Естествознание. Базовый уровень. 10 класс

Титов Сергей Алексеевич

Агафонова Инна Борисовна

Сивоглазов Владислав Иванович

Земля и вселенная

 

 

§ 59 Как и что мы видим во вселенной

Люди наблюдают за небом с тех самых пор, как они существуют. Яркий огненный шар, каждое утро с величайшей аккуратностью встающий над горизонтом и с такой же аккуратностью уходящий вечером за другую сторону этого горизонта, не мог представляться иначе, как одним из величайших богов, дарующим тепло и свет. Ночью над Землёй нависал необъятный купол небесной сферы, на котором горели звёзды – по всей вероятности, фонари, зажжённые богами и передвигаемые ими с чрезвычайной пунктуальностью. Со временем человечество научилось определять законы движения небесных светил с поразительной точностью. Эти знания были необходимы и для того, чтобы судить о намерениях богов, и для чисто практических целей, например определения сроков сельскохозяйственных работ. Посмотрим на звёздное небо. Если мы находимся на открытой местности, Земля кажется нам круглым плоским диском, границей которого является горизонт. Куда бы мы ни двигались, мы всегда будем находиться в центре этого круга.

Над собой мы видим небосвод – обширную полусферу, край которой находится на горизонте. Центр этой полусферы, т. е. точку, которая находится прямо над вашей головой, называют зенитом.

Для того чтобы сориентироваться в расположении звёзд, проще всего найти сначала Полярную звезду. Если у вас есть компас, можно найти её по компасу – она всегда находится в северном направлении. Но можно обойтись и без компаса, если вы можете узнать созвездие Большая Медведица. Оно имеет форму ковша с ручкой. Если две звезды ковша, расположенные дальше всего от ручки, соединить воображаемой линией и продолжить эту линию на пять таких же расстояний, как и расстояние между этими звёздами, то вы заметите яркую Полярную звезду. Эта звезда является очень важной из-за своего особого положения на небе: она почти точно совпадает с точкой, называемой полюсом мира (точнее, Северным полюсом мира, потому что есть ещё невидимый для нас Южный). Весь небесный свод как бы вращается вокруг Полярной звезды, а сама она практически остаётся на месте.

Высота, на которой какая-либо звезда находится над горизонтом, определяется углом между земной поверхностью и линией, направленной от вас на эту звезду. Высота, на которой находится Полярная звезда, почти точно совпадает с географической широтой, на которой находится наблюдатель. Если географическая широта вашего местопребывания равна 55°, то и Полярная звезда будет висеть над горизонтом под углом 55° к нему.

Если провести воображаемый полукруг, проходящий через Полярную звезду (т. е. через Северный полюс мира) и зенит, мы получим дугу, называемую меридианом , а линия, проходящая от наблюдателя к полюсу мира, определяет ось мира , вокруг которой с востока на запад вращаются звёзды.

Если мы достаточно долго будем наблюдать за этим вращением, то увидим, что звёзды над западным краем горизонта будут постепенно исчезать, а с востока будут появляться новые звёзды.

Рис. 157. Концепция небесной сферы помогает астрономам описывать положение звёзд на небе. Для того чтобы определить положение звезды, астрономы пользуются координатной сеткой, подобной сетке широт и долгот на поверхности Земли. Эквивалентом широты является склонение, измеряемое в градусах от небесного экватора. Эквивалентом долготы является прямое восхождение. Его отмеряют от той точки, где Солнце находится на небесном экваторе во время весеннего равноденствия (Первая точка Овна)

В отличие, например, от жителей Древней Месопотамии, нас не удивит появление новых звёзд «из ниоткуда». Мы знаем, что Земля круглая, звёзды находятся не только над нами, но и под нами, а небосвод на самом деле является не полусферой, а целой сферой (рис. 157). Если продолжить отвесную линию от зенита через наблюдателя и через Южное полушарие к южной небесной полусфере, мы упрёмся в точку, называемую надиром. Точка же, находящаяся на прямой, проходящей через наблюдателя от Северного полюса мира, называется Южным полюсом мира. Если в плоскости, перпендикулярной этой линии, провести воображаемую окружность произвольного радиуса, мы получим небесный экватор.

Теперь мы можем немного ориентироваться в окружающем нас звёздном мире. Посмотрев на небо, мы увидим множество звёзд, значительно различающихся по яркости. Есть яркие звёзды, сразу обращающие на себя наше внимание, а есть мелкие, еле заметные невооружённым глазом. В зависимости от яркости звёздам приписывают определённую величину. Самые яркие звёзды имеют первую величину, их всего два десятка. Менее ярки звёзды второй величины, их всего около 50, и к ним, в частности, относится Полярная. Невооружённым глазом мы можем увидеть ещё звёзды третьей, четвёртой, пятой и шестой величины, но это уже предел. Звёзды шестой величины можно увидеть, только обладая очень острым зрением и при очень хороших атмосферных условиях. Для ещё более слабых звёзд необходимо пользоваться биноклями и телескопами.

Главной причиной той или иной яркости звёзд служит не то, сколько энергии она испускает, а на каком расстоянии от Земли она находится. Одна из самых ярких звёзд – альфа созвездия Центавра на самом деле не обладает высокой мощностью излучения. Мы видим её такой яркой, потому что она находится к Земле ближе, чем все остальные звёзды.

Все имеющиеся на небосводе звёзды принято разбивать на группы, которые называют созвездиями (рис. 158). В древности в расположении звёзд люди старались угадать какие-то фигуры и в соответствии с этим давали им названия, почерпнутые главным образом из мифических сюжетов. На звёздных картах наиболее яркие звёзды часто соединяли линиями, чтобы создать представление об определённой графической фигуре. В настоящее время созвездием астрономы называют не фигуры, а определённые участки неба, внутри которых заключены образующие фигуры звёзды. Но неосведомлённый наблюдатель, конечно, не знает точных границ этих участков, а, глядя на небо, рассматривает определённые сочетания звёзд, определяя по ним созвездия.

Посмотрим на созвездия, расположенные поблизости от Северного полюса мира. Сначала мы находим ковш Большой Медведицы. От Полярной звезды начинается ручка ковша Малой Медведицы. Если мысленно продлить эту линию ещё дальше, мы увидим созвездие Кассиопеи, звёзды которого расположены в виде буквы W. Рядом с Кассиопеей расположено созвездие Цефея. Согласно преданию, Кассиопея была царицей, а Цефей (или Кефей) – её мужем, царём Эфиопии.

Рис. 158. Созвездия Северного полушария (январь – март)

Созвездия, расположенные вблизи полюса, мало меняют своё положение в зависимости от времени года. Большую и Малую Медведицы можно наблюдать в любое время года. Те же созвездия, которые расположены ближе к экватору, видны только в определённые месяцы, а в остальное время они находятся за горизонтом. Так, Кассиопея и Цефей лучше всего видны во второй половине года, а очень красивое и хорошо заметное созвездие Орион, в которое входят две звезды первой величины (Бетельгейзе и Ригель) и пять звёзд второй величины, можно увидеть только в зимнее время в южной части неба.

Поскольку Земля совершает годовой оборот вокруг Солнца, то в разные периоды года Солнце будет видно с Земли на фоне различных участков звёздного неба. Если мы вслед за нашими предками будем считать, что Солнце вращается вокруг Земли, то заметим, что вращается оно по большому кругу – эклиптике. Для удобства эклиптику начиная с V в. до н. э. разделяют на двенадцать участков, которые называют созвездиями зодиака. Слово «зодиак» происходит от того же корня, что и «зоология» и означает приблизительно «круг животных». В течение года Солнце проходит через участки неба, соответствующие различным созвездиям (рис. 159). Дважды в год оно пересекает небесный меридиан.

Рис. 159. Схема небесной сферы с Землёй в центре воображаемого зодиакального кольца и путь Солнца по созвездиям зодиака

Это происходит 21 марта, когда Солнце находится в созвездии Рыбы,и 23 сентября, когда оно находится в созвездии Дева. Эти дни называют весенним и осенним равноденствием, когда день равен ночи, и означают соответственно наступление весны и осени.

Проверьте свои знания

1. Какие точки небесной сферы называют зенитом и надиром?

2. Перечислите звёзды первой величины.

3. Где находятся созвездия, которые можно видеть только в определённое время года?

4. Что такое эклиптика?

5. В каких созвездиях находится Солнце в период весеннего и осеннего равноденствия?

Задания

1. Составьте памятку «Как ориентироваться на местности по звёздам».

2. Предположите, где ещё могут пригодиться знания о расположении созвездий на небесной сфере.

3. Вместе с учителем организуйте и проведите экскурсию в планетарий или организуйте виртуальную экскурсию при помощи Интернета.

 

§ 60 Как исследуют вселенную

Телескоп Галилея.

Раньше мы уже говорили о том, что в начале XVII в. Галилей, значительно усовершенствовав существовавшую в то время зрительную трубу, направил её на небо. Один из друзей Галилея дал новому прибору название телескоп, что значит «далеко смотрящий».

Рис. 160. Страница рукописи Галилея с записью наблюдений за спутниками Юпитера

С 1610 г. Галилей начал регулярно наблюдать за небесными светилами, используя телескоп, увеличение которого ему удалось за короткое время повысить с 3 до 32 раз. Эти наблюдения позволили узнать много нового о внеземном мире.

Так, Галилей обнаружил, что Луна, как и Земля, имеет сложный рельеф и покрыта горами и кратерами. Он открыл четыре спутника Юпитера (рис. 160), обнаружил пятна на Солнце, показал, что оно вращается вокруг своей оси, и вычислил период этого обращения. Телескоп Галилея был устроен довольно просто. Для того чтобы исследовать удалённые от Земли участки Вселенной, пришлось изобрести новые приборы и новые методы исследования. Первые телескопы позволяли увидеть в космосе только те объекты, которые испускают или отражают электромагнитное излучение в видимой части спектра, потому что излучение других диапазонов поглощается атмосферой Земли.

Радиотелескоп.

В 1931 г. американский астроном Карл Янский обнаружил короткие радиоволны, идущие от центра галактики. На основе его разработок в 1937 г. был создан первый радиотелескоп, что и знаменовало появление новой науки – радиоастрономии . После Второй мировой войны конструкция радиотелескопов была значительно усовершенствована (рис. 161).

Рис. 161. Современный радиотелескоп

Радиотелескоп состоит из антенны, которая улавливает приходящие из космоса волны, усилителя сигналов и устройства, позволяющего преобразовывать невидимые радиоволны в излучение видимой области. Так как мощность доходящих до Земли радиоволн очень мала, антенна должна быть очень большой, а усилитель – очень чувствительным. В современных радиотелескопах площади улавливающих антенн составляют десятки тысяч метров.

Для того чтобы по возможности уменьшить поглощение световых волн атмосферой, обсерватории, в которых проводились наблюдения за небесными телами, старались устроить как можно выше в горах. Но наилучшие условия для подобных исследований появились после создания искусственных спутников Земли. Телескопы, установленные на спутниках, позволяют избежать поглощения атмосферой электромагнитного излучения, так как находятся за пределами этой атмосферы. Одним из наиболее известных таких телескопов является аппарат «Хаббл», названный в честь известного астронома (рис. 162). «Хаббл» находится на орбите с 1990 г. С его помощью сделано множество интересных астрономических наблюдений и измерений (рис. 163). Сложная аппаратура «Хаббла» нуждается в периодическом осмотре и ремонте, для чего требуется время от времени направлять на космическую станцию экспедиции.

Космические лучи.

Различные объекты Вселенной испускают не только свет, инфракрасное излучение и радиоволны (рис. 164), но и электромагнитное излучение с более высокой частотой, а также потоки элементарных частиц, которые называют космическими лучами. Эти лучи состоят в основном из протонов и ядер гелия (альфа– частиц). Они были открыты в начале XX в., когда над поверхностью Земли было обнаружено радиоактивное излучение.

Рис. 162. Телескопы, установленные на спутниках, позволяют получать наилучшие результаты: А – космический телескоп «Хаббл»; Б – Эдвин Хаббл, американский астроном (1889–1953)

Вначале предположили, что это излучение является излучением самой Земли, но вскоре обнаружили, что его интенсивность не убывает, а возрастает с увеличением расстояния от земной поверхности. Таким образом, космические лучи приходят на Землю извне. Они могут возникать как на объектах Солнечной системы, так и значительно дальше: в звёздах нашей галактики и даже за её пределами. До создания современных приборов космические лучи были основным материалом для изучения элементарных частиц, некоторые из которых были впервые обнаружены именно в составе космических лучей.

Рис. 163. Снимки туманностей, полученные с помощью телескопа Хаббла: А – Кошачий Глаз; Б – Омега; В – Песочные Часы; Г – Бабочка

Рис. 164. Ночное небо, увиденное оптическим (А), инфракрасным телескопом (Б) и радиотелескопом (В)

Использование спектрального анализа.

При исследовании планет, звёзд и других космических объектов очень важную роль играет использование спектрального анализа (§ 42). Исследуя спектры испускания и поглощения различных небесных тел, можно с большой точностью определить их химический состав, а также температуру. В предыдущих главах мы говорили о том, что при увеличении температуры предмета его излучение смещается в сторону коротковолновой части спектра. Поэтому звёзды с самой низкой температурой мы видим как красные, а наиболее горячие – как голубые.

Единицы измерения Вселенной.

Многолетние исследования позволили человечеству составить представление о строении Вселенной и находящихся в ней объектах и установить место, которое занимает в ней наша Земля. Огромные, по сравнению с привычными для нас, расстояния, разделяющие звёзды и галактики, а также скорости движения многих космических объектов привели к убеждению, что Вселенная в целом обладает качествами, с которыми нам не приходится иметь дело в повседневной жизни. Поэтому этот мир получил особое название мегамира, т. е. огромного мира.

Для того чтобы оценить размеры этого мира, сложно использовать обычные единицы измерения, например километры. Мы получим числа, выраженные десятью в такой огромной степени, что воспринимать и сравнивать их будет чрезвычайно сложно. В качестве единиц расстояния в мегамире для относительно небольших расстояний применяют астрономическую единицу , а для совсем огромных – световой год. Астрономическая единица – это среднее расстояние от Земли до Солнца, она составляет 149 600 000 км. Световой год равен расстоянию, которое свет проходит в течение года. Зная, что скорость света равна 300 000 км/с, а год насчитывает 31 536 000 с, нетрудно подсчитать число километров, которое укладывается в один световой год: оно составляет 9,46 1012 км, т. е. 9 500 000 000 000 км! Иногда для измерения астрономических расстояний используют единицу, называемую парсек, она примерно в три раза больше светового года и равна 3,1 • 1013 км.

Существующие данные о размере Вселенной свидетельствуют о том, что мы имеем дело с действительно огромным миром, совершенно несопоставимым с привычными для нас масштабами. Самые мощные из существующих телескопов способны разглядеть объекты, находящиеся от нас на расстоянии 28 млрд световых лет, т. е. 1023 км. Это означает, что диаметр видимой Вселенной составляет около 60 млрд световых лет. Согласно недавно проведённым расчётам, диаметр Вселенной ещё больше и может доходить до 80 млрд световых лет. Такие размеры представить себе просто невозможно. Если бы диаметр Вселенной был равен диаметру земного шара, то величина Солнечной системы соответствовала бы размерам бактерии.

Тем не менее, несмотря на относительно малые размеры, Солнечная система и особенно Земля имеют огромное значение для человечества, поскольку, по выражению К. Э. Циолковского, являются его колыбелью.

Проверьте свои знания

1. Какие астрономические открытия были сделаны Галилеем?

2. Почему лучшим местом расположения обсерваторий является высокогорье?

3. Из чего состоят космические лучи?

4. С помощью какого научного метода можно определить температуру и химический состав небесных тел?

Задания

1. Расстояние от Земли до Сириуса равно 8,6 светового года. Сколько километров отделяет нас от Сириуса? Выразите расстояние от нашей планеты до Сириуса в астрономических единицах и парсеках.

2. Подготовьте сообщение или презентацию о предмете изучения и развитии науки радиоастрономии.

 

§ 61 Земля и её вращение

Человечество возникло и живёт на Земле. В течение очень долгого времени люди не могли даже немного приподняться над земной поверхностью. В представлении многих древних народов Земля была Великой Матерью, дающей урожай, и, следовательно, родительницей и кормилицей всего живого. Над Землёй находилось Небо – могущественный и грозный Бог – отец, орошающий дождями мать Землю для того, чтобы она воспроизводила жизнь. В мифологии некоторых народов Земля, наоборот, олицетворяла отца, а небо – мать мироздания. Земля обладала великой силой, которая проявлялась в её способности притягивать к себе все предметы, на ней находящиеся. В русских былинах описывается трагическая история богатыря Святогора, пытавшегося совладеть с «тягой земной».

О физическом устройстве Земли и неба первоначально думали мало. Было достаточно очевидно, что Земля плоская, возможно, имеет форму диска, а над ней находится твёрдый небесный купол, по которому движутся Солнце, Луна и звёзды. Однако представление о том, что Земля является шаром и, возможно, даже вращается вокруг Солнца, возникли уже давно. Впервые предположение о шарообразности Земли высказал в VI в. до н. э. древнегреческий учёный Пифагор. Возможно, он узнал об этом от египетских жрецов, которые вообще не очень стремились делиться своими тайными знаниями. Наиболее полные для античного мира доказательства шарообразности Земли приводит Аристотель. Он говорит о том, что все тяжёлые тела падают на землю под равными углами. Если бы Земля была плоской, то тела падали бы не перпендикулярно, так как стремились бы к центру плоской планеты, а поскольку большинство тел находится далеко от этого центра, они должны были бы падать по наклонной линии. Кроме того, Аристотель обращает внимание на тот факт, что некоторые из звёзд, видных в Египте или на Кипре, не видны в северных странах. Из этого следует, что Земля не только имеет форму шара, но и размеры этого шара невелики по сравнению с расстоянием до звёзд.

За триста лет до нашей эры древнегреческий географ и математик Эратосфен (ок. 276–194 до н. э.) пытался опытным путём определить размеры земного шара. Он заметил, что в одном из городов Египта Солнце в день летнего солнцестояния стоит точно в зените и потому освещает дно самого глубокого колодца. Затем он измерил угол падения солнечных лучей в тот же день в другом городе. Зная расстояние между городами, он вычислил длину окружности земного шара, и его расчёты оказались достаточно близкими к современным.

Геоцентрическая теория

Более сложным оказался вопрос о положении Земли относительно Солнца. Большинство греческих философов придерживались геоцентрической точки зрения, т. е. утверждали, что Земля находится в центре мироздания, а Солнце вместе с другими планетами вращается вокруг неё. Однако в начале III в. до н. э. Аристарх Самоский (ок. 310–230 до н. э.) предложил гелиоцентрическую систему, согласно которой Земля вместе с остальными планетами вращается вокруг Солнца. Такая система в отличие от геоцентрической объясняла смущавшее древнегреческих учёных движение планет. Если движение Солнца и звёзд хотя и не вполне, но более или менее хорошо соответствовали представлению об их вращении вокруг Земли, то планеты вели себя странно. Траектории их движения вокруг Земли не были такими регулярными. Планеты «блуждали» по небесному своду, откуда и произошло их название. По-гречески «планетес» означает «блуждать», «скитаться». Если предположить, что планеты, так же как и Земля, вращаются вокруг Солнца, такое их движение становилось более понятным.

Однако в Античности гелиоцентрическая теория большого распространения не получила, и в I в. всеобщим признанием стала пользоваться геоцентрическая система, разработанная Клавдием Птолемеем (ок. 90—160) – греческим астрономом, математиком, физиком, географом и теоретиком музыки, жившим, как и большинство учёных того времени, в Александрии (рис. 165, 166). Для объяснения сложного движения планет Птолемею пришлось ввести новые понятия и сложную систему дополнительных расчётов, но с учётом этих поправок его теория настолько хорошо совпадала с данными наблюдений, что не вызывала возражений в течение последующих полутора тысяч лет.

Рис. 165. Клавдий Птолемей

Рис. 166. Геоцентрическая система Птолемея

В раннем Средневековье не существовало единого представления о форме Земли, большинство людей вполне довольствовались понятием «земная твердь». Но в XI–XII вв. Европа познакомилась с трудами древнегреческих мыслителей. Представления Аристотеля и Евклида приобрели большую популярность, в том числе и среди авторитетных христианских философов. К началу эпохи Возрождения общепринятым стало мнение, что Земля представляет собой шар, подвешенный в пустоте без опоры, вокруг которого на небесном своде вращаются звёзды и планеты (Луну и Солнце тоже считали планетами).

Рис. 167. Николай Коперник

Гелиоцентрическая теория Н. Коперника.

Впервые в птолемеевой системе усомнился польский астроном, математик и экономист Николай Коперник (1473–1543) (рис. 167).

Рис. 168. Гелиоцентрическая система Коперника

В своём труде «Об обращении небесных сфер», изданном в год его смерти, Коперник удивляется чрезмерной сложности системы Птолемея, а обращаясь к трудам других древнегреческих учёных, он приходит к выводу, что центром вращения мира должно быть Солнце (рис. 168). Земля вместе с планетами вращается вокруг Солнца, а Луна является не планетой, а спутником Земли и вращается вокруг неё. Таким образом, суточное движение Солнца воображаемо и вызвано эффектом суточного вращения Земли, которая совершает полный оборот вокруг своей оси за 24 часа. Точно так же перемещение Солнца по зодиаку объясняется не его истинным движением, а вращением Земли вокруг Солнца. Такое представление значительно упрощало расчёты движения планет, однако давало несколько менее точные результаты, чем расчёты, сделанные по системе Птолемея, потому что Коперник считал орбиты Земли и планет не эллиптическими, какими они на самом деле являются, а круговыми. Это и послужило главной причиной продолжительных возражений против гелиоцентрической системы.

Современные представления о движении Земли.

Современные представления о движении Земли сводятся к следующим основным положениям:

1. Околосолнечная орбита Земли, так же как и других планет Солнечной системы, является не очень вытянутым эллипсом, в одном из фокусов которого находится Солнце. Средняя скорость движения Земли по орбите приблизительно равна 30 км/с.

2. Двигаясь по орбите, Земля совершает полный оборот приблизительно за 365,25 солнечных суток (т. е. оборотов Земли вокруг своей оси). Этот промежуток времени называют звёздным годом. Из-за лишних 0,25 суток за четыре года накапливаются полные сутки, поэтому каждый четвёртый год считается високосным и состоит из 366 суток.

3. Из-за того что орбита Земли представляет собой эллипс, Земля в разные времена года находится на различном расстоянии от Солнца. В среднем это расстояние составляет 150 млн км. Точка, в которой Земля находится ближе всего к Солнцу, называется перигелием, а точка наибольшего отдаления Земли от Солнца – афелием .

4. Земля вращается вокруг своей оси, т. е. прямой линии, соединяющей Северный и Южный полюса. Эта ось не перпендикулярна плоскости земной орбиты, а находится под некоторым углом к ней. В результате в течение одного полугода Земля обращена к Солнцу Северным полюсом, а в течение другого – Южным (рис. 169).

Рис. 169. Вращение Земли вокруг Солнца

Перемена состояния происходит в дни весеннего и осеннего равноденствия, тогда, когда Земля пересекает небесный меридиан. В том полушарии, которое в этот день поворачивается в сторону Солнца, наступает весна, а затем лето. Продолжительность светового дня начинает превышать продолжительность ночи, а на полюсе и в местах, расположенных за полярным кругом, Солнце видно круглосуточно (полярный день). В другом полушарии всё происходит наоборот: наступает осень, температура воздуха падает, продолжительность светового дня снижается, а на полюсе и в его окрестностях Солнце никогда не поднимается над горизонтом (полярная ночь).

Проверьте свои знания

1. Кто и когда впервые определил длину окружности земного шара?

2. Кто и когда впервые предложил гелиоцентрическую теорию? Как вы считаете, почему эта теория не получила в то время большого распространения?

3. Какую форму имеет орбита Земли?

4. Что такое афелий и перигелий?

5. Почему вблизи полюсов бывают полярные ночи и полярные дни?

Задания

В настоящее время во многих зданиях с высокими потолками находятся так называемые маятники Фуко (рис. 170), которые доказывают вращение Земли вокруг своей оси. Объясните принцип работы такого маятника. Если нужно, найдите необходимые сведения в литературе или Интернете.

Рис. 170. Маятник Фуко

 

§ 62 Земля и её строение

Солнечная система включает в себя Солнце и естественные космические тела, вращающиеся вокруг него и связанные с ним силой гравитационного притяжения. Солнечная система состоит из больших планет, карликовых планет и астероидов, вращающихся вокруг Солнца по орбитам, имеющим форму эллипса. Кроме того, в неё входят спутники, вращающиеся около планет и некоторых астероидов. Земля относится к большим планетам и среди них находится на третьем по счёту расстоянии от Солнца. Ввиду особой важности Земли для существования человечества, мы рассмотрим её первой.

Земной шар не является идеальным шаром, а представляет собой круглое тело, сплюснутое с полюсов. Такая форма именно в честь нашей планеты получила название геоид (от греческого названия Земли – Гея). Она возникла в результате действия центробежной силы при вращении Земли. В результате диаметр нашей планеты, проходящий через экватор, больше расстояния между полюсами на 43 км. Средний диаметр Земли около 12 740 км, а её масса – 5 •1024 кг.

Литосфера.

Земля состоит из твёрдой коры, мантии и металлического ядра (рис. 171). Земная кора – это верхняя часть твёрдой оболочки Земли. Толщина её колеблется от 6 км под океаном до 50–60 км на континентах. Основные вещества, образующие кору, – это оксиды кремния и в меньшей степени алюминия, кальция, магния, железа, натрия и калия. Поэтому самым распространённым химическим элементом в коре является кислород. Под корой находится верхняя плотная часть мантии. Вместе они образуют твёрдую внешнюю оболочку Земли, которую называют литосферой.

Рис. 171. Схема строения Земли

Литосфера состоит из нескольких тектонических плит, которые плавают по вязкой нижней части мантии со скоростью нескольких сантиметров в год. Из-за этого движения число и форма материков со временем меняются. Считают, что 750 млн лет назад на Земле существовал единый материк, который затем раскололся, образовав современную карту Земли.

Мантия находится на глубине от 35 до 3 тыс. км от поверхности Земли и составляет почти 70 % массы планеты. Основными химическими элементами мантии являются кислород, кремний и магний.

Глубже мантии находится ядро. Его внешняя часть является жидкой, а внутренняя – твёрдой. Состав ядра точно не определён, но известно, что оно состоит преимущественно из металлов, среди которых первое место занимает железо. Вероятно, в ядре происходит радиоактивный распад некоторых элементов, в результате которого образуется внутреннее тепло нашей планеты. Предполагают, что в центре Земли температура поднимается до 3000–5000 °C, а давление достигает нескольких миллионов атмосфер. Часть этого тепла поднимается к земной коре.

При высоких температурах породы, формирующие кору или верхнюю часть мантии, могут плавиться, образуя огненно-жидкий расплав. Он состоит в основном из соединений кремния и носит название магмы. Магма, изливающаяся на поверхность Земли, образует лаву.

Места, где магма извергается на поверхность Земли, называют вулканами (рис. 172). Это название произошло от имени римского бога Вулкана (греческий аналог – Гефест), имевшего под землёй металлоплавильные и кузнечные мастерские. Вместе с лавой вулканы выбрасывают вулканические газы и куски лавы. Такие выбросы могут происходить с различной периодичностью в зависимости от активности данного вулкана и называются вулканическими извержениями. Извержение вулкана может привести к серьёзным стихийным бедствиям.

Рис. 172. Вулкан: А – схема строения; Б – извержение;

1 – магма, 2 – континентальная кора, 3 – конус вулкана, 4 – океан, 5 – океаническая кора

Иногда под потоками лавы исчезают огромные территории и гибнут многие города. Одним из самых известных по своим трагическим последствиям было извержение вулкана Везувия в Южной Италии в 79 г. н. э., которое длилось около суток и привело к гибели трёх городов: Помпей, Геркуланума и Стабии, а также многих селений и вилл. Сила извержения была такова, что пепел от него долетел до Египта и Сирии. В 2010 г. исландский вулкан Эйяфьятлайокудль, внезапно проснувшись, выбросил столько пепла, что тот разлетелся по всей Европе и вызвал отмену более 60 тыс. авиарейсов.

До сих пор неясным остаётся происхождение тепла, которое вызывает плавление твёрдых пород и образование магмы. Некоторые исследователи полагают, что оно является результатом радиоактивных процессов, но большинство полагают, что нагревание происходит в результате трения при движении литосферных плит.

Землетрясения.

Подвижность тектонических плит может привести к землетрясениям. Быстрый сдвиг участка земных пород вызывает колебательные движения – сейсмические волны. Участок земной поверхности, расположенный непосредственно над точкой сдвига – очагом, называют эпицентром землетрясения. От очага землетрясения волны распространяются во все стороны со скоростью до 8 км/с. Для обнаружения и регистрации сейсмических волн используют специальные приборы – сейсмографы, которые сконструированы так, что при толчке одна их часть остаётся неподвижной, а вторая сдвигается. Такой прибор может непрерывно записывать сейсмические колебания, регистрируя даже незначительные сдвиги в земной поверхности. Для измерения силы землетрясения обычно используют двенадцатибалльные шкалы, где 1–2 балла соответствуют землетрясению, которое ощущается только приборами или очень чувствительными людьми, а те, которые оцениваются 11–12 баллами, приводят к обвалам, оползням, разрушениям городов и другим катастрофическим явлениям. В течение года на Земле происходит около 10 тыс. ощущаемых людьми землетрясений. Из них около ста производят значительные разрушения.

Гидросфера и атмосфера.

Помимо твёрдой литосферы Земля имеет ещё две оболочки – жидкую гидросферу и газообразную атмосферу . Гидросфера делится на Мировой океан, занимающий 70,8 % площади нашей планеты, воды суши и водяной пар в атмосфере. Более 96 % воды на Земле находится в Мировом океане, около 2 % – в подземных водах, столько же – в составе ледников и вечных снегов, и только около 0,02 % общей воды составляют поверхностные водоёмы суши. Мировой океан – это совокупность пяти океанов (Тихого, Атлантического, Индийского, Северного Ледовитого и Южного) и морей, имеющих сообщение с этими океанами. Средняя глубина Мирового океана составляет 3800 м, самое глубокое место (около 11 км) – Марианская впадина Тихого океана. Некоторые моря не отделены от океана участками суши. Таково, например, Саргассово море, расположенное возле Центральной Америки. Его границы определяются не сушей, а морскими течениями.

Атмосфера – это газовая оболочка Земли. Её толщина, т. е. расстояние от поверхности планеты, на котором ещё можно обнаружить атмосферные газы, доходит до 2–3 тыс. км, однако для жизнедеятельности человека и других организмов наибольшее значение имеет её самый нижний слой – тропосфера, толщина которой составляет от км вблизи полюсов до 18 км в тропических районах. Воздух тропосферы на 78 % состоит из азота, на 21 % из кислорода и на 0,04 % из углекислого газа, остальная часть приходится на инертные газы. Над тропосферой на высоте до 50 км находится стратосфера, а над ней ионосфера, которая хотя и содержит атмосферные газы, строго говоря, уже не является атмосферой Земли, а представляет собой ближайшую к ней часть космического пространства. На высоте 20–40 км под действием ультрафиолетового излучения Солнца кислород ионизируется, приобретая третий атом, и превращается в озон (О3). Образовавшийся озоновый слой поглощает опасные для живых организмов ультрафиолетовые лучи. Если бы этого слоя или, как говорят, озонового экрана не существовало, жизнь на Земле могла бы существовать только под водой.

Для нормальной жизни человека необходимо, чтобы в окружающем его воздухе находилось достаточное количество кислорода. Вместе с тем при удалении от поверхности Земли атмосферное давление падает, и воздух становится всё более разреженным. Уже на высоте 5 км над уровнем моря у нетренированного человека проявляется кислородное голодание, сопровождающееся снижением работоспособности. На высоте 15 км кислорода в атмосфере настолько мало, что дыхание человека становится невозможным.

Проверьте свои знания

1. Каковы средний диаметр и масса Земли?

2. Из каких внутренних слоёв состоит Земля? Частью какого из них является земная кора?

3. Как называется магма, которая выходит на поверхность Земли? В каких местах она извергается?

4. Что такое эпицентр землетрясения?

5. Что такое тропосфера? Какие газы и в каком относительном количестве входят в её состав?

 

§ 63 Солнечная система

Основой Солнечной системы является Солнце – звезда, относящаяся к категории жёлтых карликов. По сравнению с большинством звёзд Вселенной Солнце действительно имеет небольшие размеры. А то, что Солнце жёлтое, означает, что оно имеет среднюю температуру – не горячее (в таком случае оно было бы голубым) и не слишком холодное (иначе оно было бы красным). Масса Солнца в 333 тыс. раз больше, чем масса Земли. Энергия Солнца образуется в результате проходящего в нём термоядерного синтеза, «топливом» для которого служит водород. При объединении ядер водорода образуются ядра гелия, что сопровождается освобождением очень большого количества энергии. Расчёты показывают, что Солнце в настоящее время находится в середине своей эволюции и запасов водорода должно хватить ещё на несколько миллиардов лет.

Солнце испускает свет, а также поток заряженных частиц, распространяющийся со скоростью около 1,5 млн км в час и называемый солнечным ветром. Солнечный ветер способен срывать атмосферу планеты. Именно так происходит на Венере и Марсе. Атмосфера же Земли защищена от этого разрушительного действия магнитным полем. В результате действия магнитного поля Земли частицы солнечного ветра уносятся в верхние слои атмосферы, где и могут иногда наблюдаться в виде полярных сияний.

Большая часть объектов сосредоточена у восьми планет Солнечной системы, которые движутся вокруг Солнца в плоскости эклиптики по эллиптическим, хотя и довольно близким к круговым, орбитам (рис. 173). Ближайшей к Солнцу планетой является Меркурий . Он находится на расстоянии 0,4 астрономической единицы от Солнца и является самой маленькой планетой Солнечной системы, его масса почти в двадцать раз меньше массы Земли. Меркурий не имеет спутников и окружён крайне разреженной атмосферой. Существует гипотеза, что когда-то Меркурий был более крупной планетой, но утратил свою часть вследствие столкновения с большим космическим объектом.

Венера, вторая планета Солнечной системы, по размерам близка Земле и, так же как и она, имеет толстую кремниевую оболочку вокруг железного ядра. Венера самая горячая планета в Солнечной системе, температура её поверхности около 400 °C. На Венере есть очень плотная атмосфера, состоящая в основном из углекислого газа.

Рис. 173. Схема Солнечной системы

Так как эта атмосфера постоянно сдувается солнечным ветром, предполагают, что она постоянно пополняется за счёт вулканических извержений. Спутников Венера не имеет.

Четвёртая планета – Марс. Его масса примерно в 10 раз меньше массы Земли. Он обладает атмосферой, приблизительно в два раза менее плотной, чем атмосфера Земли, и состоящей из углекислого газа. На его поверхности есть вулканы, самый большой из которых, Олимп, имеет высоту 21 км, что значительно больше самых высоких вулканов Земли. Так же как и на Венере, эти вулканы пополняют срываемую солнечным ветром атмосферу Марса. Поверхность этой планеты содержит большое количество оксида железа, что и объясняет его красноватый цвет, за который он получил имя бога войны Марса. Так же как и одноимённого бога на поле боя, планету Марс сопровождают два спутника: Фобос (страх) и Деймос (ужас).

Меркурий, Венера, Земля и Марс называются внутренними планетами Солнечной системы или планетами земной группы. Они состоят в основном из соединений кремния и металлов. Остальные четыре планеты называют газовыми гигантами, преимущественно они состоят из водорода и гелия. Общая масса планет-гигантов составляет 99 % массы всех тел Солнечной системы, кроме, разумеется, самого Солнца. Все они имеют кольца из пыли и льда, вращающихся вокруг планеты, хотя с Земли видны только кольца Сатурна.

Пятая по расстоянию от Солнца планета – Юпитер . Его масса в 2,5 раза больше всех остальных планет вместе взятых и в 318 раз больше массы Земли. Юпитер имеет 63 спутника, самые большие из которых – Ганимед, Каллисто, Ио и Европа – по строению схожи с планетами земной группы. Ганимед является самым большим в Солнечной системе спутником, его масса больше массы Меркурия.

Следующая планета – Сатурн – известна своей системой колец. Его структура схожа со структурой Юпитера, но масса почти в два раза меньше, хотя почти в 100 раз превышает массу Земли. Он имеет 61 спутник, из которых один – Титан – является единственным в Солнечной системе спутником, обладающим собственной атмосферой.

Уран – седьмая по счёту планета солнечной системы является самой лёгкой из внешних планет. Его масса всего в 14 раз больше массы Земли. Особенностью Урана является то, что наклон оси его вращения к плоскости эклиптики больше 90°. Если другие планеты можно сравнить с вращающимися волчками, то Уран похож на катящийся шар. Так же как и следующая планета – Нептун, Уран, помимо водорода и гелия, содержит в своём составе много льда. У Урана известно 27 спутников, самые крупные из которых – Оберон, Титания, Умбриэль, Ариэль и Миранда.

Последняя, восьмая, планета Солнечной системы – Нептун . Масса его в 17 раз больше, чем масса Земли. Он имеет 13 спутников, на самом крупном из которых – Тритоне – имеются гейзеры, бьющие жидким азотом. От других планет Нептун отличается тем, что вращается вокруг Солнца в противоположном направлении.

Пояс астероидов

Между Марсом и Юпитером находится пояс астероидов (рис. 174). Астероидами называют небесные тела размером от нескольких метров до сотен километров. Они значительно меньше больших планет, но, несмотря на это, могут иметь собственные спутники. Астероиды относятся к малым телам Солнечной системы. Самые крупные астероиды называют карликовыми планетами. В настоящее время известно несколько сотен тысяч астероидов, но предполагают, что их общее число может достигать почти 2 млн. Несмотря на это, общая масса астероидов не превышает 0,001 массы Земли. Раньше самым крупным астероидом считалась Церера, имеющая почти 1000 км в диаметре, но с недавнего времени её принято относить к карликовым планетам. После Цереры единственным астероидом, который можно регулярно видеть в небе невооружённым глазом, является Веста. Её диаметр составляет около 500 км. Другие астероиды можно видеть только во время их прохождения вблизи Земли.

Пояс Койпера.

Второй пояс малых тел Солнечной системы, называемый поясом Койпера, – область от орбиты Нептуна до расстояния около 55 астрономических единиц от Солнца. Он значительно больше пояса астероидов. В отличие от объектов пояса астероидов, которые состоят из горных пород и металлов, тела этого пояса построены из замёрзшей воды, метана и аммиака.

Рис. 174. Астероиды: А – астероид Гаспра; Б – астероид Итокава; В – пояс астероидов

Здесь находятся три карликовые планеты, в том числе Плутон, который раньше считали полноправной большой планетой.

Кометы

В число малых тел Солнечной системы входят также кометы, которые состоят из «льдов» – застывшей воды, метана или других газов и имеют обычно размеры в несколько километров (рис. 175). Они движутся по сильно вытянутым орбитам, так что их перигелий находится в области внутренних планет, а афелий – за орбитой Плутона.

Рис. 175. Кометы:

А – орбиты комет Энке и аллея в Солнечной системе, строение кометы; Б – фотография кометы Галлея

Когда комета входит во внутреннюю область Солнечной системы, её ледяная поверхность испаряется и под действием солнечного излучения образует поток ионов, создавая длинный светящийся хвост (от греч. kometes – длинноволосый), поперечником в несколько десятков тысяч и длиной до нескольких миллионов километров, часто видимый с Земли невооружённым глазом. Самой известной кометой является комета Галлея, которая названа в честь английского астронома Эдмунда Галлея, доказавшего, что кометы 1531, 1607 и 1682 гг. – это одна и та же комета, и предсказавшего её возвращение в 1759 г. С тех пор можно наблюдать её возвращение к Земле с периодами около 76 лет.

Метеоры и метеориты

В окрестностях нашей планеты существуют и совсем мелкие тела, которые, попадая в атмосферу, нагреваются вследствие трения об неё и сгорают. Такие тела называют метеорными телами , а свет, видимый при их сгорании, – метеором. Метеоры часто называют «падающими звёздами», а явления, при которых их наблюдается особенно много, – метеорными потоками или «звёздными дождями». Иногда среди метеоров попадаются особенно крупные, излучающие свет, соответствующий звезде 4-й величины. Такой метеор называют болидом. В тех случаях, когда метеорное тело настолько плотно и массивно, что не успевает целиком сгореть в атмосфере, а падает на поверхность Земли в виде твёрдого предмета, его называют метеоритом (рис. 176).

Рис. 176. Метеориты: А – каменный; Б – железокаменный; В – железный; Г – метеорный поток (метеоритный дождь)

Проверьте свои знания

1. Какая реакция является источником солнечной энергии?

2. Перечислите планеты Солнечной системы в порядке их удаления от Солнца.

3. Какая из планет Солнечной системы является самой большой? Во сколько раз её масса больше массы Земли?

4. Между орбитами каких планет находится пояс астероидов?

5. Из чего образуется хвост кометы?

Задания

1. Подготовьте сообщение или презентацию об астероидах и кометах, которые «посещали» околоземное пространство в XX–XXI вв.

2. Организуйте и проведите конференцию «Тунгусский метеорит: загадки и гипотезы».

 

§ 64 Звёзды, галактики, метагалактика

Гиганты, карлики и чёрные дыры.

Наряду с Солнцем во Вселенной существует множество подобных ему тел, называемых звёздами. Все звёзды обладают очень высокой температурой из-за того, что внутри их происходят термоядерные реакции, т. е. такие реакции, в которых ядра лёгких элементов, находящихся в начале периодической таблицы, объединяются в ядра более тяжёлых элементов. Чаще всего это объединение ядер водорода с образованием гелия. При термоядерных реакциях выделяется огромное количество тепловой энергии, благодаря чему звёзды представляют собой раскалённые тела. Температура в недрах звёзд измеряется миллионами, а на их поверхности – тысячами градусов по шкале Кельвина. Как уже говорилось, температура поверхности звезды определяет её цвет. Самые горячие звёзды с температурой 30–60 тыс. °С мы видим как голубые. Звёзды с температурой около 10 тыс. °С воспринимаются как белые, а самые холодные, температура которых не более 5 тыс. °С, – как жёлто-оранжевые.

Звёзды образуются из разреженных облаков межзвёздного газа (рис. 177). Притягиваясь под влиянием силы тяготения, частицы газа, главным образом водорода, сближаются, и при этом гравитационная энергия переходит в тепловую. Когда температура достигает нескольких миллионов градусов, начинаются термоядерные реакции и сжатие прекращается.

Рис. 177. Эволюция звёзд

В таком состоянии звезда пребывает в течение большей части своего существования. Затем запасы водорода в ядре звезды истощаются, и тогда термоядерный процесс продолжается уже на её периферии. Звезда увеличивается в размерах и постепенно остывает, превращаясь в красный гигант. После того как запасы водорода исчерпаются, начинаются термоядерные реакции с превращениями других элементов. Звезда начинает сжиматься и разогреваться, в результате чего она становится белым карликом. Когда же топливо для термоядерных реакций полностью закончится, силы гравитации, которым теперь уже ничто не противодействует, сожмут звезду настолько, что она станет совсем карликовым телом, но при этом обладающим огромной массой. Сила притяжения этой колоссальной массы настолько велика, что от неё не могут оторваться даже фотоны. Поэтому она не излучает и не отражает света и выглядит совершенно чёрной, за что и называется чёрной дырой. Чёрными дырами могут становиться только большие двойные звёзды. Более мелкие звёзды остаются белыми карликами или становятся нейтронными звёздами , которые состоят исключительно из нейтронов. После своего образования чёрная дыра может притягивать оказывающиеся поблизости мелкие тела и постепенно увеличивать свою массу и размеры. Попадание крупных космических тел в чёрную дыру маловероятно из-за её малых размеров и большой отдалённости от этих тел. В результате такого разрастания во Вселенной образуется большое количество чёрных дыр, одна из которых находится в центре нашей галактики.

Пульсары, квазары и сверхновые.

В результате сжатия звёзд могут образовываться космические объекты, которые до сих пор остаются в достаточной степени загадочными. Одним из таких объектов являются пульсары . Это маленькие, похожие на нейтронные, звёзды, излучение которых распространяется только в одном направлении узким пучком. Так как пульсары очень быстро вращаются, их излучение можно регистрировать через определённые периоды. Это излучение как бы пульсирует, откуда и произошло их название. Другим загадочным объектом Вселенной являются квазары (рис. 178) – относительно небольшие тела с невероятно сильным излучением, находящиеся от нас на удалении в несколько миллиардов световых лет. Несмотря на эти огромные расстояния, они заметны с Земли, благодаря исключительной интенсивности их электромагнитного излучения. Некоторые квазары, приблизительно равные по размеру Солнечной системе, излучают энергии больше, чем вся наша Галактика. Во Вселенной уже обнаружено более 200 тыс. квазаров, и астрономы постоянно открывают всё новые и новые.

Иногда звёзды заканчивают свою эволюцию не сжатием, а взрывом, сопровождаемым яркой вспышкой, после чего звезда превращается в рассеянное излучение и облако пыли и газа.

Рис. 178. Квазар

Такие звёзды называют новыми или, в случае очень яркой вспышки, сверхновыми (рис. 179). На самом деле они не являются действительно вновь образовавшимися – вспыхивают уже давно существующие звёзды. Но в некоторых случаях наблюдали вспышку ранее незаметных и неизвестных звёзд, что и стало причиной такого названия.

Галактики и метагалактика.

Звёзды во Вселенной распределены не равномерно, а объединяются в скопления, которые называют галактиками (рис. 180). Ошибочно думать, что видимые на небе созвездия являются скоплениями звёзд. Звёзды, которые мы видим на одном участке неба, на самом деле могут находиться на очень большом расстоянии друг от друга.

Рис. 179. Сверхновая ярко сияет в Большом Магеллановом облаке (А) на том месте, где прежде была лишь слабенькая звезда 12-й звёздной величины (Б, указана стрелкой)

Рис. 180. Спиральная галактика

Галактики представляют собой истинные скопления звёзд, разделённые межгалактическим пространством.

Солнечная система находится в галактике, которую называют Млечный Путь (рис. 181). Иногда её ещё называют Галактикой (с заглавной буквы). Млечный Путь – спиральная галактика, в которой находится больше 200 млрд звёзд. Она имеет диаметр около 100 тыс. световых лет и толщину несколько тысяч световых лет. С Земли Млечный Путь виден как клочковатая полоса звёзд, напоминающая сгустки молока.

Рис. 181. Галактика Млечный Путь

Отсюда и произошло название «галактика», которое в переводе с греческого означает «молочное кольцо». Сначала Галактикой называли только Млечный Путь, а когда выяснили, что во Вселенной есть похожие на него звёздные скопления, их тоже стали именовать галактиками.

Другие галактики отдалены от Млечного Пути на очень большие расстояния, которые измеряют миллионами световых лет. Невооружённым глазом на небе можно увидеть всего три галактики: туманность Андромеды в Северном полушарии и Большое и Малое Магеллановы облака – в Южном. Туманность, или, правильнее, галактика Андромеды, – одна из самых близких к нам галактик. Расстояние до неё составляет около 2,5 млн световых лет. Млечный Путь вместе с галактикой Андромеды, Магеллановыми облаками и ещё несколькими галактиками образует Местную группу галактик, которые взаимодействуют между собой и движутся вокруг общего центра. Различить отдельные звёзды во многих отдалённых галактиках удалось только после запуска космического телескопа «Хаббл». Галактики могут иметь самые разнообразные формы и размеры. Они могут быть эллиптическими, спиральными, могут иметь перемычку, а иногда обладают неправильной формой. Диаметр галактик колеблется в пределах от 16 до 180 тыс. световых лет. Все известные галактики образуют скопления, которые объединяют в метагалактику. Метагалактика – это вся наблюдаемая в настоящее время часть Вселенной, состоящая из десятков миллиардов галактик. По мере того как совершенствуются средства изучения Вселенной, обнаруживается всё больше галактик и, следовательно, границы метагалактики расширяются.

Проверьте свои знания

1. В каких пределах может изменяться температура звёзд?

2. Какие процессы служат основой для образования чёрных дыр?

3. Что такое квазары? На каком расстоянии от Земли они находятся?

4. В какой галактике находится Солнечная система?

5. Что такое метагалактика?

Задания

1. Попробуйте в ясную тёмную ночь найти на небе Млечный Путь. Он выглядит как белёсая полоса, пересекающая звёздное небо.

2. Объясните, отражает ли реальную эволюцию звезды её название «новая» или «сверхновая».

 

§ 65 Возникновение и эволюция вселенной

Расширение Вселенной

Вплоть до начала прошлого века существовало две точки зрения на происхождение Вселенной. Те учёные, кто придерживался естественно-научных взглядов на устройство мира, полагали, что Вселенная вечна и неизменна. Богословы же говорили, что Мир сотворён и у него будет конец. Двадцатый век, в значительной степени изменивший многие научные представления, позволил по– иному взглянуть и на происхождение Вселенной.

Вначале было обнаружено, что Вселенная не остаётся в неизменном виде, а постоянно расширяется. Согласиться с этим положением, явно противоречащим привычным для научного сообщества представлениям, было непросто. Впервые гипотезу нестационарной Вселенной предложил в 1922 г. советский физик и математик Александр Александрович Фридман (1888–1925). Хотя Фридман в своих исследованиях опирался на теорию относительности, даже автор этой теории А. Эйнштейн не сразу согласился с его выводами. В 1912–1914 гг. американский астроном В. Слайфер обнаружил так называемое красное смещение галактик (рис. 182). Оно состояло в том, что спектр излучения далеких звёздных объектов оказался сдвинутым в длинноволновую (красную) сторону по сравнению с тем, каким он должен был быть на самом деле. Такое явление могло быть объяснено эффектом Доплера, о котором мы говорили в § 34, и в таком случае оно означало бы, что галактики от нас удаляются.

Рис. 182. Смещение галактик

В 1929 г. американский астроном Эдвин Хаббл (1889–1953) обнаружил, что для далёких галактик красное смещение оказывается большим, чем для близких, т. е. дальние галактики кажутся «краснее», чем близкие. При этом степень «покраснения» возрастает приблизительно пропорционально расстоянию (закон красного смещения, или закон Хаббла). Значит, галактики, а точнее скопления галактик, разбегаются, и скорость этого разбегания тем больше, чем дальше они находятся. Это не означает, что галактики удаляются именно от Земли, т. е. что Земля является центром Вселенной. Точно такое же разбегание можно было бы увидеть из любой точки метагалактики, т. е. «все бегут от всех». Это можно легко себе представить, если нанести на надувной шарик какие– либо отметины. При надувании шарика все они будут удаляться друг от друга.

Гипотеза Большого взрыва.

Но если это так, то расширение Вселенной должно иметь начало, т. е. было время, когда вся она была сосредоточена в одной точке. Эти рассуждения привели к возникновению гипотезы Большого взрыва. Расчёты показывают, что Большой взрыв произошёл 15–20 млрд лет назад. На вопросы о том, почему он произошёл и что было до него, точного ответа нет. Современная физика может лишь с достаточной уверенностью сказать, что происходило через некоторое время после начала рождения Вселенной. Тем не менее это «некоторое время» нельзя назвать продолжительным – оно составляет 10-43 секунды. Это такая доля секунды, где после нуля с запятой надо написать сорок два нуля, пока не появится значащая цифра. В это время будущая Вселенная представляла собой так называемую сингулярную точку, которая при ничтожных размерах содержала в себе всю энергию, которая сейчас распределена по Вселенной. Температура, которую имела эта точка, выражается тридцатидвухзначным числом. Вскоре, т. е. примерно через одну стомиллионную долю секунды, Вселенная стала расширяться, появились кварки, а затем и элементарные частицы. В это же время происходило снижение её температуры и возникли известные нам теперь четыре фундаментальных взаимодействия, которые раньше представляли собой единое целое. После этого начались термоядерные реакции, при которых протоны стали объединяться в ядра гелия. На этом этапе скорость эволюции Вселенной сильно замедлилась, и потребовалось несколько сот тысяч лет для того, чтобы возникли атомы с их электронными оболочками. В это время Вселенная наполнилась излучением, которое путешествует по ней до нашего времени. Оно называется реликтовым излучением и служит одним из доказательств теории Большого взрыва.

Расширение Вселенной, начавшееся с сингулярной точки, продолжается и в наше время. Самой интересной его особенностью, является то, что галактики разбегаются не замедленно (что должно было быть, если бы их движение тормозила сила взаимного притяжения), а, наоборот, ускоренно, как если бы их продолжала толкать какая-то сила. Для объяснения этого загадочного факта физикам пришлось ввести понятие «тёмной энергии», которая и расталкивает галактики. Сущность этой энергии остаётся ещё не вполне ясной.

Существуют и другие вопросы, связанные с Большим взрывом, на которые пока нет ответа. Например, почему в результате этого взрыва образовалось вещество, а не антивещество? По всем своим физическим и химическим свойствам оно ничем не отличается от нашего вещества, однако никогда не может вступить с ним в контакт. Если такое произойдёт, то все частицы, соединяясь со своими античастицами, аннигилируют и превратятся в кванты гамма-излучения. Если бы во время Большого взрыва образовались равные количества вещества и антивещества, они бы тут же аннигилировали и никакой Вселенной бы не существовало. Одним из возможных ответов на этот вопрос может быть гипотеза, согласно которой в начальный момент существования Вселенной вещества, так же как и антивещества, было очень много. Но случайно вещества оказалось несколько больше, чем антивещества. Всё антивещество аннигилировало, а то, что осталось от вещества, образует нашу Вселенную.

Ещё одна не вполне решённая проблема заключается в том, что основные физические константы и величины, такие как скорость света, гравитационная постоянная, постоянная Планка, массы электрона и протона, единичный заряд электрона, соотносятся между собой именно таким образом, чтобы Вселенная могла существовать. Если бы существующее соотношение хотя бы немного нарушилось, не могли бы существовать даже химические элементы, а тем более звёзды и галактики, и уж совсем невероятным было бы появление жизни и разумного наблюдателя, который мог бы всё это узнать. Почему же образовалось именно такое соотношение величин, а не какое-либо иное? Существующие ответы на этот вопрос можно свести к двум вариантам.

Антропный принцип: сильный или слабый.

Сторонники «теории разумного замысла» утверждают, что вероятность возникновения такого сочетания физических величин слишком мала для того, чтобы его можно было считать случайным, а следовательно, Вселенная была создана сознательно по какому-то первоначальному Замыслу. Такая точка зрения приводит к выдвижению Сильного (или Большого) антропного принципа:

Вселенная должна иметь свойства, позволяющие развиться разумной жизни.

Противники этой теории настаивают на случайности такого набора физических величин и, в частности, утверждают, что наша Вселенная не является единственной. Существуют другие миры, где соотношение этих констант совсем иное, а следовательно, там не существует разумных наблюдателей. Они выдвигают Слабый (Малый) антропный принцип:

во Вселенной встречаются разные значения мировых констант, но наблюдение возможно только в тех из них, где эти значения приводят к появлению наблюдателя.

(Мир, в котором мы живём, – это мир, в котором живём мы). В настоящее время ни одна из этих точек зрения не может быть ни опровергнута, ни доказана научным путём.

Возникновение галактик, Солнечной системы и Земли

Через 1–2 млрд лет после Большого взрыва возникли галактики, а ещё приблизительно через 8 млрд лет появилась Солнечная система, возраст которой, таким образом, насчитывает около 5 млрд лет. Скорее всего, Солнце образовалось благодаря сгущению гигантского облака пыли и газа, так называемой солнечной туманности (рис. 183). Центральная часть туманности образовала Солнце, которое из-за колоссального сжатия, вызванного силой притяжения между частицами, стало уменьшаться в размерах и одновременно сильно нагреваться. Энергия сжатия настолько повысила температуру Солнца, что в нём стали возможны термоядерные реакции, которые, в свою очередь, ещё больше его раскаляли.

Рис. 183. Возникновение Солнечной системы: А – разреженный межзвездный газ стал собираться в облако; Б – вещество уплотнилось и превратилось в кольца, вращающиеся вокруг центра; В – в центре образовался газовый шар, в котором началась термоядерная реакция; Г – из газовых колец возникли планеты

Из других частей туманности возникли сгустки, которые потом стали планетами. Один из таких сгустков стал Землёй. На Земле происходили примерно те же процессы, что и на Солнце, только в гораздо меньших масштабах. Вначале температура её была настолько велика, что она представляла собой раскалённый жидкий шар. В результате этого более лёгкие соединения кремния оказались на поверхности планеты, а более тяжёлые металлы сосредоточились в её ядре. Приблизительно через миллиард лет Земля остыла, и кремниевые соединения затвердели, образовав породы земной коры. При остывании Земли выделялось много различных газов, самые тяжёлые из которых остались у поверхности планеты, образовав её атмосферу. В атмосфере присутствовали также водяные пары. Когда температура Земли стала ниже 100 °C, пары сконденсировались и образовали моря и океаны.

Проверьте свои знания

1. Что такое красное смещение галактик? С помощью какого физического эффекта можно его объяснить?

2. Когда по современным представлениям произошёл Большой взрыв?

3. Через какое время после Большого взрыва возникли атомы?

4. Что такое Сильный и Слабый антропные принципы?

 

§ 66 Скорость света

Рассматривая в предыдущих главах природу света, мы не обратили внимания на одну очень важную его характеристику, а именно скорость, с которой он распространяется. Однако эта величина имеет огромное значение для понимания законов природы.

Измерение скорости света.

Подавляющее большинство античных учёных считали, что скорость света бесконечна. В дальнейшем это положение стали подвергать сомнению. Впервые вопрос об измерении скорости света поставил Галилей, однако существующие тогда способы измерения и их точность не позволяли проверить его предположение с помощью эксперимента. Многие учёные того времени, такие как Декарт и Кеплер, продолжали настаивать на бесконечной скорости распространения света.

Впервые приблизительно оценить скорость света удалось в 1676 г. датскому астроному Олафу Рёмеру. Он пытался объяснить непонятное явление, которое заключалось в том, что в те периоды, когда Юпитер находится на большом расстоянии от Земли, его спутники обращаются вокруг него медленнее, чем тогда, когда он приближается к Земле. Но время обращения спутников Юпитера не может зависеть от его расстояния до Земли. Рёмер предположил, что эта нерегулярность связана с конечной скоростью распространения света, которому требуется различное время для преодоления больших и малых расстояний. Ему удалось рассчитать скорость света, которая, как впоследствии оказалось, довольно близка к истинной. Эта точка зрения вначале вызвала резкие возражения со стороны последователей Декарта, но спустя полвека была подтверждена в более точных наблюдениях и с тех пор получила всеобщее признание.

В середине XIX в. удалось измерить скорость света в земных условиях. При этом оказалось, что она зависит от того, в какой среде свет распространяется. Так, скорость света в воде составляет 3/4 от его скорости в воздухе. С наибольшей скоростью свет распространяется в вакууме, где она по современным измерениям составляет 299 792 458 м/с, или округлённо 300 тыс. км в секунду. Несмотря на то что эта скорость очень велика, она всё же не бесконечна. От Солнца до Земли свет идёт около восьми минут, так что если Солнце внезапно потухнет, то мы узнаем об этом не сразу, а только через восемь минут. В предыдущем параграфе мы говорили о том, что существуют звёзды и галактики, отстоящие от Земли на миллионы и даже на миллиарды световых лет. Это значит, что только сейчас до нас дошёл свет, который они испустили миллионы лет назад. Мы видим их не такими, какие они сейчас, а такими, какими они были очень давно. Если, например, астрономы обнаружили вспышку сверхновой звезды, отстоящей от нас на сто миллионов лет, то это значит, что вспышка произошла сто миллионов лет назад.

Вскоре удалось показать, что скорость света не зависит от скорости того источника, из которого этот свет был испущен. Приведём пример. Если орудие, установленное на движущемся танке, выстрелит одновременно с точно таким же неподвижным орудием, то танковый снаряд полетит быстрее, так как скорость его вылета сложится со скоростью танка. Если же они одновременно зажгут прожекторы, то скорости обоих лучей не будут различаться. Ранее мы говорили о том, что со времён Гюйгенса общепринятым было мнение, что эти колебания происходят в особой среде – эфире, который иногда называли также светоносным эфиром. Эфир заполняет всю Вселенную, проникая во все материальные тела, и заполняет даже абсолютный вакуум. Он неподвижен, а все предметы проходят сквозь него подобно ситу, движущемуся в воде.

Здесь напрашивается сравнение со звуком. Представьте себе, что воздух, в котором распространяется звук, неподвижен (т. е. погода безветренная), а через него едет открытый автомобиль. Пассажиры автомобиля ощущают сильный ветер, дующий им навстречу. Из-за этого скорость звука в направлении от заднего сиденья к переднему будет меньше обычной, а в направлении от переднего сиденья к заднему – больше обычной. Пассажир на заднем сиденье легко расслышит слова водителя, но водитель с трудом услышит слова, сказанные пассажиром. Физики XIX столетия были уверены в том, что эфир должен вести себя точно так же, как и воздух, навстречу движущейся вокруг Солнца Земле должен дуть «эфирный ветер», который увеличивает или уменьшает скорость света в зависимости от направления, в котором этот свет распространяется. Измерив разницу между скоростью света, движущегося в восточном и западном направлении, можно определить скорость движения Земли относительно неподвижного эфира, её абсолютную скорость.

Опыты Майкельсона и Морли.

Такое измерение в 1881 г. провёл американский физик Альберт Майкельсон (1852–1931) с помощью сконструированного им прибора. Результат был поразительным. К своему величайшему удивлению, ни в одном направлении компаса он не обнаружил разницы в скорости, с которой свет проходил определённые расстояния. Это было похоже на то, как если бы пассажиры движущегося автомобиля не замечали дующего им в лицо встречного ветра. Большинство физиков отказались верить результатам опыта Майкельсона, впрочем, он и сам им не очень доверял, поскольку используемый им прибор не обладал очень высокой точностью. Однако, не обнаружив ошибок в своём опыте, он старался повторить его. Вскоре он познакомился с профессором химии одного американского университета Эдвардом Морли (1839–1923), и оба исследователя приступили к совместным экспериментам. В 1887 г. они провели знаменитый эксперимент Майкельсона – Морли, ставший одной из поворотных точек физики.

Прибор представлял собой систему зеркал, направлявшую световой пучок в определённом направлении. Лучи света отражались от зеркал, так что свет двигался несколько раз туда и обратно. Это было сделано для того, чтобы удлинить путь пробега. В то же время другая система зеркал точно так же заставляла пучок света пробегать в направлении, перпендикуляром первому. Предполагалось, что, когда прибор будет повёрнут так, что один из пучков будет пробегать туда и обратно параллельно эфирному ветру, а другой – в перпендикулярном ему направлении, время, за которое они будут проходить одинаковые расстояния, будет различным. Но результаты снова поразили и самих исследователей, и всех физиков в мире. Несмотря на то что Майкельсон и Морли поворачивали свой прибор, они не обнаружили и следа эфирного ветра. Такой результат невозможно было объяснить в рамках физики того времени. Впоследствии Майкельсон и Морли, а также и другие экспериментаторы многократно повторяли опыт, но эфирного ветра так и не было обнаружено.

Такие результаты требовали объяснения. Проще всего было бы предположить, что Земля неподвижна, но в XIX в. в это уже никто не мог поверить. Наилучшим объяснением была теория, утверждающая, что эфир увлекается Землёй подобно воздуху в закрытом автомобиле. Но другие опыты опровергли такое объяснение. Лучший выход из этого запутанного положения нашёл Альберт Эйнштейн, создавший теорию относительности.

Проверьте свои знания

1. Как называлась среда, в которой, как предполагали физики до конца XIX в., распространяется свет?

2. Сравните распространение света и звука. В чём их сходство и отличия?

3. В чём состояло открытие Майкельсона и Морли?

4. Какие гипотезы предлагали учёные для объяснения результатов экспериментов Майкельсона – Морли?

 

§ 67 Основы теории относительности

В работе, опубликованной в 1905 г., Эйнштейн сделал очень важное заключение. Он утверждал, что причина, по которой Майкельсон и Морли не могли наблюдать эфирный ветер, в том, что эфирного ветра нет.

Как мы знаем, классическая физика Галилея и Ньютона утверждает, что если вы находитесь внутри равномерно движущегося тела, скажем в вагоне поезда, и при этом не видите окружающий пейзаж, то не существует такого механического эксперимента, с помощью которого вы могли бы доказать, что движетесь. Если вы подбросите шарик прямо вверх, он упадёт прямо вниз. Всё происходит точно так же, как если бы поезд стоял. В то же время наблюдатель, стоящий на земле около вагона, если бы он умел видеть сквозь стены, увидел бы путь шарика кривым. По отношению к нему шарик опускался бы не в той же точке, откуда взлетал.

Теория относительности – это шаг вперед от физики Галилея– Ньютона. Она утверждает, что равномерное движение невозможно обнаружить не только с помощью механического измерения, но также и с помощью оптического измерения, т. е. измерения путём наблюдения электромагнитного излучения. Другими словами, если вы даже видите пробегающий за окном пейзаж, вы не сможете установить (конечно, если поезд движется абсолютно равномерно), что же именно движется – поезд или Земля.

Часто приходится слышать, что теория относительности утверждает, что всё в мире относительно, что она разрушает все абсолюты. Это утверждение совершенно неверно. В теории относительности есть по крайней мере одна абсолютная величина – скорость света в вакууме. В уравнениях её обозначают латинской буквой с. В классической физике скорость света должна была меняться в зависимости от движения наблюдателя. Но в опытах Майкельсона и Морли это положение было опровергнуто – скорость света была постоянной, независимо от того, был ли свет направлен вдоль или поперёк вращения Земли. Значит, неважно, как движется источник света или наблюдатель, скорость света по отношению к наблюдателю не меняется. Представим себе, что космонавт летит в космическом корабле вдоль светового луча со скоростью, равной половине скорости света. Измерения покажут, что свет относительно него всё равно движется со скоростью 300 000 км/с. Если бы свет двигался медленнее, то это означало бы, что навстречу движения корабля дует тот самый эфирный ветер, который обнаружить не удалось. А что будет, если космонавт движется по направлению к источнику света? Казалось бы, что свет приближается к нему в полтора раза быстрее. На самом деле свет всё равно движется к нему со скоростью 300 000 км/с.

Относительность одновременности.

Чтобы объяснить теорию относительности, Эйнштейн предложил мысленный эксперимент. Представим себе двух наблюдателей А и В, первый из которых стоит около железнодорожного пути, а второй движется по этому пути в очень быстром поезде(рис. 184). На равном расстоянии от наблюдателя А по направлению движения поезда и против него находятся точки X и Y. В тот момент, когда наблюдатель В, т. е. пассажир, окажется рядом с наблюдателем А, в точках X и Y одновременно вспыхивает молния. Стоящий на месте увидит эти вспышки в одно и то же мгновение и будет считать, что они одновременны. Но пассажир движется навстречу точке X и удаляется от Y, поэтому он увидит вспышку в X несколько раньше, чем в Y. Если пассажир знает, что он движется таким образом, то он учтёт эту разницу и согласится с тем, что молнии ударили одновременно. Но как он может это выяснить? С таким же правом можно предположить, что поезд покоится, а Земля под его колёсами бежит назад.

Таким образом, приходится заключить, что на вопрос о том, были ли вспышки одновременными, нельзя ответить однозначно: всё зависит от выбора системы отсчёта. Конечно, если два события одновременно происходят в одной и той же точке, они, безусловно, одновременны. Но чем больше расстояние между событиями, тем труднее решить вопрос об их одновременности. И дело не в том, что мы не способны установить истинную одновременность, а в том, что этой истинной одновременности не существует.

Рис. 184. Мысленный эксперимент, предложенный Эйнштейном (относительность одновременности)

Во Вселенной нет абсолютного времени, в котором такая одновременность может быть измерена.

Относительность времени.

Вместе с относительностью одновременности стали относительными и другие физические понятия. Время стало относительным, поскольку нет возможности установить, сколько его прошло между одними и теми же событиями. Для того чтобы разобраться в этом, представим себе пассажира, который направляет на зеркальный потолок луч от фонарика. Отразившись от потолка, этот луч вернётся вниз в ту же точку, из которой он вышел, и таким образом пройдёт расстояние, равное двойной высоте вагона. Но наблюдатель, стоящий на перроне, увидит другую картину. За то время, что луч света пройдёт от фонарика до зеркала, само зеркало вследствие движения поезда переместится. Пока луч будет возвращаться, фонарик переместится ещё на такое же расстояние. Таким образом, для наблюдателя на платформе свет пройдёт большее расстояние, чем для наблюдателей в поезде. Но ведь скорость света абсолютна, она одинакова и для пассажиров, и для людей, стоящих на перроне. По этой причине можно сделать вывод, что между отправлением и возвращением света на перроне прошло больше времени, чем в поезде. Само собой разумеется, что находящиеся в поезде пассажиры будут думать наоборот. Ведь они могут считать, что находятся в покое, а перрон едет мимо них. С их точки зрения, перронные часы будут показывать большее время по сравнению с теми часами, которые находятся в поезде. Каждый наблюдатель будет думать, что любые движущиеся относительно него часы спешат.

Относительность расстояния.

Посмотрим теперь, что происходит при таких высоких скоростях с пространством. Представьте себе, что поезд Эйнштейна проносится мимо перрона, имеющего длину 2 400 000 км (рис. 185). Если он движется со скоростью 240 000 км/с, то по показаниям станционных часов голова поезда проскочит этот перрон за 10 с. Но по часам пассажиров поезд пройдёт перрон за меньшее время, скажем, за 6 с. Значит, при той же скорости длина перрона будет уже не 2 400 000 км, а 240 000 • 6 = 1 440 000 км. Точно так же и длина самого поезда для сидящих в нём пассажиров будет больше, чем для стоящих на перроне наблюдателей. Если разобраться, то в этом нет ничего удивительного. Мы ведь знаем, что, если два человека смотрят друг на друга с большого расстояния, то каждому из них кажется, что другой меньше его, хотя на самом деле они могут быть одного роста.

Относительность массы

Теория относительности доказывает также, что и масса тела, с точки зрения движущегося относительно неё наблюдателя, кажется большей, чем для наблюдателя, неподвижного по отношению к ней. Такую увеличенную массу называют релятивистской (от лат. relativus – относительный).

Рис. 185. Относительность расстояния: А – наблюдатели на перроне; Б – пассажир в поезде

В противоположность ей массу, измеренную относительно неподвижного наблюдателя, называют массой покоя. Поскольку все элементарные частицы движутся, как правило, с очень большой скоростью, их релятивистская масса обычно оказывается значительно больше их массы покоя. Фотон же вообще не имеет массы покоя, он всегда движется со скоростью света (или, в случае если свет распространяется не в вакууме, достаточно близкой к ней).

Скорость света – предельная скорость во Вселенной.

Из теории относительности также следует, что ничто в мире не может двигаться со скоростью, большей, чем скорость света. Если какой-либо объект будет двигаться со скоростью света, его длина будет восприниматься со стороны как нулевая, время на нём– остановившимся, а масса – бесконечно большой. При этом наблюдатели, находящиеся на этом объекте, никаких изменений не заметят. Поэтому все рассуждения о том, что произойдёт с космическим кораблём, если он будет лететь со сверхсветовой скоростью, следует оставить писателям-фантас там.

Теория относительности и повседневная жизнь

Таким образом, теория относительности вносит поправки в классическую механику Ньютона. Из этого ни в коем случае не следует, что эту механику надо отбросить. Поправки теории относительности, или, как их называют, релятивистские поправки, практически абсолютно незаметны при тех скоростях, с которыми мы сталкиваемся в реальной жизни. Поэтому в повседневной жизни мы вполне можем обходиться классической механикой, а релятивистские поправки учитывать только при исследовании либо макромира с его огромными скоростями и расстояниями, либо микромира, где расстояния весьма невелики, но скорости часто бывают огромными.

Всё, о чём здесь было рассказано, относится к специальной теории относительности. Существует ещё общая теория относительности, разработанная Эйнштейном позже. Она затрагивает вопросы геометрии Вселенной и её связь с гравитацией. Её мы в этом учебнике рассматривать не будем.

Проверьте свои знания

1. Какая физическая величина считается абсолютной в теории относительности?

2. Какие физические величины по-разному оцениваются наблюдателями, движущимися относительно друг друга?

3. Почему в повседневной жизни при физических и инженерных расчётах не используют релятивистские поправки?

Задания

1. Подумайте, будут ли часы идти медленнее в летящем космическом корабле.

2. Рассчитайте, с какой скоростью должен лететь космический корабль, чтобы космонавт на его борту смог встретить начало четвёртого тысячелетия по земному летоисчислению.

3. Если в результате расширения Вселенной всё вещество когда– нибудь распадётся и будут существовать только световые частицы, будет ли это означать конец времени? Обсудите это в классе. Выскажите свою точку зрения и объясните её.

Ваша будущая профессия

1. Какие профессии появились в XX–XXI вв. в связи с исследованием космоса?

2. Используя материал сайта (Научно-исследовательский центр подготовки космонавтов им. Ю. А. Гагарина), сделайте стендовый доклад о подготовке космонавтов. (Предварительно распределите с одноклассниками темы.) Из полученных стендовых докладов организуйте школьную выставку, приуроченную к Дню космонавтики.

3. Космонавтом или астронавтом называют человека, проводящего испытания или эксплуатацию космической техники в космическом полёте. Однако понятие космического полёта в разных странах различно. Поэтому общее число космонавтов в мире может отличаться от источника к источнику. Используя дополнительные источники информации, выясните, какие критерии космического полёта существуют в Международной федерации аэронавтики, в России и в других странах.