Естествознание. Базовый уровень. 10 класс

Титов Сергей Алексеевич

Агафонова Инна Борисовна

Сивоглазов Владислав Иванович

Химические элементы и вещества

 

 

§ 47 Периодический закон и периодическая система химических элементов Д. И. Менделеева

В процессе развития химии постепенно складывалось представление о химических элементах, а также о простых и сложных веществах. С современной точки зрения, химический элемент – это вид атома с определённым зарядом ядра. Простые вещества состоят из атомов одного элемента, а сложные – из атомов двух и более элементов. К середине XIX в. было известно уже более шестидесяти элементов, чуть больше – соответствующих им простых веществ, а также и множество сложных веществ: оксидов, гидроксидов, солей. Исследуя реакции, в которых участвуют те или иные простые вещества, химики установили, что некоторые из них обладают схожими химическими свойствами (например, хлор и бром, натрий и калий). В то же время существуют вещества, которые очень сильно различаются по свойствам (например, натрий и хлор). Возникла потребность в приведении всего множества элементов в какую-нибудь систему, которая позволила бы объяснить химические особенности различных веществ, образованных этими элементами. Попыток создания такой системы было предпринято много. Ближе всех к решению этой задачи подошёл в 1864 г. немецкий химик Юлиус Лотар Мейер, но настоящий закон, позволивший не только объяснить, но и предсказать свойства элементов на единой основе, открыл российский химик Дмитрий Иванович Менделеев (1834–1907) (рис. 120).

Открытию Д. И. Менделеевым периодического закона предшествовали годы упорного труда в поиске закономерностей, которые могли бы позволить описать изменение свойств элементов и их соединений на единой основе. Напомним, что в то время ещё ничего не было известно о строении атомов и их связи со свойствами химических элементов, хотя атомную массу, или, как тогда говорили, атомный вес, измерять умели. Именно атомную массу и принял Д. И. Менделеев в качестве главной характеристики при построении периодической системы. Расположив элементы в порядке возрастания атомных масс, Менделеев наблюдал периодическое изменение их свойств. Эту закономерность он сформулировал в виде Периодического закона химических элементов.

В марте 1869 г. учёный представил свои результаты Российскому химическому обществу, а через два года опубликовал статью, в которой сформулировал этот закон так:

«Свойства элементов, а потому и свойства образуемых ими простых и сложных тел стоят в периодической зависимости от атомного веса».

Суть открытия, сделанного Менделеевым, заключается в следующем. По мере увеличения атомной массы элементов их свойства постепенно меняются.

Рис. 120. Д. И. Менделеев

Однако в определённый момент после изменения атомной массы ещё на одну единицу свойства следующего элемента меняются резко, скачком, и этот элемент оказывается похож на тот, который уже был в цепочке элементов несколькими позициями ранее. Эта закономерность отражена в Периодической системе химических элементов.

Рис. 121. Периодическая система химических элементов Д. И. Менделеева

Давайте внимательно рассмотрим периодическую систему (рис. 121). В её структуре различают горизонтальные ряды, которые образуют малые и большие периоды. Первый период содержит всего два элемента – водород и гелий. Второй и третий периоды тоже состоят из одного ряда, но содержат уже по восемь элементов. Начинаются они с щелочного металла (лития или натрия) и заканчиваются инертным газом (неоном или аргоном). Во всех периодах с увеличением относительных атомных масс (слева направо) наблюдается ослабление металлических и усиление неметаллических свойств элементов. Четвёртый и пятый периоды также начинаются щелочным металлом и заканчиваются инертным газом, но в каждом из них содержится по восемнадцать элементов. Эти периоды представлены двумя рядами в периодической системе и называются длинными периодами. Шестой период включает в себя 32 элемента, но в периодической системе тоже занимает два ряда с таким же числом ячеек, как и два предыдущих периода. Это возможно потому, что пятнадцать элементов из этого периода, обладающие почти одинаковыми химическими свойствами, помещены в одной ячейке под номером 57. Они называются лантаноидами по наименованию первого из них – лантана и перечислены в дополнительной строке. Аналогично обстоит дело с седьмым периодом, где в ячейке 89 вместе с актинием умещаются ещё четырнадцать элементов, называемых актиноидами.

Вертикальные столбцы периодической системы – группы – образованы элементами, обладающими схожими химическими свойствами. Каждая группа делится на две подгруппы, которые раньше называли главной и побочной подгруппами. В настоящее время главную подгруппу обозначают латинской буквой А, а побочную – буквой В. Для примера рассмотрим первую группами. Щелочные металлы литий, натрий, калий, цезий, рубидий и франций образуют IA группу. Это одновалентные металлы, легко вступающие в химические реакции. В III группу входят медь, серебро и золото. Они тоже являются металлами, но их химические свойства отличаются от тех, которыми обладают щелочные металлы.

Периодический закон получил всеобщее признание не сразу. Во– первых, во время его открытия ещё ничего не было известно о строении атомов и его связи со свойствами химических элементов. Поэтому казалось, что обнаруженная Менделеевым закономерность не имеет под собой надёжной физической основы. Во-вторых, как оказалось, атомные массы некоторых элементов до этого были определены неправильно, и Менделеев взял на себя смелость изменить их, опираясь только на обнаруженную им периодическую закономерность. Он справедливо полагал, что эти вопросы найдут своё объяснение при выявлении сложной структуры атома. Впоследствии правота его утверждений подтвердилась. В-третьих, в периодической системе оказались пустые ячейки, которым не соответствовал ни один из известных на то время элементов. Менделеев предсказал, что эти элементы существуют, и действительно, в 1875 г. был открыт галлий, в 1879 г. – скандий, а в 1886 г. – германий. С середины 1880-х гг. периодический закон был окончательно признан, но полное своё объяснение он получил только после того, как стало известно строение атома.

Проверьте свои знания

1. Какая закономерность была положена Д. И. Менделеевым в основу открытого им периодического закона?

2. Какие элементы расположены в начале периодов в Периодической системе Д. И. Менделеева, а какие – в их конце?

3. Где в Периодической системе Д. И. Менделеева располагаются элементы со схожими химическими свойствами?

Задания

На основании сведений, полученных вами при изучении предыдущей главы, объясните, что означают числа, помещённые в каждой ячейке периодической системы. Почему многие из них являются дробными?

 

§ 48 Строение атома и свойства химических элементов

После того как физикам удалось многое узнать о строении атома, стало возможным применить эти знания для объяснения химических свойств элементов и теоретического обоснования Периодического закона Менделеева. Нам известно, что порядковый номер элемента в периодической системе соответствует числу протонов в его ядре (рис. 122). Так как протоны обладают положительным электрическим зарядом, а атом всегда электрически нейтрален, то положительный заряд ядра должен в точности уравновешиваться суммарным зарядом отрицательно заряженных электронов. Следовательно, число электронов в атоме всегда равно числу протонов в его ядре.

Рис. 122. Состав атомных ядер химических элементов № 1—20 таблицы Д. И. Менделеева (красные шарики – протоны; голубые – нейтроны; Z – порядковый номер элемента; Ar – массовое число, равное сумме протонов и нейтронов)

Находящиеся в ядре нейтроны, не имеющие электрического заряда, влияют на массу атома элемента, но не определяют число движущихся вокруг ядра электронов.

Химические свойства атомов элементов определяются строением их электронной оболочки. Электроны в атоме, как вы знаете, находятся в определённых областях пространства, называемых орбиталями. Этот термин был введён вместо употреблявшегося ранее понятия «орбита» для того, чтобы не складывалось ощущения, что электрон вращается вокруг ядра по какой-то конкретной линии. В действительности электрон в атоме не имеет определённой траектории движения, более того, он проявляет свойства как частицы, так и волны. Квантовая механика рассматривает вероятность нахождения электрона в пространстве вокруг ядра. Наиболее вероятно нахождение электрона вблизи ядра. По мере удаления от ядра вероятность нахождения электрона в данной точке пространства постепенно снижается. Пространство вокруг ядра, в котором наиболее вероятно нахождение электрона, и называется орбиталью. Орбитали атома имеют разные размеры. Электроны, находящиеся на орбиталях близкого размера, образуют электронные слои. Электронные слои называют также энергетическими уровнями. Их нумеруют, начиная от ядра: 1, 2, 3, 4 и т. д. Энергетические уровни разделяются на подуровни. Подуровни принято обозначать латинскими буквами s, р, d и т. д. На s-подуровне находится только одна орбиталь, её, как и подуровень, называют s-орбиталью. На p-подуровне находятся три p-орбитали. Орбитали имеют разную форму: так, s-орбиталь имеет форму шара, р-орбиталь – форму гантели, или объёмной восьмёрки. Каждая орбиталь обладает своим особенным количеством энергии. Известно, что на одной и той же орбитали может находиться одновременно не более двух электронов.

По мере увеличения порядкового номера элемента в периодической системе растёт содержащееся в его ядре число протонов, а вместе с ним и число электронов, находящихся на различных энергетических уровнях. На первом уровне имеется только один s-подуровень, который обозначается как 1s. Он может содержать один или два электрона. У атома водорода на этом уровне находится его единственный электрон (рис. 123, А). В ходе химического взаимодействия атомы могут отдавать или принимать электроны, превращаясь в заряженные частицы – ионы. Атом водорода легко расстаётся со своим электроном, отдавая его другим атомам и превращаясь в положительно заряженный ион Н+. Атом гелия имеет на том же уровне два электрона, поэтому его первая и единственная орбиталь оказывается заполненной (см. рис. 123, А). Новые электроны он присоединить не может, а расставаться с теми, которые находятся на завершённой внешней оболочке, энергетически невыгодно. Поэтому гелий является инертным веществом, которое не способно вступать в химические реакции.

Чем больше протонов и электронов в атоме, тем сложнее становится структура его электронной оболочки. Если первый уровень имеет только один подуровень 1s, то второй – уже два (2s и 2р), и с возрастанием номера уровня число содержащихся в нём подуровней продолжает увеличиваться (рис. 123, Б).

Химические свойства атомов во многом определяются числом электронов, расположенных на внешних уровнях электронной оболочки.

Рис. 123. Строение атома: А – схемы строения электронных оболочек атомов водорода (Н) и гелия (Не); Б – формы s– и p-орбиталей (электронных облаков)

Рис. 124. Процесс обмена электронами при окислительно-восстановительной реакции

Если эти уровни содержат мало электронов, атом, вступая в химическую реакцию, стремится их отдать, если много – присоединить чужие электроны, чтобы заполнить внешнюю оболочку. Если же эта оболочка заполнена, атом становится инертным и в большинстве случаев вообще не участвует в химических реакциях. Элементы, находящиеся в начале каждого периода, содержат на внешней оболочке мало электронов и поэтому легко их отдают, превращаясь при этом в положительно заряженные ионы. Потеря электронов атомом называется окислением (рис. 124). В конце периодов, непосредственно перед инертными газами, находятся галогены (фтор, хлор, бром, иод), которым для заполнения внешней оболочки не хватает одного электрона. Поэтому они легко присоединяют электроны и становятся при этом отрицательно заряженными ионами. Этот процесс носит название восстановления. Итак, чем меньше электронов находится на внешней оболочке атома, тем активнее он их отдаёт; чем меньше электронов не хватает для заполнения внешней оболочки атома, тем активнее он их принимает.

Элементы, которые склонны к отдаче электронов, называют металлами, а те, которые способны их принимать, – неметаллами. Атомы многих элементов, например углерода, серы, примерно с равной вероятностью могут и отдавать, и принимать электроны. Чёткой границы между металлами и неметаллами не существует.

Наиболее распространённым и наглядным примером взаимодействия металлов и неметаллов является процесс, который происходит при контакте щелочного металла с галогеном. Металл легко отдаёт свой единственный внешний электрон, а галоген присоединяет его как единственный недостающий. В результате образуется положительно заряженный ион металла (катион ) и отрицательно заряженный ион галогена (анион) . Имея разноимённые заряды, эти ионы притягиваются друг к другу. В результате получаются соли, примером которой является хлорид натрия (поваренная соль). Хлорид натрия состоит из кристаллов, в состав которых входят катионы натрия Na+ и анионы хлора Cl- (рис. 125). При растворении хлорида натрия в воде его кристаллы распадаются на ионы. Процесс распада молекул или ионных кристаллов веществ на ионы при растворении в воде называют электролитической диссоциацией.

Рис. 125. Схема электролитической диссоциации хлорида натрия

Таким образом, в растворе поваренной соли нет молекул хлорида натрия, а присутствуют только ионы натрия и хлора, окружённые молекулами воды (см. рис. 125). Слово «диссоциация» здесь означает распад, разделение. Вещества, способные к электролитической диссоциации, называют электролитами. Их растворы проводят электрический ток. Это становится понятным, если учесть, что ток – это перенос заряженных частиц, которыми в данном случае являются катионы и анионы. Электролитической диссоциации при растворении в воде подвергается не только соли, но также кислоты и основания.

Проверьте свои знания

1. В каких случаях при протекании химических реакций атом чаще отдаёт, а в каких – присоединяет электроны?

2. Почему гелий и другие благородные газы почти не способны вступать в химические реакции?

3. Чем определяются реакции окисления и восстановления?

Задания

Опираясь на рисунок 125, опишите, какую роль играет вода в процессе электролитической диссоциации.

 

§ 49 Валентность. Химическая связь

Валентность.

Внешняя электронная оболочка атома, которая соответственно и определяет его химические свойства, может содержать не более восьми электронов. Исключение составляют только атомы водорода и гелия, на единственной орбитали которых может находиться не более двух электронов. С помощью внешних электронов, которые называют валентными, осуществляется химическая связь между атомами, и образуются химические соединения. Электронную оболочку, содержащую валентные электроны, называют валентной оболочкой. Слово валентность (от лат. valentia – сила) означает способность атома образовывать определённое число химических связей с другими атомами. Валентность атома определяется числом имеющихся у него валентных электронов.

У атомов элементов каждого нового периода Периодической системы Д. И. Менделеева возникает новая валентная оболочка, которой не было у атомов элементов предыдущего периода. Элементы IIIА группы – щелочные металлы – содержат на этой оболочке всего один электрон. Их атомы легко отдают этот единственный электрон, поэтому все щелочные металлы одновалентны и химически очень активны. По мере увеличения порядкового номера элемента в периоде происходит постепенное заполнение валентной оболочки. Так, элементы IIА группы содержат на внешнем уровне два электрона, IIIА группы – три электрона и т. д. Галогены находятся в VIIA группе, следовательно, их атомы содержат семь валентных электронов. Благородные газы, стоящие в конце периода в VIIIA группе (например, неон, аргон, криптон, ксенон), содержат по восемь валентных электронов. Их внешняя оболочка заполнена, поэтому они почти не обладают химической активностью. После заполнения валентной оболочки (в конце периода) у следующего элемента возникнет новая оболочка.

Химическая связь.

Процесс обмена электронами между атомами и является причиной возникновения химической связи. Один из видов химической связи – ионная связь. Это связь, возникающая между ионами в результате действия электростатических сил притяжения (рис. 126). Типичным примером вещества с ионной связью является хлорид натрия. Однако это не единственный вид химической связи. Рассмотрим молекулу, состоящую из одинаковых атомов, например молекулу водорода, имеющую формулу Н2. Каким образом два атома водорода соединяются между собой? Мы знаем, что на единственной 1 s-орбитали атома водорода могут находиться два электрона. Однако атом водорода имеет всего один электрон, и для заполнения оболочки ему нужен ещё один. В таком же положении находится и второй атом водорода.

Рис. 126. Образование ионной связи

Поэтому они как бы «договариваются» пользоваться имеющимися в их распоряжении двумя электронами сообща. Теперь в их распоряжении имеется общая орбиталь, заполненная, как ей и полагается, двумя электронами. Такая молекула обладает очень высокой устойчивостью.

Химическую связь, при которой атомы обобществляют свои валентные электроны, называют ковалентной (рис. 127, 128). В зависимости от количества общих электронных пар ковалентная связь может быть одинарной, двойной, а иногда и тройной. Многие химические вещества построены из молекул, состоящих из атомов двух элементов, одним из которых является атом кислорода. Такие вещества называются оксидами. К оксидам относятся такие хорошо известные вам вещества, как углекислый газ СО2, вода Н2О и многие другие. При образовании оксидов кислород, у которого для заполнения валентной оболочки не хватает двух электронов, охотно образует две общие электронные пары с атомами других элементов, образуя с ними двойную ковалентную связь. А вот тройные связи встречаются в химических соединениях гораздо реже и образуются преимущественно между атомами углерод – углерод, углерод – азот и азот – азот.

Многие элементы во всех соединениях проявляют одинаковую валентность. Так, водород и щелочные металлы всегда одновалентны, а кислород всегда двухвалентен. Существуют, однако, элементы с переменной валентностью. Одним из рекордсменов среди таких элементов является хлор, который находится в VIIА группе периодической системы. Хлор способен проявлять валентности от I до VII, и образует многочисленные и самые разнообразные соединения.

Рис. 127. Ковалентная связь возникает в результате образования общих электронных пар

Рис. 128. При взаимодействии двух атомов одного и того же элемента– неметалла образуется неполярная ковалентная связь. При взаимодействии атомов разных элементов-неметаллов образуется полярная связь. При этом электронная пара смещается к элементу с большей электроотрицательностью

Соединяясь, например, с кислородом, он способен образовывать различные оксиды: Cl2O, ClO2, Cl2O7. Известны и другие элементы, валентность которых в различных реакциях может быть различной. Так, сера может обладать валентностями II, IV и VI, железо может быть двух– и трёхвалентным, углерод – двух– и четырёхвалентным и т. д.

Связь, которую образуют свободные электроны в кристаллической решётке металлов, называют металлической. В узлах кристаллической решётки металлов расположены их положительно заряженные ионы. А поскольку, как вы знаете, электроны валентной оболочки металлов не очень прочно удерживаются ядром, они отрываются и беспорядочно, подобно молекулам газа, движутся между ними. Притягивая положительные ионы, эти электроны не дают кристаллу разрушится под действием взаимного отталкивания этих ионов. Вместе с тем электроны не могут покинуть кристалл, поскольку притягиваются положительно заряженными ионами, находящимися в узлах решётки. Из-за того что во всех металлах находится большое количество свободно движущихся электронов, они, как известно, служат хорошими проводниками электрического тока.

Рис. 129. Молекула воды представляет собой диполь

Существует ещё один вид химической связи, играющий важную роль в биологических процессах. Эту связь называют водородной . Причиной возникновения таких связей является полярность некоторых молекул. Поясним данное явление на примере молекулы воды (рис. 129). Как вам известно, в этой молекуле атом кислорода удерживает возле себя два атома водорода с помощью ковалентной связи. Но поскольку ядро атома кислорода содержит восемь положительно заряженных протонов, а каждый атом водорода – только один, то под действием электрического притяжения общие электронные пары смещены от атома водорода в сторону кислорода. Из-за этого та часть молекулы, где находится атом кислорода, приобретает небольшой отрицательный заряд, а участки, соответствующие атомам водорода, – положительный. Такая молекула, различающаяся электрическими зарядами на разных своих участках, называется полярной молекулой или диполем. Представим себе теперь, что две молекулы воды оказываются рядом. Тогда отрицательный участок одной молекулы будет притягиваться к положительному участку другой, и между ними возникнет водородная связь. Аналогичная связь может возникать не только в воде, но и во многих других, в том числе и органических, соединениях. Водородные связи являются довольно слабыми, но в том случае, когда их много, они могут достаточно прочно скреплять молекулы различных веществ, что имеет большое значение для многих биологических процессов.

Проверьте свои знания

1. Что такое валентность?

2. Какие электроны называются валентными?

3. Как называют химическую связь, при которой атомы «обобществляют» электроны?

4. Каким образом осуществляется связь в металлических кристаллах?

Задания

Используя рисунок 129, поясните явление полярности и образование водородных связей на примере молекулы воды.

 

§ 50 Химические реакции

Процессы, при которых происходит разрыв связей между атомами и (или) образование новых связей, называют химическими реакциями. В отличие от ядерных, во время химических реакций ядра атомов элементов, а значит, и сами элементы остаются неизменными, меняется только их принадлежность к различным молекулам.

Схемы и уравнения реакций.

Химические реакции обычно описывают с помощью уравнений. Химическим уравнением называют условную запись химической реакции посредством химических знаков и формул.

Рис. 130. Уравнение реакции и его изображение с помощью моделей

В левой части уравнения реакции записывают формулы веществ, которые вступают в реакцию (реагентов), а в правой – формулы конечных продуктов реакции (рис. 130).

Рассмотрим реакцию образования воды из кислорода и водорода. Химическая формула газообразного кислорода О2, а водорода – Н2. Составим схему реакции: Н2 + О2→ Н2О. Для того чтобы она превратилась в уравнение, надо расставить коэффициенты: 2Н2 + O2 = 2H2O.

Коэффициенты в уравнении реакции показывают, в каком количественном соотношении находятся реагирующие вещества и продукты. Из полученного нами уравнения следует, что число вступающих в данную реакцию молекул водорода в два раза больше числа молекул кислорода. Смесь водорода и кислорода в соотношении 2: 1 называют гремучим газом, так как достаточно небольшого воздействия, например в виде искры, для того чтобы произошёл взрыв и образовалась вода.

Теперь разберём более сложный случай. Одним из важнейших процессов, обеспечивающих существование жизни на Земле, является осуществляемый растениями фотосинтез. В результате фотосинтеза из воды и углекислого газа образуются глюкоза и кислород. Рассмотрим схему и составим уравнение этой реакции. Формула глюкозы С6Н12О6. Следовательно, схема процесса выглядит так:

Н2О + СО2 → С6Н12О6 + О2.

Расставив коэффициенты, получаем уравнение реакции:

6H2O + 6CO2 = C6H12O6 + 6O2.

По химическим уравнениям производят различные количественные расчёты в производственной и лабораторной практике. Например, попробуем определить, сколько граммов воды и углекислого газа потребуется для синтеза 1 г глюкозы. Для этого вспомним понятие моля. Моль – это такое количество вещества, масса которого, выраженная в граммах, численно равна его атомной или молекулярной массе. Молекулярная масса глюкозы равна сумме атомных масс входящих в её молекулу элементов, т. е. 6 12 + 12 • 1 + 6 • 16 = 180. Следовательно, масса одного моля глюкозы составляет 180 г. То же самое относится к воде, масса одного моля которой равна 18 г, и к углекислому газу, масса моля которого составляет 44 г. Значит, для получения 180 г глюкозы потребуется 108 г воды и 264 г углекислого газа. Итого 372 г. Но всем известно, что материя не исчезает. Куда же делись остальные 192 г? Очевидно, что это масса выделившегося кислорода. Проверим. В реакции образовалось 6 моль О2, каждый из которых имеет массу 32 г. Итого ровно 192 г. Как видите, закон сохранения массы и в этом случае оказался справедлив. Если вы хотите теперь узнать, сколько воды и углекислого газа потребуется для образования 1 г глюкозы и сколько при этом выделится кислорода, разделите все полученные числа на 180.

Типы химических реакций.

Существует огромное многообразие химических реакций. Простейшие из них можно условно разделить на четыре группы: реакции соединения, разложения, замещения и обмена.

В реакциях соединения из нескольких исходных веществ образуется одно сложное вещество. Примером такого вида реакций может служить процесс образования зелёного налёта малахита (CuOH)2CO3 на поверхности бронзовых изделий (рис. 131):

2Cu + O2 + H2O + CO2 = (CuOH)2CO3.

Реакции разложения приводят к распаду молекул одного исходного сложного вещества на несколько продуктов. Такие реакции чаще протекают при нагревании. Некоторые вещества разлагаются под действием света. Так, соединения серебра на свету чернеют вследствие выделения серебра. На этом процессе основана чёрно-белая фотография.

Реакции замещения – это реакции между простым и сложным веществами, в результате которых образуются два новых вещества (простое и сложное).

Реакции обмена – это реакции взаимодействия между двумя сложными веществами, при котором они обмениваются атомами или группами атомов.

Рис. 131. Примером реакции соединения является процесс образования зелёного налёта малахита на поверхности бронзовых изделий

Проверьте свои знания

1. Какую информацию можно получить на основе уравнения химической реакции?

2. Какие вещества образуются в результате фотосинтеза?

3. Почему в химии применяют физическую величину «количество вещества»? В каких единицах она измеряется?

Задания

1. Подберите эпиграф к данному параграфу.

2. При реакции газообразного водорода H2 с газообразным хлором Cl2 образуется хлороводород HCl. Найдите в периодической системе атомную массу хлора и определите, какое количество водорода и хлора надо использовать для того, чтобы получить 10 г хлороводорода.

 

§ 51 Скорость и энергия химических реакций

Скорость и энергия химических реакций

Скоростью химической реакции называется изменение концентрации одного из реагирующих веществ за единицу времени. Для того чтобы произошла химическая реакция, атомы или молекулы реагирующих веществ должны прийти в соприкосновение или, попросту говоря, столкнуться. Это необходимое условие для возникновения реакции, но оно не является достаточным. Взаимодействующие частицы должны обладать определённым сродством друг к другу. Это сродство зависит от строения и энергии атомов и молекул, и чем оно больше, тем выше вероятность того, что они образуют соединение. Очевидно, что чем больше частиц содержится в данном объёме реакционной среды, тем чаще они будут сталкиваться. Поэтому скорость реакции пропорциональна произведению концентраций реагирующих веществ. Это правило называют законом действующих масс . Он был сформулирован норвежскими химиками К. Гульдбергом и П. Вааге в 1867 г. Закон действующих масс выражают в виде формулы:

V = k [A] a • [B] b ,

где [A] и [B] – концентрации реагирующих веществ, а и b – их стехиометрические коэффициенты. Величина k называется константой скорости реакции и зависит от степени сродства реагирующих веществ и внешних факторов, влияющих на скорость химической реакции, например температуры.

Факторы, влияющие на скорость химической реакции.

При повышении температуры скорость движения молекул увеличивается и, следовательно, увеличивается не только вероятность, но и, что гораздо важнее, энергия их соударения. Согласно правилу Вант-Гоффа , при повышении температуры на каждые 10 °C скорость реакции возрастает в 2–4 раза. Отношение константы скорости реакции, протекающей при определённой температуре, к константе скорости при температуре в 10 раз меньшей называют температурным коэффициентом химической реакции.

Если один из компонентов реакции находится в твёрдом состоянии, а другой – в жидком или газообразном, то на скорость реакции влияет также величина поверхности, которой они соприкасаются между собой. Например, растворение металла в кислоте будет происходить тем быстрее, чем больше степень его измельчения. Если опустить в кислоту большой кусок металла, он может реагировать с ней очень долго, а если то же количество металла растереть в порошок, реакция пройдёт практически мгновенно (рис. 132).

Очень важным фактором протекания химической реакции является энергетическая составляющая. Энергию, необходимую для начала реакции, называют энергией активации. Чем меньше энергия активации, тем быстрее протекает реакция. Например, при образовании ионной связи между катионами и анионами энергия активации очень мала, поэтому такие реакции протекают почти мгновенно.

Катализаторы.

Многие химические реакции можно ускорить или замедлить введением в реакционную среду некоторых дополнительных веществ. Эти вещества не участвуют в реакции и не расходуются в ходе её протекания, но оказывают влияние на её скорость. Вещества, ускоряющие реакцию, называют катализаторами, а вещества, оказывающие противоположное действие, – ингибиторами. Процесс ускорения реакций под действием катализатора называют катализом . Катализаторы чаще всего действуют следующим образом. На их поверхности имеются особые участки – активные центры. К этим участкам присоединяются и накапливаются молекулы реагентов. Такое явление называют адсорбцией.

Рис. 132. Зависимость скорости реакции от площади соприкосновения реагирующих веществ

Рис. 133. Схематическое изображение экзотермической и эндотермической реакций

В результате в районе активных центров концентрация взаимодействующих молекул становится очень большой, и это ведёт к ускорению реакции. Кроме того, под действием катализатора у адсорбированных молекул ослабляются связи между атомами.

Экзо– и эндотермические реакции.

Как правило, сумма энергий исходных реагентов не бывает равной сумме энергий конечных продуктов реакции. Образующиеся в результате химической реакции вещества обладают либо меньшей, либо большей энергией по сравнению с исходными веществами. В первом случае реакция сопровождается выделением лишней энергии в виде кинетической энергии молекул, т. е. тепла. Такие реакции называют экзотермическими (от лат. exo – наружу и thermo – тепловой) (рис. 133). Так, экзотермической реакцией является любое горение (рис. 134).

Рис.134. Горение как пример экзотермической реакции

Если подобные реакции протекают очень быстро, то за короткое время выделяется большое количество тепла, что часто сопровождается взрывом. Примером такой реакции служит сгорание пороха.

Однако для начала даже экзотермических реакций необходима энергия активации. Иногда эта энергия чрезвычайно мала, и реакция (например, взрыв) может произойти в результате случайных причин. Но в некоторых случаях, для того чтобы запустить реакцию, т. е., как говорят, преодолеть энергетический барьер, требуется некоторая энергия, поступающая извне. Порох сам по себе не взорвётся. Для взрыва требуется энергия в виде искры, которая вызовет реакцию в небольшом количестве молекул, а освободившаяся в результате этой реакции энергия запустит аналогичный процесс в соседних участках. Далее реакция сгорания будет распространяться с огромной скоростью. Такой самоусиливающийся процесс называют цепной реакцией . Точно так же обстоит дело со смесью водорода и кислорода – гремучим газом. Стоит в гремучий газ попасть небольшой искре или поднести к нему что-то горящее, как начнётся цепная реакция соединения кислорода с водородом, которая будет сопровождаться выделением большого количества энергии, т. е. взрывом.

Химические реакции, при которых энергия конечных продуктов оказывается выше энергии исходных веществ, требуют постоянного притока этой энергии извне. Такие реакции называют эндотермическими , они сопровождаются поглощением тепла (см. рис. 133). Самым наглядным примером эндотермической реакции служит приготовление пищи. Для того чтобы сырые продукты превратились в варёные или жареные, в них должно произойти много различных реакций, большинство из которых требуют постоянного поступления теплоты из внешней среды. Поэтому эти продукты приходится в течение какого-то, иногда довольно длительного, времени держать в кастрюле с кипящей водой, на сковороде или в духовке.

Выделение и поглощение энергии в химических реакциях играют огромную роль в процессах, обеспечивающих существование и жизнедеятельность всех живых организмов, в том числе и человека, о чём будет подробно рассказано в дальнейших главах этого учебника.

Проверьте свои знания

1. Сформулируйте закон действующих масс.

2. Что такое температурный коэффициент скорости реакции?

3. Какую роль выполняют катализаторы и ингибиторы химических реакций?

4. Что такое экзотермические и эндотермические реакции?

Задания

1. Подберите эпиграф к данному параграфу.

2. Объясните, почему стирка одежды или мытьё посуды в горячей воде обычно гораздо эффективнее, чем в холодной.

 

§ 52 Строение и свойства неорганических веществ. Кислоты и основания

Вещества органические и неорганические.

Все существующие в природе химические вещества можно разделить на органические и неорганические. Все органические вещества являются сложными, т. е. состоят из атомов более чем одного элемента, и одним из этих элементов обязательно является углерод. Неорганические вещества могут быть как простыми, так и сложными. При этом они за некоторыми исключениями не содержат в своём составе углерода. Такими исключениями являются углекислый газ (CO2), угарный газ (CO), угольная кислота (H2CO3) и её производные, карбиды, представляющие собой соединения углерода с некоторыми другими элементами, и ещё небольшое количество веществ. Эти вещества, хотя и содержат в своём составе углерод, органическими не являются.

Простые неорганические вещества.

Простые неорганические вещества делят на металлы и неметаллы. Металлы обладают сходными физическими свойствами – металлическим блеском, способностью проводить теплоту и электрический ток. Типичные металлы пластичны, их можно подвергать ковке и прокатке, вытягивать из них тонкую проволоку. Металлами являются, например, литий (Li), натрий (Na), калий (K), кальций (Ca), магний (Mg), цинк (Zn), алюминий (Al), железо (Fe), марганец (Mn). Неметаллы, как правило, не проводят или плохо проводят электрический ток, в твёрдом состоянии являются хрупкими веществами. Многие простые вещества-неметаллы в обычных условиях газообразны. Неметаллами являются, например, хлор (Cl2), фтор (F2), кислород (O2), сера (S), фосфор (P). Чёткой границы между металлами и неметаллами нет. Так, некоторые неметаллы (графит, иод) обладают блеском и способностью проводить электрический ток, хотя их электропроводность всё равно в десятки тысяч раз ниже, чем у металлов. Среди неметаллов выделяют особое семейство – благородные газы: гелий (He), неон (Ne), аргон (Ar), криптон (Kr), ксенон (Xe), радон (Rn). Валентная электронная оболочка их атомов полностью заполнена, поэтому эти вещества почти не обладают химической активностью. Благодаря этой особенности благородные газы используют для создания инертной атмосферы. Например, гелий используют для наполнения летательных аппаратов и детских воздушных шариков, с помощью аргона и криптона создают защитную атмосферу в лампах накаливания и т. д.

Сложные неорганические вещества: кислоты и основания.

Среди сложных неорганических веществ большой интерес представляют кислоты и основания (щёлочи). В состав кислот входят атомы водорода, способные в ходе электролитической диссоциации отщепляться в виде ионов Н+ от остальной части молекулы. Наиболее известными кислотами являются серная (H2SO4), азотная (HNO3), фосфорная (H3PO4), угольная (H2CO3), соляная (HCl). При электролитической диссоциации кислот образуются положительно заряженные ионы водорода Н+ (катионы) и отрицательно заряженные анионы (HSO-4 или SO2-4, H2PO4, Cl- и т. д.), которые называют кислотными остатками. Таким образом, в растворах, содержащих кислоты, всегда присутствует большое количество ионов водорода. Чем больше концентрация ионов водорода в растворе, тем большей кислотностью он обладает.

При электролитической диссоциации оснований в качестве аниона образуется отрицательно заряженный ион ОН-, который называют гидроксилом или гидроксид-ионом. К основаниям относятся гидроксиды натрия (NaOH), калия (KOH), кальция (Ca(OH)2) и др. Растворимые в воде основания называют щелочами.

Одновременно слабой кислотой и слабым основанием является вода. В обычных условиях вода очень слабо диссоциирует с образованием ионов Н+ и ОН-. Содержание ионов в ней мало, поэтому вода плохо проводит электрический ток. В 1 л чистой воды при комнатной температуре содержится 10—7 моль, т. е. 6,02 1016 катионов водорода и такое же количество гидроксид-ионов. Среду, в которой концентрации ионов Н+ и ОН- равны, называют нейтральной. Если концентрация ионов водорода [H+] в растворе превышает концентрацию гидроксид– ионов [OH– ], то раствор имеет кислотную среду, а если больше гидроксид-ионов [OH– ] – щелочную.

Степень кислотности или щёлочности раствора характеризуют так называемым водородным показателем – рН. Он представляет собой взятый с обратным знаком показатель степени концентрации ионов водорода в растворе, выраженный в моль/л.

В нейтральной среде [H+] = [OH– ], pH = 7,0 (чистая вода).

В кислотной среде [H+] > [OH – ], pH < 7,0.

В щелочной среде [H+] < [OH– ], pH > 7,0.

В желудочном соке человека содержится соляная кислота, которая диссоциирована на ионы H+ и Cl-. Концентрация ионов водорода в желудочном соке равна 0,01 или 10-2 моль/л. Это значительно больше, чем их концентрация в воде. Поэтому желудочный сок является очень кислым, а его рН ≈ 2,0.

В щелочных растворах концентрация ионов водорода снижена и соответственно повышено содержание ионов ОН-. Например, кровь человека обладает слабой щелочной реакцией (рН ≈ 7,3–7,5). Большинство употребляемых в пищу продуктов и напитков имеют слабокислую реакцию. Так, рН яблочного сока около 3, кофе – примерно 5, чая – около 6, а молока – чуть меньше 7. Щелочной реакцией обладает раствор питьевой соды, растворы мыла и стиральных порошков.

Некоторые вещества способны менять свой цвет в зависимости от кислотности среды. В химии такие вещества используют в качестве индикаторов, с помощью которых можно различить кислые, щелочные и нейтральные растворы. Примерами индикаторов являются фенолфталеин и лакмус. Однако увидеть подобную реакцию можно при помощи обычных продуктов. Возьмите немного вишнёвого, клюквенного или другого красного сока и капните в него немного раствора пищевой соды. Сок немедленно изменит цвет на синий или фиолетовый. Это происходит потому, что при добавлении соды создаётся щелочная реакция, и содержащийся в соке пигмент теряет красную окраску, которой он обладал в кислой среде.

Не все кислоты и основания в равной степени способны к диссоциации. Те из них, значительная часть молекул которых распадаются при растворении в воде на ионы, называют сильными кислотами или сильными основаниями соответственно. Те, в которых диссоциирует лишь небольшая часть молекул, называют слабыми кислотами или слабыми основаниями. Так, соляная, серная и азотная кислоты – сильные, а угольная кислота – слабая.

Гидроксиды натрия и калия являются сильными основаниями, а нашатырный спирт (раствор аммиака в воде) – слабым основанием. Сильные кислоты и щёлочи обладают очень высокой химической активностью, способны растворять и разрушать многие материалы, а их соприкосновение с кожей или со слизистыми оболочками могут вызвать ожоги (рис. 136).

Рис.135. Обугливание бумаги. концентрированной серной кислотой

Проверьте свои знания

1. На какие ионы диссоциируют кислоты и основания при растворении в воде?

2. Как изменяется значение pH в зависимости от степени кислотности или щёлочности растворов? Чему равен pH чистой воды?

3. Какие из пищевых или бытовых веществ имеют кислую, а какие – щелочную реакцию?

4. Чем различаются сильные и слабые кислоты и основания?

Задания

1. Подберите эпиграф к данному параграфу.

2. Проверьте опытным путём, как изменяется окраска вишнёвого или черничного сока при добавлении к ним слабых растворов уксуса и питьевой соды. Сделайте вывод.

 

§ 53 Соли и их применение

Соли.

Кислоты обладают способностью взаимодействовать с металлами. В ходе этих реакций катион Н+ в молекуле кислоты замещается на катион металла. В результате образуются соединения, называемые солями. Если в молекуле кислоты находится не один, а два или три атома водорода, способных отщепляться в виде ионов Н+ в ходе электролитической диссоциации, то такая кислота называется двух– или трёхосновной. В её молекуле может замещаться металлом один, два или все три водородных атома. В качестве примера рассмотрим угольную кислоту. Она имеет формулу Н2СО3 и является двухосновной. Если только один из атомов водорода заменить на катион натрия, то получится соединение NaHCO3 – гидрокарбонат натрия, или пищевая сода. Если же на катион натрия замещаются оба атома водорода, то получается карбонат натрия (Na2CO3), или техническая сода, непригодная для употребления в пищу. Соли образуются также в результате реакции нейтрализации – взаимодействия кислот с основаниями. Так, при взаимодействии соляной кислоты НCI и гидроксида натрия NaОН образуется хлорид натрия (NaCl). В любом случае в состав солей входят катионы металла и анионы кислотных остатков. При обычных условиях соли являются кристаллическими веществами. Многие соли, такие как хлорид калия (KCl) или хлорид натрия (NaCl), хорошо растворяются в воде. Растворимость других солей, например хлорида серебра (AgCl), в воде очень мала – в 1 л воды может раствориться менее 1 мг вещества. В кристаллах солей катионы металлов и анионы кислотных остатков связаны между собой ионной связью. Поэтому при растворении в воде соли диссоциируют на ионы (см. § 48). В результате в растворах солей нет их молекул, а присутствуют только положительно и отрицательно заряженные ионы, окружённые молекулами воды (см. рис. 125). Поскольку ионы заряжены и могут свободно перемещаться в электрическом поле, то растворы солей хорошо проводят электрический ток. Растворы солей называют проводниками второго рода. В отличие от проводников первого рода (например, металлов), где переносчиками электричества являются электроны, в растворах солей происходит перенос ионов, т. е. частиц вещества.

Электролиз.

Если в раствор соли погрузить два разноимённо заряженных электрода, соединённых с источником тока, то отрицательно заряженные анионы будут двигаться к аноду, а положительно заряженные катионы металлов – к катоду. Затем на электродах начинают протекать окислительно-восстановительные процессы. Например, на катоде катионы металла могут принимать электроны, в результате чего будет происходить выделение металла в свободном виде. На аноде анионы, например, Cl- отдают электроны, и выделяется газообразный хлор Cl2. Такой процесс, протекающий при прохождении через растворы солей электрического тока, называется электролизом и широко используется в науке и технике.

Происходящие при электролизе процессы зависят от природы растворённой соли. Если проводится электролиз солей активных металлов, например натрия или калия, то на катоде выделяется газообразный водород. Для того чтобы получить эти металлы электролизом, нужно использовать не растворы, а расплавы их солей. На аноде при электролизе солей могут выделяться галогены или кислород. Впервые для химических исследований электролиз применил английский исследователь Гемфри Деви (1778–1829). С помощью электролиза он смог впервые получить в чистом виде такие элементы, как калий, натрий, кальций, стронций, барий и магний, а также предсказал существование алюминия.

Электролиз растворов солей используют в электрохимии для получения слоя металла на поверхности какого-либо предмета (серебрение, золочение, хромирование). Эту технологию называют гальванопластикой (рис. 136). С помощью гальванопластики можно получить точные металлические копии предметов. Если после электролиза снять с формы отложенный на ней слой металла, он будет повторять её очертания.

Применение солей.

Соли широко используют в различных областях промышленности и хозяйства (рис. 137). Многие из них незаменимы в качестве минеральных удобрений: соли азотной кислоты (селитры), соли фосфорной кислоты (фосфатные удобрения).

Рис. 136. Чайнокофейный сервиз мануфактуры Кристофля (1875) – одно из первых применений гальванопластического серебрения и золочения

В строительстве и медицине широко используют гипс – сульфат кальция, главным достоинством которого является способность быстро застывать после смешивания с водой, образуя прочное соединение. Другие соли серной кислоты, например железный и медный купоросы, находят своё применение в производстве красителей, фунгицидов, в медицине и строительстве. Главной составной частью известняка, мела и мрамора является соль угольной кислоты и кальция – карбонат кальция (CaCO3). Очищенный от посторонних примесей, карбонат кальция широко используется в строительстве, в бумажной и пищевой промышленности, при производстве красок, пластмасс, продукции бытовой химии.

Проверьте свои знания

1. Какие вещества относят к солям?

2. Что происходит в процессе электролиза?

3. Расскажите, где в быту используют карбонат кальция.

Задания

1. Подберите эпиграф к данному параграфу.

2. Приведите примеры солей, использующихся в промышленности и сельском хозяйстве.

3. Вспомните из курса географии, к какому типу пород относится известняк.

Рис. 137. Многообразие солей (А: синяя – медный купорос, красная – дихромат калия, жёлтая – жёлтая кровяная соль, тёмно-фиолетовая – перманганат калия, белая – хлорид натрия, зелёная – нитрат никеля (II)) и их применение (Б – Ж)

 

§ 54 Строение и свойства органических веществ

Органическими веществами (за тем небольшим исключением, о котором говорилось выше) являются химические соединения, содержащие в своей молекуле углерод. Кроме него, в состав органических соединений почти всегда входит водород, часто кислород, азот, сера и фосфор, а иногда и многие другие элементы, включая различные металлы. Органические вещества входят в состав всех живых организмов и постоянно в них образуются. Раньше считали, что образование этих соединений вообще невозможно без участия живых организмов, отсюда и произошло их название. Действительно, в неживой природе эти вещества образуются редко и в небольших количествах, поэтому их либо извлекают из организмов, либо получают путём сложного химического синтеза.

Для того чтобы правильно представлять себе формулы органических соединений, следует иметь в виду, что атом углерода в них всегда четырёхвалентен, водород – одновалентен, кислород имеет валентность два, азот – три, а фосфор – пять. Впервые теорию строения органических веществ предложил в 1861 г. российский химик Александр Михайлович Бутлеров (1828–1886). В то время ещё ничего не было известно о строении атома и электронных оболочках, но на основании экспериментальных данных немецким химиком Фридрихом Кекуле (1829–1896) была высказана мысль о том, что атом каждого элемента обладает некоторым числом «единиц сродства» с другими атомами. Ф. Кекуле удалось установить валентности серы, углерода и водорода.

Построение структурных формул. Углеводороды.

На основе этих идей А. М. Бутлеров разработал принципы построения графических формул химических веществ. Для этого требуется знать валентность каждого элемента, которую изображают на рисунке в виде соответствующего числа чёрточек. Пользуясь этим правилом, легко установить, возможно или невозможно существование вещества с определённой формулой. Так, существует соединение, называемое метаном и имеющее формулу СН4. Соединение с формулой СН5 невозможно, так как для пятого водорода у углерода уже не найдётся свободной валентности.

Рассмотрим сначала принципы строения наиболее просто устроенных органических соединений. Их называют углеводородами, так как в их состав входят только атомы углерода и водорода (рис. 138). Самым простым из них является упомянутый метан, в котором есть всего один атом углерода. Прибавим к нему ещё один такой же атом и посмотрим, как будет выглядеть молекула вещества, называемого этаном. У каждого атома углерода одна валентность занята его собратом – другим углеродным атомом. Теперь надо заполнить водородом оставшиеся валентности. У каждого атома осталась по три свободных валентных связи, к которым и присоединим по одному атому водорода. Получилось вещество, имеющее формулу С2Н6. Прибавим к нему ещё один атом углерода.

Рис. 138. Полные и сокращённые структурные формулы органических соединений

Теперь мы видим, что у среднего атома осталось только две свободных валентности. К ним мы присоединим по атому водорода. А к крайним углеродным атомам добавим, как и прежде, по три атома водорода. Получим пропан – соединение с формулой С3Н8. Такую цепочку можно продолжать, получая всё новые и новые углеводороды.

Но углеродные атомы необязательно должны располагаться в молекуле в линейном порядке. Допустим, что мы хотим добавить к пропану ещё один углеродный атом. Оказывается, это можно сделать двумя способами: присоединить его либо к крайнему, либо к среднему атому углерода пропана. В первом случае мы получим бутан с формулой С4Н10. Во втором случае общая, так называемая эмпирическая, формула будет такой же, но изображение на рисунке, называемое структурной формулой , будет выглядеть иначе. И название вещества будет несколько иное: не бутан, а изобутан.

Вещества, имеющие одну и ту же эмпирическую, но разные структурные формулы, называют изомерами , а способность вещества существовать в виде различных изомеров – изомерией . Мы, например, употребляем в пищу различные вещества, имеющие одну и ту же формулу С6 Н12О6, но структурные формулы они имеют различные и носят разные названия: глюкоза, фруктоза или галактоза.

Углеводороды, которые мы рассмотрели, называют предельными. В них все атомы углерода связаны между собой одинарной связью. Но так как атом углерода четырёхвалентен и имеет четыре валентных электрона, то теоретически он может образовывать двойные, тройные и даже четверные связи. Четверные связи между атомами углерода в природе не существуют, тройные встречаются редко, а вот двойные присутствуют во многих органических веществах, в том числе и в углеводородах. Соединения, в которых имеются двойные или тройные связи между атомами углерода, называют непредельными или ненасыщенными углеводородами. Возьмём снова молекулу углеводорода, содержащую два атома углерода, но соединим их с помощью двойной связи (см. рис. 138). Мы видим, что теперь у каждого атома углерода осталось по две свободных связи, к каждой из которых он может присоединить по одному атому водорода. Получаемое соединение имеет формулу С2Н4 и называется этиленом. Этилен, в отличие от этана, имеет меньше атомов водорода при том же числе углеродных атомов. Поэтому углеводороды, имеющие двойную связь, и называют ненасыщенными в том смысле, что они не насыщены водородом.

Если углеводород потеряет один атом водорода, у него образуется свободная валентная связь, с помощью которой он может присоединиться к какой-нибудь другой молекуле. Такие остатки углеводородов называют алкилами. Их названия происходят от имени образовавшего их углеводорода с заменой суффикса – ан на – ил (метил, этил, пропил, бутил и т. д.).

Зная принципы строения углеводородов, можно легко понять общие закономерности строения других органических веществ.

Углеводы.

Углеводы состоят из атомов углерода, водорода и кислорода. При этом число атомов кислорода в их молекулах практически всегда равно числу атомов углерода, а число атомов водорода – вдвое больше. Таким образом, на один атом углерода приходится как бы одна молекула воды. Отсюда и произошло их название. Углеводы в большом количестве встречаются во всех живых организмах и носят также название сахаров. Простые сахара содержат пять или шесть углеродных атомов и соответственно называются пентозами или гексозами (от греч. pente – пять и hex – шесть). Формулы таких углеводов записывают как С5Н10О5 и С6Н12О6 или С5(Н2О)5 и С6(Н2О)6. Существуют также сложные углеводы, о чём будет подробно рассказано в дальнейшем.

Спирты

Спирты содержат в составе своей молекулы гидроксильную группу (ОН– ). Наиболее известен этиловый спирт, который входит в состав алкогольных напитков. Он состоит из алкила этила и присоединённой к нему группы ОН-, т. е. имеет формулу СН3—СН2—ОН. Присоединяя гидроксильную группу к остаткам различных углеводородов можно получать различные спирты: метиловый, пропиловый и др. Все они гораздо более токсичны, чем этиловый спирт, хотя и он тоже не безвреден. Спирты можно рассматривать как производные воды, в которых один из атомов водорода замещён на какой-либо алкил.

Если в молекуле спирта содержится одна гидроксильная группа, его называют одноатомным. Однако в состав некоторых спиртов может входить две, три и более ОН--групп. Такие спирты называют многоатомными. Наибольшее значение для жизнедеятельности организмов имеет трёхатомный спирт глицерин, входящий в состав жиров.

Органические кислоты

В состав молекул органических кислот входит карбоксильная группа (– СООН– ). Кислотами их называют потому, что в процессе электролитической диссоциации от их молекул отщепляется ион водорода.

Как правило, органические кислоты являются слабыми кислотами, т. е. плохо диссоциируют в воде. В общем виде формула органической кислоты выглядит как R – COOH, где R – радикал (некая органическая группа со свободной валентной связью). Таким радикалом может быть метил (уксусная кислота), более длинные углеводородные алкилы или сложные органические соединения. В одной из кислот, носящей название муравьиной, вместо органического радикала к карбоксильной группе присоединён атом водорода. Таким образом, её формула – НСООН (рис. 139).

Рис. 139. Муравьиная кислота

Среди органических кислот особую роль играют аминокислоты, из которых строятся белки – основа существования всех живых организмов. Аминокислоты имеют в составе своей молекулы помимо карбоксильной ещё и аминогруппу (—NH2). Чуть позже мы рассмотрим, как образуются белковые молекулы.

Проверьте свои знания

1. Как называются соединения, в состав которых входит только углерод и водород?

2. Что такое алкилы?

3. Какая группа входит в состав органических кислот?

4. Какие соединения называют изомерами?

Задания

1. Подберите эпиграф к данному параграфу.

2. Эмпирическая формула соединения – C2H4O. Изобразите структурные формулы возможных изомеров этого соединения.

3. Исходя из валентности атомов тех или иных элементов, выясните, могут ли в природе существовать вещества с сокращённой структурной формулой CH5; C2H7; C3H6; C4H6; C4H11. Если нет, свой ответ обоснуйте. Если да, изобразите полные структурные формулы этих веществ.

 

§ 55 Циклические органические соединения

Среди органических соединений многие являются циклическими. Впервые об их существовании узнали, когда в 1865 г. Ф. Кекуле определил строение молекулы бензола (рис. 140, А, Б).

В то время было известно, что бензол является углеводородом с эмпирической формулой С6И6. Попробуйте построить структурную формулу этого вещества, выстраивая в ряд атомы водорода или разветвляя образованную ими цепочку. Вы убедитесь, что это возможно только в том случае, если предположить, что молекула содержит в некоторых участках тройные связи между атомами углерода. Но химические эксперименты такую возможность отвергали. Кекуле долго раздумывал над этой проблемой и пришёл к выводу, что молекула бензола имеет циклическое строение с чередованием двойных и одинарных связей.

По поводу этого открытия ходит много легенд. Говорят, что учёный представил себе змею с нанизанными на неё атомами углерода, а потом увидел во сне, как эта змея схватила себя за хвост. Другие рассказывают, что идея о циклическом строении бензола пришла Кекуле в зоопарке, где он увидел сцепившихся обезьян.

Впоследствии выяснилось, что одинарные и двойные связи в молекуле бензола нельзя считать строго чередующимися, так как невозможно установить, в каком именно месте находится одинарная, а в каком – двойная связь. Поэтому сейчас молекулу бензола обычно изображают в виде шестиугольника с кольцом внутри.

Рис. 140. Циклические органические соединения – бензол и анилин:

А, Б – структурные формулы бензола; В – масштабная модель молекулы бензола; Г – структурная формула молекулы анилина

Рис. 141. Применение бензола: 1 – добавка к бензину; 2 – производство растворителей; 3–7 – производство органических соединений (ацетона (3), анилина (4), пестицидов (5), лекарственных средств (6), фенолформальдегидных пластмасс (7))

Широкое применение бензола представлено на рисунке 141.

Утратив один атом водорода, бензол становится обладателем свободной валентной связи и превращается в радикал фенил. Вводя в его молекулу боковые группы различного строения, можно создать множество соединений, большинство из которых находит широкое практическое применение. Приведём в качестве примеров несколько таких производных. Фенол (устаревшее название – карболовая кислота) представляет собой вещество, образованное заменой одного атома водорода в молекуле бензола на гидроксильную группу. Это соединение служит сырьём для производства эпоксидных и формальдегидных смол, искусственных волокон – нейлона и капрона, антисептиков и аспирина. Фенол обладает слабыми бактерицидными свойствами, поэтому до открытия более эффективных препаратов его использовали в медицинских учреждениях в качестве антисептического средства. Присутствием фенола в дыме объясняется консервирующий эффект копчения продуктов. В то же время фенол опасен для человека из-за своей высокой токсичности. Попадая в организм, иногда даже через неповреждённую кожу, фенол быстро всасывается и действует на клетки головного мозга. Это может привести к потере сознания и даже остановке дыхания.

Анилин можно получить, заменив один из атомов водорода бензола аминогруппой (рис. 140, Г). Сам по себе анилин бесцветен, однако вводя в него различные химические группы, можно получить устойчивые красители самых разнообразных цветов. Помимо этого, его используют в химической промышленности для получения различных полимеров.

Заменив атом водорода на группу СООН-, можно получить бензойную кислоту, обладающую выраженными антисептическими свойствами. Её применяют в медицине для лечения кожных и грибковых заболеваний, а также используют для консервирования продуктов. Производные бензойной кислоты используют в парфюмерной промышленности и при изготовлении красителей. Большое значение принадлежит производному этой кислоты – парааминобензойной кислоте. Она является витамином, причем, что особенно важно, не только у человека, но и у большинства болезнетворных бактерий. Синтезировав вещества, блокирующие действие этой кислоты, такие как стрептоцид, сульфадимезин, сульфадиметоксин и другие, фармакологи получили средства борьбы с многими опасными инфекционными заболеваниями.

Существуют соединения, в молекулах которых бензольные кольца расположены так, что имеют общую «стенку». Такие соединения называют конденсированными . Соединение, состоящее из двух конденсированных бензольных колец, – нафталин (рис. 142). Нафталин обладает резким запахом, и в прошлом его использовали для защиты одежды от моли.

Три кольца бензола, выстроенные в ряд, образуют антрацен. Его производное ализарин используют для изготовления красителей. Если же три кольца не лежат на одной прямой, а среднее приподнято над крайними, получится фенантрен, производные которого входят в состав многих гормонов.

Если циклическая молекула химического соединения состоит только из атомов углерода, то такое соединение называют гомоциклическим (от греч. homo – одинаковый). Если же в составе цикла находятся атомы других элементов, то такие вещества называют гетероциклическими (от греч. hetero – разный), а неуглеродные атомы цикла называют гетероатомами. В роли гетероатомов чаще всего выступают кислород, азот и сера. Гетероциклические кольца, так же как и гомоциклические, могут быть шести– или пятичленными, одиночными или конденсированными.

Рис. 142. Масштабная модель молекулы нафталина

Гетероциклические соединения – очень важный класс органических веществ, так как они входят в состав нуклеиновых кислот, алкалоидов (например, никотина, морфина, кофеина), многих лекарственных и других веществ.

Проверьте свои знания

1. Назовите известные вам производные бензола.

2. Какие лекарственные препараты получают из бензойной кислоты?

3. Что такое гомоциклические и гетероциклические соединения?

Задания

1. Подберите эпиграф к данному параграфу.

2. Используя дополнительную литературу и ресурсы Интернета, подготовьте презентацию о применении бензола.

 

§ 56 Высокомолекулярные соединения

Свойства различных органических, как, впрочем, и неорганических веществ в значительной мере зависят от размера их молекул. Вещества с крупными молекулами, состоящими из повторяющихся структурных единиц – мономеров, называют высокомолекулярными веществами, или полимерами. Огромное число природных соединений являются полимерами. К ним относятся белки, нуклеиновые кислоты, крахмал, целлюлоза, натуральный каучук и многие другие. Рассмотрим общие свойства, характерные для большинства полимеров.

Все эти соединения обладают очень большой молекулярной массой, поэтому их называют ещё и макромолекулами. Элементарные звенья (мономеры) – это остатки низкомолекулярных веществ. Полимер может состоять из одного типа мономеров, образуя последовательность типа А – А—А – А—А—… Такие молекулы называют гомополимерами.

Если полимер состоит из нескольких типов мономеров, повторяющихся в регулярном или случайном (часто кажущемся случайным) порядке, его называют гетерополимером: А – В—С – А—В – С– А – В—С—… или А – В—В – С—А – С—А – В—С – С—С – А—…

Некоторые полимеры могут быть разветвлёнными и образовывать сложные трёхмерные структуры (рис. 143).

История исследования полимеров.

Полимеры были известны уже давно (рис. 144). Однако даже в середине XIX в. химики не придавали им значения и даже считали помехой в исследованиях, пытаясь препятствовать нежелательной полимеризации исследуемых ими соединений.

Рис. 143.  Структура полимеров: А – линейная; Б – разветвлённая; В – пространственная

Химия полимеров возникла после создания А. М. Бутлеровым теории химического строения, когда была исследована связь между строением и устойчивостью образующихся в процессе полимеризации молекул. Эта отрасль науки стала особенно интенсивно развиваться в связи с исследованием возможности создания синтетического каучука. Каучук был впервые обнаружен Колумбом у индейцев Гаити, которые играли в мяч, сделанный из «сока дерева». Обитателям Юго-Восточной Азии он был известен ещё раньше, чем европейцам, они добывали этот сок и обмазывали им свои корзины и кувшины, чтобы сделать их водонепроницаемыми. Каучук можно добывать из многих растений, но больше всего его содержится в тропических видах, обитающих только вблизи экватора. Поэтому в Европе позапрошлого века он был очень дорог, а производимой на его основе резины, которую вначале использовали только для изготовления подвязок и подтяжек, требовалось всё больше. Попытки создать синтетический каучук и привели к открытию механизма полимеризации.

Получение и использование синтетических полимеров

Полимеры получают путём полимеризации или поликонденсации .

Рис. 144. В Древнем Египте природные полимеры (смолу дерева Liuamber orientalis) использовали для бальзамирования умерших

Различие между этими реакциями состоит в том, что при полимеризации превращение молекул в полимер происходит без выделения каких-либо других химических соединений, а поликонденсация сопровождается выделением какого-либо вещества, например воды. Реакция поликонденсации носит ступенчатый характер: сначала реагируют друг с другом две молекулы исходного вещества, затем образовавшееся соединение взаимодействует с третьей молекулой исходного вещества, с четвёртой и т. д.

Попытки промышленного создания материалов на основе полимеров начали предприниматься с начала прошлого века. Причём в этой отрасли сразу выделились два направления: создание необходимых материалов на основе естественных полимеров и получение синтетических полимеров из молекул мономеров. Первым из природных полимеров, нашедшим применение в промышленности, была целлюлоза (клетчатка). Это самое распространённое в природе органическое вещество, которое является основным структурным компонентом клеточной оболочки всех растений. Мономер целлюлозы – глюкоза, молекулы которой объединяются в длинную неразветвлённую полимерную цепь. Первым промышленным веществом, изготовленным на основе целлюлозы, был целлулоид. Начиная с середины XIX в. из него во всём мире изготавливались фото– и киноплёнки, различные галантерейные товары, игрушки, мячи для настольного тенниса и многое другое. Впоследствии на основе целлулоида стали производить прозрачную упаковочную плёнку – целлофан. В то же время началось массовое производство вискозы – искусственного волокна, изготовленного из целлюлозы. Вискоза получила огромное признание из-за широкого применения и дешевизны (она изготавливается из отходов текстильной и бумажной промышленности и даже из древесных опилок). Перед тем как из раствора вискозы вытянуть нити, в него можно добавить различные химические реагенты и красители, в результате можно получить ткань, которая будет похожа на хлопок, шёлк, шерсть и даже атлас или бархат. В Советском Союзе на основе вискозы изготавливали прочный и плотный материал – кирзу, из которой шили сапоги для солдат, охотников и колхозников.

Параллельно шла разработка производства пластических масс и волокон из синтетических полимеров. В 1906 г. была запатентована бакелитовая (фенолформальдегидная) смола, которая при нагревании превращается в трёхмерный полимер. В течение многих лет из неё изготавливали корпуса для разнообразной бытовой техники. В 30-х гг. XX в. началось массовое использование синтетического каучука. Одновременно с ним появились новые материалы: полиметилметакрилат, известный под названием плексиглас или «органическое стекло», а также полистирол и поливинилхлорид (рис. 145), которые служат прекрасными электроизолирующими материалами.

В послевоенные годы изделия из синтетических волокон стали пользоваться огромной популярностью. Появились очень модные в то время женские чулки из капрона.

Рис. 145. Применение поливинилхлорида: 1 – искусственная кожа; 2 – изолента; 3 – изоляция проводов; 4 – трубы; 5 – линолеум; 6 – клеёнка

Ему на смену пришли нейлон и отечественное изобретение – лавсан, название которого означает Лаборатория Высокомолекулярных Соединений Академии Наук. Редко кто в то время не мечтал о рубашке, платье или костюме, сшитых из этих материалов.

В середине 50-х гг. XX в. были открыты катализаторы, значительно ускоряющие полимеризацию многих соединений. В результате за короткое время появились такие незаменимые в наше время вещества, как полиэтилен и полиуретаны. Из полиэтилена изготавливают упаковочную плёнку, всевозможные виды тары, трубы для водопровода, канализации и газоснабжения, а также бронежилеты и корпуса для лодок и вездеходов (рис. 146). Полиуретан применяется почти во всех отраслях промышленности для изготовления всевозможных уплотнителей, защитных покрытий, герметиков, деталей машин, клеев и многого другого. Во время образования полиуретана выделяется газ, поэтому из него можно изготавливать пенополиуретан, или пенопласт.

Таким образом, полимеры за последние полвека коренным образом изменили жизнь человечества. Однако свою главную роль они сыграли задолго до появления человека и продолжают её играть, обеспечивая существование всех людей и вообще всей жизни на нашей планете.

Рис. 146. Применение полиэтилена: 1 – медицинское оборудование; 2 – предметы домашнего обихода; 3 – плёнка для парников; 4 – трубы и шланги; 5 – клейкая лента; 6 – упаковочная плёнка; 7 – пакеты; 8 – детали

Проверьте свои знания

1. Какие соединения называют полимерами? Почему их часто также называют макромолекулами?

2. Что такое гетерополимеры? Сравните гомо– и гетерополимеры.

3. Чем различаются реакции полимеризации и поликонденсации?

4. Какой природный полимер является самым распространённым?

5. Назовите полимеры, чаще всего используемые в промышленности.

Задания

1. Подберите эпиграф к данному параграфу.

2. Используя дополнительную литературу и ресурсы Интернета, подготовьте сообщение или презентацию об использовании полимеров в современном обществе. Вместе с одноклассниками организуйте и проведите дискуссию на тему «Возможно ли развитие современного мира без искусственных полимеров?».

 

§ 57 Соединения, необходимые для существования жизни: нуклеиновые кислоты, полисахариды

Без полимеров невозможно представить себе существование жизни в любых её проявлениях. Прежде чем на Земле появилась жизнь, на ней образовались биополимеры, т. е. полимеры, входящие в состав клеток и обеспечивающие их существование. Биополимерами являются нуклеиновые кислоты, белки и полисахариды. Однако не следует забывать, что жизнь на Земле зародилась в водной среде, богатой минеральными солями. Именно уникальные свойства воды позволили нашей планете стать такой, какая она есть сейчас.

Нуклеиновые кислоты

Существуют два типа нуклеиновых кислот: дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК) кислота. В дальнейшем мы подробно расскажем о функциях, которые они выполняют в клетке, а пока познакомимся с их химическим строением.

Мономерами нуклеиновых кислот являются нуклеотиды. Нуклеотид состоит из трёх частей: азотистого основания, пятиуглеродного углевода (пентозы) и остатка фосфорной кислоты (рис. 147).

Рис. 147. Общая формула нуклеотида(вверху) и четыре типа нуклеотидов ДНК

Нуклеотид ДНК в качестве азотистого основания может содержать одно из четырёх соединений: аденин, гуанин, тимин или цитозин. Все эти основания являются гетероциклическими соединениями, содержащими в своей молекуле атомы азота. При этом аденин и гуанин (пуриновые основания) состоят из двух конденсированных колец, а тимин и цитозин (пиримидиновые основания) – из одного кольца. К азотистому основанию прикрепляется пентоза – дезоксирибоза, а к ней, в свою очередь, остаток фосфорной кислоты (Н2РО-4). Таким образом, существует четыре вида нуклеотидов, различающихся входящими в их состав азотистыми основаниями. Их обозначают буквами А, Г, Т или Ц. Соединяясь через остатки фосфорной кислоты, нуклеотиды образуют одну из цепочек ДНК – полимер, в котором нуклеотиды являются мономерами. В одной цепочке молекулы ДНК может содержаться до нескольких сотен миллионов нуклеотидов. Длина самой большой молекулы ДНК человека равна 16 см, в то время как её толщина составляет всего несколько десятых долей нанометра.

ДНК всегда (за исключением некоторых вирусов) состоит из двух параллельных цепочек. Порядок, в котором расположены нуклеотиды в каждой из этих цепочек, находится в строгом соответствии с последовательностью нуклеотидов в другой. Это соответствие называют комплементарностью (от лат. compementum – дополнение). Оно проявляется в том, что каждому азотистому основанию в одной цепочке ДНК соответствует строго определённое основание, расположенное напротив в другой цепочке, а именно аденину соответствует тимин, а гуанину – цитозин, и наоборот (рис. 148).

Рис. 148. Образование водородных связей между комплементарными основаниями двух цепей ДНК

Рис. 149. Структура РНК (Р – рибоза, Ф – фосфатная группа, А, У, Г, Ц – азотистые основания)

Таким образом, если одна из цепочек имеет строение ГГЦТААТГАТЦГ, то вторая, комплементарная ей цепочка будет выглядеть так: ЦЦГАТТАЦТАГЦ. Цепочки ДНК соединены друг с другом водородными связями и закручены так, что образуют так называемую двойную спираль. Благодаря такому строению молекула ДНК способна к самовоспроизведению, или редупликации. Во время этого процесса цепочки разделяются, и каждая достраивает возле себя комплементарную ей цепочку. В результате получаются две абсолютно одинаковые молекулы ДНК. Эта способность ДНК лежит в основе размножения живых организмов.

Рибонуклеиновые кислоты, в отличие от ДНК, – одноцепочечные молекулы (рис. 149). Кроме того, в нуклеотидах РНК вместо тимина присутствует близкое ему по строению основание урацил, а вместо дезоксирибозы – углевод рибоза.

Полисахариды.

Сложные углеводы – полисахариды – выполняют в организме множество важных функций. Их мономерами служат моносахариды – простые сахара с формулой С6Н12О6. Существует три важнейших изомера этого вещества: глюкоза, фруктоза и галактоза (рис. 150).

Рис. 150. Моносахариды (А) и дисахариды (Б)

Моносахариды могут объединяться попарно, образуя дисахариды (см. рис. 150). Три из таких дисахаридов входят в состав пищевых продуктов (табл. 6).

Моносахариды (обычно глюкоза) могут объединяться и в гораздо более длинные цепи, содержащие сотни и тысячи моносахаридных остатков и называемые полисахаридами (рис. 151). Одним из таких полисахаридов является крахмал, который служит главным запасающим питательным веществом растений. Он представляет собой огромную ветвящуюся молекулу полисахарида, состоящую из тысяч остатков глюкозы. Животные тоже запасают питательные вещества, но в виде полисахарида, называемого гликогеном . Его молекулы по строению похожи на молекулы крахмала, но более разветвлённые. Самый распространённый на Земле полисахарид – целлюлоза, или клетчатка – длинная неветвящаяся цепь, состоящая тоже из остатков глюкозы. Целлюлоза входит в состав оболочки растительных клеток. К полисахаридам относят также хитин – главный компонент наружного скелета насекомых и ракообразных, муреин, входящий в состав оболочки клеток бактерий, и другие необходимые для живых организмов вещества.

Таблица 6

Дисахариды

Рис. 151. Строение полисахаридов

Проверьте свои знания

1. Изобразите схематично строение нуклеотида ДНК.

2. Какими связями соединены между собой две цепочки ДНК?

3. Назовите моносахариды, из которых состоит большинство биологических полисахаридов.

4. Какой полисахарид служит запасающим веществом в растительном организме, а какой – в животном организме?

5. Сравните строение молекул ДНК и РНК.

6. Достаточно ли знать, какой моносахарид входит в состав нуклеотидов, чтобы понять, о какой нуклеиновой кислоте идёт речь?

Задания

1. Используя знания, полученные при изучении биологии растений, объясните, почему в растительных организмах углеводов значительно больше, чем в животных.

2. Участок одной из цепочек ДНК имеет вид ГГЦАТТЦГАА. Как будет выглядеть комплементарная ей цепочка ДНК?

 

§ 58 Соединения, необходимые для существования жизни: белки, липиды

Белки.

Одними из наиболее важных биополимеров, без которых невозможно представить себе существование жизни, являются белки. Мономеры белков – это аминокислоты. Аминокислота обязательно имеет в своём составе карбоксильную группу (—СООН) и аминогруппу (—NH2) (рис. 152). R – это радикал, который может быть просто атомом водорода, а может представлять собой сложное органическое соединение. В состав белков живого организма входит двадцать аминокислот, отличающихся по строению радикала.

В молекуле белка аминокислоты соединены пептидной связью, которая образуется между карбоксильной группой одной аминокислоты и аминогруппой другой (см. рис. 152). При образовании такой связи от карбоксильной группы отщепляется гидроксил, от аминогруппы – атом водорода, а освободившиеся валентные связи углерода и азота соединяют остатки двух аминокислот. Гидроксильная группа и водород взаимодействуют друг с другом, образуя молекулу воды. Таким образом, синтез белка – это реакция поликонденсации. Вещество, состоящее из последовательности аминокислот, соединённых пептидными связями, называют пептидом. Молекула из двух аминокислотных остатков – это дипептид, из трёх – трипептид и т. д. Если аминокислотных остатков в пептиде много, его называют полипептидом . Число аминокислотных остатков в молекуле белка может варьировать от нескольких сотен до нескольких тысяч. Какой бы длинной ни была полипептидная цепь, она никогда не разветвляется и всегда начинается с аминогруппы (N-конец цепи), а заканчивается карбоксильной группой (C-конец цепи).

Рис. 152. Общая структурная формула аминокислот, входящих в состав белков (А), и образование пептидной связи (Б)

Линейная последовательность аминокислот в белковой цепи – это первичная структура белка (рис. 153). Она уникальна для любого типа белка и определяет форму его молекулы, свойства и функции. Цепочка из аминокислотных остатков либо складывается зигзагом, либо сворачивается в спираль, формируя вторичную структуру. Эта структура возникает в результате образования связей между группами = С=О и H – N = разных аминокислотных остатков полипептидной цепи.

Складчатая или спиральная молекула сворачивается дальше, образуя третичную структуру. Прочность третичной структуры обеспечивается ионными, водородными, дисульфидными и другими связями. Свёрнутую спираль полипептида обычно называют глобулой (от лат. globulus – шарик). В форме третичной структуры белок уже может выполнять свои функции.

Некоторые белки имеют ещё и четвертичную структуру, которая образуется при соединении нескольких глобул. Например, гемоглобин человека представляет собой комплекс из четырёх таких субъединиц.

Рис. 153. Первичная (А), вторичная (Б), третичная (В) и четвертичная (Г) структуры белка

Рис. 154. Функции белков

Огромное разнообразие белковых молекул подразумевает столь же широкое разнообразие их функций (рис. 154). Около 10 000 белков– ферментов служат катализаторами химических реакций. Вторая по величине группа белков выполняет структурную и двигательную функции. Белки участвуют в образовании всех мембран и органоидов клетки. Белок коллаген входит в состав межклеточного вещества соединительной и костной ткани, а основным компонентом волос, рогов и перьев, ногтей и копыт является белок кератин. Сократительную функцию мышц обеспечивают белки актин и миозин. Транспортные белки связывают и переносят различные вещества и внутри клетки, и по всему организму. Белки-гормоны обеспечивают регуляторную функцию.

При попадании в организм человека чужеродных белков, вирусов или бактерий на защиту встают иммуноглобулины – защитные белки. Фибриноген и протромбин обеспечивают свёртываемость крови, предохраняя организм от кровопотери. Белками являются сильные микробные токсины, например ботулиновый, дифтерийный, холерный.

При нехватке пищи в организме животных начинается активный распад белков до конечных продуктов, и тем самым реализуется энергетическая функция этих веществ.

Утрату белковой молекулой своей структурной организации: четвертичной, третичной, вторичной, а при более жёстких условиях – и первичной структуры называют денатурацией (рис. 155). В результате денатурации белок теряет способность выполнять свою функцию. Причинами денатурации могут быть, например, нагревание, ультрафиолетовое излучение.

Денатурация может быть обратимой и необратимой. Если при воздействии денатурирующих факторов разрушения первичной структуры молекулы не произошло, при наступлении благоприятных условий денатурированный белок может вновь восстановить свою трёхмерную форму.

Рис. 155. Денатурация белка

Этот процесс называют ренатурацией , и он убедительно доказывает, что третичная структура белка зависит от последовательности аминокислотных остатков, т. е. от его первичной структуры.

Липиды.

Среди низкомолекулярных органических соединений, входящих в состав живых организмов, важную роль играют липиды. К этой группе относят жиры, воски и различные жироподобные вещества. Это гидрофобные соединения, нерастворимые в воде. Жиры по химическому строению представляют собой соединение трёхатомного спирта – глицерина с остатками жирных кислот (рис. 156). Жирные кислоты могут быть ненасыщенными или насыщенными, в зависимости от того, имеют они в структуре своей молекулы двойную связь или нет. Соответственно, образованные ими жиры тоже делятся на ненасыщенные и насыщенные. Ненасыщенные жиры при комнатной температуре находятся в жидком состоянии. Из жиров, употребляемых человеком в пищу, к ним относятся растительные масла (подсолнечное, кукурузное, оливковое и др.). Насыщенные жиры при такой температуре находятся в твёрдом состоянии, в чём легко убедиться на примере сливочного масла и сала. Если через ненасыщенное растительное масло пропустить при определённых условиях водород, он присоединится по месту двойной связи в остатке жирной кислоты, и жир станет насыщенным. Подобным образом из растительного масла получают маргарин.

Чрезмерное употребление насыщенных жиров животного происхождения может привести к опасным последствиям. Дело в том, что они содержат холестерин – вещество, необходимое для жизни, но при избытке способное вызывать закупорку кровеносных сосудов. Это нередко приводит к инсультам и инфарктам. Поэтому животные жиры надо употреблять в ограниченном количестве, заменяя их по возможности растительными маслами.

Рис. 156. Модель (А) и схема строения (Б) молекулы нейтрального жира

В организме жиры являются источником энергии и метаболической воды, участвуют в терморегуляции и выполняют защитную функцию. Не менее важное значение имеют жироподобные вещества. Представители этой группы – фосфолипиды – формируют основу всех клеточных мембран.

Проверьте свои знания

1. Приведите примеры известных вам белков. Какие функции они выполняют?

2. Как образуются вторичная и третичная структуры белка?

3. Вспомните из курса «Человек и его здоровье», какие аминокислоты называют заменимыми, а какие – незаменимыми? Что такое полноценные и неполноценные белки? В какой пище содержатся такие белки?

4. К насыщенным или ненасыщенным жирам относится вещество, изображённое на рисунке 156? Объясните свою точку зрения.

5. A, D, E и K, обладающие высокой биологической активностью. Вспомните из курса «Человек и его здоровье» функции этих витаминов и симптомы их недостаточности. К жироподобным веществам относят также жирорастворимые витамины

6. Объясните, почему липиды не относят к биополимерам.

Задания

1. Подберите эпиграф к данному параграфу.

2. Выясните, что произойдёт с белком яйца, если на него подействовать водой, спиртом, ацетоном, кислотой, растительным маслом, высокой температурой и т. д. Удастся ли восстановить структуру белка, вернувшись к исходным условиям?

3. Используя дополнительную литературу и ресурсы сети Интернет, выясните, почему холестерин называют веществом, необходимым для жизни. Выясните, какой у вас уровень холестерина. Оцените, насколько он соответствует норме. Сделайте выводы о своём рационе питания.

Ваша будущая профессия

1. Смоделируйте ситуации, в которых вам могут пригодиться знания, полученные при изучении данной главы.

2. Какие профессии может выбрать специалист в области химии?

3. Согласно официальной статистике, за период с 1999 по 2004 г. Россию покинули 25 тыс. учёных, а 20 тыс. ежегодно работают по системе контрактов за рубежом, что составляет примерно 5–6 % от общего научного потенциала страны. По мнению многих современных социологов, Россия только набирает силу по числу уехавших специалистов. Обсудите в классе, каковы, на ваш взгляд, причины «утечки мозгов». Что можно сделать, чтобы молодые специалисты оставались работать на Родине? (Круглый стол.)