глава, в которой гравитационные волны несут к Земле закодированные симфонии столкновений черных дыр, а физики изобретают инструменты, чтобы следить за этими волнами и расшифровывать эти симфонии

Симфонии

В ядре удаленной галактики за миллиард световых лет от Земли и миллиард лет тому назад образовался плотное скопление из газа и сотен миллионов звезд. Скопление постепенно сжималось, поскольку то одна, то другая звезда выскакивала наружу, а оставшиеся 100 миллионов еще плотнее сбивались в центре. После 100 миллионов лет скопление сжалось до размера в несколько световых лет, и маленькие звезды начали иногда сталкиваться и сливаться, формируя большие звезды. Большие звезды потребляли их топливо и затем схлопывались, образуя черные дыры, а черные дыры, пролетая вблизи друг друга, иногда объединялись в пары и начинали обращаться вокруг друг друга.

Рисунок 10.1 показывает вложенные диаграммы для одной такой двойной черной дыры. Каждая дыра создает глубокую яму (сильное искривление пространства-времени) во вложенной поверхности, и поскольку дыры обращаются вокруг друг друга, вращающиеся ямы производят рябь кривизны, которая начинает распространяться во все стороны со скоростью света. Рябь формирует разворачивающуюся спираль в материи пространства-времени вокруг двойной системы, напоминающую струи воды от быстровращающегося разбрызгивателя на лужайке.

Так же как каждая капля воды летит от разбрызгивателя в сторону почти по радиусу, так и каждый кусочек кривизны летит в сторону от черных дыр почти по радиусу; и так же как летящие в стороны капли все вместе образуют спиральные струи воды, так и все кусочки кривизны вместе формируют спиральные хребты и долины в ткани пространства-времени.

10.1. Вложенная диаграмма, изображающая искривление пространства в плоскости орбиты двойной системы, образованной двумя черными дырами. В центре — две ямы, которые представляют сильное искривление пространства-времени вокруг двух дыр. Эти ямы — такие же, как и те, с которыми мы сталкивались на предыдущих вложенных диаграммах черных дыр, например, на рис. 7.6. Поскольку дыры обращаются относительно друг друга, они создают распространяющуюся во все стороны рябь кривизны, называемую гравитационными волнами. [Предоставлено Проектом LIGO, Калифорнийский технологический институт]

Так как кривизна пространства-времени — это то же самое, что гравитация, рябь кривизны является фактически волнами гравитации, или гравитационными волнами. Общая теория относительности Эйнштейна недвусмысленно предсказывает, что такие гравитационные волны должны появляться всякий раз, когда две черные дыры начинают обращаться вокруг друг друга, так же как и вообще в случае обращения вокруг друг друга двух любых звезд.

Улетая в окружающее пространство, гравитационные волны толкают дыры к центру, аналогично тому, как пуля дает отдачу стреляющему ружью. Отдача волн приводит к сближению черных дыр и к ускорению их обращения, т. е. она заставляет их двигаться друг к другу по медленно закручивающейся внутрь спирали. Закручивающаяся спираль постепенно высвобождает гравитационную энергию, одна половина которой уходит в волны, а другая в увеличение орбитальных скоростей черных дыр.

10.2. Вложенные диаграммы, изображающие кривизну пространства вокруг двойной системы, состоящей из двух черных дыр. Диаграммы были дополнительно разрисованы художником, чтобы создать ощущение движения. Каждая следующая диаграмма показывает более поздний момент времени в процессе сближения двух дыр по скручивающейся спирали. На диаграммах (а) и ( б) горизонты дыр — круги у основания ям. Горизонты сливаются как раз перед диаграммой ( в ), образуя единый, имеющий форму гантели горизонт. Вращающаяся гантель испускает гравитационные волны, которые уносят ее деформацию, оставляя позади гладкую вращающуюся черную дыру Керра на диаграмме (г). [Предоставлено Проектом LIGO, Калифорнийский технологический институт]

Спиральное обращение черных дыр происходит сначала медленно, но чем ближе дыры подходят друг к другу, тем быстрее они движутся, тем интенсивнее порождаемая ими рябь кривизны, тем быстрее они теряют энергию и тем быстрее происходит скручивание спирали (рис. 10.2а, б). В конечном счете, когда каждая дыра приобретает скорость, почти равную скорости света, их горизонты соприкасаются и сливаются. Там, где ранее было две дыры, теперь остается только одна быстро вращающаяся гантелевидная дыра (рис. 10.2в). При вращении этого гантелевидного горизонта излучается рябь кривизны, и эта рябь толкает утолщения к центру дыры, постепенно сближая концы гантели, пока они не исчезают (рис. 10.2 г). Горизонт вращающейся дыры становится совершенно гладким и круглым в экваториальном поперечном сечении, в точном соответствии с формой, следующей из решения уравнения поля Эйнштейна, полученного Керром (глава 7).

Исследуя окончательную гладкую черную дыру, невозможно никаким образом узнать ее прошлую историю. Нельзя различить, была ли она образована при слиянии двух меньших дыр или прямым схлопыванием звезды, состоящей из вещества, или даже схлопыванием звезды, состоящей из антивещества. Черная дыра не имеет никаких «волос», которые позволили бы расшифровать ее историю (глава 7).

Однако история полностью все же не потеряна. Осталась запись: она закодирована в ряби кривизны пространства-времени, которую испускали сливающиеся дыры. Эти волны кривизны похожи на звуковые волны симфонии. Так же как симфония кодируется в модуляции звуковых волн (большая амплитуда здесь, меньшая там, более высокая частота колебаний здесь и более низкая там), история слияния кодируется в модуляциях ряби кривизны. И так же как звуковые волны доносят от оркестра до аудитории закодированную симфонию, летящая рябь кривизны несет остальной Вселенной закодированную историю слияния черных дыр.

Рябь кривизны начинает свое путешествие наружу, проходя через ткань пространства-времени и через скопление звезд и газа, где родились две дыры. Скопление нисколько не поглощает и не искажает эту рябь, и закодированная в ней история остается совершенно неизменной. Направленная наружу рябь распространяется через материнскую галактику скопления, а затем в межгалактическом пространстве через кластер галактик, в котором находится материнская галактика, а затем далее от одного кластера к другому к нашей метагалактике, к нашей собственной галактике Млечный Путь, в нашу Солнечную систему, проходит через Землю и улетает дальше к другим далеким галактикам.

Если мы, люди, будем достаточно умны, мы сможем отследить пролетающую рябь кривизны. Наши компьютеры помогут перевести ее в звуковые колебания, и мы тогда сможем услышать симфонию черных дыр: симфонию, в которой сначала высота тона и громкость постепенно повышаются, когда черные дыры сходятся по спирали, затем звук странным образом меняется, когда они сливаются в одну деформированную дыру, и затем медленно опадает на одной ноте, когда постепенно уменьшаются и исчезают образовавшиеся выпячивания горизонта.

Если мы сможем расшифровать этот сигнал, симфония муара будет содержать массу информации:

1. Симфония будет содержать подпись, гласящую: «Я пришла от пары черных дыр, которые сходятся по закручивающейся спирали и сливаются». Это будет той абсолютно определенной подписью черной дыры, которую астрономы до настоящего времени напрасно искали с помощью света, рентгеновского излучения (глава 8) и радиоволн (глава 9). Поскольку свет, рентгеновское излучение и радиоволны рождаются далеко от горизонта дыры и поскольку они излучаются другим видом материи (горячими, высокоскоростными электронами), который совершенно отличается от того, из которого сделана дыра (чистая кривизна пространства-времени), постольку они, распространяясь через лежащее на пути вещество космоса, могут сильно искажаться, донося до нас довольно мало информации о дыре и никаких однозначных подписей. Рябь кривизны (гравитационные волны) в отличие от этого рождается очень близко к горизонту сливающихся дыр. Она состоит из той же самой материи (деформация ткани пространства-времени), что и сами дыры, она вообще не искажается, распространяясь через вещество и, как следствие, она может донести до нас подробную информацию о дырах и определенную подпись черной дыры.

2. Симфония ряби может рассказать нам о том, насколько тяжелой была каждая из дыр, как быстро они вращались, какая форма была у их орбит (круговая? вытянутая?), где находятся на нашем небе эти дыры и как далеко они от Земли.

3. Симфония будет содержать частичную карту кривизны пространства-времени сходящихся по спирали дыр. Впервые мы сможем определенно проверить предсказания общей теории относительности относительно черных дыр: согласуется ли карта, нарисованная на основании симфонии, с решением уравнений поля Эйнштейна, полученным Керром (глава 7)? Покажет ли эта карта завихрение пространства около черной дыры, которое требует решение Керра? Согласуется ли количественно это завихрение с решением Керра? Согласуется ли с решением Керра изменение завихрения при приближении к горизонту?

4. Симфония опишет слияние горизонтов этих двух дыр и неопределенных колебаний сразу после начала слияния дыр колебаний, о которых сегодня мы имеем только самое неопределенное представление. Мы понимаем их только в общих чертах, поскольку они управляются особенностью общих законов теории относительности Эйнштейна, которую мы плохо понимаем: нелинейностью (Врезка 10.1). «Нелинейность» означает, что сильная кривизна приводит к еще более сильной кривизне, которая в свою очередь рождает еще большую кривизну, так же как происходит нарастание лавины, когда струйка скользящего снега втягивает в движение новый снег, который в свою очередь захватывает еще больше снега, пока весь заснеженный склон горы не приходит в движение. Мы понимаем, как ведет себя эта нелинейность в статичной черной дыре; там она отвечает за удержание дыры — это «клей» дыры. Но мы не понимаем то, что собой представляет нелинейность и как она ведет себя, к каким эффектам она приводит, когда сильная кривизна является чрезвычайно динамической. Слияние и вибрация двух дыр является той перспективной «лабораторией», в которой мы можем найти такое понимание. Понимание может прийти лишь при тесном сотрудничестве физиков-экспериментаторов, которые ловят рябь кривизны от сливающихся дыр, приходящую из удаленных частей Вселенной, и физиков-теоретиков, которые моделируют слияние на суперкомпьютерах.

Врезка 10.1

Нелинейность и ее следствия

Величину называют линейной , если ее полное значение является суммой ее частей, иначе она нелинейна.

Мой семейный доход линеен: он является суммой зарплаты моей жены и моей собственной. Сумма, которая находится в моем пенсионном фонде, нелинейна — это не сумма всех вкладов, которые я туда внес, она гораздо больше, поскольку каждый вклад приводит к вложениям фонда, дающим прибыль, которая, в свою очередь, вкладывается снова, давая свои проценты.

Объем воды, текущей в трубе сточного коллектора, линеен — это сумма вкладов от всех домов, которые присоединены к трубе. Объем снега, обрушивающегося в лавине, нелинеен — слабая струйка снега может вызвать сползание всего заснеженного склона горы.

Линейные явления просты, их легко анализировать и легко предсказывать. Нелинейные явления сложны и трудно предсказуемы. Линейные явления показывают только небольшое число видов поведения, которые легко классифицировать. Нелинейные явления показывают большое богатство типов поведения, разнообразие которых ученые и инженеры только начали оценивать в последние годы, когда столкнулись с таким видом нелинейного поведения, как хаос. (Изящное введение в понятие хаоса см. в книге Gleick, 1987.)

Когда кривизна пространства-времени мала (как в Солнечной системе), она почти линейна, например, океанские приливы на Земле являются суммой приливов, обусловленных кривизной пространства-времени, созданной Луной (приливная гравитационная сила), и приливов, вызванных Солнцем. В отличие от этого, когда кривизна пространства-времени становится сильной (как при большом взрыве или около черной дыры), общие релятивистские законы гравитации Эйнштейна предсказывают, что кривизна должна быть чрезвычайно нелинейной — одним из самых нелинейных явлений во Вселенной. Однако у нас пока еще почти нет экспериментальных данных, показывающих нам эффекты гравитационной нелинейности, и мы еще настолько неопытны в решении уравнений Эйнштейна, что можем их решать и знаем о поведении этой нелинейности только в простых ситуациях, например, вокруг статичной вращающейся черной дыры.

Статичная черная дыра обязана своим существованием гравитационной нелинейности: без гравитационной нелинейности дыра не могла бы поддерживать себя, так же как без нелинейности газа не могло бы сохраняться большое красное пятно на Юпитере. Когда схлопывающаяся звезда, образующая черную дыру, исчезает под горизонтом дыры, она теряет возможность каким-либо образом влиять на дыру и, что самое важное, гравитация звезды больше не может поддерживать черную дыру. В этом случае звезда продолжает существовать исключительно благодаря гравитационной нелинейности: кривизна пространства-времени черной дыры непрерывно нелинейно регенерируется, без помощи звезды; и самообразующаяся кривизна служит «клеем», связывающим черную дыру воедино.

Статичная черная дыра разожгла наш аппетит, и нам хочется узнать больше. К каким другим явлениям может привести гравитационная нелинейность? Некоторые ответы могут прийти от слежения и расшифровки ряби кривизны пространства-времени, вызванной слиянием черных дыр. Там мы могли бы увидеть хаотическое, причудливое поведение, которое совсем не ожидали.

Для достижения этого понимания потребуется слежение за симфонической рябью кривизны от черных дыр. Как можно за ней следить? Ключом является материальная природа кривизны: кривизна пространства-времени является тем же самым, что и гравитационные приливные силы. Кривизна пространства-времени, созданная Луной, вызывает на Земле океанские приливы и отливы (рис. 10.3а); аналогичные приливы должна вызывать и рябь кривизны пространства-времени в гравитационной волне (рис. 10.3б).

Общая теория относительности настаивает, однако, что океанские приливы, вызванные Луной и гравитационной волной, имеют три главных отличия. Первое отличие — распространение. Приливные силы гравитационной волны (рябь кривизны) походят на световые волны или радиоволны. Они распространяются от источника к Земле со скоростью света, колеблясь в процессе распространения. В отличие от этого, приливные силы Луны напоминают электрическое поле заряженного тела. Так же как электрическое поле жестко связано с заряженным телом и всегда перемещается вместе с телом, как иголки перемещаются вместе с ежом, приливная сила жестко связана с Луной, и Луна несет ее с собой постоянно в неизменном виде, всегда готовую достать и сжимать и растягивать все, что попадает в ее поле действия. Приливные силы Луны сжимают и растягивают океаны Земли так, что кажется, что происходят изменения каждые несколько часов, только потому, что Земля вращается в поле этих сил. Если бы Земля не вращалась, то растяжение и сжатие были бы постоянными и неизменными.

10.3. Приливные силы, вызванные Луной и гравитационной волной. (а) Приливные силы Луны растягивают и сжимают океаны Земли. Растяжение происходит в продольном направлении, а сжатие — в поперечном. (б) Приливные силы гравитационной волны растягивают и сжимают океаны Земли. Эти силы полностью поперечны и создают растяжение в одном поперечном направлении, а сжатие в другом

Второе отличие — направление приливов (рис. 10.3а, б)\ Луна вызывает приливные силы во всех пространственных направлениях. Она растягивает океаны в продольном направлении (по направлению к Луне и от нее) и сжимает в поперечных направлениях (перпендикулярных направлению на Луну). В отличие от этого, гравитационная волна вообще не производит никаких приливных сил в продольном направлении (вдоль направления распространения волны). Однако в поперечной плоскости волна растягивает океаны в одном направлении (направление вверх-вниз на рис. 10.3б) и сжимает по другому направлению (направление вперед-назад на рис. 10.36). Эти растяжения и сжатия являются колебательными. Когда проходит гребень волны, растяжение происходит в направлении вверх-вниз, а сдавливание в направлении вперед-назад, при проходе минимума все меняется, и сжатие происходит в направлении вперед-назад, а растяжение в направлении вверх-вниз, с прибытием следующего гребня все опять переворачивается, снова с растяжением в направлении вверх-вниз и сжатием в направлении вперед-назад.

Третье отличие между лунными приливами и приливами, вызванными гравитационными волнами, состоит в их величине. Луна вызывает приливы высотой около 1 м, поэтому разность между приливом и отливом составляет около 2 метров. В отличие от этого, гравитационные волны от сливающихся черных дыр должны вызывать океанский прилив на Земле не выше 10-14 м, т. е. на 10-21 часть размера Земли (в 10000 раз меньше размера атома и всего в 10 раз больше размера атомного ядра). Поскольку приливные силы пропорциональны размерам объекта, на который они действуют (глава 2), гравитационные волны будут приливным образом деформировать любой объект, на который они действуют, на 10-21 часть его размера. В этом смысле величина 10-21 является амплитудой волн, достигающих Земли.

Почему эти волны такие слабые? Потому что сливающиеся черные дыры находятся от нас так далеко. Амплитуда гравитационных волн, так же как и световых волн, ослабляется обратно пропорционально пройденному расстоянию. Когда волны еще находятся близко к черным дырам, их амплитуда имеет порядок 1, что означает, что они сжимают и растягивают любой объект на величину, сравнимую с размером объекта. Человек был бы немедленно убит таким сильным растяжением или сжатием. Однако когда волны достигают Земли, их сила ослабляется примерно на величину (1/30 окружности черной дыры)/(рассто-яние, пройденное волной). Для черных дыр, имеющих массу в 10 солнечных, находящихся на расстоянии в миллиард световых лет от нас, эта амплитуда волны (1/30) х (180 километров окружности гори-зонта)/(миллиард световых лет) ≈ 10-21. Поэтому волны изменяют размер океанов Земли на величину 10-21 х (107 метров размера Земли) ≈ 10-14 метра, что в 10 раз больше размеров атомного ядра.

Совершенно безнадежно, конечно, пытаться измерить такой крошечный прилив на поверхности волнующегося океана. Не таким безнадежным делом оказываются, однако, перспективы измерить приливные силы гравитационных волн, действующие на тщательно сконструированный лабораторный прибор — детектор гравитационных волн.

Болванки

Джозеф Вебер был первым человеком, который имел достаточно интуиции, чтобы понять, что попытки детектирования гравитационных волн совсем не безнадежны. Он был выпускником Военно-морской академии США со степенью бакалавра инженерного дела. Во время второй мировой войны он служил на авианосце Лексингтон, пока тот не затонул во время боя в Коралловом море, затем стал командным офицером на охотнике за подводными лодками № 690 и сопровождал бригадного генерала Теодора Рузвельта младшего и 1900 десантников во время высадки на берег при вторжении в Италию в 1943 г. После войны он стал главой Отдела электронного противодействия Бюро кораблей военно-морских сил США. Его репутация эксперта по радио и радарным технологиям была настолько велика, что в 1948 г. ему была предложена и им принята позиция профессора электротехники в Мэрилендском университете — полного профессора в возрасте двадцать девять для всего лишь выпускника колледжа со степенью бакалавра.

Преподавая электротехнику в Мэриленде, Вебер готовился к изменениям в своей карьере: он работал над диссертацией и получил степень Ph.D в области физики в Католическом университете, частично под руководством того же человека, который был руководителем Джона Уиллера, Карла Херцфельда. От Херцфельда Вебер узнал достаточно о физике атомов, молекул и излучения, чтобы в 1951 г. изобрести собственный вариант лазера, но у него не было тогда возможности для экспериментальной демонстрации своей концепции. Тогда же, когда Вебер опубликовал свое предложение, две другие исследовательские группы: одна в Колумбийском университете, возглавляемая Чарльзом Таунсом, а другая в Москве, под руководством Николая Геннадьевича Басова и Александра Михайловича Прохорова, независимо изобрели альтернативные варианты механизма и создали рабочие варианты лазеров. И хотя статья Вебера была первой публикацией по поводу механизма работы лазеров, он не получил никакого признания: Нобелевская премия и патенты ушли ученым Москвы и Колумбии. Разочарованный, но сохранивший дружеские отношения с Таунсом и Басовым, Вебер задумался о новом направлении исследований.

Как часть этих исследований Вебер провел год в группе Джона Уиллера, став специалистом в области общей теории относительности и сделав вместе с Уиллером теоретические исследования о свойствах гравитационных волн, следующих из этой теории. К 1957 г. он нашел свое новое направление. Он начал разворачивать первую в мире программу детектирования и слежения за гравитационными волнами.

В конце 1957, весь 1958 и начало 1959 г. Вебер пытался изобрести различные схемы детектирования гравитационных волн. Это были упражнения ума с помощью карандаша и бумаги, а не экспериментальные усилия. Он заполнил идеями, возможными конструкциями детектора и вычислениями четыре 300-страничные тетради. Одна за другой идея отставлялась как бесперспективная. Одна конструкция за другой оказывалась малочувствительной. Но некоторые все-таки оставляли надежду, и из них Вебер в конце концов выбрал конструкцию, основанную на цилиндрической алюминиевой болванке, длиной около 2 метров, диаметром в полметра, весящей 1 тонну, ориентированную широкой частью к приходящей волне (рис. 10.4).

Приливные силы гравитационных волн будут сначала сжимать, потом растягивать, затем снова сжимать концы такой болванки. Болванка имеет собственную моду колебаний, которая может резонансным образом откликаться на эту осциллирующую приливную силу, моду, у которой концы болванки вибрируют относительно ее центра. Эта собственная мода, как звон колокольчика, настроечного камертона или винного бокала, имеет хорошо определенную частоту, так же как определенную частоту имеет колокольчик, камертон или винный бокал. Так же как колокольчик, камертон и бокал можно заставить откликаться в унисон звуковым волнам, соответствующим их собственной частоте, болванка может вибрировать в унисон с колебаниями приливной силы, имеющими частоту, равную частоте собственной моды. Чтобы использовать подобный твердотельный гравитационно-волновой детектор, нужно подстроить его размер под собственную частоту, соответствующую частоте приходящих гравитационных волн.

Какие это могут быть частоты? В 1959 г., когда Вебер разворачивал свой проект, мало кто верил в черные дыры (глава 6), а те, кто верил, мало пока понимали их свойства. Никто и представить не мог, что черные дыры могут сталкиваться и сливаться, порождая рябь кривизны пространства-времени с закодированной информацией об истории столкновений. Никто не мог дать предположительных указаний и на другие источники гравитационных волн.

Поэтому Вебер начинал свои усилия практически вслепую. Его единственной зацепкой была грубая (но правильная) оценка, что гравитационные волны, вероятно, должны иметь частоты, существенно ниже примерно 10000 Гц (10000 колебаний в секунду) — это соответствует частоте обращения объекта, движущегося со скоростью света (максимально возможной) около самой компактной разумной звезды по орбите, имеющей длину окружности близкую к критической. Таким образом, Вебер сконструировал самые лучшие, какие только мог, детекторы, имеющие резонансные частоты, лежащие ниже 10000 Гц, и надеялся, что Вселенная обеспечит волны на выбранной частоте. Ему повезло. Резонансные частоты его болванок были около 1000 Гц (1000 колебаний в секунду), и оказалось, что некоторые волны от сливающихся черных дыр должны колебаться как раз на этой частоте, так же как волны от взрывов сверхновых и сливающихся пар нейтронных звезд.

Наиболее сложным аспектом проекта Вебера было создание датчика для слежения за колебаниями твердотельных антенн. Эти вызванные гравитационными волнами колебания, как он ожидал, должны быть ничтожно малы, меньше размера ядра атома [но в 1960-х он еще не знал, насколько меньше: всего 10-21 х (двухметровую длину болванок), т. е. согласно современным оценкам порядка 10-21 метра, что в миллион раз меньше диаметра атомного ядра]. Большинству физиков в конце 1950-х и в 1960-х измерение даже одной десятой диаметра атомного ядра казалось невозможным. Но не для Вебера. Он придумал датчик, который мог это сделать.

Датчик Вебера был основан на пьезоэлектрическом эффекте, благодаря которому в некоторых материалах (определенных кристаллах и специальной керамике) при их небольшом сжатии появляется на концах электрическое напряжение. Веберу хотелось бы сделать свою антенну из такого материала, но это было бы слишком дорого, поэтому он сделал лучшее, что мог: он сделал твердотельную антенну из алюминия, а затем приклеил пьезоэлектрические кристаллы вблизи середины антенны (рис. 10.4). При дрожании болванки ее поверхность сжимает и растягивает кристаллы. На каждом кристалле появляется переменное напряжение, и Вебер соединил последовательно кристаллы в одну электрическую цепь, так что их малые переменные напряжения складывались в большее напряжение, которое можно было зарегистрировать электронным образом, даже если колебания антенны составляли только одну десятую размера атомного ядра.

10.4. Джозеф Вебер демонстрирует пьезоэлектрические кристаллы, наклеенные около середины его алюминиевой твердотельной антенны (около 1973 г.). Гравитационные волны должны вызывать взаимные колебания концов болванки, и эти колебания должны сдавливать и растягивать кристаллы, так что они будут производить переменное напряжение, которое можно электронным образом зарегистрировать. [Фото Джеймса П. Блэра, предоставлено Национальным географическим обществом]

В начале 1960-х годов Вебер был одиночкой, единственным физиком-экспериментатором, занимающимся поиском гравитационных волн. Чувствуя горький привкус неудачного для него прошлого лазерного соревнования, он наслаждался этим одиночеством. Однако в 1970-х достигнутая им впечатляющая чувствительность и свидетельства того, что он, возможно, детектировал волны (оглядываясь назад, я убежден, что это не так), привлекли десятки других экспериментаторов, а в 1980-х уже более сотни талантливых экспериментаторов были вовлечены в соревнование с ним по превращению гравитационно-волновой астрономии в реальность.

* * *

Я впервые встретился с Вебером на противоположном от Монблана склоне Французских Альп летом 1963 г., через четыре года после начала его проекта детектирования гравитационных волн. Я был тогда выпускником, только начавшим исследования в области теории относительности, и вместе с тридцатью пятью другими студентами со всего мира я приехал в Альпы на интенсивные занятия двухмесячной летней школы, в основном фокусирующиеся на вопросах релятивистской теории гравитации Эйнштейна. Нашими преподавателями были величайшие специалисты в области релятивистской теории — Джон Уиллер, Роджер Пенроуз, Чарльз Мизнер, Брюс де Витт, Джозеф Вебер и другие. Мы учились у них в ходе лекций и частных бесед, рядом со сверкающими снежными вершинами Агиль-де-Миди и Монблана, в окружении бриллиантово-зеленых лугов, на которых пасутся красивые коровы, рядом с живописной деревушкой Лезуш, расположенной на несколько сотен метров ниже у подножия холма, на котором располагалась наша школа.

В этой потрясающей обстановке Вебер читал лекции о гравитационных волнах и своем проекте их детектирования, а я заворожено слушал. Между лекциями я и Вебер беседовали о физике, о жизни, об альпинизме, и я почувствовал в нем родственную душу. Мы оба были одиночками, ни я, ни он не любили обстановку напряженного соревнования и напряженного совместного интеллектуального штурма. Мы оба предпочитали бороться с проблемой в одиночку, изредка обращаясь за советом и помощью к друзьям, но не соперничая с теми, кто хочет победить нас в области новых идей или открытий.

В течение следующих десятилетий, когда исследования черных дыр начали разогреваться и входить в свой Золотой век (Глава 7), я начал находить их во многом неприятными — слишком много напряжения, слишком много соревнования, слишком много рывков и наскоков. Поэтому я начал искать другую область исследований, где было бы больше места для моих локтей, к которой я мог бы приложить большую часть своих усилий, продолжая одновременно часть времени работать над черными дырами и другими проблемами. Стимулированный Вебером, я выбрал гравитационные волны.

Как и Вебер, я видел, что гравитационные волны как область исследований, являются ребенком с блестящим будущим. Вступая в эту область в пору ее детства, я мог получить удовольствие от ее развития, я мог бы заложить фундамент, на котором будут основываться потом другие, и я мог делать это, не чувствуя чужого дыхание за спиной, поскольку большинство других теоретиков-релятивистов тогда сфокусировались на черных дырах.

Веберу было нужно сначала заложить экспериментальные основы: изобретение, конструкция и постепенное улучшение детекторов. Мне же нужны были теоретические основания: попробовать понять, что говорят законы Эйнштейна о том, как получаются гравитационные волны, какую отдачу вызывают они у их источников, как они распространяются; попытаться выяснить, какие виды астрономических объектов могут генерировать самые сильные во Вселенной волны, насколько сильными они могут быть и с какими частотами они будут колебаться; изобрести математические инструменты для расчета деталей закодированных в волнах симфоний, исполняемых этими объектами, чтобы к тому времени, когда Вебер или другие, наконец, обнаружат волны, можно было сравнить теорию с экспериментом.

* * *

В 1969 г. я провел по приглашению Зельдовича шесть недель в Москве. В один из дней Зельдович сделал перерыв в бомбардировке меня и других новыми идеями (главы 7 и 12) и отвез меня в Московский университет, чтобы представить молодому физику-экспериментатору Владимиру Брагинскому. Брагинский, стимулированный результатами Вебера, в течение нескольких лет занимался разработкой техники детектирования гравитационных волн: он был первым экспериментатором после Вебера, вступившим в эту область. Он также в это время проводил захватывающий эксперимент по поиску кварков (фундаментальных строительных блоков протонов и нейтронов) и эксперимент по проверке утверждения Эйнштейна, что все объекты, независимо от их природы и состава, падают в гравитационном поле с одним и тем же ускорением (утверждение, которое лежит в основе описания Эйнштейна гравитации как кривизны пространства).

Я был впечатлен. Брагинский был умен, глубок и имел великолепное чутье в физике; он был приветлив и открыт, мог также легко говорить о политике и о науке. Мы быстро стали близкими друзьями и научились уважать взгляды друг друга. Для меня, либерального демократа в американском спектре политических взглядов, свобода индивидуума была важнее всех других соображений. Ни одно правительство не должно иметь права диктовать кому-либо, как он должен жить. Для Брагинского, который был не доктринерским коммунистом, определяющей была ответственность индивидуума перед обществом. Мы отвечаем за своих собратьев и мы находимся в мире, где злодеи, такие как Иосиф Сталин, могут прийти к власти, если мы не будем бдительны.

Слева: Джозеф Вебер, Кип Торн и Тони Тайсон на конференции по гравитационному излучению в Варшаве, Польша, сентябрь 1975 г. Справа: Владимир Брагинский и Кип Торн в Пасадене, Калифорния, октябрь 1984 г. [Слева: фото Марека Хольцмана, предоставлено Анджеем Траутманом; справа: предоставлено Валентином Н. Руденко]

Брагинский предвидел то, до чего не додумался больше никто. Во время нашей встречи в 1969 г., а затем снова в 1971 и 1972 гг. он предупреждал меня, что используемые для поиска гравитационных волн твердотельные антенны имеют фундаментальное предельное ограничение. Как он заявлял, это ограничение исходит из законов квантовой механики. Хотя обычно мы думаем о квантовой механике, как о чем-то, что управляет поведением крошечных объектов, таких как электроны, атомы и молекулы, если мы будем проводить достаточно точные измерения колебаний антенны в одну тонну, мы увидим, что эти колебания тоже ведут себя квантовомеханическим образом, и это квантовомеханическое поведение, в конечном счете, вызовет проблемы в детектировании гравитационных волн. Брагинский убедился в этом, проведя расчеты предельной чувствительности пьезоэлектрических кристаллов Вебера и некоторых других видов датчиков, которые можно было бы использовать для измерения колебаний твердотельных антенн.

Я не понимал, о чем говорит Брагинский, я не понимал его аргументов, не понимал его выводов и не понимал их важности и потому не обращал на это особого внимания. Мне казались гораздо более важными другие вещи, которым он меня учил; от него я узнал, как планировать эксперимент, как разрабатывается экспериментальная установка, как предсказать шум, который будет мешать работе установки, и как бороться с этим шумом, чтобы установка смогла выполнить свою задачу; а от меня Брагинский узнавал о том, как следует понимать законы гравитации Эйнштейна и как выделять их предсказания. Мы быстро становились единой командой, совместным проектом, в который каждый из нас вносил свой опыт и мастерство, и за истекшие два (уже больше трех. — Прим, ред.) десятилетия мы получили много удовольствия от совместной работы и сделали несколько открытий.

Каждый год в начале и середине 1970-х, когда мы виделись в Москве, Пасадене, Копенгагене или Риме, или где-то еще, Брагинский повторял свои предупреждения о квантовомеханической проблеме, подстерегающей детекторы на твердотельных антеннах, и все эти годы я не понимал. Его предупреждения были немного мутными, поскольку сам он полностью не понимал, почему это происходит. Однако в 1976 г., после того как Брагинский и, независимо, Робин Гиффард из Стэнфордского университета смогли сделать это предупреждение более ясным, я вдруг понял. Я, наконец, осознал, что предостережение было серьезным: предельная чувствительность твердотельного детектора серьезно ограничивается принципом неопределенностей.

* * *

Принцип неопределенностей является фундаментальной особенностью законов квантовой механики. Он утверждает, что если вы делаете очень точные измерения положения какого-то объекта, то в процессе измерения вы неизбежно толкаете объект, тем самым, случайным и непредсказуемым образом возмущая его скорость. Чем аккуратнее ваше измерение положения, тем сильнее и тем более непредсказуемо возмущается скорость объекта. Какой бы умный метод измерения положения вы не изобретали, вам не удастся обойти это ограничение природы (см. Врезку 10.2).

Врезка 10.2

Принцип неопределенностей и корпускулярно-волновой дуализм

Принцип неопределенностей тесно связан с корпускулярно-волновым дуализмом (Врезка 4.1), т. е. со свойством частиц вести себя иногда как волны, а иногда как частицы.

Если вы измерите положение частицы (или любого другого объекта, например, торца болванки) и узнаете, что она находится в некоторой области в пределах погрешности измерения, то независимо от того, как волна, соответствующая частице, выглядела до этого, измерительный прибор во время измерения «пнет» волну и загонит ее в границы погрешности. Поэтому волна будет заключена в некоторой области, которая будет выглядеть примерно следующим образом:

Такая сосредоточенная волна содержит много длин волн, покрывающих интервал от размера области погрешности (помеченной сверху словом макс) до малого размера краев, в которых начинается и заканчивается волна (помечено словом мин). Более конкретно сосредоточенная волна может быть представлена в виде суммы или суперпозиции следующих волн колебаний, которые имеют длину волны, уменьшающуюся от макс до мин.

Вспомним теперь, что чем короче длина волны, тем больше энергия колебаний и поэтому тем больше скорость частицы. Поскольку измерение привело к тому, что волна теперь находится в некотором диапазоне длин волн, то энергия и скорость частицы теперь тоже находятся в некотором соответствующем диапазоне. Другими словами, энергия и скорость стали неопределенными.

Подведем итог. Измерение сосредоточивает волну частицы в границах погрешности (первая диаграмма сверху); это приводит к тому, что волна состоит теперь из многих волн в некотором диапазоне (вторая диаграмма); этот диапазон длин волн соответствует некоторому диапазону энергий и скоростей, поэтому скорость оказывается неопределенной. Как бы вы ни старались, вы не сможете избежать появления этой неопределенности скорости при измерении положения частицы. Более того, если более внимательно присмотреться к этой цепочке рассуждений, то можно увидеть, что она предсказывает, что чем точнее ваше измерение, т. е. чем уже границы погрешности, тем больше диапазон длин волн и скоростей и поэтому тем больше неопределенность скорости частицы.

Соотношение неопределенностей управляет не только измерениями микрообъектов, таких как электроны, атомы, и молекулы, но и измерением больших объектов. Однако поскольку большой объект имеет большую инерцию, пинок от измерения изменит его скорость на очень малую величину. (Возмущение скорости будет обратно пропорциональным массе объекта.)

Соотношение неопределенностей, приложенное к гравитационноволновому детектору, говорит, что чем точнее сенсор измеряет положение торца или стороны дрожащей болванки, тем сильнее и случайный пинок по болванке, вызванный измерением.

В случае неточного сенсора пинок может быть малым и несущественным, но поскольку сам сенсор имеет плохую чувствительность, вы не сможете хорошо узнать амплитуду колебаний антенны и, таким образом, не сможете следить за слабыми гравитационными волнами.

В случае чрезвычайно точного сенсора пинок настолько силен, что он существенно изменит колебания болванки. Эти большие непредсказуемые изменения замаскируют эффект от любой гравитационной волны, которую вы попытаетесь обнаружить.

Где-нибудь между этими двумя крайностями находится оптимальная точность сенсора, такая, что его разрешение не настолько плохое, чтобы ничего нельзя было узнать, и не настолько хорошее, чтобы вызвать непредсказуемый сильный пинок. При этом оптимальном разрешении, которое теперь называют стандартным квантовым пределом Брагинского, эффект, оказываемый пинком на чувствительность, равен ограничению чувствительности датчика. Никакой датчик не может контролировать колебания антенны точнее, чем этот стандартный квантовый предел. Насколько велик этот предел? Для двухметровой антенны в одну тонну он примерно в 100000 раз меньше, чем размер атомного ядра.

В 1960-х никто серьезно не рассматривал потребность в таких точных измерениях, поскольку никто ясно не понимал, насколько слабы на самом деле гравитационные волны от черных дыр и других астрономических объектов. Но к середине 1970-х, подстрекаемые экспериментальным проектом Вебера, я и другие теоретики начали выяснять, насколько сильны могут быть самые сильные гравитационные волны. Ответ был 10-21, и это означало, что гравитационные волны заставят 2-метровую болванку колебаться с амплитудой всего 10-21 х (2 метра), или в миллион раз меньше диаметра атомного ядра. Если эти оценки были верны (а мы знали, что они были очень приблизительными), то сигнал гравитационной волны был бы в десять раз меньше, чем стандартный квантовый предел Брагинского, и поэтому, возможно, вообще не мог быть обнаружен с помощью твердотельного детектора и любого из известных видов датчиков.

Хотя это было весьма тревожно, не все еще было потеряно. Глубокая интуиция Брагинского подсказала ему, что если экспериментаторы будут особенно умны, они смогут обойти этот стандартный квантовый предел. Он спорил, что должен быть другой путь проектирования чувствительного датчика, такой, что непредсказуемый и неизбежный пинок не будет скрывать влияние гравитационных волн на антенну. Такой чувствительный датчик Брагинский назвал квантово-неразрушающим [100]quantum nondemolition. Брагинский замечательно владеет нюансами английского языка, он может конструировать красноречивые английские фразы, описывающие новую идею, гораздо лучше, чем многие американцы или британцы.
: «квантово», потому что пинок датчика происходит согласно законам квантовой механики, «неразрушающим», потому что чувствительный датчик делается так, чтобы пинок не разрушал то, что вы хотите измерить — влияние гравитационных волн на твердотельный детектор. У Брагинского не было рабочей конструкции квантово-неразрушающего датчика, но его интуиция подсказывала ему, что такой детектор можно сделать.

На сей раз я слушал внимательно, и следующие два года моя группа в Калтехе и группа Брагинского в Москве пытались изобрести квантово-неразрушающий датчик.

Мы нашли ответ одновременно осенью 1977 г., но пришли к нему разными путями. Я живо помню мое возбуждение, когда идея пришла ко мне и Карлтону Кейвсу во время интенсивного обсуждения за завтраком в Сальном (студенческий кафетерий Калтеха). И я помню то горько-сладкое чувство, когда узнал, что Брагинский, Юрий Воронцов и Фарид Халили в значительной части нашли ту же идею в Москве в то же самое время. Горькое, поскольку я испытываю великое удовлетворение, когда оказываюсь первым в открытии чего-то нового, сладкое, потому что мне настолько нравится Брагинский, что я испытываю удовольствие, разделяя с ним честь открытия.

Наша полная идея квантово-неразрушающего измерения довольно абстрактна и позволяет разработать разнообразные датчики, преодолевающие стандартный квантовый предел Брагинского. Абстрактность идеи, однако, делает ее довольно сложной для объяснения, поэтому здесь я опишу только один (не очень практичный) пример квантово-неразрушающего детектора. Этот пример Брагинский назвал стробоскопическим детектором.

10.5. Принципы, лежащие в основе стробоскопического квантово-неразрушающего измерения. По вертикали отложено положение торца колеблющейся болванки, по горизонтали — время. Если в момент времени, обозначенный как пинок, произвести очень точное и быстрое измерение положения, то в этот момент времени детектор, делающий измерение, передаст болванке резкий, неизвестный пинок, изменив, таким образом, амплитуду колебаний бруска непредсказуемым образом. Однако положение торца болванки не изменится точно через один период колебаний после пинка, через два или три. Это положение будет тем же, что и во время пинка, и не будет зависеть от величины пинка

Стробоскопический детектор основан на характерной особенности колебаний: если болванке дать очень резкий пинок неизвестной силы, то амплитуда колебаний изменится, но независимо от того, насколько изменится амплитуда, точно через один период колебаний после пинка колеблющийся торец болванки вернется к тому же самому положению, которое он имел в момент пинка (черные точки на рис. 10.5). По крайней мере, так будет, если гравитационная волна (или некоторая другая сила) в это время не сжимала и не растягивала болванку. Если же волна (или другая сила) в это время все же сжимала болванку, то положение болванки через один период изменится.

Чтобы обнаружить волну, в таком случае нужно делать датчик, который делает стробоскопические измерения колеблющихся торцов болванки, датчик, который очень быстро измеряет положение торцов болванки один раз за период колебаний. Такой датчик каждый раз во время измерения будет пинать болванку, но пинки не будут изменять положение торцов болванки в те моменты, когда производятся последовательные измерения. Если обнаружится, что положение изменилось, значит, на болванку действовала гравитационная волна (или некоторая другая сила).

Хотя квантово-неразрушающие датчики решили задачу стандартного квантового предела Брагинского, к середине 1980-х я стал довольно пессимистично оценивать перспективность и плодотворность гравитационно-волновой астрономии на основе твердотельных детекторов. Мой пессимизм был связан с двумя причинами.

Во-первых, хотя твердотельные детекторы, построенные Вебером, Брагинским и другими, достигли гораздо лучшей чувствительности, чем можно было даже мечтать в 1950-х, они все еще могли уверенно детектировать волны с амплитудой только 10-17 и более. Это было в 10000 раз меньше, чем требовалось для успеха, если я и другие правильно оценили амплитуду гравитационных волн, достигающих Земли. Само по себе это возражение еще не было серьезным, поскольку продвижение технологии часто приводило к 10000-кратному улучшению чувствительности инструментов в течение в двух десятилетий или даже быстрее. [Одним из примеров является угловое разрешение радиотелескопов, которое улучшилось с десятков градусов в середине 1940-х до нескольких угловых секунд в середине 1960-х (глава 9). Другим примером может служить чувствительность астрономических детекторов рентгеновского излучения, которая выросла в 1010 раз между 1958 и 1978 гг., т. е. улучшалась со средним темпом 10000 раз каждые восемь лет (глава 8).] Однако темп улучшения чувствительности твердотельных антенн был столь медленным, а перспективы развития техники и технологии в этой области были настолько умеренными, что не было видно никакой разумной возможности достичь 10000-кратного роста чувствительности в обозримом будущем. Таким образом, оставалось рассчитывать только на гравитационные волны, гораздо более сильные, чем оценка 10-21 — возможность реальная, но вряд ли кто-нибудь был счастлив, на нее полагаясь.

Во-вторых, даже если бы твердотельные антенны смогли обнаружить гравитационные волны, с помощью них было бы невероятно трудно раскодировать переносимые волнами сигналы симфоний, фактически, им бы это сделать не удалось. Причина была проста: так же как камертон или бокал откликаются в унисон только на звук, частота которого близка к его собственной частоте, так и болванка откликается только на гравитационные волны, частота которых находится около ее собственной частоты. Говоря на техническом языке, твердотельный детектор является узкополосным (слово полоса здесь означает диапазон частот, на которые откликается детектор). Но информация о симфониях слияния должна обычно кодироваться в очень широкой полосе частот. Чтобы выделить эту информацию, потребовалось бы создать «ксилофон» из многих болванок, каждая из которых покрывает свой крошечный интервал частот сигнала. Сколько твердотельных детекторов потребуется для такого ксилофона? Для того типа антенн, которые тогда разрабатывались и строились, — несколько тысяч — слишком много, чтобы такое решение было практичным. В принципе, существовала возможность расширить частотный диапазон таких детекторов и обойтись, тем самым, скажем, десятком болванок, но это потребовало бы куда большего прогресса в технике, чем даже достижение чувствительности в 10-21.

Хотя в 1980-х я воздерживался от публичных высказываний, отражающих мой пессимистичный взгляд, сам я рассматривал ситуацию как трагичную, поскольку Вебером, Брагинским и многими моими другими друзьями было вложено в твердотельные детекторы так много усилий, а также потому, что я был убежден, что гравитационное излучение потенциально может перевернуть наши представления о Вселенной.

LIGO

Чтобы понять, к какому перевороту может привести детектирование и дешифровка гравитационных волн, вспомним детали предыдущих переворотов: тех, которые были вызваны развитием рентгеновских и радиотелескопов (главы 8 и 9).

В 1930-х, до появления радиоастрономии и рентгеновской астрономии, наши знания о Вселенной появлялись почти исключительно благодаря свету. Свет показывал нам тихую и статичную Вселенную, в которой доминировали звезды и планеты, мирно передвигающиеся по своим орбитам и светящие ровным светом, Вселенную, в которой на изменения требуются миллионы и миллиарды лет.

Это представление о спокойной Вселенной вдребезги разбилось в 1950-х, 1960-х и 1970-х, когда радиоволны и рентгеновские лучи показали нам бурную сторону нашей Вселенной: струи, извергаемые из галактических ядер, квазары с меняющейся яркостью, более яркие, чем наша галактика, пульсары с мощными лучами, бьющими из поверхности и вращающимися с высокой скоростью. Самые яркие объекты, наблюдаемые в оптические телескопы, — это Солнце, планеты и несколько ближайших статичных звезд. Самыми яркими объектами, видимыми с помощью радиотелескопов, являются мощные взрывы в ядрах удаленных галактик, обеспечиваемые энергией (вероятно) гигантских черных дыр. Самыми яркими объектами для рентгеновских телескопов являются малые черные дыры и нейтронные звезды, отбирающие горячий газ у своих компаньонов в двойной системе.

Что такого особенного в радиоволнах и рентгеновских лучах, что позволило им совершить такой впечатляющий переворот? Ключевым является то, что они обеспечили нас совершенно другим видом информации, чем та, которую приносит свет: свет с длиной волны в полмикрона излучается в первую очередь атомами, находящимися в атмосферах звезд и планет, и поэтому рассказывает нам об этих атмосферах. Радиоволны, имеющие в 10 миллионов раз большую длину волны, излучаются в основном электронами, обращающимися по спиралям с околосветовыми скоростями в магнитных полях, и поэтому сообщают нам о замагниченных струях, извергаемых из ядер галактик, о гигантских магнитных межгалактических лепестках, созданных струями и о магнитных лучах пульсаров. Рентгеновские лучи, имеющие длины волн в тысячи раз более короткие, чем свет, излучаются в основном электронами сверхгорячего газа, падающего на черные дыры и нейтронные звезды, и поэтому говорят нам непосредственно об аккрецирующем газе и косвенно о черных дырах и нейтронных звездах.

Разница между светом, с одной стороны, и радиоволнами и рентгеновскими лучами меркнет по сравнению с отличиями между электромагнитными волнами (видимым, инфракрасным, ультрафиолетовым светом, радиоволнами, рентгеновскими и гамма-лучами) современной астрономии и гравитационными волнами. Соответственно, гравитационные волны должны привести к революции в нашем понимании Вселенной даже большей, чем совершили радиоволны и рентгеновские лучи. Среди отличий между электромагнитными и гравитационными волнами и их следствиями можно отметить следующие:

• Гравитационные волны должны сильнее всего излучаться крупномасштабными когерентными колебаниями кривизны пространства-времени (например, в результате столкновения и слияния двух черных дыр) и крупномасштабными перемещениями гигантских объемов материи (например, при схлопывании ядра звезды, вызывающим образование сверхновой, или при сближении по спирали двух обращающихся вокруг друг друга нейтронных звезд). Поэтому гравитационные волны должны показать нам движения гигантских масс и гигантские кривизны. В отличие от этого, космические электромагнитные волны обычно излучаются по отдельности, огромным числом отдельных и независимых атомов или электронов, и эти отдельные электромагнитные волны, каждая из которых колеблется немного иначе, затем накладываются друг на друга, образуя суммарную волну, которую и наблюдают астрономы. В результате, в первую очередь мы узнаем от электромагнитных волн о температуре, плотности и магнитных полях, под действием которых находятся излучающие атомы и электроны.

• Гравитационные волны сильнее всего излучаются областями пространства с такой сильной гравитацией, что в них не работает описание Ньютона, которое поэтому должно быть заменено описанием Эйнштейна, т. е. областями, в которых движутся, колеблются и сворачиваются с околосветовыми скоростями гигантские объемы материи и пространственно-временной кривизны. Примерами могут служить Большой взрыв, породивший нашу Вселенную, столкновения черных дыр и пульсации новообразованных нейтронных звезд в центре взрывов сверхновых. Поскольку эти области сильной гравитации обычно окружены плотными слоями вещества, поглощающего электромагнитные волны (но не поглощающего гравитационные), области с сильной гравитацией не могут нам их посылать. Электромагнитные волны, которые видят астрономы, следовательно, почти полностью приходят из областей со слабой гравитацией, где скорости невелики, например, с поверхностей звезд и сверхновых.

Эти отличия предполагают, что те объекты, симфонии которых нам хотелось бы изучить с помощью гравитационно-волновых детекторов, будут практически не видны в видимом свете, радиоволнах и рентгене, а объекты, которые астрономы изучают сейчас в световом, рентгеновском и радиодиапазонах, будут почти не видны с помощью гравитационных волн. Гравитационная Вселенная должна выглядеть абсолютно не так, как выглядит электромагнитная Вселенная; гравитационные волны должны научить нас тому, что мы никогда не узнаем от волн электромагнитных. Именно поэтому гравитационные волны должны вызвать революцию в наших представлениях о Вселенной.

Можно оспорить это утверждение, сославшись на то, что наше теперешнее, основанное на электромагнитных волнах понимание Вселенной настолько полнее того, что у нас было в 1930-х, что гравитационно-волновая революция не будет такой впечатляющей, как переворот, вызванный радио и рентгеновскими волнами.

Мне это кажется сомнительным. Я болезненно чувствую недостаточность нашего понимания, когда оцениваю печальное состояние сегодняшних оценок силы гравитационных волн, в которых купается Земля. Для каждого типа гравитационно-волновых источника, который когда-либо предлагался, за исключением, разве, слияния обычных двойных звезд, либо при заданном расстоянии сила гравитационного излучения имеет неопределенность на несколько порядков, либо также на несколько порядков различаются оценки частоты встречаемости таких источников (а тем самым, и возможное расстояние до ближайшего из них). Часто неопределенной является даже сама возможность существования таких источников.

Эти неопределенности вызывают значительные неудобства при планировании и разработке гравитационно-волновых детекторов. Это отрицательная сторона. Положительная сторона заключается в том, что когда гравитационные волны, наконец, будут обнаружены и изучены, мы, может быть, будем вознаграждены многими сюрпризами.

* * *

В 1976 г. я еще не был так пессимистически настроен по поводу твердотельных детекторов. Наоборот, я был в высшей степени оптимистичен. Первое поколение детекторов недавно дало первые результаты и имело чувствительность, которая была замечательно хорошей по сравнению с тем, что можно было раньше предполагать. Брагинский и другие изобрели множество умных и обещающих идей для колоссального улучшения в будущем, а я, как и многие другие, только начинал понимать, что гравитационным волнам предстоит сделать революцию в нашем понимании Вселенной.

Мой энтузиазм и оптимизм вел меня, когда я боролся с собой одним ноябрьским вечером 1976 г., до поздней ночи бродил по улицам Пасадены, раздумывая, стоит ли предлагать Калтеху создание проекта детектирования гравитационных волн. Аргументы «за» были очевидны: для науки в целом — огромный интеллектуальный прорыв, если проект оказывается удачным; для Калтеха — возможность оказаться у основания захватывающего нового поля деятельности; для меня — возможность иметь рядом, в моем собственном институте, команду экспериментаторов, с которой я бы мог взаимодействовать, не полагаясь только на Брагинского и его команду на другом конце света, а также возможность играть более важную роль (а тем самым, и возможность получать большее удовольствие), чем я это мог себе позволить, общаясь в Москве. Аргументы «против» были также очевидны: этот проект был рискованным, для его успеха потребовались бы огромные вложения со стороны Калтеха и Национального научного фонда США, а также грандиозные затраты времени и энергии от меня и других участников, и после всего этого он все равно мог провалиться. Эта затея была гораздо более рискованной, чем вхождение Калтеха в радиоастрономию двадцать три года назад (глава 9).

После многих часов самоанализа приманки преимуществ надо мной победили. А после нескольких месяцев изучения всех рисков и преимуществ факультет астрономии и физики Калтеха и администрация единогласно одобрили мое предложение при условии выполнения двух задач. Мы должны были найти выдающегося физика-экспериментатора, который мог бы возглавить проект, и этот проект должен быть достаточно большим и сильным, чтобы иметь хорошие шансы на успех. Это означало, как мы полагали, что проект должен был быть много большим и сильным, чем усилия Вебера в Мэрилендском университете, усилия Брагинского в Москве и любые другие разворачивавшиеся в то время попытки.

Первый шаг состоял в поиске руководителя. Я полетел в Москву, чтобы попросить совета у Брагинского и прощупать его на предмет занятия этого поста. Мои прощупывания привели к сильнейшим колебаниям. Он разрывался между возможностью работать с гораздо лучшими технологическими возможностями, которые он имел бы в Америке и гораздо лучшим мастерством техников в Москве (например, изощренное стеклодувное дело было почти утеряно в Америке, но не в Москве). Он разрывался между необходимостью строить проект с нуля в Америке и идиотскими препятствиями, которые ставила неэффективная бюрократическая система на пути его собственного проекта в Москве. Он разрывался между лояльностью к своей родной стране и отвращением к ее недостаткам, между чувством, что Америка является варварской страной, вследствие нашего отношения к бедным и к всеобщему медицинскому обслуживанию, и пониманием того, что жизнь в его стране является скудной из-за некомпетентности чиновников. Он разрывался между дружбой и богатством в Америке и боязнью мести КГБ, которая грозила его семье, друзьям и, возможно, ему самому, если бы он «дезертировал». В конце концов, он ответил отказом и рекомендовал Рональда Дривера из Университета Глазго.

Другие, с кем я консультировался, также с энтузиазмом отозвались о Дривере. Как и Брагинский, он был в высшей степени креативен, изобретателен и осторожен, т. е. обладал многими качествами, необходимыми для успеха проекта. Руководство факультета и Калтеха собрало о нем и о других возможных руководителях всю возможную информацию, выбрало Дривера и пригласило его на факультет, чтобы инициировать проект. Как и Брагинский, Дривер колебался, но, в конце концов, сказал «да». Начало было положено.

Предлагая проект, я предполагал, что, так же как Вебер и Брагинский, Калтех сосредоточится на строительстве твердотельных детекторов. К счастью (оглядываясь назад), Дривер настоял на радикально другом направлении. В Глазго он в течение пяти лет работал над твердотельными детекторами и мог поэтому ясно оценивать их ограничения. Он считал, что гораздо более обещающими были интерферометрические гравитационно-волновые детекторы (для краткости интерферометры, хотя они совершенно отличаются от радиоинтерферометров, описанных в главе 9).

Использовать для детектирования гравитационных волн интерферометры в простейшей форме предложили в 1962 г. два русских друга Брагинского (Михаил Герценштейн и Владислав Пустовойт) и независимо в 1964 г. Джозеф Вебер. В 1969 г. Райнер Вайс, не знавший об этих ранних предложениях, разработал более совершенную схему интерферометрического детектора и в 1970 г. начал вместе со своей группой в Массачусетсском технологическом институте (MIT) разрабатывать и строить такой детектор. Такой же проект начал в Малибу, в Калифорнии, Роберт Форвард с коллегами из Исследовательской лаборатории Хьюза. Детектор Форварда был первым заработавшим. К концу 1970-х интерферометрические детекторы стали серьезной альтернативой твердотельным детекторам. Дривер добавил к их конструкции свои собственные хитроумные разработки.

* * *

На рис. 10.6 показана главная идея интерферометрического гравитационно-волнового детектора. К потолку на краях и в углу L-образного интерферометра подвешены на струнах три массы (рис 10.6а). Когда в лабораторию сверху или снизу приходит первый максимум гравитационной волны, его приливные волны должны раздвинуть массы в одном плече буквы «I» и одновременно сдвинуть их вдоль другого плеча. В результате этого длина первого плеча L 1 , (т. е. расстояние между двумя его массами) увеличится, а длина второго плеча L 2 уменьшится. Следя за изменением разности L 1 —L 2 можно искать гравитационные волны.

Слежение за величиной L 1 —L 2 производится интерферометрическим образом (рис. 10.65 и Врезка 10.3). Лазерный луч светит на расщепитель пучка, который закреплен на угловой массе. Расщепитель половину луча отражает, а половину пропускает, расщепляя, таким образом, луч на два. Два луча направляются по двум плечам к крайним массам, отражаются от находящихся на них зеркал и затем возвращаются на расщепитель пучка. Делитель наполовину отражает и наполовину пропускает каждый из лучей, так что часть одного луча соединяется с частью другого луча и светит в сторону лазера, а другие части лучей, соединившись, падают на фотодетектор.

10.6. Лазерный интерферометрический гравитационно-волновой детектор. Этот инструмент очень похож на тот, который использовали Майкельсон и Морли в 1887 г. для поиска движения Земли относительно эфира (глава 1). Детальное описание см. в тексте

Если гравитационных волн нет, вклады двух плечей интерферируют таким образом (Врезка 10.3), что весь свет из интерферометра возвращается по направлению к лазеру, а на фотодетектор не попадает ничего. Если гравитационная волна изменит немного величину L 1 —L 2 , то два луча в двух плечах будут путешествовать на немного изменившиеся расстояния и будут интерферировать немного по-другому — крошечная часть их общего света теперь пойдет к фотодетектору. Следя за количеством света, приходящего на фотодетектор, можно следить за изменением разницы между L 1 и L 2 и, таким образом, регистрировать гравитационные волны.

* * *

Интересно сравнить твердотельный детектор и интерферометр. Твердотельный детектор использует для слежения за приливными силами гравитационных волн колебания отдельного твердотельного цилиндра. Интерферометрический детектор использует для слежения за приливными силами относительные движения масс, подвешенных на струнах.

Врезка 10.3

Интерферометры и интерферометрия

Если в одной и той же области пространства распространяются две или больше волны, они «линейно» (Врезка 10.1) накладываются друг на друга, т. е. они попросту складываются. Например, следующие волны, показанные пунктирной и штриховой линиями, накладываются друг на друга, образуя волну, показанную сплошной линией.

Обратите внимание на места, подобные обозначенному буквой А, где провал одной (пунктирной) накладывается на гребень другой (штриховой) волны, по крайней мере частично, и образуют исчезающее малую суммарную волну (сплошная линия), а также на места, где, как в В , складываются два провала и волны усиливают друг друга. Говорят, что в первом случае имеет место деструктивная интерференция , а во втором — конструктивная. Такие наложения с интерференцией возможны для любых типов волн: морских, радио, световых, гравитационных, и такая интерференция играет ключевую роль в работе радиоинтерферометров (глава 9) и интерферометрических детекторов гравитационных волн.

В интерферометрическом детекторе на рис. 10.6 б расщепитель луча накладывает половину луча из одного плеча на половину луча из другого плеча и направляет их к лазеру, а также складывает другие половины лучей и посылает их на фотодетектор. Если никакая гравитационная волна или другая сила не двигала массы и зеркала на них, то световые волны будут иметь вид, как на следующих рисунках, где штриховой линией показана волна из первого плеча, пунктирной — из другого, а сплошная линия изображает суммарную полную волну.

Направляемые к фотодетектору волны интерферируют деструктивно, поэтому полная суммарная волна исчезает, что означает, что детектор вообще не видит никакого света. Если гравитационная волна или какая-либо другая сила немного удлиняет одно плечо и укорачивает другое, то волны из одного плеча приходят на расщепитель луча с небольшой задержкой по отношению к волнам из другого плеча, и наложение имеет следующий вид:

Деструктивная интерференция в направлении фотодетектора теперь уже не идеальная, и фотодетектор получает немного света. Количество света, которое он получает, пропорционально разнице длин L 1 —L 2 которая, в свою очередь, пропорциональна гравитационно-волновому сигналу.

Твердотельный детектор использует для слежения за колебаниями, вызванными волнами, электрический датчик (например, сжимаемый болванкой пьезокристалл). Интерферометрический детектор для слежения за вызванным волной движением своих масс использует интерференцию световых волн.

Болванка откликается в унисон только на гравитационные волны в узком частотном диапазоне, и поэтому для декодирования симфонии волн требуется ксилофон из многих болванок. Массы интерферометра болтаются свободно и откликаются на волны всех частот, больших чем примерно одно колебание в секунду, и поэтому интерферометр имеет широкую полосу: чтобы расшифровать всю симфонию достаточно трехчетырех детекторов.

Сделав плечи интерферометров в тысячи раз длиннее, чем болванки (несколько километров вместо единиц метров), можно сделать приливные силы волн в тысячу раз большими, тем самым улучшив в тысячу раз чувствительность инструмента. В отличие от этого длину болванки нельзя сильно увеличить. Болванка длиной в 1 километр будет иметь собственную частоту меньше, чем одно колебание в секунду, и поэтому не сможет работать на частотах, на которых находятся, как мы считаем, наиболее интересные источники. Более того, чтобы работать на таких низких частотах, для защиты твердотельной антенны от колебаний земной поверхности и флуктуаций гравитации земной атмосферы пришлось бы запустить такую болванку в космос, что было бы бессмысленно дорогим удовольствием.

Поскольку интерферометр в тысячу раз длиннее твердотельной антенны, он также в тысячу раз менее чувствителен к «пинку», производимому процессом измерения. Эта нечувствительность означает, что интерферометрам не нужно избегать с помощью сложных в конструировании квантово-неразрушающих датчиков.

Если у интерферометров столько больших преимуществ перед твердотельными детекторами (гораздо большая полоса частот и гораздо лучшая чувствительность), почему же Брагинский, Вебер и другие не делали интерферометры? Когда я спросил об этом в середине 1970-х Брагинского, он ответил, что твердотельные детекторы просты, а интерферометры пугающе сложны. Маленькая сплоченная команда, такая как у него была в Москве, имела некоторый шанс сделать хорошо работающую твердотельную антенну и открыть гравитационные волны. Однако для разработки, отладки и успешной работы интерферометрического детектора требовалась гигантская команда и огромное количество денег. И даже при наличии такой гигантской команды и при таких огромных вложениях Брагинский сомневался в конечном успехе создания столь сложного детектора.

Десятью годами позже, когда накопилось достаточно свидетельств тому, что твердотельные детекторы не смогут достичь чувствительности 10-21, Брагинский посетил Калтех и был потрясен прогрессом, достигнутым с интерферометром командой Дривера. Он пришел к выводу, что, в конечном счете, с помощью интерферометров можно будет добиться успеха. Но огромная команда и большие денежные затраты были не для него, поэтому, вернувшись в Москву, он перенаправил большую часть работы своей команды на другие направления, далекие от детектирования гравитационных волн. (В других лабораториях в мире твердотельные антенны продолжали строить, и это очень хорошо, поскольку они дешевы по сравнению с интерферометрами, пока еще более чувствительны и в долговременной перспективе могут сыграть свою роль на более высоких частотах.)

* * *

В чем состоит сложность интерферометрических детекторов? Ведь основная идея, описанная на рис. 10.6, выглядит довольно просто.

На самом деле рис. 10.6 является чрезмерным упрощением, поскольку игнорирует огромное количество возникающих препятствий. Трюки, к которым приходится прибегать, для того чтобы их обойти, делают интерферометр чрезвычайно сложным инструментом. Например, лазерный луч должен быть нацелен точно в нужном направлении, иметь точно нужную форму и частоту, чтобы идеально согласовываться с интерферометром, а его мощность и частота не должны флуктуировать. После того как луч расщепляется на два, эти два луча должны бегать в плечах интерферометра не просто туда и обратно, как на рис. 10.6, а многократно, чтобы увеличить чувствительность к движениям масс, а после этих многократных отражений они должны точно встретиться опять на делителе. За каждой массой надо постоянно следить, чтобы ее зеркала были все время направлены в нужном направлении и не отклонялись из-за колебаний пола, и это нужно делать так, чтобы не замаскировать действие гравитационных волн. Чтобы достичь идеальной работы этих и многих-многих других составляющих, требуется постоянное одновременное слежение за многими разными частями интерферометра и его лазерными лучами и постоянное приложение сил обратной связи, поддерживающих идеальный режим.

Некоторое представление о сложности интерферометра можно получить по фотографии (рис. 10.7) 40-метрового прототипа интерферометрического детектора, который построили в Калтехе Дривер и его команда — прототипа, который сам по себе гораздо проще, чем полномасштабный многокилометровый интерферометр, требуемый для достижения успеха.

* * *

В начале 1980-х четыре команды физиков-экспериментаторов трудились над разработкой инструментария и техники интерферометрических детекторов: команда Дривера в Калтехе, команда, которую он основал в Глазго (теперь руководимая Джимом Хафом), команда Райнера Вайса в MIT и команда, основанная Гансом Биллингом в Институте Макса Планка под Мюнхеном, в Германии. Это были маленькие и сплоченные команды, работающие более или менее независимо, исповедующие свои собственные подходы к конструированию интерферометрических детекторов. В каждой команде отдельные ученые имели свободу в разработке и воплощении по собственному усмотрению новых идей, координация была очень незначительна. Это как раз тот тип работы, который нравится таким креативным ученым, как Брагинский, и та культура, в которой счастливее всего чувствуют себя такие одиночки, как я. Но это не та культура, которая требовалась для разработки, создания, отладки и работы таких больших и сложных научных инструментов, какими являются многокилометровые интерферометры, требующиеся для успеха.

10.7. 40-метровый прототип интерферометрического гравитационно-волнового детектора, построенный в Калтехе (около 1989 г.). Стол впереди и передняя, заключенная в сетку вакуумная камера содержат лазеры и компоненты для подготовки лазерного луча к попаданию в интерферометр. Центральная масса также располагается во второй, закрытой сеткой вакуумной камере, над которой можно заметить свешивающуюся веревку от блока. Крайние массы находятся на удалении 40 метров в конце двух коридоров. Два луча плечей интерферометра проходят внутри толстых труб, которые тянутся на всю длину коридоров. [Предоставлено проектом LIGO, Калифорнийский технологический институт]

Для детальной разработки многих сложных частей такого интерферометра, для того чтобы соединить их все и добиться правильной совместной работы, чтобы держать под контролем затраты проекта и добиться его завершения в разумные сроки, нужна была совсем другая культура — культура плотной координации работы подгрупп в рамках каждой команды, с фокусированием каждой команды на четко определенных задачах, с единым руководителем, принимающим решения о том, что и кому нужно делать в первую очередь.

Путь от независимости и свободы к тесной координации является болезненным. Таким путем, сопровождаемым в процессе мучительными стонами, движется биологическое сообщество, расшифровывающее геном. И мы, гравитационно-волновые физики, следуем по этому пути с не меньшей болью и страданиями с 1984 г. Я, однако, уверен, что волнения, радость и научная отдача от детектирования гравитационных волн и дешифровки их симфоний когда-нибудь сотрут из нашей памяти все пережитые страдания и боль.

Первым резким поворотом на нашем болезненном пути был вынужденный союз почти под дулом пистолета команд Калтеха и MIT, каждая из которых состояла к тому времени примерно из 8 человек. Держал пистолет и требовал Ричард Айзексон из Национального научного фонда (NSF) США. Брак, в котором Калтех и MIT должны были вместе разрабатывать интерферометр, был платой за финансовую поддержку на деньги налогоплательщиков. Дривер (бешено сопротивлявшийся) и Вайс (с готовностью принявший неизбежность) принесли свои клятвы, а я стал советником этого союза, человеком, чьи обязанности заключались в том, чтобы искать компромисс, когда Дривер тянул в одном направлении, а Вайс — в другом. Это был тернистый союз, эмоционально истощающий всех, но постепенно мы стали работать вместе.

Второй резкий поворот произошел в ноябре 1986 г. Комитет, состоящий из выдающихся физиков-специалистов в тех областях технологии, которые нами использовались, и экспертов по организации и менеджменту больших научных проектов, скрупулезно изучил наши достижения и планы и доложил о них NSF. Наш прогресс был высоко оценен, высокой оценки заслужили также наши планы и перспективы на успех в детектировании и расшифровке гравитационных волн. Однако наша культура работы была признана ужасной, мы все еще были тесно привязаны к свободолюбивой культуре, в которой родились, а таким образом мы никогда не смогли бы добиться успеха — такое решение было доложено NSF. Тройка Дривер — Вайс — Торн должна была быть по решению комитета заменена единственным директором, который бы спаял талантливых индивидуалов в сплоченную и эффективную команду и мог бы организовать проект, принимая твердые и мудрые решения на каждой крупной развилке.

Опять появилось дуло пистолета. Если вы хотите, чтобы проект продолжался, сообщил нам Айзексон из NSF, вы должны найти такого директора и учиться работать с ним так же, как футбольная команда работает с великим тренером или как оркестр с великим дирижером.

Нам повезло. В середине нашего поиска был уволен Робби Вогт.

Часть ученых из команд Калтех/МГТ, работавших над проектом LIGO в конце 1991 года. Слева: некоторые члены команды Калтеха, против часовой стрелки, начиная с правого верхнего угла: Аарон Гиллеспи, Фред Рааб, Мэгги Тейлор, Сейджи Кавамура, Робби Вогт, Рональд Дривер, Лайза Сивере, Алекс Абрамовичи, Боб Спиро, Майк Цукер. Справа: некоторые из членов команды М1Т, против часовой стрелки, начиная с верхнего правого угла: Джой Ковалик, Ярон Хефец, Нергиз Малвала, Райнер Вайс, Дэвид Шумейкер, Джой Джиайми. [Слева: предоставлено Кеном Роджерсом/Black Star; справа: предоставлено Эриком Л. Симмонсом]

Вогт — блестящий физик-экспериментатор, обладающий волевым характером. Он возглавлял проекты создания и управления научными приборами космических аппаратов, руководил созданием гигантского астрономического интерферометра миллиметрового диапазона и реорганизовал структуру научных исследований в Лаборатории реактивного движения (JPL) NASA, которая поддерживает большую часть исследовательских межпланетных космических программ США, а после этого стал проректором Калтеха. На этом посту Вогт, хотя и был чрезвычайно эффективен, постоянно сталкивался с президентом Калтеха Марвином Голдбергером в ожесточенных схватках по вопросам управления Калтеха. После нескольких лет битв Голдбергер его уволил. Вогт не мог по своему темпераменту работать под теми, с суждениями которых был в корне не согласен, но, будучи сверху, он был великолепен. Он был тем самым директором, дирижером и тренером, который нам был нужен. Если кто-то и мог спаять нас в сплоченную команду, то это был именно он.

«Вам будет тяжело работать с Робби, — сказал нам бывший член его команды, работавшей над интерферометром миллиметрового диапазона, — будут и раны, и обиды, но оно того стоит. Ваш проект будет ждать удача».

В течение нескольких месяцев Дривер, Вайс и я упрашивали Вогта стать директором. Наконец, он согласился, и, как и обещалось, шестью годами позже наша объединенная команда Калтеха и Массачусетса, набившая синяки и шишки, но эффективная, мощная и сплоченная, быстро растет, подходя к критической численности (около 50 ученых и инженеров), требуемой для успеха проекта. Однако успех проекта зависит не только от нас. Согласно плану Вогта важный вклад в наши центральные усилия будет сделан и другими учеными, которые, хотя и будут оставаться в слабой связи с нашей группой, смогут сохранить индивидуальный свободный стиль, от которого мы были вынуждены отказаться.

* * *

Ключом к успеху наших усилий будет создание и работа национально научного комплекса, названного Лазерная Интерферометрическая Гравитационно-волновая Обсерватория, или LIGO (Laser Interferometer Gravitational- Wave Observatory). LIGO будет состоять из двух L-образных вакуумных систем, одна вблизи Хэнфорда, штат Вашингтон, а другая около Ливингстона в Луизиане, где физики будут создавать и использовать многие последовательные поколения постоянно улучшающихся интерферометров (см. рис. 10.8) .

Почему два объекта, а не один? Потому что лежащие на поверхности земли гравитационно-волновые детекторы всегда подвержены влиянию трудно учитываемых шумов, которые могут симулировать гравитационно-волновые всплески, например, струна, на которой подвешена масса, может по неизвестной причине немного скрипнуть, качнув массу и симулировать, тем самым, приливную силу волны. Однако такой шум почти никогда не может случиться одновременно в двух независимых, далеко разнесенных детекторах. Поэтому, чтобы быть уверенными, что наблюдаемый сигнал вызван гравитационными волнами, а не шумом, следует убедиться, что он появился одновременно в обоих детекторах.

При наличии только одного детектора обнаружение и слежение за гравитационными волнами невозможно.

Хотя для детектирования гравитационной волны достаточно двух детекторов, для полного декодирования симфонии волн, т. е. извлечения всей содержащейся в ней информации, желательно иметь три, а лучше четыре таких сооружения, как можно дальше разнесенных друг от друга. Совместная франко-итальянская команда построит третью антенну, названную VIRGO около Пизы в Италии. VIRGO и LIGO вместе образуют международную сеть для извлечения полной информации из сигнала. Команды из Англии, Германии, Японии и Австралии изыскивают средства для создания дополнительных антенн, подключенных к этой сети.

10.8. Художественная концепция L-образной вакуумной системы и экспериментального корпуса в углу буквы «L» антенны LIGO около Хэнфорда. [Предоставлено проектом LIGO, Калифорнийский технологический институт]

Строительство такой амбициозной сети сооружений для обнаружения волн, которых никто и никогда не видел, может показаться слишком смелым. На самом деле, это не так смело, поскольку существование гравитационных волн уже было доказано в результате астрономических наблюдений, за что Джозеф Тейлор и Рассел Халс из Принстонского университета получили в 1993 г. Нобелевскую премию. Тейлор и Халс обнаружили с помощью радиотелескопа две нейтронные звезды, одна из которых является пульсаром, обращающиеся вокруг друг друга с периодом 8 часов, и с помощью исключительно тщательных радиоизмерений убедились, что звезды сближаются по спирали в точности с той скоростью (на 2,7 миллиардных частей в год), которую предсказывают законы Эйнштейна, учитывающие эффект отдачи излучаемых во Вселенную гравитационных волн. Кроме слабых толчков гравитационных волн ничто иное объяснить наблюдаемое спиральное сближение этих нейтронных звезд не может.

* * *

Как будет выглядеть гравитационно-волновая астрономия в начале XXI века? Возможен такой сценарий:

К 2007 г. в полную силу работают восемь интерферометров, каждый длиной несколько километров. Они сканируют космос в поисках всплесков гравитационных волн. Две антенны работают в Пизе, в Италии, две в Ливингстоне, в Луизиане, на юго-востоке Соединенных Штатов, две в Хэнфорде в штате Вашингтон, на северо-западе Америки, и две в Японии. Из пары интерферометров на каждом месте один является «рабочей лошадкой», инструментом, который следит за колебаниями в диапазоне от 10 до 1000 Гц, а другой, только недавно разработанный и установленный, продвинутый «специальный» интерферометр, который обнаруживает колебания в диапазоне от 1000 до 3000 Гц.

Однажды на Землю приходит пакет гравитационных волн от удаленного космического источника. Каждый гребень волны сначала толкает массы детекторов в Японии, затем проходит сквозь Землю и достигает детекторов в Вашингтоне, а затем в Луизиане и, наконец, в Италии. В течение примерно минуты гребни волны сменяются провалами и наоборот. Массы каждого детектора слегка вздрагивают, изменяя длины путей лазерных пучков и, тем самым, меняя мощность света, падающего на фотодетекторы. Сигналы с восьми фотодиодов передаются через сеть на центральный компьютер, который извещает команду ученых о том, что на Землю прибыл еще один минутный всплеск гравитационных волн, уже третий на этой неделе. Компьютер объединяет сигналы с выходов восьми фотодетекторов, вычисляя четыре вещи: наиболее вероятное положение источника всплеска на небе, границы области ошибок, в которых заключено это наиболее вероятное положение, и две волноформы, две осциллирующие кривые, аналогичные тем, которые вы получите, если будете исследовать звук симфонии с помощью осциллографа. История источников закодирована именно в этих формах (рис. 10.9).

Две формы получаются потому, что гравитационная волна имеет две поляризации. Если волна проходит вертикально через интерферометр, то одна поляризация описывает приливные силы, которые вызывают колебания в направлениях восток — запад и север — юг, а другая описывает колебания вдоль направлений северо-запад — юго-восток и северо-восток — юго-запад. Каждый детектор, в зависимости от своей ориентации чувствует некоторую комбинацию из этих двух поляризаций, а из откликов восьми детекторов компьютер воссоздает две формы волны.

Затем компьютер сравнивает полученные волноформы с теми, которые содержатся в большом каталоге, так же как наблюдатель может опознать высоко летящую птицу, сравнив ее профиль с картинками в соответствующей книге. Каталог был составлен на основании численного моделирования источников на компьютерах, а также на основе предшествующих наблюдений за гравитационными волнами от сталкивающихся и сливающихся черных дыр, нейтронных звезд, вращающихся нейтронных звезд (пульсаров) и взрывов сверхновых. Идентификация этого всплеска оказывается простой (если бы это был, например, всплеск от сверхновой, все было бы сложнее). Волноформа однозначно показывает уникальную подпись двух сливающихся черных дыр.

Волноформа имеет три участка:

• Первый участок длительностью в одну минуту (из которой показаны на рис. 10.9 только последние 0,1 секунды) представляет собой колебания деформации, с постепенно нарастающей амплитудой и частотой — это как раз та форма, которая ожидается от спирального сближения двух объектов в двойной системе. Чередование меньших и больших колебаний отражает тот факт, что орбита является не круглой, ^немного эллиптической.

• Сегмент длительностью в 0,01 секунды почти идеально соответствует недавним (в начале XXI века) результатам, полученным моделированием на суперкомпьютерах слияния двух черных дыр в одну. Согласно этим моделям пики, обозначенные буквой Я, соответствуют моментам касания и слияния горизонтов черных дыр, однако парные флуктуации, обозначенные буквой D, являются новым открытием, впервые сделанным с помощью нового специального интерферометра. Более старые рабочие лошадки не могли обнаружить эти флуктуации из-за их более высокой частоты, они не проявляются в результатах суперкомпьютерного моделирования и являются настоящим вызовом для теоретиков, требуя объяснения. Возможно, это были первые намеки на причудливые нелинейные колебания пространственно-временной кривизны сливающихся черных дыр, о которых ранее не подозревали. Теоретики, заинтригованные перспективами, возвращаются к моделированию в поисках признаков таких парных осцилляций.

Время, с Время, с

10.9. Одна из двух волноформ, вызванная слиянием двух черных дыр. Деформация, вызванная волной, отложена по вертикали в единицах 10 -21 ; время в секундах отложено по горизонтали. Первый график показывает только последние 0,1 секунды части волноформы, соответствующей спиральному сближению звезд; предшествующая минута выглядит аналогично, с постепенным увеличением амплитуды и частоты колебаний. Второй график показывает в растянутом масштабе последние 0,01 секунды. Участки волноформы, связанные со спиральным сближением и затуханием , мы сейчас, в 1993 г., хорошо понимаем на основании решений уравнений поля Эйнштейна. Как выглядит участок, связанный со слиянием, мы пока не знаем (показанная кривая является плодом моей собственной фантазии); будущее моделирование на суперкомпьютерах должно позволить рассчитать и это. В тексте предполагается, что это моделирование успешно сделано в начале XXI века

• Третий сегмент длительностью 0,03 секунды (на рис. 10.9 показано только его начало) состоит из колебаний постоянной частоты с постепенно уменьшающейся амплитудой, точно таких, которые ожидаются от пульсаций деформированной черной дыры, пытающейся стряхнуть все свои деформации. Такую же форму имеют затухающие колебания звучащего колокола. Деформации представляют собой два выступа, как у гантели, вращающихся вокруг экватора черной дыры и постепенно исчезающие в процессе того, как рябь кривизны уносит их энергию (рис. 10.2 вверху).

И компьютерного анализа деталей волноформ не только восстанавливается история спирального сближения, слияния и затухания, но и определяются массы и скорости обращения исходных и конечной черных дыр. Каждая из исходных черных дыр имела массу в 25 солнечных и медленно вращалась. Конечная черная дыра имеет массу в 46 солнечных и вращается со скоростью, составляющей 78 процентов от максимальной. Энергия недостающих 4 солнечных масс (2 х 25–46 = 4) была преобразована в рябь кривизны и унесена гравитационными волнами. Полная площадь поверхности исходных черных дыр была равна 136000 квадратных километров. Полная площадь поверхности конечной дыры больше, как это требует второй закон механики, черных дыр (глава 12) и составляет 144000 квадратных километров. Волноформы также позволяют определить, что расстояние черной дыры от Земли составляет 1 миллиард световых лет с точностью около 20 процентов. Волноформы также говорят нам, что мы на Земле находимся почти перпендикулярно плоскости исходных орбит и смотрим теперь на северный полюс вращающейся черной дыры, и показывают, что эксцентриситет (вытянутость) исходных орбит составляла 30 процентов.

Из времени прихода гребней волны на детекторы в Японии, Вашингтоне, Луизиане и Италии компьютер определяет положение черной дыры на небе. Поскольку Япония почувствовала колебания первой, дыра находилась в это время примерно над Японией и под ногами Америки и Европы. Детальный анализ времен прихода позволяет определить наиболее вероятное положение черной дыры с погрешностью около 1º. Если бы дыра была меньше, ее колебания были бы чаще, и это позволило бы определить ее положение точнее, но для таких массивных черных дыр 1º — это все, что может дать сеть антенн. В следующие десятилетия, когда интерферометрические детекторы будут работать на Луне, погрешность по одному из измерений будет уменьшена в 100 раз.

Поскольку орбиты исходных дыр были вытянутыми, компьютер заключает, что две дыры были захвачены на орбиты вокруг друг друга только за несколько часов до слияния и излучения всплеска. (Если бы они обращались вокруг друг друга дольше нескольких часов, отдача гравитационных волн, излучаемых двойной системой, сделала бы их орбиты круглыми.) Недавний захват означает, что черные дыры, вероятно, находились в плотном скоплении черных дыр и массивных звезд в центре некоторой галактики.

Затем компьютер просматривает каталоги оптических, радио и рентгеновских галактик, в поисках той, которая находится в пределах Г от найденного положения и на расстоянии от 0,8 до 1,2 миллиарда световых лет от Земли и имеет выраженное ядро. Обнаруживается 40 кандидатов, которые передаются астрономам. В течение нескольких лет эти сорок кандидатов будут детально исследованы с помощью радио, миллиметровых, оптических, рентгеновских и гамма телескопов. Постепенно станет ясно, что у одной из галактик-кандидатов имеется ядро, в котором тогда, когда свет покинул ее, начал зарождаться агломерат из газа и звезд, который в ходе 1 000 000-летней бурной эволюции приведет, в конце концов, к рождению гигантской черной дыры и затем квазара. Благодаря всплеску гравитационной волны, который позволил обратить внимание на эту особенную галактику, астрономы смогут теперь выяснить детали рождения гигантских черных дыр.