто случается, что при большой разнице потенциалов на электродах несколько лошадиных сил рассеиваются в дуге разряда и при этом даже не наблюдается значительного повышения температуры электродов. Таким образом, все фрикционные потери происходят в воздухе. Если молекулярный обмен в воздухе предотвращен, как например тогда, когда воздух заперт в герметичном сосуде, газ внутри такого сосуда быстро достигает высокой температуры даже при несильном разряде. Трудно подсчитать, какое количество энергии рассеивается звуковыми волнами, неважно, слышны они или нет, при мощном разряде. Когда ток разряда высок, электроды могут быстро нагреться, но это не есть надежный показатель того, какое количество энергии потеряно в дуге, так как потери в самой дуге могут быть сравнительно малы. Воздух, или вообще газ, при нормальном давлении не являются наилучшей средой для пробойного разряда. Воздух или иной газ под большим давлением, конечно, гораздо более приемлемая среда для зазора. Я проводил долгие опыты в этом направлении, к сожалению, не приведшие к блестящим результатам с точки зрения преодоления этих трудностей и получения воздуха под большим давлением. Но даже если среда в зазоре твердая или жидкая, имеют место те же потери, хотя они и меньше в целом, ибо как только устанавливается дуга, твердое или жидкое вещество испаряется. И в самом деле, неизвестно такое тело, которое бы не распалось под действием дуги, и в научной среде остается открытым вопрос, возможен ли вообще дуговой разряд в воздушной среде, если от электродов не отделяются частицы материала. Когда сила тока в дуге невелика, а сама дуга длинная, я полагаю, что при распаде электродов расходуется достаточно значительное количество энергии, а электроды — частично по этой причине — могут оставаться довольно прохладными.

Идеальная среда для искрового промежутка должна просто пробиваться, а идеальный электрод должен быть изготовлен из материала, который не способен распадаться. При небольшой силе тока, текущего через промежуток, лучше всего использовать алюминий, но не при сильном токе. Пробойный разряд в воздухе, или иной обычной среде, не имеет природу трещины, его скорее можно сравнить с тем процессом, когда бесчисленное количество пуль проходит сквозь среду, оказывающую сильное сопротивление полету пуль, а это приводит к значительным потерям энергии. Среда, которая трескается при возникновении электростатического напряжения, — а так скорее всего и происходит в абсолютном вакууме, то есть чистом эфире, — дает очень малые потери в искровом промежутке, настолько малые, что ими можно пренебречь, по крайней мере теоретически, так как трещина происходит вследствие крайне незначительной деформации. Когда я очень осторожно откачивал воздух из вытянутой трубки с двумя алюминиевыми электродами, мне удалось получить такой вакуум, что при прохождении вторичного разряда катушки он имел форму тонких искровых потоков. Любопытно, что разряд полностью игнорировал электроды и начинался далеко за пределами алюминиевых пластин, служивших таковыми. Эта необычайно высокая степень вакуума может существовать очень короткое время. Возвращаясь к идеальной среде, представьте себе, для примера, кусок стекла или подобный предмет, зажатый в тиски, который сжимает его всё сильнее и сильнее. В определенный момент малейшее нарастание давления вызовет трещину в стекле. Потеря энергии при расколе стекла может быть ничтожной, и хотя сила и велика, деформация будет незначительной. Теперь представьте себе, что стекло обладает свойством полностью восстанавливать целостность при малейшем уменьшении давления. Вот так и должен вести себя диэлектрик в искровом промежутке. Но поскольку в промежутке всегда будут иметь место потери, среда, которая должна быть сплошной, будет производить обмен в промежутке с огромной скоростью. В предыдущем примере, когда стекло идеально закрыто, это значит, что диэлектрик в зоне разряда обладает отличными изолирующими свойствами; если стекло трескается, это означает, что среда в промежутке — хороший проводник. Сопротивление диэлектрика должно сильно меняться при малейших изменениях значения эдс в промежутке. Это условие достижимо, но очень несовершенным способом: нагревая воздух в искровом промежутке до определенной критической температуры, зависящей от эдс в промежутке, или путем нарушения изолирующих свойств воздуха. Но, по сути дела, разряд в воздухе никогда не происходит пробойно, в строгом понимании этого термина, так как перед внезапным броском тока всегда присутствует слабый, предваряющий ток, который сначала постепенно, а потом резко нарастает. Вот почему скорость обмена гораздо выше, например, когда пробивается стекло, чем когда разряд проходит сквозь слой воздуха с той же диэлектрической прочностью. Следовательно, в качестве среды для искрового промежутка твердое вещество или жидкость были бы гораздо предпочтительнее. Довольно трудно себе представить твердое тело, моментально заращивающее трещину. Но жидкость под большим давлением ведет себя как твердое тело и к тому же имеет способность восстанавливать целостность. Поэтому у меня сложилось мнение, что жидкий изолятор может быть более приемлемым в качестве диэлектрика, чем воздух. Исходя из этой идеи, были поставлены опыты с разрядниками различных типов, в которых применялись такие изоляторы разнообразной формы. Полагаю, что достаточно будет сказать несколько слов об одном из них. Он показан на рисунках 4а и 46.

Полый металлический шкив Р (рисунок 4а) был укреплен на валу а, который вращался со значительной скоростью при помощи соответствующего механизма. Внутри шкива, но не соприкасаясь с ним, был установлен тонкий диск h (показанный толстым для ясности рисунка) из твердой резины с впрессованными металлическими сегментами ss, имеющими металлические выступы ее, к которым привинчены провода tt, покрытые тонким слоем резины t 1 t 1 . Резиновый диск h с металлическими сегментами ss был обработан на токарном станке и вся его поверхность тщательно отполирована для того, чтобы уменьшить трение при вращении в жидкости. В полый шкив было залито масло так, чтобы заполнить все пространство вплоть до отверстия, оставленного во фланце / на передней части шкива, которое тщательно завинтили. Выводы tt соединили с противоположными слоями батареи конденсаторов так, чтобы разряд происходил в жидкости. При вращении шкива жидкость прижималась к ободу и создавалось значительное давление. Таким простым способом искровой промежуток заполнялся средой, которая вела себя практически как твердое тело и имела свойство мгновенно восстанавливаться после разрыва и, кроме того, циркулировала в искровом промежутке с огромной скоростью. При помощи таких разрядников с жидким прерывателем были получены очень мощные явления, причем эти разрядники были созданы в нескольких вариантах. Было обнаружено, как и ожидалось, что при данной длине провода можно получить более длинную искру, если применять для прерывания воздух. В целом скорость, а следовательно, и давление жидкости, были ограничены трением жидкости в описанном разряднике, но скорости, получаемой на практике, было более чем достаточно для производства разрядов, приемлемых для обычных цепей. В таких случаях металлический шкив Р изнутри имел зубцы и тогда возникало несколько пробоев, количество которых можно было высчитать, исходя из скорости вращения шкива. Эксперименты проводились с использованием жидкостей с разной изолирующей способностью с целью снижения потерь в дуге. Если изолирующую жидкость немного подогреть, потери в дуге снижаются.

Во время опытов с такими разрядами был отмечен интересный момент. Например, было обнаружено, что в то время, как условия опыта были подобраны таким образом, чтобы получать искру наибольшей длины, ток, полученный таким способом, не лучшим образом подходил для получения световых эффектов. Опыт, несомненно, показывает, что в таких случаях предпочтительнее иметь гармоническое колебание потенциала. Неважно — накаляется твердое тело до состояния свечения или энергия передается конденсатором сквозь стекло, — можно с уверенностью сказать, что гармонично повышающийся и понижающийся потенциал оказывает менее разрушительное действие, и что вакуум поддерживается гораздо дольше. Это можно легко объяснить, если бы было установлено, что процесс, имеющий место в вакуумном сосуде, имеет электролитическую природу.

Блок-схема на рисунке 1, к которой мы уже обращались, демонстрирует наиболее вероятные случаи. От источника подается либо постоянный, либо переменный ток. В лабораторных условиях удобнее всего применять устройство G, показанное на рисунке, способное давать оба типа тока. В таком случае также предпочтительно использовать многоконтурную машину, так как во многих опытах предпочтительнее и удобнее иметь разнофазные токи. На схеме D означает цепь постоянного, а А — переменного тока. Каждая часть имеет по три групповые цепи, каждая из групп имеет линейный выключатель ssssss. Сперва рассмотрим преобразование постоянного тока; вариант 1а самый простой. Если эдс генератора достаточна для пробоя сквозь небольшой промежуток, заполненный воздухом, по крайней мере, если последний нагрет или его изолирующие свойства ослаблены иным способом, нетрудно поддерживать колебания довольно экономично, осторожно подстраивая емкость, самоиндукцию и сопротивление в цепи L, имеющей устройства Пт. В данном случае магнит NS может удачно сочетаться с воздушным промежутком. Разрядник dd с магнитом можно поместить любым способом, как показано сплошной или пунктирной линией. Контур 1а со всеми клеммами и устройствами должен быть таких размеров, чтобы успешно поддерживать колебания. Но обычно эдс в контуре 1а устанавливается на уровне 100 В или около, этого недостаточно для пробоя через искровой промежуток, заполненный воздухом. Для решения этой проблемы и повышения эдс в промежутке можно использовать много разных средств. Самое простое, вероятно, включить последовательно с цепью L большую катушку самоиндукции. Когда дуга устанавливается, как в разряднике на рисунке 2, магнит разрушает ее в самый момент формирования. Тогда через промежуток резко устремляется дополнительный ток пробоя, имеющий высокую эдс, и для тока динамо-машины вновь устанавливается цепь низкого сопротивления, что приводит к резкому броску тока от машины при ослаблении или затухании дополнительного тока пробоя. Этот процесс очень быстро повторяется, и таким способом мне удавалось поддерживать колебания при напряжении в промежутке всего лишь 50 В. Но преобразование тока по такой схеме не рекомендуется по причине большой силы тока в промежутке и сильного нагрева электродов; кроме того, получаемая частота очень низка вследствие высокой самоиндукции, обязательно возникающей в цепи. Желательно, во-первых, иметь как можно более высокую эдс для повышения экономии при преобразовании, а во-вторых, высокую частоту. Разность потенциалов при электрических колебаниях, конечно, соответствует силе растяжения пружины при механических колебаниях. Для получения очень быстрых колебаний в цепи с высокой инерцией требуется большая сила растяжения или разность потенциалов. Соответственно, если эдс высока, конденсатор, включенный в цепь, должен иметь небольшую емкость, имеются и другие преимущества. В целях повышения эдс до значения в несколько раз выше того, что мы имеем в обычных бытовых сетях, применяется вращающийся трансформатор д, как показано на рисунке 1а, либо генератор G питает отдельную машину, выдающую высокое напряжение. Последний вариант, вообще-то, более предпочтителен, поскольку он более гибкий. Схема подключения к обмотке высокого напряжения похожа на ту, что показана на рисунке 1а за исключением того, что регулируемый конденсатор С включен в цепь высокого напряжения. Обычно в таких экспериментах применяется катушка самоиндукции, включенная в цепь последовательно. При высоком напряжении тока магнит, работающий в разряднике, имеет небольшую ценность, поскольку нетрудно подобрать такие габариты контура, чтобы поддерживать колебания. Применение постоянной эдс при высокочастотном преобразовании дает некоторые преимущества по сравнению с переменной эдс, так как легче регулировать цепь и контролировать ее работу. Но, к сожалению, существует ограничение по напряжению. Часто выходит из строя обмотка вследствие сильного искрения между секторами якоря или преобразователя, когда устанавливаются сильные колебания. Кроме того, такие трансформаторы дороги. Практика показала, что лучше всего использовать схему Ilia. Здесь вращающийся преобразователь д используется для преобразования низковольтного постоянного тока в низкочастотный переменный ток, желательно также низкого напряжения. Напряжение затем повышается стационарным трансформатором Т. Вторичная обмотка этого трансформатора соединена с регулируемым конденсатором С, который разряжается через промежуток dd, размещенный любым из указанных способов, через первичную обмотку Р разрядной катушки, причем ток высокого напряжения снимается со вторичной обмотки s f этой катушки, как указывалось ранее. Это, без сомнения, наиболее дешевый и удобный способ преобразования постоянного тока.

Три групповые цепи контура А представляют собой наиболее частые случаи практического применения преобразователей переменного тока. На рисунке lb конденсатор С, обычно большой емкости, включен в цепь L, содержащую устройства //, тт. Устройства mm должны иметь высокую самоиндукцию, для того чтобы более или менее уравнивать частоту контура с частотой динамо. В данном случае разрядник dd должен выдавать в секунду количество разрывов, вдвое превышающее частоту динамо. Следует помнить, что преобразование и получение тока высокого напряжения происходит и тогда, когда разрядник dd, показанный на схеме, не применяется. Но эффекты, производимые токами, которые резко возрастают, как при пробойном разряде, совершенно отличаются от тех, которые мы имеем, когда сила тока повышается и понижается гармонично. Так, например, в каком-либо случае разрядник dd может давать число разрывов и соединений, вдвое превышающее частоту динамо, или, иными словами, может наблюдаться то же число базовых колебаний, которое бы имелось при отсутствии искрового промежутка, и даже могут отсутствовать наложенные колебания; и всё же разность потенциалов в разных точках контура, сопротивление и другие явления не будут иметь ничего общего в обоих случаях. Так, при работе с разрядными токами в расчет надо принимать не частоту, как могут думать некоторые исследователи, а скорость изменения за единицу времени. При низких частотах, в определенной мере, можно наблюдать те же явления, что и при высоких, при условии, что скорость изменения достаточно высока. Так, если ток низкой частоты преобразовать до напряжения, скажем, 75 000 В, и высоковольтный ток пропустить через ряд нитей накаливания, важность наличия разреженного газа вокруг нити станет очевидной; или, если низкочастотный ток силой в несколько тысяч ампер пропустить через металлический брусок, можно наблюдать поразительные явления, вызванные сопротивлением, так же, как и в случае с током высокой частоты. Но очевидно, что при низкой частоте невозможно получить такую скорость изменения за единицу времени, как при высокой частоте, а поэтому и эффекты, производимые высокочастотными токами, более рельефны. На всё вышесказанное было необходимо обратить ваше внимание, так как многие из приведенных явлений неосознанно ассоциировались с высокой частотой. Частота сама по себе на самом деле ничего не значит, за исключением того случая, когда речь идет о спокойном гармоническом колебании.

В контуре III amp; показана конструкция, похожая на контур 16, с той лишь разницей, что токи, разряжающиеся через промежуток dd, используются для наведения токов во вторичной обмотке s трансформатора Т. В данном случае вторичная обмотка должна быть соединена с регулируемым конденсатором для настройки ее на первичную обмотку.

Схема lib демонстрирует образец преобразования переменного тока высокой частоты, применяется наиболее часто и признана самой удобной. Об этой схеме я говорил в предыдущих лекциях и не стоит на ней задерживаться.

Некоторые из результатов были получены с использованием высокочастотного генератора. Описание этих машин можно найти в моей лекции, прочитанной в Американском институте электроинженеров, и периодических изданиях того времени, в частности, в журнале «Electrical Engineer» от 18 марта 1891 года.

Теперь я перейду к описанию экспериментов.

 

О явлениях, производимых электростатической силой

Первая группа явлений, которые я хочу вам продемонстрировать, — это явления, производимые электростатической силой. Это та самая сила, которая управляет движением атомов, заставляет их сталкиваться и отдавать энергию, которая дает нам тепло и свет, необходимые для жизни, и заставляет их соединяться бесчисленным множеством способов, согласно изобретательным замыслам Природы, и образовывать те удивительные формы, которые мы наблюдаем вокруг; фактически, если наши взгляды на мир верны, это для нас самая важная в природе сила, которую надо изучать. Поскольку термин «электростатическая» подразумевает некое электрическое постоянство, следует заметить, что в этих опытах сила не постоянна, она меняется со скоростью, которую можно назвать умеренной, примерно миллион раз в секунду или около того. Это позволяет мне получать эффекты, невозможные при условии постоянной силы.

Когда два тела изолированы и наэлектризованы, мы говорим, что между ними действует электростатическая сила. Эта сила проявляется в притяжении, отталкивании и напряжении внутри тел и пространстве или окружающей их среде. Напряжение в воздухе или окружающей среде может быть настолько велико, что эта среда может не выдержать, и мы наблюдаем искры или пучки света или так называемые стримеры. Эти потоки образуются в изобилии, когда сила, действующая в воздухе, быстро изменяется. Я продемонстрирую действие электростатической силы в новом опыте, где я задействую индукционную катушку, о которой уже рассказывал. Катушка помещается в ванночке с маслом, находящейся под столом. Два конца провода вторичной обмотки пропущены через две толстые резиновые изолирующие трубки, концы которых выступают над столом. Необходимо хорошо изолировать концы обмотки толстым слоем твердой резины, так как даже сухое дерево не может служить достаточным изолятором, когда работают токи такого высокого напряжения. К одному из выводов катушки я присоединил большой шар из листовой меди, который, в свою очередь, соединен с еще большей медной пластиной, что, как вы увидите, позволит мне произвести опыт при надлежащих условиях. Теперь я включаю катушку и подношу к свободному выводу зажатый в руке металлический предмет, чтобы избежать ожога. Когда я подношу руку на расстояние 8-10 дюймов, с конца провода вторичной обмотки срывается неистовый поток искр, который проходит сквозь резиновую изоляцию. Искрение прекращается, когда металлический предмет в моей руке касается провода. Мою руку при этом пронизывает мощный ток, колеблющийся с частотой в несколько миллионов раз в секунду. Вокруг меня чувствуется действие электростатической силы, а молекулы воздуха и частицы пыли, на которые она воздействует, отчаянно бьют по моему телу. Частицы настолько возбуждены, что если выключить свет, то вы сможете заметить потоки слабого света на некоторых частях моего тела. Когда образуется такой стример, или поток, он дает ощущение покалывания. Если бы потенциал был достаточно высок, а частота довольно низка, кожа, скорее всего, не выдержала бы и лопнула под воздействием огромного напряжения, а кровь устремилась бы наружу тонкими струями, настолько тонкими, что их не различить глазом, подобно маслу, если его поместить на положительный полюс машины Хольца. Прорыв кожи, хотя это и кажется невозможным, на первый взгляд, скорее всего, имел бы место, поскольку ткани под кожей гораздо лучшие проводники. По крайней мере, это кажется правдоподобным, исходя из некоторых наблюдений.

Я могу сделать так, чтобы эти потоки стали видны всем, прикоснувшись металлическим предметом одного из выводов, а другую руку поднеся к металлическому шару, который соединен с другим выводом катушки. По мере приближения руки воздух между ней и шаром, а также вокруг, возбуждается более интенсивно, и вы видите, как потоки света устремляются с моих пальцев и со всей ладони (рисунок 5). Если бы я поднес руку ближе, возникло бы мощное искрение, что могло бы привести к травме. Стримеры не причиняют боли, за исключением того, что на кончиках пальцев чувствуется жжение. Не стоит путать эти потоки с теми, что образуются от электрофорного генератора, так как во многом те и другие ведут себя по-разному. Я присоединил шар и пластину к одному из выводов для того, чтобы избежать образования видимых потоков на этом выводе, а также чтобы предотвратить искрение на большом расстоянии. Кроме того, с такой конструкцией катушка работает лучше.

Световые потоки, которые вы наблюдали, когда они срывались с моей руки, образуются вследствие огромного потенциала, примерно в 200 000 В, колеблющегося с неравномерными интервалами около миллиона раз в секунду. Вибраций такой амплитуды, но в четыре раза быстрее, для поддержания которых требуется потенциал в 3 000 000 В, было бы достаточно, чтобы мое тело было охвачено пламенем. Но это пламя не сожгло бы меня; как раз наоборот, по всей вероятности, я даже не был бы ранен. И всё же сотой части этой энергии, направленной иначе, вполне достаточно, чтобы убить человека.

Количество энергии, которое таким способом можно передать в тело человека, зависит от частоты и потенциала тока, и установив их на очень высокой отметке, телу можно передать громадное количество энергии, не причинив никакого неудобства, за исключением, возможно, руки, которую пронизывает настоящий ток проводника. Причиной, по которой тело не чувствует боли и ему не причиняется вреда, является то, что везде, если представить себе, что по телу течет ток, он направлен под прямым углом к поверхности; следовательно, тело экспериментатора имеет большое сечение, и плотность крайне мала, за исключением руки, в которой плотность может быть значительной. Но если только небольшую долю этой энергии передать таким образом, что ток, пронизывающий тело, уподобится низкочастотному току, можно получить смертельный удар. Постоянный или низкочастотный переменный ток смертелен, я полагаю, потому, что его распределение в организме неоднородно, он должен делиться на небольшие потоки огромной плотности, при этом некоторые органы смертельно поражаются. В том, что такой процесс имеет место, я нисколько не сомневаюсь, хотя этому нет никаких свидетельств, или экспериментальных подтверждений. Вероятнее всего ранит и убьет постоянный ток, но наиболее болезнен переменный ток низкой частоты.

Мое выражение этих взглядов, которые есть результат долгих экспериментов и наблюдений как постоянного, так и переменного тока, вызвано интересом, проявленным к этому предмету, а также очевидно ошибочными идеями, которые предлагаются на обсуждение в профильных журналах.

Я могу проиллюстрировать действие электростатической силы еще одним поразительным опытом, но прежде я бы хотел обратить ваше внимание на несколько фактов. Я уже говорил о том, что когда среда между двумя противоположно заряженными телами испытывает чрезмерное напряжение, она пробивается и, выражаясь популярным языком, два противоположных электрических заряда соединяются и нейтрализуют друг друга. Этот пробой среды в целом происходит, когда сила, действующая между телами, постоянна пли меняется с умеренной скоростью. Если бы скорость этого изменения была достаточно высокой, то такого разрушительного пробоя не произошло бы, неважно, как велика эта сила, ибо в таком случае вся энергия тратилась бы на излучение, конвекцию и механическую и химическую работу. Таким образом, длина искры или наибольшее расстояние, при котором между двумя наэлектризованными телами возникнет искра, тем меньше, чем больше амплитуда изменений или временные промежутки таковых. Но это правило верно только в общем, при сравнении очевидно разных скоростей.

На примере покажу вам различие эффектов, получаемых от быстро меняющейся и постоянной или умеренно меняющейся силы. Здесь у меня две круглые медные пластины рр (рисунки 6а и 66), установленных на изолирующих подставках на столе, и соединенных с вторичной обмоткой катушки, подобной той, что мы применяли в последний раз. Я ставлю пластины на расстоянии 10–12 дюймов друг от друга и включаю катушку. Вы видите, что всё пространство между пластинами, около двух кубических футов, заполнено однородным светом (рисунок 6а). Этот свет образуют потоки, которые вы наблюдали в предыдущем опыте, но которые сейчас гораздо интенсивнее. Я уже говорил о важности этих потоков для использования в коммерческих устройствах, но еще более они важны для постановки чисто научных экспериментов. Часто они слишком слабы, чтобы их заметить, но они всегда есть, и они потребляют энергию и изменяют действие устройств. При такой интенсивности, как сейчас, они в большом количестве производят озон и, как отметил профессор Крукс, азотистую кислоту. Химическая реакция настолько стремительна, что если катушку, такую, как наша, оставить работать достаточно долго, то атмосфера в комнате станет невыносимой, настолько сильно будет воздействие на глаза и горло. Но если потоки производить в умеренном количестве, они прекрасно освежают воздух и производят, несомненно, благоприятный эффект.

Во время этого эксперимента сила, работающая между пластинами, меняет интенсивность и направление с большой скоростью. Теперь я замедлю скорость изменений за единицу времени. Этого я добиваюсь, понижая частоту разрядов через первичную обмотку катушки, а также уменьшая скорость вибраций во вторичной обмотке. Первое удобно сделать, уменьшив эдс в промежутке в первичном контуре, а второе — приблизив пластины друг к другу на расстояние 3–4 дюйма. При включении катушки вы не наблюдаете ни стримеров, ни света между пластинами, и всё же пространство между ними находится под огромным напряжением. Я еще увеличу напряжение, подняв эдс в первичном контуре, и вскоре вы увидите, что воздух пробит и всё помещение озарено дождем ярких и шумных искр (рисунок 66). Эти искры можно получить и от постоянной силы; много лет это явление хорошо известно, хотя и получалось от другого устройства. Описывая эти два феномена, такие разные на вид, я намеренно употреблял понятие «силы», действующей между пластинами. Если я скажу, что между пластинами действовала «переменная эдс», то это вполне будет соответствовать современным взглядам на предмет. Этот термин вполне верен и применим во всех случаях, когда есть свидетельства того, что хотя бы возможна взаимозависимость электрических состояний пластин или электрического действия окружающей среды. Но если пластины раздвинуть бесконечно далеко, или на определенное большое расстояние, то вероятность и необходимость взаимозависимости исчезнут. Я предпочитаю термин «электростатическая сила» и считаю, что такая сила действует вокруг каждой пластины или наэлектризованного изолированного тела в целом. При использовании этого термина возникает неудобство, так как он подразумевает статическое электрическое состояние; но правильная терминология со временем расставит всё по местам.

Теперь я вернусь к эксперименту, на который уже ссылался и при помощи которого я намереваюсь продемонстрировать один поразительный эффект, производимый меняющейся электростатической силой. К концу провода / (рисунок 7), соединенного с выводом вторичной обмотки катушки индуктивности, я присоединяю вакуумную лампу Ъ. Внутри лампы находится тонкая углеродная нить f, соединенная с платиновым проводом т, запаянным в стекло и выходящим наружу, где он соединен с проводом /. Воздух можно откачать до любой степени при помощи обычных устройств. Совсем недавно вы наб люд ал и пробой воздуха между двумя заряженными медными пластинами. Вы знаете, что стеклянная пластина, или пластина из другого изолирующего материала, пробивается подобным же образом. Следовательно, если бы я обернул лампу листом металла или поместил металлическую пластину, соединенную с другим выводом катушки, рядом с лампой, вы были бы готовы к тому, что сейчас стекло будет пробито при условии достаточного напряжения. Даже если бы покрытие не было соединено с другим выводом катушки, но присоединялось к изолированной пластине, если вы следили за происходившим ранее, вы бы ожидали, что стекло треснет.

Но вы будете удивлены, когда заметите, что под действием переменной электростатической силы стекло пробивается, когда все остальные предметы удаляются от лампы. На самом деле, все окружающие предметы можно удалить от лампы на бесконечно огромное расстояние, при этом ни капли не повлияв на результат опыта. Когда включается катушка, стекло неизменно трескается у основания или в другом узком месте, и вакуум быстро исчезает. Такой разрушительный пробой не происходит при постоянной силе, даже если она во много раз сильнее. Разрушение происходит вследствие возбуждения молекул газа внутри лампы и снаружи. Это возбуждение, которое гораздо сильнее в узком месте, приводит к нагреву и трещине. Этого разлома, однако, не случится, если среда, наполняющая лампу, и среда снаружи будут совершенно однородны. Пробой происходит гораздо быстрее, если верхняя часть лампы вытягивается до толщины волокна. В лампах, работающих от таких катушек, следует избегать таких узких, заостренных каналов.

Когда проводник помещен в воздух или подобную изолирующую среду, состоящую или содержащую мелкие, свободно движущиеся частицы, способные электризоваться, и когда электризация тела подвергается быстрому изменению, — что соответствует тому, что электростатическая сила, действующая вокруг тела меняет интенсивность, — мелкие частицы притягиваются и отталкиваются и их сильные удары могут вызвать механическое движение тела. На явления такого рода стоит обратить внимание, так как они не наблюдались ранее, когда применялась обычная аппаратура. Если очень легкий шарик из проводника подвесить на крайне тонком проводе и зарядить до любого постоянного потенциала, пусть и очень высокого, шарик останется в покое. Даже если потенциал будет быстро меняться, при условии, что небольшие частицы материи, молекулы и атомы, равномерно распределены, это не приведет к движению шарика. Но если одну сторону шарика покрыть толстым слоем изоляции, удары частиц заставят его двигаться по неровной траектории (рисунок 8а). Таким же образом крыльчатка, изготовленная из тонкого металла и частично покрытая слоем изоляции, как описывалось ранее, соединенная с выводом катушки, начинает вращаться.

Все эти явления, которые вы наблюдали, а также те, которые будут продемонстрированы позже, имеют место благодаря присутствию такой среды, как воздух, и были бы невозможны в непрерывной среде. Действие воздуха еще лучше можно проиллюстрировать следующим опытом. Я беру стеклянную трубку t (рисунок 9) диаметром, примерно, 1 дюйм, в нижнем конце которой находится запаянный в стекло платиновый провод, к которому присоединена тонкая нить накаливания f. Я соединяю провод с выводом катушки и включаю ее. Платиновый провод теперь электризуется попеременно положительно и отрицательно, и сам провод и воздух в трубке быстро нагреваются от ударов частиц, которые могут быть настолько сильными, что нить быстро накаляется.

Но если налить в трубку масло и как только оно покроет нить, всё действие моментально прекращается, и признаков нагрева нет. Причина тому — масло, практически непрерывная среда. Смещение в такой среде при таких частотах, судя по всему, несравнимо меньше, чем в воздухе, поэтому работа, происходящая в ней, незначительна. Но масло поведет себя совсем не так при частоте во много раз выше, поскольку даже если смещение и меньше, а частота намного выше, работа, производимая в масле, будет соответственно больше.

Электростатические притяжения и отталкивания тел измеримых габаритов из всех проявлений этой силы — первые отмеченные так называемые электрические явления. Но хотя мы знакомы с ними уже несколько столетий, точная природа механизма этих явлений нам до сих пор неизвестна, и не была удовлетворительным образом объяснена. Что же это за механизм? Мы не можем не удивляться, когда видим два магнита, притягивающие и отталкивающие друг друга с силой в несколько сотен фунтов, а между тем между ними ничего нет. В наших промышленных динамо-машинах установлены магниты, способные удерживать в воздухе предметы весом в несколько тонн. Но что такое даже эти силы, действующие между магнитами, по сравнению с гигантскими силами притяжения и отталкивания, производимыми электростатической силой, интенсивность которой не имеет предела. Во время разрядов молнии предметы часто заряжаются до неимоверного потенциала, такого, что их отбрасывает в сторону с непостижимой силой, разрывает на части или разносит на куски. И всё же даже эти эффекты не сравнятся с притяжениями и отталкиваниями, которые существуют между молекулами и атомами и которых достаточно, чтобы направлять их движение со скоростью несколько километров в секунду, так что под их яростными ударами предметы сильно раскаляются и испаряются. Особенно интересно для мыслителя, занятого исследованием природы этих сил, отметить, что в то время как действие между молекулами и атомами происходит, кажется, при любых условиях, притяжение и отталкивание крупных тел подразумевает наличие среды, обладающей изолирующими свойствами. Так, если воздух, разреженный или нагретый, стал более или менее проводником, то это взаимодействие между двумя заряженными телами практически прекращается, в то время как взаимодействие между атомами продолжает проявляться.

Тому примером может служить эксперимент, который вскроет и другие интересные особенности. Некоторое время назад я показывал, что нить накаливания или провод, помещенные в лампу и соединенные с выводом вторичной обмотки катушки высокого напряжения, начинают вращаться, причем верхний конец нити описывает круг. Эта вибрация была очень энергичной, когда воздух в колбе был под обычным давлением и становилась менее энергичной, когда его сильно сжимали. Она прекращалась, когда воздух откачивали до такой степени, что он становился хорошим проводником. В это время я обнаружил, что колебаний не происходило, когда в колбе был высокий вакуум. Но я предположил, что вибрация, которую я приписывал электростатическому действию между стенками колбы и нитью, должно иметь место и в высоком вакууме. Для проверки этого предположения в более благоприятных условиях была сконструирована лампа (рисунок 10). Она состояла из колбы Ь, в основание которой был запаян платиновый провод, несущий нить накаливания f. В нижнюю часть колбы была впаяна трубка /., окружающая нить. Воздух максимально откачан.

Эта лампа подтвердила мое предположение, так как нить начала вращаться при подаче тока и раскалилась. Была отмечена еще одна интересная особенность, имеющая отношение к предыдущим высказываниям, а именно: когда нить была раскаленной некоторое время, узкая трубка и пространство внутри нее нагрелись и газ внутри стал проводником, электростатическое притяжение между стеклом и нитью прекратилось или сильно ослабло, и нить остановилась. После остановки она светилась более интенсивно. Это, видимо, произошло потому, что нить заняла положение в центре трубки, где молекулярная бомбардировка наиболее сильна, а частично вследствие того, что отдельные удары были более сильными, и что энергия совсем не преобразовывалась в механическое движение. Поэтому, согласно общепринятым взглядам, в данном эксперименте накаливание следует отнести к ударам частиц, молекул и атомов в нагретом пространстве, а эти частицы, следовательно, должны быть независимыми носителями зарядов, помещенных в изолирующую среду; и всё же притяжение между стеклом и нитью отсутствует, так как пространство в трубке, в целом, — проводник.

В этой связи интересно отметить, хотя притяжение между двумя заряженными телами может прекратиться вследствие уменьшения изолирующих свойств среды, в которую их поместили, отталкивание между этими телами всё же может наблюдаться. Это можно логично объяснить. Когда два тела помещают на некоем расстоянии друг от друга в слабо проводящую среду, такую, как теплый или разреженный воздух, и резко электризуют, передавая им противоположные заряды, эти заряды более или менее компенсируют друг друга, протекая сквозь воздух. Но если телам переданы одинаковые заряды, то для такой утечки нет возможности, поэтому отталкивание, наблюдаемое в таких случаях, сильнее, чем притяжение. Отталкивание в газообразной среде, однако, как показал профессор Крукс, усиливается молекулярной бомбардировкой.

 

Ток или электродинамические явления

До сих пор мои выступления были посвящены эффектам, вызванным меняющейся электростатической силой в изолирующей среде, такой, как воздух. Когда такая сила действует в крупном проводнике, она вызывает в нем или на его поверхности электрические деформации и порождает электрический ток, а он приводит к иного рода явлениям, некоторые из которых я сейчас попытаюсь продемонстрировать. При представлении этой второй группы явлений, я обращусь к тем из них, которые можно показать, не пользуясь обратным контуром, в надежде заинтересовать вас новизной.

Сложилась давняя традиция, по причине недостатка опыта работы с колеблющимися токами, по которой считалось, что электрический ток — это нечто, циркулирующее в замкнутом проводящем контуре. Поразительным открытием стал тот факт, что ток может течь в контуре, даже если он разомкнут, и еще более удивительное, что иногда даже легче создать электрический ток в таких условиях, чем в замкнутой цепи. Но эта старая идея постепенно отступает, даже среди практиков, и вскоре будет совсем забыта.

Если я соединю металлическую пластину Р (рисунок 11) с одним из выводов Т катушки индуктивности, даже если пластина хорошо изолирована, по проводу течет ток, когда катушка включается. Во-первых, я хотел бы привести доказательства того, что по соединительному проводу течет ток. Самым очевидным доказательством будет, если мы включим в цепь между пластиной и выводом катушки тонкий провод w из платины или нейзильбера и доведем его до накала или расплавим. Для этого требуется довольно большая пластина, либо ток высокого потенциала и частоты. Можно сделать и по-другому: взять катушку С из тонкого изолированного провода (рисунок 11) и включить ее последовательно между пластиной и выводом. Когда я соединяю концы этой катушки с пластиной Р, а другой с выводом Т катушки индуктивности и включаю ее, через катушку С течет ток и его существование можно продемонстрировать разными способами. Например, я вставляю в катушку железный сердечник г. Так как ток высокой частоты, хоть и небольшой силы, вскоре сердечник ощутимо нагревается, так как наблюдается запаздывание фазы, и при такой высокой частоте потери тока значительны. Можно взять сердечник определенного размера, составной или нет, неважно, но обычный железный провод толщиной /16 или 1/ дюйма вполне сгодится. Во время работы катушки ток пронизывает включенную в цепь вторую катушку и нескольких мгновений достаточно для того, чтобы размягчить воск 5 и сделать так, чтобы картонная прокладка р выпала. Но при помощи той аппаратуры, что есть у меня здесь, можно провести более интересную демонстрацию. У меня имеется вторичная обмотка s из грубого провода (рисунок 12), намотанная на катушку, подобную первой. В предыдущем опыте сила тока в катушке С (рисунок 11), была мала, но вследствие большого числа витков тем не менее достигался эффект сильного нагрева. Если бы я пропустил такой ток через проводник, чтобы продемонстрировать его нагрев, желаемого эффекта можно было бы и не достигнуть. Но с такой катушкой, имеющей подобную вторичную обмотку, я могу преобразовывать слабенький ток высокого напряжения, который проходит через первичную обмотку Р, в сильный вторичный ток низкого напряжения, и этот ток сделает то, что я от него хочу. В стеклянную трубку t (рисунок 12) я поместил витой платиновый провод w для того, чтобы защитить его. С обоих концов трубки в нее запаяны выводы толстого провода, к которым присоединены концы платинового провода. Я соединяю выводы вторичной обмотки с этими выводами и включаю первичную обмотку р между изолированной пластиной Р и выводом T f катушки индуктивности, как и прежде. Когда катушка включается, платиновый провод моментально накаляется и может расплавиться, даже если он толстый.

Вместо платинового провода теперь беру обычную 50-вольтовую лампу в 16 свечей. Когда я включаю катушку, нить накаливания лампы моментально нагревается. Однако нет необходимости использовать изолированную пластину, так как лампа / (рисунок 13) накаляется, даже если пластина Р отсоединена. Вторичную обмотку можно соединить с первичной, как показано пунктиром на рисунке 13, для того чтобы исключить электростатическую индукцию или другим образом изменить работу устройства.

Рис. 13

Здесь можно обратить внимание на несколько интересных моментов касательно лампы. Во-первых, я отсоединяю один из выводов лампы от вторичной обмотки 5. Во время работы катушки индуктивности заметно свечение, наполняющее всю лампу. Это свечение возникает благодаря электростатической индукции. Оно усиливается, если лампу взять в руку, добавив таким образом емкость человеческого тела ко вторичной цепи. Вторичная обмотка по своему действию приравнивается к металлическому кожуху, помещенному рядом с первичной обмоткой. Если бы вторичная обмотка, или ее эквивалент — кожух, размещались симметрично по отношению к первичной, то электростатическая индукция была бы равна нулю при обычных условиях, то есть, когда используется первичная обратная цепь, так как обе половины нейтрализуют действие друг друга. Вторичная обмотка фактически расположена симметрично по отношению к первичной, но действие обеих половин последней, когда только один из ее выводов соединен с катушкой индуктивности, неравномерно; поэтому имеет место электростатическая индукция, а отсюда свечение в лампе. Я могу уравновесить действие обеих половин первичной обмотки, присоединив другой, свободный вывод ее к изолированной пластине, как в предыдущем опыте. При соединении пластины свечение пропадает, если присоединить пластину поменьше, то свечение пропадает не полностью и способствует яркости накала нити, когда вторичная обмотка замкнута, нагревая воздух в колбе.

Для демонстрации еще одной интересной особенности я использовал две катушки, настроенные особенным способом. Сначала я соединяю оба вывода лампы со вторичной обмоткой, когда один конец обмотки соединен с выводом Т. катушки индуктивности, а другой — с изолированной пластиной Р, как и ранее. Когда подается ток, лампа светится ярко, как показано на рисунке 146, где С — это обмотка из тонкого провода, as- обмотка из грубого провода, намотанная на нее. Если отсоединить изолированную пластину Р v и один из концов провода а остается изолированным, нить гаснет или светится не так ярко (рисунок 14а). Присоединяя пластину Р и повышая частоту тока, я гашу нить, или могу сделать так, чтобы она была едва красной (рисунок 156). Отсоединю пластину еще раз. Можно предположить, что при отсоединении пластины сила тока в первичной обмотке уменьшится и, следовательно, эдс во вторичной обмотке s упадет, уменьшив накал нити. Так, вероятно, и результата можно добиться, настроив катушки, равно как и изменив частоту и потенциал тока. Но, возможно, еще более интересно то, что яркость лампы возрастает, когда пластина отсоединена (рисунок 15а). В данном случае вся энергия, которую получает первичная обмотка, передается в лампу, как заряд батареи океанскому кабелю, но большая ее часть восстанавливается вторичной обмоткой и служит накалу лампы. Ток, пронизывающий первичную обмотку, сильнее всего на конце b, соединенном с выводом Т 1 катушки индуктивности и сила его уменьшается по мере приближения к концу а. Но динамическая индукция во вторичной обмотке 5 сейчас сильнее, чем раньше, когда пластина была соединена с первичной обмоткой. Такие результаты могут порождаться несколькими причинами. Например, при присоединении пластины Р катушка С может отреагировать, уменьшив потенциал на выводе T 1 катушки индуктивности, а следовательно, и ослабив ток в первичной обмотке катушки С. Шли, отсоединив пластину, мы можем уменьшить емкость первичной обмотки таким образом, что сила тока падает, хотя потенциал на выводе Т 1 катушки индуктивности может оставаться неизменным или даже вырасти. Либо такой результат мог быть достигнут благодаря изменению фазы тока в первичной и вторичной обмотках и соответствующей реакции. Но основополагающим фактором всё же является соотношение между самоиндукцией и емкостью катушки С и пластины Р и частотой тока. Повышенная яркость нити на рисунке 15а, однако, частично объясняется нагревом разреженного газа в лампе, вызванном электростатической индукцией, как указывалось ранее, которая увеличивается при отсоединении пластины.

Я могу представить вашему вниманию еще один интересный момент. Когда пластина отсоединена от вторичной обмотки и конец ее свободен, мы можем поднести к нему небольшой предмет и заметим слабое искрение, что указывает на то, что в данном случае электростатическая индукция мала. Но если вторичная обмотка замкнута на себя или через лампу, нить горит ярко, и вторичная обмотка дает обильное искрение. Электростатическая индукция в данном случае гораздо сильнее, так как замкнутая вторичная обмотка подразумевает более сильный ток через первичную обмотку, а именно через ту ее часть, что соединена с катушкой индуктивности. Если теперь взять лампу в руку, то емкость вторичной обмотки в соотношении с первичной дополнится емкостью тела экспериментатора и яркость нити увеличится, причем накал увеличится частично вследствие более сильного тока в нити, а частично вследствие молекулярной бомбардировки разреженного газа в колбе.

Предыдущие опыты готовят нас к следующим интересным результатам, полученным в ходе дальнейших изысканий. Поскольку я могу добиться появления тока в изолированном проводе, просто соединив один его конец с источником электрической энергии, и с помощью этого тока могу индуцировать другой ток, намагнитить железный сердечник, или, выражаясь короче, проводить все действия так, будто использую обратную цепь, очевидно, могу и завести мотор при помощи только одного провода. В прошлый раз я описал вариант простого мотора, состоящего из одной обмотки, железного сердечника и диска. На рисунке 16 показана модифицированная модель мотора переменного тока, работающего от одного питающего провода, а также несколько вариантов цепей для управления определенным классом моторов, чье действие основано на разнофазных токах. В связи с настоящим положением дел в этой области представляется возможным лишь вкратце описать их. Схема на рисунке 16 II изображает первичную обмотку Р, соединенную с питающей линией L, соединенную с высоковольтным трансформатором T 1 . С первичной обмоткой индуктивно соединена вторичная обмотка s из проволоки, соединенная параллельно с обмоткой С. Токи, индуцированные во вторичной обмотке, электризуют железный сердечник i, который предпочтительно, но не обязательно, имеет составную конструкцию, и вращают металлический диск d. Такой мотор М2 как показан на рисунке 16 II, называется «двигателем магнитного запаздывания», но такое наименование может быть оспорено теми, кто приписывает вращение диска действию вихревых токов, циркулирующих по коротким цепям, когда сердечник i окончательно разделен. Для того чтобы мотор эффективно работал по указанной схеме, надо, чтобы токи не имели слишком высокой частоты, не более четырех или пяти тысяч, хотя вращение достигается даже при десяти тысячах в секунду или более.

На рисунке 16 I показан мотор М 1 с двумя цепями питания А и В. Цепь А соединена с питающей линией L, последовательно с ней включена первичная обмотка Р, свободный конец которой может быть соединен с изолированной пластиной Р1, возможность такого соединения показана пунктиром. Другая цепь мотора В соединена со вторичной обмоткой s, индуктивно соединенной с первичной обмоткой Р. Когда на вывод трансформатора Т подается переменный ток, токи пронизывают открытую линию L, а также цепь А и первичную обмотку Р. Токи в последней индуцируют вторичные токи в цепи S, которые проходят через электризующую обмотку В мотора. Токи во вторичной обмотке S и в первичной обмотке Р различаются по фазе на 90 градусов или около того, и способны вращать ротор, индуктивно соединенный с цепями А и В.

На рисунке 16 III показан подобный мотор М 3 с цепями возбуждения A 1 и В1. Первичная обмотка Р соединена одним концом с питающим проводом L и имеет вторичную обмотку S, которую желательно намотать так, чтобы получить умеренную эдс, и к которой присоединены обе возбуждающие цепи мотора: одна напрямую к концам вторичной обмотки, а вторая — через конденсатор, действие которого позволяет добиться сдвига по фазе токов в цепях А 1 и В 1

Рисунок 16 IV — еще одна схема. Здесь две первичные обмотки Р и Р 1 соединены с питающим проводом, одна через конденсатор С небольшой емкости, а вторая — напрямую. Первичные обмотки имеют вторичные S 1 и S2„последовательно соединенные с возбуждающими цепями А 2 и В., и мотором М3, причем конденсатор С вновь служит для создания необходимого сдвига по фазе токов в цепях мотора. Поскольку такие фазовые моторы уже широко известны в данной отрасли, здесь они были показаны схематически. Эксплуатация мотора подобным образом не представляет никакой трудности; и хотя такие эксперименты до сегодняшнего дня представляли исключительно научный интерес, в скором времени они будут ставиться с вполне практическими целями.

Мне кажется, будет не лишним, если я приведу несколько своих мыслей касательно работы электрических устройств от одного провода. Представляется очевидным, что при использовании высокочастотных токов заземление — по крайней мере, когда эдс токов высока, — лучше, чем обратная цепь. С этим можно поспорить, когда используются низкочастотные и постоянные токи по причине их разрушительного химического воздействия, а также помех, которые они создают для окружающих электроприборов; но в случае с высокочастотными токами эти факторы практически отсутствуют. И всё же, даже заземление становится излишним, когда эдс достаточно высока, так как вскоре будет достигнут рубеж, когда ток можно будет более экономично передавать по разомкнутой, а не замкнутой цепи.

Какой бы отдаленной ни казалась возможность промышленного использования такого способа передачи тому, кто не опытен в экспериментах такого рода, она не покажется таковой тому, кто посвятил некоторое время исследованиям в данном направлении. И в самом деле, я не понимаю, почему такая схема может показаться непрактичной. Не вижу также, зачем обязательно надо применять токи высокой частоты, ибо если достичь потенциала в 30 000 В, передача через один провод может осуществляться и при низкой частоте, мною проводились опыты в этом направлении.

Когда частота очень высока, в лабораторных условиях оказалось довольно легко регулировать эффекты так, как показано на рисунке 17. Здесь мы имеем две первичные обмотки Р и Р, каждая из которых одним концом соединена с проводом заземления L, а другим — с пластинами конденсатора С и С соответственно. Рядом с ними помещаются другие пластины конденсатора С 1 и Ся причем первая соединена с проводом L, а вторая с большой изолированной пластиной Р г На первичные обмотки намотаны вторичные из проволоки S и S 1 соединенные с устройствами d и / соответственно. При изменении расстояния между пластинами С и С 1 и С и C 1 меняется сила

Рис. 18

тока на обмотках S и S г Интересна большая чувствительность устройства, при малейшем изменении расстояния пластин конденсатора сила тока в обмотках значительно меняется. Чувствительность можно довести до крайнего значения, так настроив частоту, что сама первичная обмотка, когда ничего не соединено с ее свободным концом, удовлетворяет, совместно с замкнутой вторичной, условиям резонанса. При таких условиях даже небольшое изменение емкости свободного вывода приводит к большим изменениям. Например, мне удалось так настроить устройство, что простое приближение человека к катушкам производит значительное изменение яркости накала ламп, соединенных со вторичной обмоткой. Такие наблюдения и опыты в настоящее время, конечно, имеют чисто научный интерес, но вскоре они смогут иметь и практическую пользу.

Очень высокие частоты, конечно, непрактичны для использования в моторах, так как требуют применения железного сердечника. Но можно использовать броски низкой частоты и так добиться преимущества применения высокочастотных токов, когда железный сердечник не перестанет чувствовать изменения и это не повлечет значительных затрат энергии в нем. Я обнаружил, что вполне практично при помощи таких низкочастотных бросковых разрядов эксплуатировать моторы переменного тока. Группа таких моторов была разработана мной несколько лет назад, они содержат замкнутые вторичные цепи и вращаются довольно резво, когда разряды направлены через возбуждающие катушки. Одной из причин, почему такой мотор хорошо работает при таких разрядах, является сдвиг по фазе между первичными и вторичными контурами в 90 градусов, чего не бывает при гармонических колебаниях низкочастотных токов. Мне будет небезынтересно продемонстрировать опыт с простым мотором такого типа, поскольку, по всеобщему убеждению, разряды не годятся для этих целей. Мотор показан на рисунке 18. Он состоит из железного сердечника i, имеющего пазы, в которые жестко вставлены медные шайбы СС. На небольшом расстоянии от сердечника расположен свободно вращающийся диск D. Сердечник имеет первичную возбуждающую обмотку С 1 концы которой а и b соединены с выводами вторичной обмотки S обычного трансформатора, где первичная обмотка Р соединена с генератором G переменного тока низкой или умеренно низкой частоты. Выводы вторичной обмотки S соединены с конденсатором С, который разряжается через искровой промежуток dd, который в свою очередь можно включить последовательно или параллельно с обмоткой C 1 . Если настройки произведены верно, диск D вращается со значительным усилием и сердечник i не сильно нагревается. Если ток получается от генератора высокой частоты, напротив, сердечник вскоре сильно нагревается, а диск не развивает достаточного усилия. Для правильного проведения опыта следует удостовериться в том, что диск D не вращается до тех пор, пока не произойдет разряд в промежутке dd. Желательно применять большой железный сердечник и конденсатор большой емкости, для того чтобы ослабить наложенные колебания или вовсе избавиться от них. Я обнаружил, что при соблюдении определенных элементарных правил очень практичным является использование последовательных или параллельных моторов постоянного тока, где применяются такие разряды, и это можно делать, используя или не используя обратный провод.

 

Явления сопротивления

Среди явлений, вызванных электрическим током, возможно, наиболее интересными являются те, что порождены сопротивлением проводника токами, меняющимися с высокой скоростью. В моей первой лекции, прочитанной в Американском институте электроинженеров, я описал несколько поразительных явлений такого характера. Так, я показал, что, когда такие токи или разряды пропускаются через толстый металлический брусок, на его поверхности могут возникнуть точки на расстоянии лишь нескольких дюймов друг от друга, между которыми имеется достаточная разница потенциалов, необходимая для поддержания яркого накала обычной нити лампы. Я также описывал любопытное поведение разреженного газа, окружающего проводник, вследствие таких внезапных бросков тока. Эти явления с той поры были изучены более тщательно, и несколько опытов было бы полезно привести сейчас.

На рисунке 19а В и B f — толстые медные бруски, нижние концы которых соединены с пластинами конденсатора Си С( соответственно, пластины конденсатора в свою очередь соединены с выводами вторичной обмотки S трансформатора высокого напряжения, первичная обмотка которого Р запи-тана от низковольтной динамо-машины G или обычной сети. Конденсатор, как обычно, разряжается через промежуток dd. Установив быстрые колебания, мне удалось провести следующий любопытный эксперимент. Бруски В и В 1 сверху соединялись низковольтной лампой немного ниже помещалась на клеммах СС еще одна 50-вольтовая лампа 1 2 ; а еще ниже — 100-вольтовая лампа L; и, наконец, на некотором расстоянии ниже вакуумная трубка Т. После тщательной выверки положения всех устройств стало возможным поддерживать в них соответствующий уровень свечения. И всё же они все были параллельно соединены многочисленными дугами с медными брусками и требовали разного напряжения. Этот эксперимент требует, конечно, тщательной настройки, но после этого его вполне легко поставить.

На рисунках 196 и 19в показаны два других опыта, не требующие столь тщательной настройки параметров. На рисунке 196 показаны две лампы l i и 1 2 , первая — на 100 вольт, а вторая — на 50, размещенные на определенном расстоянии одна над другой, причем 100-вольтовая лампа располагается ниже. Когда в искровом промежутке формируется дуга и через бруски ВВ 1 подаются броски тока, 50-вольтовая лампа, как правило, горит с максимальной яркостью, или, по крайней мере, этого нетрудно добиться, в то время как 100-вольтовая остается темной (рисунок 196). Теперь можно соединить бруски BB f толстым поперечным бруском В 2 сверху и становится возможным поддерживать полный накал в 100-вольтовой лампе, а 50-вольтовая остается темной (рисунок 19в). Результаты не стоит приписывать полностью частоте, но скорее скорости изменения колебаний, которая может быть высокой даже при низкой частоте. Таким образом, можно получить много интересных результатов, в особенности для тех, кто привык работать только с постоянным током, и эти результаты дают ценные ключи к разгадке многих секретов электрического тока.

В предыдущих опытах я имел возможность показать некоторые световые явления и теперь было бы правильным исследовать их детально; но чтобы сделать эти исследования наиболее полными, я полагаю необходимым вначале высказаться относительно электрического резонанса, поскольку это явление всегда наблюдается во время таких опытов.

 

Об электрическом резонансе

Эффекты, порождаемые резонансом, всё чаще замечаются инженерами и приобретают всё большую важность при работе с любой аппаратурой переменного тока. Следовательно, надо сделать несколько замечаний по поводу этих эффектов. Ясно, если нам удастся практически использовать эффекты электрического резонанса при эксплуатации электроприборов, обратный провод, само собой, станет бесполезным, так как электрические колебания можно передавать при помощи одного провода так же хорошо, как и при помощи двух. Значит, сначала надо ответить на вопрос: «А можно ли производить такие эффекты?» Теория и эксперименты показывают, что в природе это невозможно, так как по мере возрастания колебаний потери в колеблющемся теле и окружающей его среде быстро растут и обязательно останавливают колебания, которые иначе могли бы вырасти бесконечно. Это большая удача, что резонанс в чистом виде получить нельзя, ибо, если бы это было возможно, трудно было бы предугадать, какие опасности поджидали бы бедного экспериментатора. Но до определенной степени резонанс получить возможно, причем степень его проявлений ограничена несовершенством проводника, недостаточной эластичностью среды, или, говоря в общем, фрикционными потерями. Чем меньше эти потери, тем более впечатляют его проявления. То же самое происходит и при механических колебаниях. Толстый металлический брусок может колебаться под воздействием падающих на него с определенным интервалом капель воды; а в случае со стеклом, которое еще более эластично, проявления резонанса еще более значительны, ведь стеклянный бокал можно разбить, если пропеть в него ноту определенного тона. Электрический резонанс получается тем сильнее, чем меньше сопротивление участка цепи и чем лучше изолирующие свойства диэлектрика. При разрядах лейденской банки через толстый многожильный провод с тонкими жилами эти требования удовлетворены наилучшим образом, и резонанс проявляется наиболее выпукло. Так не происходит, однако, в динамо-машинах, цепях трансформатора или в целом в коммерческих устройствах, где наличие сердечника затрудняет проявление резонанса или делает его вовсе невозможным. Что же касается лейденских банок, при помощи которых эффекты резонанса часто демонстрируются, я бы сказал, что они часто приписываются действию резонанса, а не являются его следствием, ибо в этом случае очень легко допустить ошибку. Это убедительно можно проиллюстрировать следующим опытом. Возьмем, к примеру, две изолированные металлические пластины или два шара А и В, расположим на определенном небольшом расстоянии друг от друга и зарядим их при помощи фрикционной машины или электрофорного генератора до такого потенциала, что даже небольшое его изменение вызывает пробой воздушной подушки или изоляции между телами. Этого легко добиться путем предварительных попыток. Теперь, если еще одну пластину, — закрепленную на изолирующей рукоятке и соединенную с одним из выводов вторичной обмотки катушки индуктивности высокого напряжения, которую питает генератор (желательно высокочастотный), — поднести к одному из заряженных тел А или В, причем ближе к одному из них, между ними обязательно произойдет разряд; по крайней мере, он произойдет, если потенциал пластины достаточно высок. Это явление легко объясняется тем фактом, что поднесенная пластина индуктивно воздействует на заряженные предметы А и В, вызывая искру между ними. Когда возникает эта искра, заряды, которые были ранее переданы предметам, должны теряться, так как между ними устанавливается связь через сформированную дугу. Итак, эта дуга образуется вне зависимости от того, есть резонанс или нет. Но даже если искра не образуется, всё же между предметами имеет место эдс, когда пластину подносят; следовательно, приближение пластины, даже если фактически и не вызовет, то, во всяком случае, будет иметь тенденцию к пробою промежутка вследствие индуктивного воздействия. Вместо пластин или шаров А и В мы можем с таким же успехом взять пластины лейденской банки, а вместо машины — желательно, чтобы это был высокочастотный генератор, так как он лучше подходит для проведения опыта или для его обоснования, — мы можем взять еще одну лейденскую банку или несколько. Когда такие банки разряжаются через цепь низкого сопротивления, ее пронизывают токи очень высокой частоты. Теперь внешнюю пластину можно соединить с одной из пластин второй банки, и когда ее подносят ближе к первой банке, заряженной перед этим до высокого потенциала при помощи электрофорного генератора, результат получается тот же, что и ранее, и первая банка разряжается через узкий промежуток, когда на вторую банку оказывается воздействие. Но обе банки и не требуется приближать на расстояние, более близкое, чем самая низкая басовая нота по отношению к писку комара, так как в промежутке уже возникнут небольшие искры или, по крайней мере, воздух в промежутке будет значительно напряжен вследствие возникшей благодаря индукции эдс в тот момент, когда одна из банок начинает разряжаться. Может быть допущена и другая ошибка подобного свойства. Если цепи двух банок установлены параллельно и близко друг от друга, и экспериментатор разряжает одну из них при помощи второй, а после добавления к одной из цепей витого провода опыт не удается, вывод о том, что цепи не настроены, будет далек от истины. Так как эти контуры работают, как конденсатор, а добавление витков провода эквивалентно замыканию его в месте включения витков небольшим конденсатором, а он в свою очередь, не дает произойти пробою, уменьшая эдс, действующую в искровом промежутке. Можно привести и многие другие замечания, но, дабы не углубляться в обсуждение, далекое от нашего предмета, с вашего позволения, не прозвучат; эти же сделаны лишь для того, чтобы предостеречь ничего не подозревающего исследователя от того, чтобы у него не сформировалось неверное мнение о его способностях, когда он увидит, что каждый его опыт удачен; эти замечания ни в коем случае не претендуют на новизну в глазах опытных экспериментаторов.

Для получения надежных результатов при наблюдении резонанса желательно, да и необходимо, применять генератор, подающий гармонические колебания, так как при разрядном токе результатам наблюдений не всегда можно доверять, поскольку многие явления, которые зависят от скорости изменений, можно получать при различных частотах. Даже при использовании такого генератора можно допустить ошибку. Когда контур соединен с генератором, мы имеем бесконечно большое число значений емкости и самоиндукции, которые в различных соотношениях отвечают условиям резонанса. Как и в механике может быть бесконечное множество камертонов, которые отзываются на ноту определенного тона, или нагруженных пружин, имеющих определенную амплитуду колебаний. Но резонанса можно определенно добиться в том случае, когда движение происходит с наибольшей свободой. Итак, в механике, когда речь идет о колебаниях в обычной среде, то есть в воздухе, большой разницы нет, имеет ли один камертон размер больше, чем другой, поскольку потери в воздухе незначительны. Можно, конечно, поместить камертон в вакуумный сосуд и, таким образом сведя к минимуму потери от трения о воздух, добиться наибольшего резонанса. И всё же разница будет невелика. Но она будет огромной, если камертон поместить в ртуть. При электрических колебаниях очень важно обеспечить наибольшую свободу движения. Количественный показатель резонанса, в остальном при одинаковых условиях, зависит от количества электричества, приведенного в действие, или от силы тока, движущегося в цепи. Но цепь сопротивляется прохождению тока по причине ее импеданса и, следовательно, для получения наилучшего результата надо свести сопротивление к минимуму. Невозможно избавиться от него совсем, но частично возможно. Когда же частота импульсов очень высока, протекание тока практически определяется самоиндукцией. Самоиндукцию можно преодолеть, связав ее с емкостью. Если соотношение между ними таково, что они гасят друг друга, то есть имеют такие значения, что они удовлетворяют условиям резонанса, и через внешнюю цепь протекает наибольшее количество электричества, мы имеем наилучший результат. Проще всего и надежнее, когда конденсатор включен в цепь последовательно с индуктивностью. Конечно, ясно, что в таких сочетаниях, при определенной частоте, и учитывая только базовые колебания, мы будем иметь наилучшие значения, когда конденсатор включен с катушкой самоиндукции параллельно, и таких значений будет больше, чем при последовательном включении. Но выбор определяется требованиями практики. В последнем случае при проведении опыта можно взять небольшую катушку и большую емкость или большую катушку и маленькую емкость, но последнее более предпочтительно, так как неудобно настраивать большую емкость мелкими шагами. Если взять катушку с очень большой самоиндукцией, то критическая емкость падает до очень малого значения, и емкости самой катушки может быть достаточно. Нетрудно, при помощи некоторых приспособлений, намотать катушку, которая понизит импеданс до омического сопротивления и для каждой катушки, естественно, существует частота, при которой через нее протекает максимальный ток. Соблюдение соотношения между самоиндукцией, емкостью и частотой становится особенно важным при эксплуатации устройств переменного тока, таких, как трансформаторы или моторы, поскольку при опытной настройке частей аппаратуры применение дорогостоящего конденсатора становится необязательным. Так, при обычных условиях через обмотку мотора переменного тока можно пропускать ток нужной силы с низкой эдс и полностью избавиться от ложных токов, и чем больше мотор, тем проще это практически сделать, но для этого надо использовать токи высокого потенциала и частоты.

На рисунке 20 I показана схема, которая применялась при исследовании явления резонанса с помощью высокочастотного генератора. C f — это мно-говитковая катушка, которая поделена на небольшие участки для удобства настройки. Окончательная настройка производилась при помощи нескольких тонких железных проводов (хотя это и не всегда желательно) или при помощи замкнутой вторичной обмотки. Катушка С одним концом замкнута на провод L, ведущий к генератору G, а другим — на одну из пластин конденсатора СС, причем пластина его соединена с еще большей пластиной Р. Таким способом и емкость, и индуктивность настраивались на частоту динамо-машины.

Что касается повышения потенциала через резонансное действие, конечно теоретически, то он может подняться до любого значения, поскольку зависит от индуктивности и сопротивления, а эти величины могут иметь какое угодно значение. Но на практике величина ограничена, и, кроме того, есть и другие факторы. Можно начать, скажем, с 1 000 вольт и увеличить величину эдс в 50 раз, но нельзя начать с 100 000 вольт и поднять эту цифру в 10 раз, так как потери в окружающей среде высоки, особенно при высокой частоте. Должно быть возможно, например, начать с двух вольт в контуре высокой или низкой частоты динамо-машины и поднять эдс в несколько сотен раз. Так, катушки надлежащих габаритов можно соединить одним концом с питающим проводом машины с низкой эдс, и хотя контур машины не будет замкнут в обычном понимании этого термина, она может сгореть, если мы получим нужный резонанс. Мне не удавалось получить и не удавалось наблюдать при токах, полученных от динамо-машины, такого скачка потенциала. Возможно или даже вероятно, что при токах, полученных от машин, содержащих железный сердечник, возмущающее действие последнего и есть причина, что теоретически существующие возможности не реализуются на практике. Но если так, то я отношу это единственно к запаздыванию фаз и к потерям от токов Фуко в сердечнике. Обычно приходилось работать на повышение, когда эдс была низка, и применялась обычная катушка, но иногда было удобно использовать схему, показанную на рисунке 20 П. В данном случае катушка С разбита на очень много участков, некоторые из них служат первичной обмоткой. Таким образом, и первичная и вторичная обмотки поддаются настройке. Один конец катушки соединен с проводом L, идущим к генератору переменного тока, а другой провод L соединен со средней частью катушки. Такая катушка, с настраиваемой первичной и вторичной обмотками, также может быть удобна во время опытов с разрядами. Когда достигается настоящий резонанс, пик волны должен, конечно, находиться на свободном конце катушки, или, например, на выводе люминесцентной лампы В. Это легко подтвердить, измерив потенциал на конце провода w возле катушки.

В связи с проявлениями резонанса и проблемой передачи энергии по одном} проводу, о которой говорилось ранее, я бы хотел сказать несколько слов о предмете, который постоянно занимает меня и который касается благополучия всех людей. Я имею в виду передачу четких сигналов, а может быть и энергии, на любое расстояние без помощи проводов. С каждым днем я убеждаюсь в реальности такого плана; и хотя я полностью отдаю себе отчет в том, что абсолютное большинство ученых не поверят, что такого результата можно добиться на практике в короткий срок, всё же думаю, что объем работ в этой области свидетельствует о том, что необходимо поощрять исследования и эксперименты в этом направлении. Мое убеждение настолько укрепилось, что я больше не рассматриваю такой способ передачи энергии или разумных сигналов лишь как теоретически возможный, но как серьезную инженерную задачу, которая должна быть однажды решена. Идея передачи информации без проводов есть результат последних исследований в области электричества. Некоторые энтузиасты выражают убежденность в том, что передача телефонного сигнала на любое расстояние при помощи индукции по воздуху возможна. Мое воображение не простирается так далеко, но я твердо верю, что практически возможно при помощи мощных машин возбуждать электростатическое поле Земли и так передавать информацию или, может быть, энергию. На самом деле, что же может помешать воплощению такого плана? Теперь мы знаем, что электрические колебания можно передавать по одному проводу. Почему же не попытаться использовать для этого Землю? Не стоит пугаться расстояний. Для усталого путника, считающего верстовые столбы, Земля может показаться очень большой, но для счастливейшего из людей, для астронома, который смотрит на звезды и по их состоянию вычисляет размеры земного шара, он может показаться очень небольшим. Таким же он должен казаться и электрику, ибо, когда он думает о скорости электрического сигнала, с которой он пронизывает Землю, все его представления о расстоянии должны испариться.

Во-первых, очень важно было бы узнать, какова емкость Земли? И какой заряд она содержит при электризации? Хотя у нас нет положительных свидетельств тому, что рядом в пространстве есть другие тела, заряженные противоположным образом, вполне возможно, что Земля именно такое тело, ибо каков бы ни был процесс, результатом которого явилось отделение Земли — а именно таковы сегодня общепринятые взгляды на ее происхождение, — она должна была сохранить заряд, как это происходит во всех процессах механического деления. Если это заряженное тело, изолированное в пространстве, то его емкость должна быть крайне мала, менее одной тысячной фарады. Но верхние слои атмосферы — проводники, такой же может являться и среда за пределами атмосферы, а она может иметь противоположный заряд. Тогда емкость может быть несравнимо выше. В любом случае очень важно понять, какое количество электричества содержит Земля. Трудно сказать, получим ли мы когда-нибудь такие знания, но надеюсь, что получим, и именно при помощи электрического резонанса. Если мы когда-либо сможем установить, каков период колебаний Земли при возбуждении ее заряда по отношению к противоположно заряженному контуру, мы получим факт, скорее всего наиболее важный для благополучия всего человечества. Я предлагаю искать этот период при помощи электрического осциллятора, или источника переменного тока. Один из выводов, например, будет соединен с землей, или городским водопроводом, а другой с изолированным предметом больших размеров. Возможно, что верхние слои атмосферы или открытый космос, имеют противоположный заряд и вместе с Землей образуют конденсатор огромной емкости. В таком случае период колебаний может быть очень небольшим, и динамо-машина переменного тока могла бы отвечать целям эксперимента. Затем я бы преобразовал ток так, чтобы получить максимально возможный потенциал и соединил концы вторичной обмотки высокого напряжения с землей и изолированным телом. Варьируя частоту тока и тщательно выдерживая потенциал изолированного тела, а также наблюдая за возмущениями в различных соседних точках земной поверхности, можно обнаружить резонанс. Если, как и полагают большинство ученых, период достаточно мал, то динамо-машина не подойдет и придется построить соответствующий электрический осциллятор, и, возможно, такие быстрые колебания получить невозможно. Но возможно это или нет, имеет Земля заряд или нет, и каков бы ни был период ее колебаний, абсолютно точно возможно — и тому мы имеем свидетельства — произвести некие электрические возмущения, достаточно мощные для того, чтобы их зарегистрировали в любой точке земной поверхности при помощи соответствующих приборов.

Предположим, что источник переменного тока соединен, как на рисунке 21, одним из своих выводов с землей (удобнее всего заземлить конец на водопровод), а другим — с предметом большой площади Р. Когда устанавливаются электрические колебания, электричество будет двигаться в обоих направлениях через предмет Р, а переменные токи будут проходить через землю, расходясь или сходясь в точке С, где сделано заземление. Таким образом будут возмущаться соседние точки на земной поверхности, расположенные в круге с неким радиусом. Но возмущение будет ослабевать по мере удаления, и расстояние, на котором этот эффект всё еще можно будет зарегистрировать, будет зависеть от количества электричества, приведенного в действие. Поскольку предмет Р изолирован, для того чтобы привести в движение значительное количество электричества, потенциал источника должен быть крайне высоким, так как площадь поверхности предмета Р ограничена. Параметры устройства можно настроить так, что источник S будет порождать такое же движение электричества, как если бы его цепь была замкнута. Так, конечно, практически возможно наложить электрические колебания определенного низкого периода на Землю при помощи надлежащей аппаратуры. На каком расстоянии эти колебания можно принять, можно только предполагать. По другому поводу мне пришлось поразмышлять над тем, как Земля может реагировать на электрические возмущения. Нет никакого сомнения в том, что во время такого эксперимента электрическая плотность у поверхности может быть очень мала, учитывая размеры Земли, и воздух не будет выступать как возмущающий фактор, а также не будет больших потерь энергии в воздухе, как могло быть, если бы плотность была высокой. Тогда теоретически не потребуется огромного количества энергии для производства возмущений, которые можно прочитать на очень большом расстоянии, если не по всему земному шару. Итак, совершенно очевидно, что в любой точке в пределах определенного круга, центром которого служит источник S, можно при помощи резонанса заставить работать прибор индуктивности и емкости. Но можно сделать не только это, но включить еще один источник 5 (рисунок 21), подобный источнику S, или любое количество источников, работающих синхронно с первым, и таким образом усилить вибрацию и распространить ее на большой площади, или получить электрический ток из источника или к источнику S, если его фаза будет противоположной фазе источника 5". Не сомневаюсь, можно эксплуатировать электрические приборы по всему городу через заземление или систему водоснабжения при помощи резонанса от одного электроосциллятора, установленного в центральной точке. Но практическое решение этой задачи будет несравнимо менее важным для человека, чем передача информации или энергии на любое расстояние через Землю или окружающую ее среду. Если это вообще возможно, то расстояние не имеет значения. Для начала надо построить надлежащие приборы, с помощью которых попытаться решить задачу, и я довольно долго над этим размышлял. Я твердо уверен в том, что это можно сделать, и мы доживем до того момента, когда это будет сделано.

 

О световых явлениях, полученных при помощи высокочастотных токов высокого напряжения

И ОБЩИЕ ЗАМЕЧАНИЯ ПО ЭТОМУ ВОПРОСУ

Возвращаясь теперь к световым явлениям, которые были основным предметом исследований, хотелось бы заметить, что все эти явления можно разделить на четыре класса: 1. Накал твердого вещества. 2. Фосфоресценция. 3. Накаливание или фосфоресценция разреженного газа. 4. Свечение газа при обычном давлении. Первый вопрос таков: как получаются эти световые эффекты? Для того чтобы ответить на этот вопрос, удовлетворяя всем современным требованиям и учитывая приобретенный мной опыт, а также для того, чтобы сделать демонстрацию интересной, я расскажу о некоей особенности, которой придаю огромное значение, поскольку она обещает, кроме всего прочего, пролить больше света на природу явлений, произведенных высокочастотными электрическими токами. Как-то я уже указывал на важность присутствия разреженного газа, или атомарной среды в целом, вокруг проводника, через который протекает переменный ток высокой частоты, когда речь идет о нагреве проводника протекающим током. Мои опыты, описанные ранее, показали, что чем выше частота и разность потенциалов тока, тем более важным становится газ, в который помещен проводник, для его нагрева. Однако разность потенциалов, как я тогда указывал, элемент более важный, чем частота. Когда оба эти параметра достаточно высоки, нагрев может происходить целиком за счет присутствия разреженного газа. Следующие эксперименты продемонстрируют важность разреженного газа, газа при обычном или ином давлении для накаливания или иных световых эффектов, производимых токами этого типа.

Я беру две одинаковые 50-вольтовые лампы по 16 свечей, которые одинаковы во всём, за исключением того, что одна лампа была вскрыта сверху, и ее заполнил воздух, а вторая находится в обычном состоянии вакуума, как обычные коммерческие лампы. Когда я присоединяю вакуумную лампу к выводу индукционной катушки, которую я уже использовал в опытах, проиллюстрированных на рисунке 15а, и включаю ток, нить, как вы уже не раз убеждались, сильно накаляется. Когда я присоединяю вторую лампу, наполненную воздухом, нить всё же светится, но не так ярко. Этот эксперимент только частично демонстрирует истинность предыдущих высказываний. Важность того, что нить помещена в разреженный газ, наглядно показана, но не так отчетливо, как хотелось бы. Причина тому — вторичная обмотка этой катушки рассчитана на низкое напряжение и имеет всего лишь 150 витков, следовательно, разность потенциалов на выводах лампы мала. Если бы я взял другую катушку с большим количеством витков, результат был бы виден более рельефно, так как он частично зависит от напряжения, как указывалось ранее. Но так как он таким же образом зависит и от частоты, то правильнее было бы сказать, что он зависит от периода изменения разности потенциалов.

Чем больше это изменение, тем важнее становится газ как фактор нагрева. Я могу воспроизвести и гораздо большую скорость изменений, но по-иному, и этот способ, к слову сказать, имеет то преимущество, что после него вряд ли возникнут возражения, которые могли появиться после демонстрации предыдущего эксперимента, даже если обе лампы включить последовательно или параллельно, а именно: исходя из реакции между первичной и вторичной обмотками, сделанные выводы ненадежны. Такого результата я добиваюсь, заряжая батарею конденсаторов от обычного трансформатора, запитанного от подстанции переменного тока, и разряжаю их прямо через контур с небольшой самоиндукцией, как показано на рисунках 19а, 196 и 19в.

На рисунках 22а, 226 и 22в тяжелые медные бруски ВВ 1 соединены с противоположными пластинами батареи конденсаторов, или, в целом, таким образом, что внезапные разряды высокой частоты пронизывают их. Сначала я присоединяю к брускам при помощи клемм СС обычную 50-вольтовую лампу. Когда через лампу проходят разряды, нить накаливается, хотя сила тока очень мала и при обычных условиях ее бы не хватило для свечения лампы. Теперь вместо нее я присоединяю другую лампу, такую же, как и первая, но ее герметичность нарушена и она заполнена воздухом при обычном давлении. Когда нить пронизывают разряды, она не накаляется. Но этот результат все же можно отнести к действию одного из факторов. Тогда я включаю обе лампы параллельно, как показано на рисунке 22а. При пропускании разрядов через нити накаливания наблюдаем, что нить в вакуумной лампе / ярко горит, в то время как нить негерметичной лампы L; остается темной. Но не следует полагать, будто эта лампа потребляет только малую часть энергии, напротив, она может потреблять значительную ее часть и стать даже очень горячей, горячее, чем другая нить, которая горит ярко. Во время данного эксперимента разность потенциалов на выводах ламп меняет знак, теоретически, три или четыре миллиона раз в секунду. Концы нитей заряжаются соответственно, и газ в колбах сильно возбуждается, а большая часть энергии, подаваемой на нити, переходит в тепло. В негерметичной лампе, где количество молекул газа в несколько миллионов раз больше, чем в вакуумной, бомбардировка, наиболее сильная на концах нити в горловине колбы, забирает большую часть энергии, не производя видимого эффекта. Причиной тому — большое число молекул, когда бомбардировка количественно более значительна, но удары не такие сильные вследствие невозможности разгона. В вакуумной колбе, напротив, скорости частиц огромны и удары их сильны, а следовательно, производят соответствующий эффект. Кроме того, конвекционная теплоотдача в первой лампе больше. В обеих лампах сила тока, пронизывающего нити, очень мала, несравнимо меньше, чем им понадобилось бы при обычных условиях в низкочастотном контуре. Разность потенциалов, однако, на концах нитей очень велика и может равняться 20 000 вольт или более, если бы нити были прямыми и концы их расходились далеко. В обычной лампе обычно проскакивает искра между концами нити или внешнего платинового провода задолго до того, как будет достигнуто такое напряжение.

Могут возникнуть предположения, что во время опыта вакуумная лампа могла потреблять ток большей силы и полученный результат можно отнести не только к действию газа в лампах. Такие соображения поутихнут, если я соединю с тем же успехом лампы последовательно. Сделав это, пропускаем заряды через нити и вновь отмечаем, что нить в негерметичной лампе // остается темной, в то время как в вакуумной / светится даже сильнее, чем при нормальных условиях (рисунок 226). В соответствии с общепринятыми взглядами, сила тока в нитях сейчас должна была бы быть одинаковой, если бы не изменилась под воздействием газа в колбах.

На этом этапе лекции мне бы хотелось коснуться еще одной интересной особенности, которая демонстрирует эффект скорости изменения потенциала тока. Теперь я оставлю лампы соединенными последовательно с брусками BB f , как и в предыдущем опыте (рисунок 226), но значительно понижу частоту тока, которая в предыдущем опыте была очень высокой. Этого я могу добиться, включив последовательно в цепь разряда катушку индуктивности или нарастив емкость конденсаторов. Когда я теперь пропускаю низкочастотные заряды через нити, вакуумная лампа светится, как и прежде, но заметно, что негерметичная лампа тоже светится, хотя и не так ярко, как первая. Уменьшив силу тока в лампах, я могу заставить нить в негерметичной лампе быть тускло красной, и, хотя нить в вакуумной лампе светится ярко (рисунок 22в), степень накала уже гораздо меньше, чем на рисунке 226, когда ток был гораздо большей частоты.

Поведение газа в этих опытах характеризуется двояко, когда определяет степень накала нити, то есть при конвекции и бомбардировке. Чем выше частота и потенциал тока, тем важнее становится бомбардировка. Конвекция, наоборот, должна быть тем меньше, чем выше частота. При постоянном токе, бомбардировки практически нет, и следовательно, конвекция сильно влияет на накал нити и дает результат, подобный наблюдавшемуся. Так, если две одинаковые лампы, вакуумная и негерметичная, соединены последовательно или параллельно и питаются постоянным током, то нить негерметичной лампы потребует значительно большей силы тока для накаливания. Это происходит целиком и полностью вследствие конвекции, и результат тем отчетливее, чем тоньше нить. Профессор Эртон и м-р Килгор недавно опубликовали количественные результаты исследований термальной эмиссионной способности при излучении и конвекции, в которых эффект тонкого провода явно прослеживался. Этот эффект можно продемонстрировать, взяв несколько маленьких коротких стеклянных трубок, в каждой из которых вдоль ее оси располагается тончайший платиновый провод. Если из всех трубок откачать воздух, то несколько из них можно соединить параллельно и подключить к источнику постоянного тока, при этом все нити можно накалить с помощью меньшей силы тока, чем потребовалось бы для накаливания одной нити в негерметичной трубке. Если бы вакуум в трубках можно было довести до такой степени, что конвекция равнялась бы нулю, то относительное количество теплоты, выделенное при конвекции и излучении, можно было без труда определить, прибегнув к количественным измерениям тепловых характеристик. Если применить источник электрических импульсов высокой частоты и потенциала, можно включить еще большее количество трубок, и нити в них будут накаливаться при помощи тока такой силы, что ее было бы недостаточно для ощутимого нагрева провода такого же размера, помещенного в воздух при обычном давлении, и при этом передаваемой энергии хватило бы всем трубкам.

Хочу привести результат, которого добился благодаря наблюдениям во время этих опытов, и который очень интересен. Я заметил, что небольшие различия в плотности воздуха приводили к серьезной разнице в степени накала нитей, и подумал: так как в трубке, через которую проходит световой разряд, плотность газа неоднородна, то очень тонкий провод, помещенный внутрь, может накаляться в местах меньшей плотности газа и в то же время оставаться темным в местах большей плотности, где конвекция сильнее, а бомбардировка менее интенсивна. В соответствии с этой мыслью была приготовлена трубка (;, как показано на рисунке 23, через центр которой проходил очень тонкий платиновый провод w. Из трубки был частично откачан воздух, и было обнаружено, что когда ее соединяли с выводом высокочастотной катушки, платиновый провод и в самом деле накалялся участками, как показано на рисунке 23. Позже было изготовлено несколько таких трубок с одним или несколькими проводами, и каждая из них показывала одинаковый результат. Этот эффект был особенно заметен, когда появлялся полосчатый разряд, но также имел место, когда полосы не были заметны, что говорило о том, что плотность газа в трубке неоднородна. Полосы обычно располагались так, что места наибольшего разрежения соответствовали участкам наибольшего или большей яркости свечения провода w. Но через несколько мгновений становилось заметным, что яркие участки провода покрыты плотными полосами разряда, как показано буквами // на рисунке 23, хотя это явление и было трудноразличимо. Это логично объяснялось, если предположить, что конвекция не сильно различалась на плотных и разреженных участках, а бомбардировка была сильнее на плотных участках полосчатого разряда. В лампах, на самом деле, можно часто наблюдать такую картину, когда тонкий провод накаляется сильнее, если газ не сильно разрежен. Так случается, когда потенциал катушки недостаточен для вакуума, но такой результат можно объяснить разными причинами. Во всяком случае, это любопытное явление накаливания исчезает, когда трубка, или, скорее, провод в трубке равномерно нагревается.

Независимо от корректировки, которую вносит конвекция, есть два основных фактора, которые определяют накал провода или нити при переменном токе, — ток проводимости и бомбардировка. В случае с постоянным током нам приходится иметь дело только с первым из этих факторов, и нагрев при этом минимален, поскольку при постоянном токе сопротивление наименьшее. Когда ток переменный, сопротивление возрастает и усиливается нагрев. Так, если скорость колебания тока очень высока, то сопротивление может вырасти до такого значения, что нить можно накалить при помощи ничтожно малой силы тока, и мы можем взять короткий и толстый кусочек углерода или иного материала и накалить его при помощи силы тока, несравнимо меньшей, чем та, что требуется для той же степени накала нити от постоянного или низкочастотного тока. Этот эффект очень важен, так как показывает, как быстро меняются наши взгляды на этот предмет, и как быстро расширяется область наших знаний. Рассмотрим только один аспект проблемы осветительных приборов. Мы знаем, что для достижения практического успеха, как принято считать, нить должна быть тонкой и иметь высокое сопротивление. Но теперь мы знаем, что сопротивление нити постоянному току ничего не значит; нить может с таким же успехом быть толстой и короткой; ибо если ее поместить в разреженный газ, она накалится при токе малой силы. Всё это зависит от частоты и потенциала тока. Из всего сказанного можно сделать вывод, что для освещения нужно использовать высокую частоту, ибо это позволит применить короткую и толстую нить и ток меньшей силы.

Если нить поместить в однородную среду, весь нагрев будет происходить за счет тока проводимости, но если это будет вакуумный сосуд, то условия будут абсолютно другими. Здесь начинает работать газ и нагрев от тока проводимости, как показывают многие эксперименты, может быть незначительным по сравнению с эффектом от бомбардировки. Это несомненно так, когда контур не замкнут, а потенциал, конечно, высок. Предположим, что тонкая нить помещена в вакуумный сосуд и один ее конец соединен с катушкой высокого напряжения, а другой — с большой изолированной пластиной. Хотя цепь не замкнута, нить, как я уже показывал, сильно накаляется. Если частота и потенциал сравнительно малы, то нить накаляется от проходящего через нее тока. Если частоту и потенциал, последнее важнее, повысить, то пластина может быть небольшой, или ее может не быть совсем; и всё же нить накалена, так как весь накал происходит от бомбардировки. Практически совместить эффекты тока проводимости и бомбардировки можно так, как показано на рисунке 24, где обычная лампа имеет тонкую нить, один конец которой соединен с абажуром, играющим роль пластины, а второй — с источником тока высокого напряжения. Не следует думать, будто для нагревания проводника переменным током важен только разреженный газ, газ при обычном давлении тоже может играть важную роль, если разность потенциалов и частота крайне высоки. По этому поводу я уже заявлял, что когда проводник плавится под ударом молнии, ток, протекающий через него, может быть крайне мал, его может быть даже недостаточно, чтобы нагреть провод, если тот помещен в однородную среду.

Из всего вышесказанного становится ясно: когда проводник высокого сопротивления присоединяют к выводам источника тока высокой частоты и потенциала, может происходить значительное рассеивание энергии, более всего на концах провода, вследствие действия газа, окружающего проводник. Благодаря этому сила тока на участке, что находится посередине провода, может быть значительно меньше, чем сила тока на участке, который ближе к концу. Более того, ток течет в основном через внешние участки провода, но этот эффект не следует путать с поверхностным эффектом, как его обычно трактуют, ибо последний имеет место, или должен иметь место в непрерывной несжимаемой среде. Если много ламп накаливания последовательно соединить с источником такого тока, то лампы по краям цепи могут гореть ярко, а те, что посередине, останутся темными. Это в основном происходит вследствие бомбардировки, как уже говорилось ранее. Но даже при постоянном токе, если потенциал очень велик, лампы по краям цепи будут гореть ярче тех, что посередине. В таком случае нет ритмичной бомбардировки, и эффект достигается благодаря утечке. Эта утечка, или рассеивание, когда напряжение очень высокое, значительно во время использования ламп накаливания, а особенно, во время работы дуги, ибо дуга — это то же пламя. А в целом, конечно, рассеивание не так значительно при постоянном токе по сравнению с переменным.

Я разработал и поставил эксперимент, который достаточно интересно демонстрирует боковую диффузию. Если очень длинную трубку присоединить к выводу высокочастотной катушки, то яркость наиболее высока возле вывода и постепенно падает по направлению к дальнему концу. Это особенно заметно, если трубка узкая.

Небольшая трубка диаметром примерно полдюйма и длиной двенадцать дюймов (рисунок 25) имеет тонкий вытянутый полностью стеклянный конец длиной около трех дюймов. Трубка помещается в медном гнезде Т, которое можно прикрепить к выводу Т 1 . индукционной катушки. Разряд, проходящий через трубку, сначала освещает нижнюю часть, сечение которой довольно велико; но он не может пройти сквозь стекло наверху. Но постепенно разреженный газ в трубке нагревается и становится проводником и разряд пронизывает стекло. Он распространяется настолько медленно, что может пройти полминуты, пока он дойдет до верхнего кончика, и становится похожим на тонкое светящееся волокно. Путем настройки потенциала можно заставить свет двигаться вверх с любой скоростью. Однако когда волокна стекла нагреты, разряд распространяется по всей длине мгновенно. Интересно то, что чем выше частота тока, или, иными словами, чем относительно выше боковая диффузия, тем с меньшей скоростью свет может распространяться сквозь волокно. Этот опыт лучше всего ставить с хорошо откачанной и новой трубкой. Если трубку уже несколько раз использовали, опыт часто не удается. Возможно, тому виной постепенное медленное ухудшение вакуума. Это медленное распространение заряда сквозь узкую стеклянную трубку в точности повторяет распространение тепла в бруске, нагретом с одного конца. Чем скорее тепло уносится в сторону, тем больше времени понадобится, чтобы нагреть противоположный конец бруска. Когда ток от низкочастотной катушки проходит сквозь волокно, боковая диффузия мала и разряд мгновенно распространяется по всей длине без исключения.

После всех этих опытов и наблюдений, которые показывают важность прерывистости или атомарной структуры среды, и которые должны объяснить, частично, по крайней мере, природу четырех типов световых эффектов, получаемых при помощи тока такого типа, я могу продемонстрировать вам эти эффекты. Для интереса я могу сделать это таким способом, который для многих из вас будет новым. Вы уже видели, что мы можем передать телу колебания при помощи одного провода или любого проводника. Так как тело человека — проводник, я могу передать колебания своему телу.

Сначала, как и в предыдущих опытах, я соединяю свое тело с одним из выводов высоковольтного трансформатора и беру в руку вакуумную лампу, в которой помещается небольшая углеродная головка, размещенная на конце платинового провода, идущего наружу, и головка накаляется, как только трансформатор включают (рисунок 26). Сверху на лампу я могу положить абажур из проводника для усиления действия, но это необязательно, необязательно также, чтобы головка накаливания была соединена с рукой посредством провода, идущего наружу сквозь стекло, так как достаточное количество энергии для накаливания головки можно передать сквозь стекло при помощи индукции. Затем я беру лампу с сильным вакуумом, в которой находится фосфоресцирующееся тело, поверх которого размещается небольшая алюминиевая пластина на платиновом проводе, ведущем наружу, и ток, проходящий сквозь мое тело возбуждает сильное свечение в лампе (рисунок 27). Теперь я вновь беру в руку простую вакуумную трубку, и вновь точно так же газ внутри трубки начинает светиться (рисунок 28). И наконец, я беру в руку провод, неважно, оголенный или изолированный: электрические вибрации настолько сильны, что покрывают провод светящейся пленкой (рисунок 29).

Несколько слов надо сказать о каждом из этих явлений. Во-первых, о накаливании головки и вообще твердого вещества приведу несколько фактов, равно относящихся ко всем этим явлениям. Ранее указывалось, что когда тонкий проводник, такой, как нить накаливания например, одним концом соединяют с выводом трансформатора высокого напряжения, нить накаляется частично вследствие тока проводимости, а частично вследствие бомбардировки. Чем толще и короче нить, тем большую важность приобретает последний фактор, и в конце концов, если нить превращается в головку, то весь нагрев происходит вследствие бомбардировки. Так и в последнем опыте головка накаляется от ритмических ударов свободно движущихся частиц в колбе. Этими частицами могут быть молекулы остатков газа, частицы пыли или куски электрода; чем бы они ни были, совершенно точно, что нагрев головки в первую очередь связан с давлением таких свободно движущихся частиц, или атомной структурой в трубке. Нагрев тем больше, чем больше количество ударов в секунду, и чем выше энергия каждого удара. И всё же головка также накалится, если ее соединить с источником постоянного потенциала. В таком случае электричество будет уноситься от головки свободно движущимися вокруг частицами, и количества электричества, таким образом унесенного, будет достаточно для накала головки, так как оно сначала проходит через последнюю. Но в данном случае бомбардировка не имеет особого значения. По этой причине требуется подавать на головку значительное количество энергии, для того чтобы поддерживать ее накал при постоянном потенциале. Чем выше частота электрических импульсов, тем экономичнее можно поддерживать накал головки. Одной из основных причин этого является то, что если импульсы имеют очень высокую частоту, то вокруг электрода происходит меньший обмен свободно движущихся зарядов и это означает, что внутри лампы нагретое вещество лучше сконцентрировано вокруг головки. Если сделать двойную лампу, как показано на рисунке 30, состоящую из большой колбы В и маленькой b, каждая из которых имеет нить f на платиновом проводе w и w 1 , то обнаружится, что если бы нити ff были идентичны, то меньше энергии понадобилось бы для поддержания нити в колбе B в определенной степени накала, чем такой же нити в колбе В. Причиной тому лучшая концентрация частиц. В этом случае можно также добиться меньшего износа нити в колбе Ь, если определенное время поддерживать ту же степень накала. Это обязательное следствие того, что газ в маленькой колбе сильно нагревается и становится хорошим проводником, и на головку оказывается меньшее воздействие, так как бомбардировка становится менее интенсивной по мере возрастания проводимости газа. В такой конструкции, конечно, маленькая колба становится очень горячей, и когда она достигает определенной степени нагрева, усиливаются конвекция и излучение снаружи. По другому поводу я показывал лампы, в которых этот недостаток был в значительной степени преодолен. Примером тому может служить конструкция, когда очень маленькая лампа, содержащая тугоплавкий электрод в виде головки, помещалась в большую колбу, и воздух из промежутка откачивался. Внешняя большая колба в таких конструкциях оставалась практически прохладной. Если большая колба оставалась соединенной с насосом и вакуум между стенками благодаря этому постоянно поддерживался, колба оставалась совсем холодной, а головка в маленькой лампе была раскалена. Но после герметизации, когда головка какое-то время была раскалена, большая колба тоже нагревалась. Из этого я могу сделать вывод о том (как отмечает профессор Дьюар), что данное явление происходит вследствие нашего быстрого движения сквозь космос, или, говоря в общем, вследствие движения среды относительно нас, ибо постоянное состояние нельзя поддерживать, если среда не обновляется постоянно. Вакуум нельзя, судя по всему, поддерживать вокруг горячего тела.

В конструкциях маленькая лампа внутри, по крайней мере на первых порах, препятствовала бомбардировке внешней колбы. Мне пришла мысль проверить, как поведет себя в таких условиях металлическое сито, и я приготовил для этого несколько ламп, которые показаны на рисунке 31. В колбе Ь была расположена тонкая нить f (или головка) на платиновом проводе, проходящем сквозь стеклянную ножку и ведущем наружу. Нить / была окружена ситом s. Экспериментально было обнаружено, что в таких колбах сито с крупными ячейками ни в коей мере не препятствовало бомбардировке колбы Ь.

Когда был достигнут высокий вакуум, тень от сита была ясно видна на колбе и она скоро нагрелась. В некоторых лампах сито s было соединено с платиновым проводом, запаянным в стекло. Когда этот провод соединяли с другим выводом катушки индуктивности (эдс в таких случаях была небольшой), или с изолированной пластиной, бомбардировка колбы Ь уменьшалась. Но если взять сито с мелкими ячейками, то бомбардировка колбы тоже уменьшается, но даже если вакуум очень высокий, и потенциал трансформатора большой, колба Ь бомбардируется и нагревается очень быстро; хотя не видно решетки от сита из-за того, что ячейки очень мелкие.

Если же вокруг нити размещается стеклянная трубка или иное непрерывное тело, то бомбардировка полностью прекращается на некоторое время и колба b остается абсолютно холодной. Конечно, когда стеклянная трубка достаточно нагревается, бомбардировка внешней колбы моментально становится заметной. Эксперименты с этими колбами показали, что скорости бомбардирующих молекул и частиц должны быть значительными (хотя и не сравнимы со скоростью света), в ином случае было бы трудно понять, как они могут пронизывать тонкую металлическую решетку без всяких последствий, если только не обнаружится, что на такие маленькие частицы влияние может оказываться напрямую с определенного расстояния. Что касается скорости бомбардирующих атомов, то лорд Кельвин недавно высказал предположение, что она может составлять примерно один километр в секунду в обычной лампе Крукса. Поскольку потенциал, получаемый от катушки с разрядником, значительно выше, чем тот, что получается от обычной катушки, скорости должны быть, конечно, гораздо выше, когда лампа питается от такой катушки. Предположим, что скорость движения частицы в вакууме пять километров в секунду и она постоянна по всей траектории, как и должно быть в вакуумном сосуде, тогда, если скорость изменения заряда электрода равна пяти миллионам в секунду, то частица может удалиться от электрода не более чем на миллиметр, если на этом расстоянии на нее оказывается прямое воздействие, тогда молекулярный или атомный обмен будет очень медленным, и колба почти не будет подвергаться бомбардировке. По крайней мере, это должно быть так, если только воздействие электрода на атомы остаточного газа подобно воздействию заряженного тела на предметы, которые мы можем воспринимать. Горячее тело, помещенное в вакуумный сосуд, также приводит к бомбардировке, но просто горячее тело не колеблется в определенном ритме, так как молекулы его производят разные вибрации.

Если из колбы, содержащей головку или нить накаливания, откачать воздух, насколько это возможно при помощи самых лучших приспособлений, то часто можно наблюдать, что разряд не может поначалу пройти, но по прошествии некоторого времени, видимо, вследствие каких-либо изменений внутри колбы, разряд проходит и головка или нить накаляется. На самом деле, чем выше степень откачки воздуха, тем легче добиться накала. По-видимому, нет иных причин для накаливания в таких случаях, за исключением бомбардировки или подобного воздействия остатков газа или частиц вещества. Но если мы создали очень высокий вакуум, могут ли они иметь большое значение? Предположим, что мы получили совершенный вакуум, тогда очень интересно ответить на вопрос: Та среда, которая пронизывает всё пространство, она непрерывна или состоит из частиц? Если состоит из частиц, тогда нагрев проводника или нити в вакуумном сосуде может происходить вследствие бомбардировки эфиром, и тогда вообще нагрев проводника, через который пропущен ток высокой частоты и потенциала, должен подвергаться изменениям этой среды; тогда поверхностный эффект, очевидный рост омического сопротивления и т. д., по крайней мере частично, поддаются иному объяснению.

Разумеется, учитывая многие явления, связанные с высокочастотными токами, конечно, говорят о том, что весь космос скорее наполнен свободными атомами, а не лишен их. Будь так, он был бы темным и холодным, заполнен однородной субстанцией, в которой не может быть ни тепла, ни света. Как в этом случае передается энергия: независимыми носителями или вибрацией однородной субстанции? Этот важный вопрос до сих пор остается без ответа. Но многие из тех эффектов, что демонстрировались здесь сегодня, в особенности световые, накаливание и свечение, подразумевают наличие свободных атомов, без которых эти эффекты были бы невозможны.

Что касается накаливания тугоплавкой головки (или нити) в вакуумном сосуде, что и было темой нашего исследования, то основные выводы, которые могут служить инструкцией для создания таких ламп, можно сформулировать следующим образом: 1. Головка должна быть как можно меньше, сферической формы, полированная или гладкая, изготовлена из тугоплавкого материала, который выдерживает испарение. 2. Опора должна быть очень тонкой и защищена слоем алюминия и слюды, как я уже указывал ранее. 3. Воздух следует откачивать, насколько это возможно. 4. Частота должна быть практически самая высокая. 5. Ток должен колебаться гармонически, без внезапных прерываний. 6. Тепло следует концентрировать вокруг головки, помещая внутрь лампы небольшую колбу, или иным способом. 7. Из пространства между внешней и внутренней колбами воздух должен быть откачан.

Большинство соображений, высказанных по поводу накаливания твердого тела, применимы и к фосфоресценции. И в самом деле, в вакуумном сосуде фосфоресцентность, как правило, в первую очередь вызывается потоком атомов, испускаемых электродом и ударяющихся о фосфоресцентное тело. Даже в тех случаях, когда нет свидетельств такой бомбардировки, я полагаю, что фосфоресценция вызывается сильными ударами атомов, которые не обязательно испускаются электродом, но находятся под его индуктивным воздействием через среду или через другие атомы. То, что эти механические удары играют важную роль в возбуждении свечения в лампе, можно продемонстрировать в следующем эксперименте. Если взять лампу, как показано на рисунке 10, и максимально откачать из нее воздух настолько, что разряд не сможет пройти, то нить f будет индуктивно воздействовать на трубку t и заставит ее вибрировать. Если трубка о будет достаточно толстой, примерно дюйм шириной, то нить может колебаться настолько сильно, что каждый раз, когда она будет прикасаться к стеклу, она будет вызывать фосфоресценцию. Но свечение прекращается, когда нить успокаивается. Вибрацию можно прекратить и опять начать путем изменения частоты тока. Итак, нить имеет свой период колебаний, и если частота тока такова, что происходит резонанс, то она снова начинает колебаться, даже если потенциал невелик. Я часто становился свидетелем того, как нить в лампе разрушалась от такого механического резонанса. Нить колеблется обычно так быстро, что это невозможно увидеть, и экспериментатор поначалу может быть озадачен. Когда опыт, подобный приведенному, тщательно организован, потенциал тока должен быть крайне мал, и на основании этого я делаю вывод о том, что свечение происходит вследствие механического удара нити о стекло, так же, как это происходит, когда ножом бьют по большому куску сахара. Механический удар от отраженных атомов легко заметить, когда лампу с помещенной в ней головкой накаливания берут в руку, а потом внезапно включают ток. Я полагаю, что лампа разобьется на куски, если возникнет необходимость соблюсти условия, при которых возникает резонанс.

В предыдущем эксперименте, конечно, вопрос остается открытым, действительно ли стеклянная трубка сохраняет тот или иной заряд после контакта с нитью. Теперь если нить снова касается стекла в том же самом месте, когда она заряжена противоположно, заряды компенсируют друг друга под воздействием света. Но такое объяснение не имеет значения. Без сомнения, первоначальные заряды атомов или стекла играют какую-то роль в возбуждении фосфоресценции. Так, например, если фосфоресцентную лампу сначала соединить с одним выводом высокочастотной катушки и отметить степень свечения ее, а затем лампе передать мощный заряд от машины Хольца, причем желательно соединить ее с положительным выводом машины, обнаружится, если лампу вновь соединить с выводом высокочастотной катушки, свечение будет гораздо более интенсивным. Во время другого опыта я изучал возможность проявления фосфоресцентности в лампах, когда она вызвана накаливанием бесконечно тонкого поверхностного слоя светящегося тела. Удары атомов достаточно сильны, чтобы своим воздействием вызвать накал, поскольку они своими ударами накаляют тело значительных размеров. Если такие эффекты имеют место, то наилучшее приспособление для получения фосфоресценции в лампе, которое нам пока известно, — это катушка с разрядником, выдающая огромный потенциал при небольшом количестве базовых разрядов, скажем 25–30 в секунду, достаточных, чтобы глаз их не воспринимал. Это факт, что такая катушка вызывает свечение почти при любых условиях и при любой степени вакуумирования, и я был свидетелем случаев, когда эффекты фосфоресценции проявлялись даже при атмосферном давлении, когда потенциал был крайне высок. Но если фосфоресценция достигается за счет компенсации зарядов атомов (что бы это в конечном итоге ни значило), тогда, чем выше частота импульсов переменных зарядов, тем экономичнее производство света. Уже давно и хорошо известно, что все фосфоресцентные тела — плохие проводники электричества и тепла, и что все тела перестают светиться, когда достигаю определенной температуры. Проводники, напротив, этим качеством не обладают. И из этого правила есть лишь несколько исключений. Углерод — одно из них. Беккерель заметил, что углерод светится при определенной повышенной температуре, предшествующей его переходу в тускло-красное состояние. Это можно наблюдать в лампах, имеющих достаточно большой углеродный электрод (скажем, шарик диаметром 6 мм). После включения тока, через несколько секунд, электрод покрывает снежно-белая пленка, как раз перед тем, как он станет темно-красным. Замечено, что подобные явления происходят и с другими проводниками, но многие ученые скорее всего не отнесут их к истинным проявлениям фосфоресценции. Правда ли, что настоящее накаливание имеет отношение к фосфоресценции, возбуждаемой ударами атомов или механическими ударами, предстоит еще решить, но фактом является то, что при любых условиях, когда есть тенденция к локализации и усилению нагрева в точке столкновения, эти условия наиболее благоприятны для возникновения фосфоресценции. Итак, если электрод очень мал, можно сказать, что плотность очень высока; если потенциал очень высок, а газ сильно разрежен, все эти условия подразумевают высокую скорость бомбардирующих атомов, или частиц вещества, а следовательно, интенсивные удары, — и фосфоресценция очень интенсивна. Если в колбу поместить большой и маленький электроды и соединить их с индукционной катушкой, то маленький электрод начнет светиться, в то время как большой может и не светиться, так как чем меньше электрическая плотность, тем меньше скорость атомов. Лампу с большим электродом внутри, соединенным с катушкой, можно взять рукой и электрод может не засветиться; но если вместо этого лампы коснуться заостренным проводом, свечение моментально заполнит всю лампу, вследствие высокой плотности в месте контакта. Видимо, при низких частотах газы с большим атомным весом вызывают большую фосфоресценцию, чем газы с меньшим атомным весом, как, например, водород. При высоких частотах, наблюдений недостаточно, чтобы сделать надежный вывод. Кислород, как известно, дает очень сильные эффекты, но это частью можно объяснить химической реакцией. Кажется, что лампа, заполненная остатками водорода, возбуждается наиболее легко. Электроды, разрушающиеся наиболее легко, дают наибольшее свечение в лампах, но это состояние недолговечно вследствие нарушения вакуума и осаждения частиц электрода на светящихся поверхностях. Некоторые жидкости, как, например, масло, дают блестящий эффект фосфоресценции (или флюоресцентное™?), но он длится всего несколько секунд. Так, если на стенках колбы есть следы масла и включается ток, то свечение продолжается всего несколько мгновений, до тех пор, пока масло не улетучится. Из всех опробованных веществ, кажется, только сульфид цинка наиболее поддается фосфоресценции. Некоторые образцы этого материала, полученные благодаря любезности профессора Анри из Парижа, испытывались в данных лампах. Одним из недостатков этого сульфида является то, что он теряет свойство излучать свет после того, как его нагреют до температуры, которую никак нельзя назвать высокой. Следовательно, его можно использовать только при очень низкой интенсивности. Следует отметить то немаловажное его свойство, что при интенсивной бомбардировке из алюминиевого электрода, он приобретает черный цвет, но что характерно, возвращается в исходное состояние при остывании.

Самый важный вывод, к которому я пришел, проводя данные исследования, это то, что в любом случае для возбуждения фосфоресценции с минимальными затратами энергии, требуется соблюдать определенные условия. А именно: всегда, независимо от частоты тока и степени вакуума в лампе, есть определенный потенциал (если лампа соединена с одним выводом) или разность потенциалов (если лампа соединена с двумя потенциалами), которые дают наиболее экономичный результат. Если потенциал повышен, много энергии тратится, а света больше не становится, и напротив, если потенциал понизить, производство света всё равно не так экономично. Точные характеристики, при которых получается наилучший результат, видимо, зависят от разнородных причин, и их должны еще исследовать экспериментаторы, но совершенно точно их следует придерживаться для получения наилучших результатов.

Переходя теперь к наиболее интересным из этих явлений, накаливанию, или свечению, газов при пониженном или атмосферном давлении, должен сказать, что нам надо искать ключ к разгадке этих явлений в тех же первоначальных причинах, то есть, в ударах, или столкновениях, атомов. Когда молекулы или атомы, ударяясь о твердое тело, возбуждают его свечение, или накаливание, при столкновениях друг с другом они порождают те же явления. Но это недостаточное объяснение и оно содержит только механизм действия. Свет порождается колебаниями, которые происходят с почти непостижимой скоростью. Если при помощи энергии, содержащейся в форме известных излучений в замкнутом пространстве, мы станем вычислять силу, необходимую для возбуждения таких быстрых колебаний, мы обнаружим, что хотя плотность эфира несравнимо мала, и меньше плотности всех известных нам веществ, например водорода, всё же сила превосходит наше понимание. Что же это за сила, что в механическом эквиваленте превосходит значение нескольких тысяч тонн на квадратный дюйм? Это электростатическая сила в свете современных воззрений. Невозможно понять, как тело измеримых размеров можно зарядить до такого потенциала, что этой силы будет достаточно для производства таких вибраций. Задолго до того, как телу будет передан такой заряд, его просто разорвет на атомы. Солнце излучает свет и тепло, то же самое делает обычное пламя или нить накаливания, но ни в том, ни в другом нельзя объяснить действие этой силы, если связать ее с телом, как с целым. Мы можем объяснить ее только в одном случае, если свяжем ее с атомом. Атом настолько мал, что если бы он заряжался после контакта с заряженным телом, и можно было предположить, что заряд следует тем же законам, что и в случае с заряженным телом, измеримых размеров, то он должен бы был сохранять количество электричества, которое бы полностью объясняло наличие этих сил и скорость вибраций. Но атом в таком состоянии ведет себя иначе — он всегда берет тот же самый «заряд».

Скорее всего резонансные колебания играют особо важную роль в проявлениях энергии в природе. Везде в пространстве вся материя колеблется, и в ней представлены все скорости колебания — от самых низких музыкальных нот, до самого высокого тона химических излучений, следовательно, и атом, или скопление атомов, независимо от периода, должны найти колебания, с которыми они в резонансе. Когда мы думаем об огромной скорости световых колебаний, мы понимаем, что невозможно воспроизвести такие колебания напрямую, используя аппаратуру измеримых размеров, и мы вынуждены использовать единственное оставшееся у нас средство получить световые волны экономно и при помощи электричества, то есть воздействовать на молекулы или атомы газа, заставить их соударяться и вибрировать. Тогда мы должны задать себе вопрос: Как можем мы воздействовать на молекулы и атомы?

Ясно, что на них можно воздействовать при помощи электростатической силы, как следует из всех этих опытов. Меняя электростатическую силу, мы можем возбудить атомы, заставить их соударяться, что сопровождается выделением тепла и света. Вне всякого сомнения, никто еще не продемонстрировал, как можно на них воздействовать иначе. Если через закрытую вакуумную трубку пропустить световой разряд, то последуют ли атомы в своей организации какой-либо другой силе, кроме электростатической, которая действует напрямую, от атома к атому? Совсем недавно я исследовал взаимодействие двух контуров с крайней степенью вибрации. Когда батарея из нескольких банок (ccc 1 c 1 , рисунок 32) разряжается через первичную обмотку Р низкого сопротивления (соединения такие, как показаны на рисунках 19а, 196, 19в, а частота колебаний составляет несколько миллионов, в точках на первичной обмотке, отстоящих друг от друга всего на несколько дюймов, возникает огромная разность потенциалов. Эта разность может составлять 10 000 вольт на дюйм, если не более, принимая максимальное значение эдс. На вторичную обмотку S 1 следовательно, действует электростатическая индукция, которая в крайних случаях гораздо важнее, чем электродинамическая. Для таких резких импульсов первичная обмотка, как и вторичная, плохие проводники, следовательно, огромная разность потенциалов может порождаться электростатической индукцией между соседними точками вторичной обмотки. Затем между проводами могут проскакивать искры и в темноте станут видимы потоки, если не допустить через промежуток dd разряда. Теперь, если мы заменим вторичную обмотку S герметичной вакуумной трубкой, то разности потенциалов в трубке, созданной электростатической индукцией, сполна хватит, чтобы возбудить некоторые ее участки; но так как точки определенной разности потенциалов в первичной обмотке не фиксированы, а постоянно меняют положение, в трубке появляется светящаяся полоса, которая очевидно не касается стекла, хотя и должна была бы, если бы точки минимума и максимума потенциала имели фиксированное положение на первичной обмотке. Я не исключаю возможности того, что эта трубка возбуждается исключительно благодаря электродинамической индукции, поскольку этого взгляда придерживаются очень опытные физики; но, по моему мнению, еще нет положительных доказательств того, что атомы газа в закрытой трубке могли расположиться в такие цепочки под действием электродвижущего импульса, порожденного электродинамической индукцией в трубке. Мне еще не удавалось пока получить полосы в трубке, какой бы длинной она ни была, и какой бы вакуум в ней ни был создан, то есть полосы под прямым углом к предполагаемому направлению разряда или оси трубки; но отчетливо наблюдал в большой колбе, где широкая светящаяся полоса появлялась после разряда батареи через провод, опутывающий лампу, слабый световой круг между двумя полосами, одна из которых была интенсивнее другой. Более того, мой опыт говорит мне, что такой газовый разряд в закрытой трубке не может вибрировать, то есть вибрировать как единое целое. Я убежден, что ни один разряд, проходящий в газе, не может вибрировать. Атомы газа ведут себя очень любопытно по отношению к внезапным электрическим импульсам. Видимо, газ не обладает ощутимой инерцией по отношению к таким импульсам, ибо на самом деле, чем выше частота импульсов, тем свободнее заряд проходит сквозь газ. Если газ не обладает инерцией, то он не может вибрировать, так как некоторая инерция необходима для свободных колебаний. Из этого я делаю вывод о том, что если между двумя тучами случится разряд молнии, то не возникнет никакой осцилляции, учитывая емкость облаков. Но если разряд молнии ударит в землю, вибрация возникает всегда — в земле, а не в облаке. При разряде сквозь газ каждый атом газа колеблется с собственной скоростью, но нет колебания проводящей газообразной среды как целого. Это очень важное соображение при решении великой проблемы экономичного производства света, ибо оно учит нас тому, что этого результата можно добиться, если использовать импульсы высокой частоты и обязательно высокого потенциала. Факт, что кислород дает более интенсивное свечение в трубке. Не потому ли, что атомы кислорода обладают некоторой инерцией, и колебания не затухают мгновенно? Но тогда азот должен вести себя так же, а хлор и испарения некоторых веществ должны быть еще лучше, чем кислород, если только в игру не вступают магнитные свойства последнего. А может, процесс в трубке имеет электролитическую природу? В пользу этого свидетельствуют многие наблюдения, а самое важное то, что электрод всегда испускает частицы вещества, и вакуум в трубке нельзя поддерживать постоянно. Если такой процесс имеет место на самом деле, тогда опять мы должны прибегнуть к высоким частотам, ибо с их помощью электролитическое воздействие можно свести к минимуму, а то и вовсе от него избавиться. Нельзя отрицать тот факт, что при использовании высоких частот, если только импульсы гармоничны, как те, что получаются от генератора переменного тока, износ меньше и вакуум более долговечен. При работе пробойной катушки потенциал резко меняется и вакуум быстрее нарушается, так как электроды быстрее изнашиваются. Было замечено, что в некоторых больших трубках, которые содержали тяжелые углеродные бруски ВВ Г соединенные с проводами ww (как показано на рисунке 33), применявшиеся во время опытов с пробойными катушками вместо обычного искрового промежутка, частицы углерода под действием мощного магнитного поля, в которое была помещена трубка, располагались в виде прямых тонких линий в центре трубки, как показано на рисунке. Появление этих линий относили к отклонению или искривлению разряда под воздействием магнитного поля, но почему их скопление возникло именно там, где поле было наиболее сильным, было непонятно. Интересно заметить, что наличие сильного магнитного поля увеличивает износ электродов, возможно, потому, что оно производит быстрые прерывания, когда между электродами возникает более высокая эдс.

Многое еще можно сказать о световых эффектах, которые дают газы при низком или обычном давлении. После просмотра всех опытов мы не можем сказать, что природа этих прекрасных явлений достаточно изучена. Но исследования в этом направлении ведутся с особенным рвением. Каждая отрасль науки по-своему захватывает, но исследования в области электричества, видимо, обладают особой притягательной силой, ибо каждый опыт, каждое наблюдение в этой области находят в нас неповторимый отклик. И всё же мне кажется, что из всех чудес, которые мы наблюдаем, вакуумная трубка, возбужденная электрическим импульсом от удаленного источника, вспыхивающая в темноте и освещающая помещение, самое прекрасное явление, которое доступно нашему взору. Еще более интересное для меня — понизить частоту базовых разрядов в искровом промежутке, и, размахивая трубкой, получать разные формы линий. Так, для развлечения, я беру прямую длинную трубку, или квадратную, или квадрат, соединенный с длинной прямой, и поворачивая их быстро, имитирую вращение колеса и спиц, обмотку Грамма, барабан, обмотку мотора переменного тока и т. д. (рисунок 34). Если смотреть издали, эффект слабый, и красота его теряется, но вблизи, и если трубка в руке, — вряд ли кто-то устоит перед этим завораживающим зрелищем.

Представляя сегодня эти незначительные достижения, я не пытался расположить их так, как это следует делать в процессе чисто научного поиска, когда каждый итог есть логическое следствие предыдущего, и когда его может предугадать внимательный читатель или слушатель. Я предпочел направить свои усилия на выдвижение новинок и идей, которые могли бы предложить нечто остальным, и это может служить извинением отсутствию гармонии в моем выступлении. Объяснения явлений давались добросовестно, в духе студента, готового понять, что допустимы требования и более полных объяснений. Не будет большого вреда, если студент воспримет неверные взгляды, но когда ошибаются великие умы, мир дорого платит за их ошибки.