Справочное пособие по цифровой электронике

Тули Майк

Приложения

 

 

1. Справочные данные по микросхемам

ТТЛ-микросхемы

КМОП-микросхемы

 

2. Самодельные приборы

 

Чтобы показать практическое применение цифровой электроники, в книгу включены описания нескольких самодельных приборов, дополняющие ее основной материал. Конструкции приборов выбраны максимально простыми, но, разумеется, не за счет ухудшения их эксплуатационных характеристик. Спецификации каждого прибора соответствуют промышленным образцам.

 

2.1. Инструменты и приборы

Перечень основных инструментов и приборов, необходимых для локализации неисправностей в цифровых схемах, невелик. Начнем с таких простых инструментов, как плоскогубцы, бокорезы и несколько четырехгранных и плоских отверток. Конечно, нужно покупать высококачественные инструменты, так как при аккуратном обращении они послужат очень долго.

Рекомендуется приобрести качественный низковольтный паяльник с терморегулятором и набором жал. Если такой паяльник для Вас дороговат, можно обойтись сетевым паяльником мощностью 15–25 Вт. При покупке обратите внимание на его комплектацию (запасные жала, нагревательные элементы и принадлежности). Целесообразно купить также ручное приспособление для выпайки микросхем. Оно очень удобно для выпайки многоконтактных микросхем на печатных платах с одно- или двухсторонним монтажом.

Самым необходимым для Вас прибором будет высококачественный аналоговый или цифровой мультиметр (тестер). С его помощью измеряют постоянное, переменное напряжение и ток, а также сопротивление. Выбор типа аналогового или цифрового прибора зависит от того, что Вам больше нравится. Желательно, но не обязательно, чтобы прибор позволял измерять целостность проводников, осуществлять проверки диодов, транзисторов и др.

По мере изложения дальнейшего материала мы назовем и несколько других инструментов и приборов. Но их не нужно покупать все сразу; пополняйте свой инструментарий по мере необходимости.

 

2.2. Стабилизированный блок питания

Начнем с конструирования стабилизированного блока питания, рассчитанного для цифровых устройств и имеющего отдельные выходы для питания КМОП- и TTЛ-схем. Первый выход регулируется в обычном для КМОП-схем диапазоне от 3 до 15 В, а второй формирует фиксированное напряжение 5 В. Оба выхода обеспечивают качественную стабилизацию, очень малое выходное сопротивление и почти свободны от пульсаций и помех.

Для защиты самого блока питания и подключенных к нему устройств блок должен оснащаться средствами ограничения тока. Поэтому на КМОП-выходе предусмотрено такое ограничение с регулировкой от 10 мА до 2 А. На ТТЛ-выходе имеется предохранитель на ток короткого замыкания около 750 мА. Блок питания состоит из дешевых компонентов и монтируется в стандартном корпусе Verobox и плате Veroboard.

Описание схемы. Электрическая схема блока питания приведена на рис. П2.1.

Рис. П2.1. Принципиальная электрическая схема блока питания

Силовой трансформатор подает низкое переменное напряжение на мостовой выпрямитель D1—D4. Выходное постоянное напряжение выпрямителя (примерно 17 В) сглаживается конденсатором С1. Светодиод D5, включенный через ограничительный резистор R1, показывает наличие постоянного напряжения в этой точке, т. е. является индикатором включения сети.

Нерегулируемое постоянное напряжение, действующее на конденсаторе С1, подается на входы регулируемого стабилизатора IС1, а через тумблер S2 — на Г-образный стабилизатор IC2. Выходное напряжение IC1 регулируется с помощью переменного резистора VR1, а ограничение тока устанавливается резистором VR2. Светодиод D6 показывает наличие напряжения на ТТЛ-выходе.

Конденсаторы С2, СЗ, С5 и С6 обеспечивают устойчивость блока питания по высоким частотам, а конденсаторы С4 и С7 служат для дополнительной развязки КМОП- и ТТЛ-выходов.

Монтаж и проверка. Все компоненты блока питания, за исключением силового трансформатора и органов управления, монтируются на стандартной печатной плате (24 полоски с 37 отверстиями). Монтаж компонентов на печатной плате Veroboard показана на рис. П2.2.

Рис. П2.2. Монтажная схема блока питания

Из рисунка видно, что нужно сделать шесть разрывов (разрезов) печатных проводников, с помощью кусачек или дрели с острым сверлом соответствующего диаметра.

Рекомендуется следующая последовательность монтажа: перемычки, конденсаторы, резисторы, мостовой выпрямитель, выходные пистоны и микросхемы. Микросхемы устанавливаются так, чтобы их теплоотводящие поверхности были выровнены в вертикальной плоскости для общего радиатора, который привинчивается к задней металлической стенке корпуса Verobox.

Перед окончательной установкой печатной платы мы настоятельно советуем внимательно проверить правильность монтажа ее отдельных компонентов, перемычек и разрывов печатных проводников.

Необходимо убедиться в правильной ориентации полярных компонентов, включая электролитические конденсаторы и мостовой выпрямитель, в надежности соединений, отсутствии выплесков припоя и замыканий между печатными проводниками. Нечего и говорить, что несколько минут, потраченных на контроль платы, сэкономят время в дальнейшем.

Когда плата тщательно проверена, ее нужно прикрепить горизонтально к корпусу Verobox. Спереди плата поддерживается с помощью двух изолирующих стоек, а сзади — теплоотводящим радиатором.

Монтаж органов управления, индикаторов и гнезд на передней панели показан на рис. П2.3.

Рис. П2.3. Монтаж элементов на лицевой панели

Соединения между этими компонентами осуществляются короткими изолированными проводами.

После окончания монтажа его нужно тщательно проверить, обратив особое внимание на предохранитель, трансформатор и сетевой выключатель. Затем можно подключиться к сети и с помощью мультиметра (включенного на измерение постоянного напряжения) убедиться в том, что напряжение на конденсаторе С1 находится в диапазоне от 15 до 18 В. Впоследствии следует измерить напряжение на ТТЛ- и КМОП-выходах. Если что-то оказывается не в порядке, воспользуйтесь рекомендациями, приведенными в гл. 1.

Компоненты. В блоке питания применяются следующие компоненты.

Резисторы (угольные, пленочные; 0,25 Вт): R1 = 1 кОм; R2 = 1 кОм; R3 = 220 Ом; потенциометры (линейные, проволочные): VR1 = 10 кОМ; VR2 = 50 Ом; конденсаторы: С1 = 4700 мкФ (электролитический, 25 В); С2 = С5 = 0,22 мкФ (полистироловый); С3 = С6 = 0,1 мкФ (полистироловый); С4 = С7 = 47 мкФ (электролитический, 25 В); полупроводниковые приборы: D1—D4 — мостовой выпрямитель, 220 В, 1,6 А (например, SKB2/02L5A); D5 — красный светодиод (с линзой); D6 — зеленый светодиод (с линзой); IC1—L200; IC2—7805.

Дополнительные детали: Т1 — силовой трансформатор, 20 или 24 В·А, с первичной обмоткой на 240 В (или двумя обмотками на 120 В, включенными последовательно) и вторичной обмоткой на 12 В (или две на 6 В) и ток 1,6 или 2 A; FS1 — быстроплавкий предохранитель на 1 А длиной 20 мм и держатель для него; S1 — миниатюрный двухполюсный поворотный выключатель на два положения, рассчитанный на 240 В; S2 — миниатюрный однополюсный поворотный переключатель на два положения; SK1—SK4 — гнезда диаметром 4 мм (два черных, одно красное и одно зеленое).

Радиатор Т0220 с теплоотводящей способностью 6,8 °C/Вт; корпус Verobox с размерами 205x140x75 мм; плата Veroboard с размерами 96x63 мм; односторонние пистоны 1 мм (14 шт.); изолирующие стойки (2 шт.); крепежные болты и гайки (6 шт.).

Спецификации

КМОП-выход

Диапазон регулируемого напряжения, В … От 3 до 15

Регулируемое ограничение по току, А … От 0,01 до 2

Выходное сопротивление, Ом … < 0,05 (при выходе 10 В и 1 А)

Помехи на выходе, мВ … < 0,5 (10 Гц—100 кГц)

Стабилизация, % … Лучше 1 (при указанных выходных параметрах)

ТТЛ-выход

Фиксированное выходное напряжение, В … 5 ± 0,2

Максимальный ток, А … 1

Ток короткого замыкания, мА … 750

Помехи на выходе, мВ … < 0,05 (10 Гц—100 кГц)

Стабилизация, % … Лучше 0,5 (при указанных выходных параметрах)

 

2.3. Логический пробник

Логический пробник очень удобен для индикации логических состояний в цифровых КМОП- и ТТЛ-схемах.

Описание схемы. Электрическая схема логического пробника показана на рис. П2.4.

Рис. П2.4. Принципиальная электрическая схема логического пробника

Сдвоенный компаратор IC1 определяет уровень напряжения на зонде, сравнивая его с напряжениями от резисторных делителей R1—R4. При стандартном питании +5 В напряжение в точке между R1 и R2 составляет примерно 2,5 В, а в точке между R3 и R4 — около 1,2 В. При отсутствии входного напряжения (зонд «плавает» в воздухе) напряжение на инвертирующем входе IC1b и неинвертирующем входе IC1a будет таким же, как и в точке между R2 и R3, т. е. равным примерно половине напряжения питания.

Входы IC1 включены так, что на выходе 1а (контакт 1) появляется низкий уровень, если зонд пробника воспринимает логический 0, а на выходе IC1b формируется низкий уровень, когда зонд воспринимает логическую 1. В любом случае будет светиться соответствующий светодиод D2 или D1, показывая логическое состояние, воспринимаемое зондом. В отсутствие логических 0 и 1 (неопределенное или высокоуровневое состояние, а также разомкнутая цепь) на обоих выходах IC1 действуют высокие уровни и ни один из светодиодов не светится.

Микросхема 1С2 представляет собой таймер 555, работающий н моностабильном режиме (см. гл. 4) и обеспечивающий необходимое расширение импульсов. Запускающий импульс формируется с помощью конденсаторов С1 или С2 и резисторов R9 или R10. Спадающий фронт образуется при переходе любого выхода микросхемы 1С1 с высокого на низкий уровень.

Длительность импульса таймера (и время свечения D3) определяется времязадающими элементами R11 и СЗ. Конденсатор С4 служит для сглаживания питания, а диод D4 защищает пробник от случайного неправильного подключения питания.

Монтаж. Все компоненты логического пробника монтируются на плате с девятью полосками, имеющими по 37 отверстий. Эту плату можно отрезать от стандартной платы Veroboard (24 полоски по 37 отверстий), сохранив ее часть для логического пульсатора.

Монтажная схема логического пробника на плате Veroboard показана на рис. П2.5.

Рис. П2.5. Монтажная схема логического пробника

Из рисунка видно, что нужно сделать 23 разрыва печатных проводников.

Рекомендуется следующая последовательность монтажа логического пробника: гнезда микросхем, пистоны, перемычки, резисторы, диоды, конденсаторы и светодиоды (выводы последних должны иметь такую длину, чтобы светодиоды были видны в верхней части корпуса). После этого можно подключить провода питания, обратив внимание на правильную полярность (для напряжения +5 В берется красный провод с зажимом «крокодил»).

Прежде чем вставлять микросхемы в гнезда и закреплять печатную плату, тщательно проверьте все компоненты, перемычки и разрывы печатных проводников. Целесообразно обратить особое внимание на подключения полярных компонентов, включая светодиоды, электролитические конденсаторы и диоды. Проверьте надежность соединений и отсутствие выплесков припоя и замыканий между печатными проводниками.

После проверки печатной платы можно вставить в гнезда микросхемы, обратив внимание на их правильную ориентацию. Затем плата монтируется в корпусе пробника; не требуется никаких дополнительных приспособлений, так как плата плотно зажимается при соединении двух половин корпуса. Зонд пробника закрепляется в держателе и соединяется со входом пробника.

Проверка. Логический пробник необходимо проверить, пользуясь блоком питания с ограничением по току. Подключите провода питания пробника к блоку, соблюдая правильную полярность. При свободном зонде пробника ни один из светодиодов не должен светиться.

Теперь коснитесь точки с нулевым потенциалом. Светодиод D3 (импульс) должен вспыхнуть 1 раз, показав изменение логического состояния, а светодиод D2 (логический 0) должен светиться постоянно. Наконец, коснитесь зондом пробника линии +5 В. При этом светодиод D3 также должен вспыхнуть 1 раз, а светодиод D1 (логическая 1) должен светиться постоянно. Если логический пробник не реагирует подобным образом, нужно вынуть печатную плату из корпуса и тщательно проверить ее, обратив особое внимание на ориентацию полярных компонентов (светодиодов, микросхем, диодов, электролитических конденсаторов) и правильность перемычек и разрывов.

Модификации. Мы говорили о том, что логические уровни в TTЛ-схемах отличаются от уровней в КМОП-схемах. Следовательно, используемые в логическом пробнике пороговые уровни должны быть компромиссными. Но, если пробник предназначается только для одного вида схем, рекомендуется изменить параметры компонентов, приведенных в табл. П2.1.

Компоненты. Резисторы (угольные, 0,25 Вт, 5 %); R1 = 15 кОм; R2 = R3 = R8 = R9 = 4,7 кОм; R4 = R12 = 10 кОм; R5 = 470 кОм; R6 = R7 = R11 = 270 Ом; R10 = 22 кОм; конденсаторы: С1 = С2 = 0,1 мкФ; С3 = 4,7 мкФ (танталовый, 16 В); С4 = 10 мкФ (электролитический, 16 В); полупроводниковые приборы: IC1 — LM393; IС2 — 555; D1—D3 — красный светодиод (диаметр 3 мм); D4 — 1N4001.

Дополнительные детали: 8-контактное гнездо для 1C (2 шт.); корпус пробника с размерами 140x30x20 мм; односторонние пистоны (3 шт.); печатная плата типа Veroboard с размерами около 95x63 мм.

Спецификации

Входное сопротивление зонда пробника, кОм … ~ 400

Пороговые напряжения:

логическая 1 (ТТЛ) … 2,5 В (универсальный вариант); 2,4 В (только для ТТЛ)

логический 0 (ТТЛ) … 1,2 В (универсальный вариант); 1,2 В (только для ТТЛ)

логическая 1 (КМОП) … 60 % напряжения питания (универсальный вариант); 70 % напряжения питания (только для КМОП)

логический 0 (КМОП) … 30 % напряжения питания (универсальный вариант); 30 % напряжения питания (вариант только для КМОП)

Длительность расширения импульса, мс … 200

Минимальная длительность импульса, нс … 500

Максимальная частота входного сигнала (ТТЛ), МГц … 10

Требования к питанию:

ТТЛ … 4,5–5,5 В, ток не более 30 мА

КМОП … 3—15 В, ток не более 60 мА

 

2.4. Логический пульсатор

Обычно логический пульсатор применяется совместно с логическим пробником, но может использоваться и автономно для изменения логического состояния цифровой схемы без привлечения паяльника. Пульсатор предназначен для ТТЛ- и КМОП-схем.

Описание схемы. Электрическая схема логического пульсатора приведена на рис. П2.6.

Рис. П2.6. Принципиальная электрическая схема логического пульсатора.

Таймер 555 (IC1) включен как моностабильный генератор импульсов (см. гл. 4). На выходе таймера (контакт 3) при нажатии кнопки S2 действует напряжение высокого уровня, продолжительность которого определяется цепочкой R2—C2. Для указанных параметров элементов длительность импульса составляет около 5 мс.

Полярность импульса коммутируется тумблером S1. Транзистор TR1 работает в режиме инвертора, а транзисторы TR2 и TR3 являются насыщенными ключами и обеспечивают достаточную нагрузочную способность. Выходной ток ограничивается резисторами R7 и R8.

При стандартном питании +5 В пиковый отдаваемый ток ограничивается для короткозамкнутой цепи несколькими сотнями миллиампер.

Когда выходного импульса нет, транзистор TR1 включен, но оба транзистора TR2 и TR3 находятся в непроводящем (выключенном) состоянии. Следовательно, зонд пульсатора находится в высокоимпедансном состоянии.

Как и в логическом пробнике (см. рис. П2.4), диод D1 обеспечивает защиту от неправильного подключения питания.

Монтаж. Все компоненты логического пульсатора монтируются на печатной плате (9 полосок с 37 отверстиями). Ее можно отрезать от стандартной платы Veroboard (24 полоски с 37 отверстиями) или использовать ту часть платы, которая осталась при монтаже логического пробника.

На рис. П2.7 показана монтажная схема логического пульсатора для платы типа Veroboard.

Рис. П2.7. Монтажная схема логического пульсатора

Рекомендуется следующая последовательность монтажа компонентов: кнопка, переключатель, гнездо IС, пистоны, перемычки, транзисторы, резисторы, диод и конденсаторы. Последними монтируются держатель зонда и провода питания (ее забывайте о правильной полярности — для +5 В берется красный провод с зажимом типа «крокодил»). Всего необходимо сделать 18 разрывов печатных проводников. С обратной стороны платы расположены три перемычки, показанные на рис. П2.7 пунктирной линией.

Прежде чем вставить микросхему в гнездо и закрепить плату в корпусе, тщательно проверьте компоненты, перемычки и разрывы печатных проводников; обратите внимание на ориентацию полярных компонентов (транзисторов, диода и электролитических конденсаторов) и отсутствие замыканий из-за выплесков припоя.

После проверки платы нужно вставить в гнездо микросхему, обратив внимание на ее ориентацию. Затем плату временно вставляют в корпус пульсатора. При этом не требуется никаких дополнительных приспособлений, так как плата плотно зажимается при соединении двух половин корпуса. В верхней части корпуса размечаются отверстия под кнопки S1 и S2. Для S2 требуется прямоугольное отверстие с размерами 8x3 мм. Необходимо сначала просверлить несколько маленьких отверстий, а затем обработать прорезь надфилем. Обе половины корпуса скрепляются винтами с потайной головкой, а зонд монтируется в держателе.

Проверка. Для проверки пульсатора требуется блок питания с ограничением тока и логический пробник. Подключите провода питания пробника и пульсатора к блоку питания, соблюдая правильную полярность, а затем соедините их зонды коротким изолированным проводом с зажимами типа «крокодил».

Установите переключатель S1 на генерирование положительного импульса. Не касаясь кнопки S2, убедитесь, что выход пульсатора находится в высокоимпедансном состоянии, т. е, ни один из светодиодов пробника не светится. В противном случае отключите пульсатор, разберите его и вновь проверьте печатную плату.

При правильной работе пульсатора в статическом состоянии, нажмите кнопку S2 для генерирования импульса и одновременно наблюдайте за поведением светодиодов пробника. Пробник должен зафиксировать положительный импульс. Если импульс не наблюдается или пульсатор формирует на выходе неизменное напряжение низкого или высокого уровней, его придется разобрать и вновь тщательно проверить монтаж платы. Затем следует повторить предыдущую процедуру, но переключатель S1 установите при этом на генерирование отрицательного выходного импульса.

Компоненты. Резисторы (угольные, 0,25 Вт, 5 %): R1 = R2 = R3 = 10 кОм; R4 = R5 = R6 = 4,7 кОм; R7 = R8 =10 Ом; конденсаторы: С1 = 4700 пкФ; С2 = 0,47 мкФ (танталовый, 35 В); С3 = 10 мкФ (танталовый, 16 В); полупроводниковые приборы: IC1 — 555; D1 — 1 N4001; TR1, TR2 — 2N3703; TR3 — 2N3705.

Дополнительные детали: S1 — плоская клавишная кнопка, монтируемая на печатной плате; S2 — сверхминиатюрный скользящий двухполюсный переключатель на два положения; 8-контактное гнездо для микросхем; корпус пульсатора с размерами 140x30x20 мм, односторонние пистоны (3 шт.); часть платы Veroboard с размерами 95x63 мм.

Спецификации

Длительность выходного импульса, мс … 5,2

Полярность импульса … Положительная или отрицательная (задается)

Пиковый выходной ток (короткозамкнутая цепь), мА … ~ 200

Пиковый выходной ток (короткозамкнутая цепь), мА… >= 200

Напряжение питания, В … 4,5—15

Потребляемый средний ток, мА … =< 15

 

2.5. Генератор импульсов

Генератор формирует разнообразные импульсные сигналы, которые можно использовать с любыми цифровыми схемами. Период импульсов регулируется от 14 мкс до 1,4 с в пяти десятичных диапазонах, ширина импульсов варьируется от 7 мкс до 0,7 с также в пяти десятичных диапазонах. Генератор имеет два независимых выхода: сигнал на одном из них TTЛ-совместим (пиковый выход 5 В), а на другом амплитуда импульсов регулируется в диапазоне от 0 до 8 В и работает от сети 240 В. Он собран из дешевых недефицитных элементов. Монтируется генератор на стандартной плате Veroboard и в стандартном корпусе Verobox.

Описание схемы. Электрическая схема генератора импульсов приведена на рис. П2.8.

Рис. П2.8. Принципиальная электрическая схема генератора импульсов.

Сетевой трансформатор Т1 подает напряжение 9 В на мостовой выпрямитель D1—D4. На конденсаторе С1 образуется выходное постоянное напряжение, примерно равное 13 В. Транзистор TR1 действует в качестве простого последовательного стабилизатора. Стабилитрон D5 обеспечивает эталонное напряжение 10 В, а светодиод D6 сигнализирует о включенном питании.

Микросхема IC1 — это стандартный таймер 555, работающий в астабильном режиме. Потенциометр VR1 предназначается для регулировки частоты повторения импульсов, а с помощью переключателя S2 выбирается один из пяти времязадающих конденсаторов.

Выход IC1 (примерно симметричные прямоугольные импульсы) по дается па вход запуска микросхемы IC2 через формирующую цепочку С15, R6 и D7.

Второй таймер 555 (IC2) работает в моностабильном режиме, и длительность его выходных импульсов регулируется потенциометром VR2. С помощью переключателя S3 осуществляется декадный выбор времязадающего конденсатора. Выходной сигнал IC2, представляющий собой импульсную последовательность с регулируемым коэффициентом заполнения, подается на потенциометр VR3, определяющий амплитуду импульсов на выходе SK3. Транзистор TR2 инвертирует выходной сигнал таймера и формирует ТТЛ-совместимый сигнал на выходе SK1.

Монтаж и проверка. Все компоненты генератора, за исключением силового трансформатора, гнезда предохранителя и органов управления монтируются на стандартной плате (24 полоски с 37 отверстиями). Монтажная схема генератора на плате Veroboard показана на рис. П2.9.

Рис. П2.9. Монтажная схема генератора импульсов.

На плате необходимо сделать 15 разрывов. Рекомендуется следующая последовательность монтажа: гнезда, перемычки, конденсаторы, резисторы, мостовой выпрямитель и выходные пистоны. До окончательного закрепления платы проверьте размещение компонентов, перемычки и разрывы, убедитесь в правильной ориентации электролитических конденсаторов и мостового выпрямителя, а также в отсутствии замыканий печатных проводников из-за выплесков припоя.

После того как плата тщательно проверена, ее закрепляют в корпусе Verobox с помощью трех коротких изолирующих стоек. Затем можно вставить в гнезда микросхемы, соблюдая, конечно, их правильную ориентацию.

Органы управления, переключатели, индикаторы и выходные гнезда монтируются на лицевой панели в соответствии с рис. П2.10.

Рис. П2.10. Трафареты для разметки лицевой панели.

Такой рисунок можно вырезать и наклеить на лицевую панель. Соединения с компонентами, находящимися на лицевой панели, прокладываются короткими изолированными проводами согласно схеме, приведенной на рис. П2.11.

Рис. П2.11. Монтажная схема лицевом панели.

После сборки следует тщательно проверить внутренние соединения, обратив особое внимание на держатель предохранителя, силовой трансформатор и включатель сети. Затем включите сеть и мультиметром, настроенным на измерение постоянного напряжения, измерьте напряжения на конденсаторе С1, которое должно находиться в диапазоне от 11 до 13,5 В. Убедившись в наличии такого напряжения, нужно проверить выходное напряжение блока питания, для чего мультиметром измеряется напряжение на контакте 8 IC1 или 1С2. Обычно оно варьируется в диапазоне от 8,5 до 9,5 В. После этого с помощью логического пробника или осциллографа проверяется выход генератора.

Компоненты. Резисторы (угольные, 0,25 Вт, 5 %): R1 = R2 = 220 Ом; R3 = 680 Ом; R4 = 1 кОм; R5 = R11 = 10 кОм; R6 = 2,7 кОм; R7 = 3,9 кОм; R5 = 100 Ом; R9 = 150 Ом; R10 = 10 Ом; VR1 = VR2 = 100 кОм (потенциометр линейный, угольный); VR3 = 1 кОм (потенциометр линейный, проволочный).

Конденсаторы: С1 = 220 мкФ (электролитический, 25 В); С2 = С19 = 100 мкФ (электролитический, 16 В); С3 = 10 мкФ (электролитический, 16 В); С4 = 100 мкФ (электролитический, 25 В); С5 = 1 мкФ (полистироловый); С6 = С9 = С16 = 0,1 мкФ (полистироловый); С7 = С15 = 0,01 мкФ (полистироловый); C8 = 1000 пкФ (полистиролоный); С10 = 4 мкФ (электролитический, 25 В); С11 = 0,47 мкФ (полистироловый); С12 = 0,047 мкФ (полистироловый); С13 = 4700 пкФ (полистироловый); С14 = 470 пкФ (полистироловый); С17 = 820 пкФ (полистироловый); С18 = 1 мкФ (электролитический 16 В).

Полупроводниковые приборы: BR1 — мостовой выпрямитель, 220 В, 1,6 А, например SKB2/02L5A; D1 — красный светодиод; IC1, IC2 — 555; TR1 — 2N3053; TR2 — ВС548.

Дополнительные детали: Т1 — силовой трансформатор, 12 В∙А; первичная обмотка на 240 В (или две обмотки на 120.В), вторичная — на 9 В (или две обмотки на 4,5 В каждая); FS1 — легкоплавкий предохранитель на 1 А длиной 20 мм с держателем; S1 — миниатюрный двухполюсный тумблер на два положения, рассчитанный на максимальное напряжение 240 В; S2, S3 — поворотный однополюсный переключатель на 5 положений с ограничителем; SK1—SK4 — гнезда диаметром 4 мм (два черных, одно красное, одно желтое); корпус типа Verobox с размерами 205x140x110 мм (номер изделия 202-21036С); плата типа Veroboard с размерами 95x63 мм (номер изделия 801-21070Н); пистоны односторонние диаметром 1 мм (13 шт.); гнезда 8-контактные для микросхем (2 шт.); изолирующие стойки (3 шт.); крепежные болты и гайки (по 5 шт.),

Спецификации

Период импульсов в пяти декадных диапазонах, мкс … От 14 до 1,4∙10 6

Длительность импульсов в пяти декадных диапазонах, мкс … От 7 до 0,7∙10 6

Амплитуда импульсов, В … От 0 до 8 (фиксированный инвертированный ТТЛ-выход, 5 В)

Длительность фронтов на всех диапазонах, мкс … =< 5

 

2.6. Тестер цифровых микросхем

Тестер цифровых микросхем позволяет проверить большинство распространенных КМОП- и ТТЛ-элементов без удаления их из схем, Прибор рассчитан на микросхемы с 14-контактным корпусом и «стандартным» подключением питания (контакт 7 — земля, контакт 14 — 4–5 В). При желании его несложно переделать для микросхем с 16-контактным корпусом и другим подключением питания.

Чтобы проверить ту или иную микросхему, требуется работоспособная микросхема такого же типа и схема разводки ее контактов.

Описание схемы. До рассмотрения схемы тестера целесообразно изучить принцип его работы. Он довольно прост: логическая функция проверяемой микросхемы дублируется аналогичной исправной микросхемой и затем сравниваются выходные сигналы двух микросхем.

Для сравнения используется логический элемент, реализующий функцию исключающее ИЛИ (см. гл. 2). Если входы этого элемента одинаковы, на выходе появляется напряжение низкого уровня, а если входы различаются — на выходе действует напряжение высокого уровня.

Электрическая схема тестера показана на рис. П2.12.

Рис. П2.12. Принципиальная электрическая схема тестера микросхем. Числа около переключателей S14 и S15 относятся к надписям на лицевой панели прибора и выбору контактов тестового гнезда SK1.

Сигналы от проверяемой микросхемы берутся с помощью клипсы («захвата»), которая подсоединяется к тестеру коротким ленточным кабелем через гнезда SK2 15-контактного разъема типа D. Линии, на которых действуют логические сигналы (они соответствуют контактам 1–6 и 8—13) у подведены к однополюсным тумблерам S1—S13, за исклчением S7. Тумблеры пронумерованы в соответствии с номерами контактов микросхемы.

Тумблеры S1—S13 (за исключением S7) упрощают соединение контактов проверяемой микросхемы с соответствующими контактами эталонной микросхемы, которая вставляется в гнездо SK2. Подчеркнем, что при обычной работе с помощью тумблеров соединяются только входные контакты. Например, при проверке микросхемы 7400 (четыре двухвходовых элемента НЕ-И) во включенном состоянии должны находиться тумблеры 1, 2, 4, 5, 9, 10, 12 и 13.

Выходные сигналы, используемые для сравнения, выбираются с помощью переключателей S14 (внешние) и S15 (внутренние). Например, при проверке микросхемы 7400 переключатели нужно поочередно ставить в положения 3, 6, 8 и 11. Результат сравнения индицируется светодиодом D1, который светится при напряжении низкого уровня на выходе микросхемы IC1. Такое напряжение получается при идентичных входных сигналах и показывает, что обе микросхемы работают одинаково. Тумблер S7 служит для подачи питания на тестер, а светодиод D2 сигнализирует о наличии питания. Конденсатор С1 предназначен для развязки.

Монтаж. Собрать тестер довольно просто, но для этого необходимо выполнить гораздо больший объем монтажных работ, чем в предыдущих случаях. Сначала требуется разметить лицевую панель, просверлить отверстия, установить органы управления и индикаторы, а затем приступить к монтажу основной платы. Гнездо SK1 размещается на печатной плате (точные ее размеры не играют роли) и крепится на стойках так, чтобы оно выглядывало через небольшое прямоугольное отверстие в лицевой панели. Гнездо впаивается в печатную плату. Проводники между противоположными сторонами разрезаются в семи местах с помощью кусачек или сверла (дрели) и соединяются проводами с переключателями (рис. П2.13).

Рис. П2.13. Соединения между схемной платой и компонентами на лицевой панели. Монтаж тумблеров S1—S10 аналогичен показанному для S11—S13.

Элементы IC1d, RU R2 и С1 монтируются на небольшом куске печатной платы (19 полосок с 17 отверстиями). Монтажная схема всех элементов показана на рис. П2.14.

Рис. П2.14. Монтажная схема для платы Veroboard .

Монтаж платы осуществляется в следующей последовательности: гнездо IС, перемычка, конденсатор, резисторы и пистоны. После монтажа необходимо тщательно осмотреть плату. Затем она крепится непосредственно под гнездо SK1 с помощью двух стоек. Микросхема IC1 вставляется в гнездо с соблюдением ее правильной ориентации. После этого завершается остальной монтаж схемы в соответствии с рис. П2.13.

На лицевой панели прибора устанавливаются органы управления, переключатели, индикаторы и разъем. Целесообразно сначала вырезать шаблон и приклеить его к лицевой панели. Клипса 1C соединяется с 15-контактным разъемом типа D при помощи ленточного кабеля длиной около 500 мм. Все подключения к разъему осуществляются в соответствии с данными табл. П2.2.

Для изолирования паек на клипсе целесообразно использовать короткие теплостойкие насадки, а для лучшей идентификации — кабель с разноцветными проводами.

Как всегда, после окончания внутреннего монтажа его нужно тщательно проверить, особенно цепи гнезд SK1 и SK2. Все тумблеры следует установить в выключенное положение.

Проверка. Для проверки прибора требуется работающее устройство с микросхемами логических элементов в 14-контактных корпусах и исправная эталонная микросхема. Желательно иметь дело с низкочастотным устройством, так как распределенные паразитные емкости кабеля и самого тестера при совместной работе с быстродействующими устройствами могут вызвать определенные трудности.

Предположим, что для первой проверки выбрана микросхема 7400. Для начала нужно вставить эталонную микросхему в гнездо SK1, выключить питание устройства и подключить клипсу, обращая внимание на контакт 1. Затем подключить входы, пользуясь тумблерами S1—S13, и подать питание на устройство. Тумблер S7 следует перевести в положение «Вкл.» (см. рис. П2.12) и проверить свечение светодиода D2. Если он не светится, выключите питание и проверьте монтаж, включая ленточный кабель, разъем и клипсу.

Убедившись в том, что питание на тестер подается, переведите оба сравнивающих переключателя S14 и S15 в положение 3 (выход первого элемента НЕ-И). Проверьте, светится ли D1 при всех режимах работы проверяемого устройства. Если он не светится или вспыхивает, то одна из микросхем неисправна (однако причиной неисправности может быть и неправильный монтаж схемы). Повторите аналогичную проверку для всех четырех выходов микросхемы (S14 и S15 в положениях 6, 8 и 11) и убедитесь в том, что все четыре элемента НЕ-И дают один и тот же результат.

Тестер можно использовать и «наоборот», т. е. для проверки микросхемы, находящейся в гнезде, а не на плате. Для этого подозрительную микросхему нужно вставить в гнездо SK1, а клипсу с эталонной микросхемой — в гнездо на печатной плате. Дальнейшая процедура проверки аналогична описанной выше.

Компоненты. Резисторы (угольные, 0,25 Вт, 5 %): R1 = R2 = 2,470 Ом; конденсатор С1 = 10 мкФ (электролитический, 16 В); полупроводниковые приборы: IC1 — 74LS86; D1 — красный светодиод (с линзой); D2 — зеленый светодиод (с линзой).

Дополнительные детали: S1—S6/S8—S13 — миниатюрные однополюсные тумблеры на два положения (12 шт.); S7 — поворотный однополюсный переключатель на два положения; S14, S15 — круговой переключатель на 12 положений (2 шт.); SK1—14-контактное гнездо; SK2 — вставка разъема типа D на 15 контактов, монтирующаяся на шасси; PL1 — разъем типа D на 15 контактов для монтажа кабеля; клипса для микросхем с 14 контактами; 14-контактное гнездо (2 шт.); ленточный кабель с 14 проводами длиной 500 мм; корпус типа Verobox с размерами 205x140x110 мм (номер детали 202-21033А); плата типа Veroboard с размерами 95x63 мм (номер детали 801-21070Н); пистоны односторонние диаметром 1мм (7 шт.); изолирующие стойки (2 шт.); крепеж (болтов 2 шт., гайки 6 шт.); ручка.

Разводка контактов распространенных микросхем приведена в приложении 1.

 

2.7. Индикатор тока

Предлагаемый прибор предназначен для индикации относительных значений токов в печатных проводниках без их разрыва и подключения обычного амперметра. Чувствительность прибора такова, что он может воспринимать ток до нескольких миллиампер и допускает сопряжение с проверяемой схемой по постоянному и переменному току.

Действие промышленных индикаторов тока основано на одном из двух принципов: восприятие небольшого падения напряжения на проводнике с током и использование эффекта Холла для фиксации магнитного поля, существующего в непосредственной близости от проводника с током.

В общем, индикаторы тока с использованием эффекта Холла лучше, так как не требуют прямого контакта с печатными проводниками. К сожалению, такие приборы довольно дороги.

Описание схемы. Электрическая схема индикатора тока показана на рис. П2.15.

Рис. П2.15. Принципиальная электрическая схема индикатора тока.

Прибор фиксирует небольшое падение напряжения вдоль печатного проводника (обычно несколько сот микровольт) и представляет собой инвертирующий операционный усилитель. Чтобы обеспечить широкий диапазон входных напряжений (от нескольких микровольт до сотен милливольт), операционный усилитель работает в режиме с логарифмической характеристикой, т. е. его коэффициент усиления по напряжению значительно уменьшается с увеличением уровня входного сигнала.

Тумблером S1 выбирается сопряжение входа микросхемы IC1 по постоянному или переменному току, а потенциометром VR1 обеспечивается дополнительная ручная регулировка усиления (чувствительности). Мостовой выпрямитель D1—D4 подает на измерительный прибор сигнал правильной полярности независимо от полярности входного сигнала. Диоды D5 и D6 служат ограничителями, а конденсатор С3 определяет постоянную времени.

Вход «половинного» питания для операционного усилителя формируется с помощью стабилитрона D4 и резистора R7. Конденсаторы С2 и С4 служат для развязки, а светодиод D8 сигнализирует о включенном питании.

Монтаж. Собрать индикатор тока несложно. Все его элементы, за исключением батарейного соединения, собственно измерительного прибора, гнезда пробника и органов управления, монтируются на стандартной печатной плате типа Veroboard (24 полоски с 23 отверстиями). Монтажная схема для платы Veroboard показана на рис. П2.16.

Рис. П2.16. Монтажная схема индикатора тока. Для микросхемы IС1 на плате устанавливается держатель. Выход VR1 (W) соединяется с центральным лепестком потенциометра.

Под гнездом микросхемы IC нужно сделать четыре-разрыва печатных проводников.

Монтаж элементов производится в следующей последовательности: гнездо микросхемы, перемычки, конденсаторы, резисторы, диоды и пистоны. После монтажа необходимо тщательно проверить плату, обратив особое внимание на ориентацию электролитических конденсаторов, диодов и выпрямителя.

Плата укрепляется горизонтально в корпусе Verobox с помощью четырех коротких изолирующих стоек, а микросхема аккуратно вставляется в гнездо.

Измерительный прибор, органы управления и гнезда пробника размещаются на лицевой панели, куда наносятся и все необходимые надписи. Соединения с лицевой панелью осуществляются короткими изолированными проводами в соответствии с монтажной схемой, показанной на рис. П2.17.

Рис. П2.17. Соединения компонентов, монтируемых на лицевой панели. Резистор R5 припаивается к металлическому корпусу потенциометра VR1 .

Проверка. Прежде всего следует проверить правильность монтажа индикатора тока, обратив особое внимание на подключение батареи и измерительного прибора. Затем нужно подключить батарею РРЗ (или аналогичную) и включить питание. Светодиод D8 своим свечением сигнализирует о наличии питания. С помощью мультиметра на диапазоне 10 В убедитесь, что напряжение на D7 составляет от 4,5 до 5 В. В противном случае просмотрите все соединения и монтажную схему на плате Veroboard.

Для правильной работы прибора необходимо обеспечить его надежный контакт с печатным проводником. С этой целью купите или сделайте два зонда. К каждому зонду подсоедините провод, заканчивающийся штырьком диаметром 2 мм. Проверка зондов производится в соответствии со схемой, показанной на рис. П2.18.

Рис. П2.18. Схема для проверки индикатора тока.

Батарея с напряжением 1,5 В обеспечивает падения напряжения в соответствующих контрольных точках, равные 100 мкВ, 1 и 100 мВ.

Установите максимальную чувствительность прибора (потенциометр VR1 поверните по часовой стрелке до упора) и коснитесь зондами точек А и D. Стрелка измерительного прибора при этом должна отклониться на всю шкалу, т. е. показать примерно 1 мА. Затем коснитесь зондами точек В и D. Прибор покажет примерно 0,6 мА.

Наконец, при касании зондами точек С и D прибор должен показать приблизительно 0,3 мА. Отметим, что индикатор тока нечувствителен к полярности и зонды маркировать не нужно.

Работа с прибором. Убедившись в правильности функционирования индикатора тока, необходимо его как следует освоить. Для этого потребуется печатная плата (с поданным питанием), содержащая разнообразные ТТЛ-микросхемы, и ее подробное описание.

Зондами индикатора тока нужно поочередно касаться печатных проводников (питания) и наблюдать за показаниями прибора. На плате со стандартными ТТЛ-микросхемами индикатор должен фиксировать заметное отклонение стрелки, когда расстояние между зондами составляет примерно 10 мм. Конечно, при увеличении расстояния между зондами отклонение должно увеличиваться. После приобретения некоторого практического опыта вы сможете делать обоснованное предположение о значении тока, потребляемого каждой микросхемой в отдельности.

Индикатор тока используется также для обнаружения дефектов в разъемах (касаются зондами разъемного соединения с разных сторон и наблюдают за показаниями прибора), высокоомных соединений и недостаточной фильтрации. В последнем случае прибор требуется перевести в режим переменного тока и коснуться зондами шины питания и земли.

Компоненты. Резисторы (угольные, 0,25 Вт, 5 %): R1 = R2 = R4 = R5 = 1 кОм; R5 = 100 Ом; VR1 = 100 кОм (линейный, угольный); конденсаторы: С1 = 4 мкФ (танталовый, 35 В); С2 = С4 = 100 мкФ (электролитический, 16 В); С3 = 10 мкФ (электролитический, 16 В); полупроводниковые приборы: IC1—741; D1—D4 — ОА91; D5, D6 — 1N4148; D7 — BZY88C4V7; D8 — красный светодиод (с линзой).

Дополнительные детали: S1, S2 — миниатюрный однополюсный тумблер на два положения; SK1 — гнездо диаметром 2 мм (красное); SK2 — гнездо диаметром 2 мм (черное); 8-контактное гнездо для микросхемы; корпус типа Verobox с размерами 205x140x110 мм (номер детали 202-21033А); плата типа Veroboard с размерами 65x63 мм (24 полоски с 23 отверстиями), отрезается от детали с номером 801-21070Н; односторонние пистоны диаметром 1 мм (8 шт.); изолирующие стойки (4 шт.); крепеж (болты 4 шт., гайки 4 шт.); ручка; измерительный миллиамперметр с разрешающей способностью 1 мА; держатель для батареи РР3; зонды (2 шт.).

 

2.8. Звуковой логический индикатор

Звуковой логический индикатор позволяет пользователю прослушивать сигналы, действующие в микропроцессорной системе. Другими словами, он представляет собой альтернативу обычного логического пробника, который обеспечивает только визуальную индикацию логических состояний и, следовательно, не позволяет сделать обоснованного предположения о поведении импульсного сигнала в проверяемой линии.

Прослушивая сигналы в микропроцессорной системе, можно разобраться, что в ней происходит. С помощью звукового индикатора удается не только зафиксировать активность в конкретной линии, но и оценить частоту импульсов и наличие в сигнале периодичности. По звуку можно различать сигналы на отдельных линиях шины, синхронизации и разрешения микросхем. Каждому, кто еще сомневается в возможностях этого простого прибора, но регулярно занимается отладкой микропроцессорных систем, мы советуем собрать звуковой логический индикатор.

Описание схемы. Принцип действия звукового логического индикатора довольно прост. Высокочастотные сигналы, действующие в микропроцессорной системе, преобразуются в сигналы более низкой звуковой частоты с помощью двоичного делителя частоты. Выходные сигналы делителя формируются и подаются на обычный усилитель звуковой частоты.

Электрическая схема звукового логического индикатора показана на рис. П2.19.

Рис. П2.19. Принципиальная электрическая схема звукового логического индикатора.

Микросхема IC1 (КМОП-делитель) осуществляет деление частоты входных сигналов на 1024 (210). Цепочка R1, D1 и D2 защищает IC1 от чрезмерных входных напряжений (максимум ±50 В). Микросхема IC2 представляет собой усилитель звуковой частоты с фиксированным коэффициентом усиления. Частотная характеристика этого усилителя постоянна в диапазоне от нескольких герц до 20 кГц и больше.

Монтаж. Все компоненты индикатора монтируются на куске печатной платы (10 полосок с 37 отверстиями), который легко отрезать от стандартной платы Veroboard. Монтажная схема прибора приведена на рис. П2.20.

Рис. П2.20. Монтажная схема звукового логического индикатора.

Всего на плате нужно сделать 20 разрывов печатных проводников.

Рекомендуется следующая последовательность сборки: гнезда IС, выходные пистоны, перемычки, резисторы, диоды и конденсаторы. Динамик монтируется в верхней части корпуса пробника, для чего вырезается отверстие диаметром примерно 14 мм, а приклеивается динамик эпоксидной смолой. Затем подсоединяются провода питания с соблюдением правильной полярности, красный провод с зажимом типа «крокодил» подключается к источнику +5 В.

Прежде чем вставить микросхемы в гнезда и закрепить плату, нужно внимательно осмотреть ее и проверить перемычки и разрывы печатных проводников, правильную ориентацию полярных компонентов (диоды и электрические конденсаторы), отсутствие выплесков припоя и закорачиваний печатных проводников.

После проверки платы две микросхемы вставляются в гнезда и плата закрепляется в корпусе. При этом не требуется никаких дополнительных приспособлений, так как плата плотно зажимается при соединении двух половин корпуса. Держатель зонда соединяется со входом прибора, а сам зонд закрепляется в держателе.

Проверка. Эта операция производится на функционирующей микропроцессорной системе, например на домашнем компьютере.

Питание его берется из удобной точки основного блока питания.

Когда зонд индикатора ничего не касается, никаких звуков не слышно. После прикосновения зондом к выходу генератора синхронизации (идеально подходит частота синхронизации от 1 до 4 МГц), слышен «чистый» тон с частотой 1–4 кГц. Если коснуться зондом одной из линий данных, то возникнет резкий звук (с частотой от 100 Гц до 1 кГц).

В том случае, если прибор не издает никаких звуков, необходимо вынуть печатную плату из корпуса и тщательно проверить ее, обратив внимание на ориентацию полярных компонентов (диодов, электролитических конденсаторов, микросхем) и правильность перемычек и разрывов.

Целесообразно прослушать генерируемые индикатором звуковые сигналы при касании зондом следующих точек в микропроцессорной системе: остальных линий шины данных; линии шины адреса (улавливаете ли вы различия между сигналами от старших и младших линий адреса?), линии шины управления (включая линии считывания и записи), линии разрешения микросхем.

Компоненты. Резисторы (угольные, 0,25 Вт, 5 %): R1 = R3 = 3 кОм; R2 = 22 кОм; R4 = 220 Ом; конденсаторы: С1 = 10 мкФ (танталовый, 25 В); С2 = 0,1 мкФ (полистироловый); С3 = 10 мкФ (электролитический, 16 В); С4 = 10 мкФ (электролитический, 25 В); С5 = 100 мкФ (электролитический, 16 В); С6 = 220 мкФ (электролитический, 16 В); полупроводниковые приборы: IC1 — 4020В; IC2 — ТВА820М; D1, D2 — 1N4148; D3— 1N4001.

Дополнительные детали: динамик с сопротивлением 8 Ом; гнездо для микросхемы 8-контактное (1 шт.); гнездо для микросхемы 16-контактное (1 шт.); корпус с размерами 140x30x20 мм; односторонние пистоны диаметром 1 мм (5 шт.); плата типа Veroboard с размерами 95x63 мм.

 

2.9. Врезка для интерфейса RS-232C

Это несложное устройство не только дает пользователю возможность изменять конфигурацию системы RS-232C, но и позволяет просмотреть разнообразные сигналы, а также выявить наиболее характерные отказы.

За последние несколько лет появилось довольно много схем подобных устройств. Одни из них обладают минимальными возможностями, например только индицируют состояния сигнальных линий, а другие показывают скорость передачи в бодах и автоматически определяют конфигурацию системы RS-232C в терминах DTE и DCE.

Предлагаемое устройство спроектировано с расчетом его изготовления в домашних условиях. С его помощью одновременно индицируются как MARK или SPACE логические состояния на любых двух линиях, подключается любая линия к любой другой линии (с любой стороны интерфейса), задается на любой линии состояние MARK или SPACE, подключается к любой линии внешнее оборудование, например осциллограф, цифровой счетчик, генератор импульсов и т. п., устройство полностью автономно и работает от внутренних батарей.

Описание схемы. Упрощенная схема врезки для интерфейса RS-232C показана на рис. П2.21.

Рис. П2.21. Упрощенная схема врезки. Отметим, что основная земля и сигнальная земля соединяются и подключаются к нулевому потенциалу (шасси).

Схема симметрична относительно зоны соединений (с каждой стороны интерфейса). Соединения в этой зоне осуществляются с помощью перемычек для печатных плат или коротких проводов, заканчивающихся штекерами диаметром 1 мм. К зоне соединений подводятся также точки с уровнями постоянного напряжения, соответствующими состояниям MARK и SPACE.

Шесть наиболее важных сигнальных линий (TXD, RXD, RTS, CTS, DSR и DTR) с каждой стороны интерфейса подаются на выбирающий переключатель. Выход переключателя связан со схемой обнаружения МАRК/SPACE, а также с разъемом ввода-вывода для внешнего контрольно-измерительного прибора. Седьмое положение переключателя используется только по мере необходимости для передачи остальных сигналов из зоны соединений в схему обнаружения MARK/SPACE.

Электрическая схема врезки для интерфейса RS-232C приведена на рис. П2.22.

Рис. П2.22. Принципиальная электрическая схема врезки для интерфейса RS-232C .

Абсолютно симметричная схема для другой стороны интерфейса на рисунке не показана, а номера ее соответствующих компонентов отличаются от показанных на 100, например S1 и S101.

Сигналы из зоны соединений выбираются с помощью переключателей S1 и S101. Микросхемы IC1a и IC1b действуют как компараторы; на их выходах образуются высокие уровни, когда входное напряжение больше +3 В или меньше —3 В соответственно. Диоды D1—D4 обеспечивают защиту от входных напряжений, превышающих положительное и отрицательное максимальное напряжения питания (максимальное напряжение в интерфейсе RS-232C равно ±25 В). Стабилитроны D7 и D8 образуют эталонные напряжения для компараторов, т. е. минимальное напряжение для SPACE и максимальное напряжение для MARK. С помощью D5 и D6 преодолевается ограничение используемого операционного усилителя, когда входное напряжение близко к отрицательному напряжению питания. Питание схемы обеспечивают две сухие батареи по 9 В каждая, а светодиод D11 сигнализирует о включенном питании.

Монтаж. Две схемы обнаружения MARK/SPACE монтируются на двух кусках печатной платы с размерами 60x64 мм (24 полоски с 23 отверстиями). Их можно отрезать от стандартной платы Veroboard. Монтажная схема платы показана на рис. П2.23, причем необходимо сделать 23 разрыва печатных проводников.

Рис. П2.23. Монтажная схема врезки для платы Veroboard .

Рекомендуется следующая последовательность монтажа: гнезда для микросхем, пистоны, перемычки, резисторы, диоды и конденсаторы. После монтажа тщательно проверьте плату и вставьте микросхемы в гнезда, конечно, обратив внимание на их правильную ориентацию.

Монтаж компонентов на лицевой панели показан на рис. П2.24.

Рис. П2.24. Монтаж на лицевой панели. Гнезда из зоны соединений припаиваются к соответствующим контактам S1 и S101 .

Зона соединений представляет собой матрицу из 62 гнезд диаметром 1 мм. Размещение гнезд должно напоминать два 25-контактных разъема типа D (SK1 и SK2), а сами гнезда соединяются с соответствующими контактами. При разметке лицевой панели под гнезда выдержите расстояние по горизонтали 10,16 мм, а по вертикали 7,62 мм.

Необходимо соединить два гнезда, соответствующих контакту 1 (защитная земля), с двумя гнездами, соответствующими контакту 7 (сигнальная земля). Оба земляных гнезда (контакты 1 и 7) соединяются с линией нулевого потенциала лицевой панели в любой удобной точке.

Шесть соединений от выбирающих переключателей S1 и S101 с гнездами выполняются в соответствии с табл. П2.3.

После завершения монтажа зоны соединений над ней при помощи четырех стоек подходящей длины укрепляется плата. К задней стенке корпуса прикрепляется держатель для батарей. Питание от батарей к лицевой панели подводится с зажимами на конце. Внешний вид и маркировка лицевой панели показаны на рис. П2.25.

Рис. П2.25. Лицевая панель врезки для интерфейса RS-232C .

Проверка. Первоначальную проверку врезки для интерфейса RS-232C следует выполнить без ее подключения к микрокомпьютеру.

Вставьте две новые батареи типа РРЗ и включите устройство, о наличии питания должен сигнализировать светодиод D11. Переключатели S1 и S101 должны находиться при этом в положении Передача; оба светодиода MARK и SPACE светиться не должны. Поочередно подайте в гнезда Передача с каждой стороны зоны соединений сигналы от гнезд MARK и SPACE. При этом должен, светиться соответствующий светодиод; если он не светится, тщательно проверьте монтаж, включая и соединения с печатной платой.

Затем устройство необходимо проверить в паре с работающим микрокомпьютером. Оно включается последовательно в сигнальный тракт RS-232C с помощью коротких ленточных кабелей, оканчивающихся соответствующими 25-контактными разъемами. Конфигурация устройства устанавливается для обычной работы, т. е. соединяются перемычками гнезда 2–6 и 20. Первоначально целесообразно задать самую медленную скорость передачи, например 50 бод, и «заставить» систему передавать в периферийное устройство файл подходящей длины. Затем необходимо просмотреть сигналы на всех линиях и реакцию системы на разрыв некоторых линий, в частности RTS и CTS.

Компоненты. Резисторы (угольные, 0,25 Вт, 5 %): R1 = R4 = R7 = R8 = 1 кОм; R101 = R104 = R107 = R108 = 1 кОм; R5 = R6 = R105 = R6 = 4,7 кОм; R9 = R11 = R109 = R110 = 270 Ом; конденсаторы: С1 = С2 = 10 мкФ (танталовые, 25 В); полупроводниковые приборы: IC1, IC101 — TL082; D1—D4, D6, D101—D104, D106 — 1N4148; D5, D105 — BZY88C3V9; D7, D8, D107, D108 — BZY88C3V0; D9, D109 — зеленые светодиоды; DIO, Dll, D110 — красные светодиоды.

Дополнительные детали: S1, S101 — поворотные однополюсные переключатели на 12 положений (ограничитель поставлен на семь положений); S2 — миниатюрный тумблер, двухполюсный, на два положения; держатели для светодиодов (5 шт.); 8-контактное гнездо для микросхемы (2 шт.); 25-контактный разъем типа D (2 шт.); корпус устройства с размерами 220x156x100 мм; односторонние пистоны (15 шт.); часть печатной платы Veroboard с размерами 60x64 мм; болты, гайки и стойки (4 комплекта); гнезда типа BNC (2 шт.); гнезда диаметром 1 мм (31 черное, 31 красное); перемычки для печатных плат длиной 10,16 мм; ручки (2 шт.); провода для питания ст батареи РРЗ с зажимами (2 шт.).

 

2.10. Цифровой счетчик-частотомер

Этот автономный прибор позволяет производить разнообразные временные и частотные измерения как цифровых, так и аналоговых сигналов. Его устройство наиболее сложное по сравнению с конструкциями всех рассмотренных ранее приборов, поэтому рекомендуем приступать к его изготовлению только после того, как вы уже сделаете два-три более простых прибора.

Описание схемы. Основу цифрового счетчика-частотомера составляет популярная микросхема 7216А, представляющая собой универсальный счетчик. В микросхему встроены высокочастотный генератор, декадный счетчик, 8-декадный счетчик данных и защелка, дешифратор для 7-сегментных индикаторов и восемь усилителей (драйверов) для управления светодиодными индикаторами. Максимальная входная частота прибора равна 10 МГц в режиме измерения частоты и числа импульсов и 2,5 МГц в остальных режимах.

Микросхема 7216А может работать как частотомер, измеритель периода, измеритель отношения частот, измеритель временных интервалов или как накапливающий счетчик. Для построения многофункционального прибора требуется минимум внешних схем (рис. П2.26).

Рис. П2.26. Принципиальная электрическая схема цифрового счетчика-частотомера.

Поскольку оба сигнальных входа микросхемы 7216А (вход А — контакт 28 и вход В — контакт 2) являются цифровыми, причем порог переключения при питании +5 В составляет 2 В, необходимы цепи формирования внешних входных сигналов. Они представлены двумя широкополосными усилителями на транзисторах TR1 и TR2 для входа A и на транзисторах TR3 и TR4 для входа В. Усилители абсолютно одинаковы и обеспечивают формирование прямоугольного выходного сигнала с амплитудой 5 В при подаче на вход синусоидального напряжения со средним значением 100 мВ (при этом входные селекторы S1 и S2 находятся в положении переменного тока).

С помощью S1 и S2 можно подавать также входные сигналы постоянного тока (что важно при использовании устройств низкой частоты и счета событий) и сигналы с большой амплитудой. Кнопки S3 и S4 предназначены для фиксации и сброса индикатора, а с помощью переключателей S5 и S6 выбирают диапазон и род работы.

Для уменьшения объема монтажных работ, в цифровом счетчике-частотомере используются два 4-разрядных мультиплексированных 7-сегментных индикатора D11 и D12. Разводка контактов индикаторов показана на рис. П2.27.

Рис. П2.27. Разводка контактов 7-сегментного индикатора.

Конденсаторы С6—С9 обеспечивают развязку по питанию, а диод D3 понижает напряжение питания при работе от сухих батарей, а не от аккумуляторов. В случае применения аккумуляторов диод D3 просто закорачивается перемычкой.

Когда прибор работает от никель-кадмиевых аккумуляторов, последние можно подзаряжать в нерабочее время, подключая SK3 и SK4 к источнику постоянного напряжения 12 В (например, к сетевому блоку питания или автомобильному аккумулятору). Диод D2 защищает прибор от неправильного подключения, а светодиод D1 сигнализирует о процессе заряда. Зарядный ток ограничивается на уровне примерно 250 мА с помощью резистора R20, который должен рассеивать мощность не менее 2,5 Вт. Продолжительность заряда при полностью разряженных аккумуляторах составляет примерно 12 ч.

Монтаж. Все компоненты прибора, за исключением находящихся на лицевой панели и держателя для батарей, монтируются на печатной плате с размерами 110x110 мм (40 полосок с 40 отверстиями). Монтажная схема платы представлена на рис. П2.28.

Рис. П2.28. Монтажная схема платы.

Всего необходимо сделать на плате 45 разрывов печатных проводников.

Рекомендуется следующая последовательность монтажа: гнезда для микросхем, пистоны, индикаторы, перемычки, резисторы, диоды и конденсаторы. После тщательной проверки платы можно вставить в гнездо микросхему. Монтажная схема компонентов на лицевой панели показана на рис. П2.29.

Рис. П2.29. Монтажная схема лицевой панели.

Отверстие с размерами 100x20 мм для индикатора следует тщательно разметить и аккуратно вырезать надфилем, а затем его края обработать тонкой шкуркой.

Сзади к лицевой панели эпоксидной смолой прикрепляется красный поляризованный фильтр. Постарайтесь, чтобы смола не выступала на видимую часть фильтра и весь индикатор имел аккуратный вид.

Закончив монтаж лицевой панели, прикрепите печатную плату с помощью четырех стоек длиной 28 мм к основанию корпуса. Затем соедините кусочком плоского кабеля лицевую панель с печатной платой. Желательно, чтобы соединения были прямыми и по возможности короткими. Несоблюдение этой рекомендации может привести к помехам, вызывающим хаотические показания индикаторов при работе от батарей с пониженным напряжением.

С помощью болтов М3 и гаек к основанию корпуса крепится футляр батарей, а на задней стороне корпуса монтируются зарядные гнезда SK3 и SK4. На рис. П2.30 показаны надписи, которые наносятся на лицевой панели прибора.

Рис. П2.30. Внешний вид лицевой панели.

Проверка. При работе прибора от сухих батарей убедитесь, что перемычка отсутствует (см. рис. П2.28), а затем вставьте четыре батареи типа С напряжением 1,5 В каждая в футляр. Если прибор будет работать от аккумуляторов, необходимо проверить наличие перемычки и вставить в футляр четыре заряженных никель-кадмиевых аккумуляторов типа С. Затем поставьте S5 во включенное положение и измерьте постоянное напряжение питания на конденсаторе С7. Оно должно находиться в диапазоне от 4,5 до 5,5 В, в противном случае проверьте монтаж S7.

Теперь поставьте переключатель в положение Контроль, а переключатель диапазона — в положение «0,1 с/1 Гц». Исправный прибор должен индицировать число 10000.0, что соответствует частоте внутренней синхронизации 10 000 кГц. Если на индикаторе такого показания нет, проверьте монтаж IC1, D11, D12, S5 и S6. Когда индикатор вообще ничего не показывает, т. е. ни один из сегментов не светится, следует сначала проверить напряжение питания на контакте 18 микросхемы IC1, а затем монтаж кварца XI, R15, ТС1 и С3. Получив на индикаторе показание 10000.0, при прежних положениях переключателей функции и диапазона нажмите кнопку S4. При нажатой кнопке S4 на индикаторе должен высвечиваться 0.

Отметим, что старшие нули, т. е. нули слева от десятичной точки, не индицируются. Затем отпустите кнопку S4 и нажмите кнопку фиксации S3. Показания индикатора 10000.0 при нажатой кнопке S3 не должны изменяться. После этого отпустите кнопку S3 и проверьте показания прибора на различных диапазонах измерения согласно данным табл. П2.4.

Отметим, что в последнем случае старшая цифра (1) переполняет индикатор слева и для смены показаний индикатора требуется 10 с.

Теперь вернитесь на диапазон «0,01 с/1 Гц» и поочередно при различных положениях переключателя функции убедитесь в том, что показания прибора полностью соответствуют данным, приведенным в табл. П2.5.

Если прибор ничего не индицирует, нужно тщательно проверить правильность монтажа переключателей S5 и S6.

Наконец, цифровой счетчик-частотомер следует проверить от реального источника TTЛ-сигналов, например от генератора импульсов, описанного в табл. П2.5. Подайте на вход прибора прямоугольный сигнал частотой 500 Гц с коэффициентом заполнения 0,5. Затем установите переключатели функции в положении Частота и диапазон «1 с/100 Гц». Проверьте, высвечивается ли на индикаторе число 500 при каждом положении переключателя S1, а затем верните его в положение ТТЛ. После этого убедитесь в том, что прибор индицирует в зависимости от положения переключателя функции показания согласно данным табл. П2.6.

На этом проверка прибора заканчивается, и он считается готовым к работе. Батарей хватает примерно на 8—12 ч работы. Прибор сохраняет работоспособность при снижении напряжения питания примерно до 4,5 В. Если напряжение будет еще снижаться, то будет ухудшаться свечение индикатора и прибор начнет индицировать хаотические показания.

Компоненты. Резисторы (угольные, 0,25 Вт, 5 %): R1 = R3 = R9 = R14 = 1 кОм; R2 = R4 = R17 = R18 = 10 кОм; R5 = R10 = R8 = R13 = 47 кОм; R6 = R11 = 100 Ом; R7 = R12= 220 Ом; R15 (0,5 Вт) = 10 МОм; R16 = 22 кОм; R19 = 270 Ом; R20 (2,5 Вт) = 27 Ом; конденсаторы: С1 = С2 = 0,47 мкФ (полистироловый, 100 В); 7 пкФ (полистироловый); С4 = С5 = 68 пкФ (керамический); С6 = 100 мкФ (электролитический, 16 В); С7 = 10 мкФ (электролитический, 25 В); С8 = С9 = 0,1 мкФ (полистироловый); VC1 = 5,5÷65 пкФ (миниатюрный триммер); полупроводниковые приборы: IC1 — 7216А; D1 — красный светодиод (с линзой); D2, D3 —1 N4001; D11, D12 — 4-разрядный индикатор с общим анодом; TR1—TR4 — ВС548.

Дополнительные детали: S1, S2 — миниатюрный однополюсный тумблер со средним положением; S3, S4 — миниатюрная кнопка, нормально разомкнутая; S5 — поворотный однополюсный переключатель на 12 положений (упор зафиксирован на четыре положения); S6 — поворотный однополюсный переключатель на 12 положений (упор зафиксирован на шесть положений); S7 — миниатюрный двухполюсный тумблер на два положения; 28-контактное гнездо для микросхемы; корпус типа Verobox с размерами 205x140x75 мм (номер детали 202-21035F), необязательная подставка для фиксации наклонного положения прибора; односторонние пистоны диаметром 1 мм (23 шт.); кусок платы типа Veroboard; болты, гайки, стойки (по 4 шт.); гнездо типа BNC с креплением на шасси (2 шт.); гнездо диаметром 2 мм с креплением на шасси (2 шт.); ручка (2 шт.); футляр для четырех батарей типа С; кварц (X1) 10 МГц, типа HC18/U; красный поляризованный фильтр для индикатора с размерами 100X35X0,76 мм.

 

3. Осциллограф

Без сомнения, читателям уже знаком этот универсальный прибор, предназначенный для наблюдения цифровых и аналоговых сигналов. Поэтому нижеприведенные сведения рассчитаны на новичков и тех читателей, которые захотят приобрести осциллограф.

За последние 10–15 лет стоимость осциллографов значительно снизилась. Разрабатывать же самодельный осциллограф новичку не под силу, тем более что основные его компоненты (электронно-лучевая трубка и блок питания) довольно дороги. Затрудняет разработку осциллографа еще и необходимость точной калибровки.

Применения. Основное применение осциллографа — наблюдение сигналов в электронных схемах. Следует иметь в виду, что дешевые осциллографы не хранят входные сигналы и показывают только периодические сигналы. К сожалению, большинство цифровых сигналов не периодические. Например, сигнал в последовательной линии связи RS-232C будет периодическим только в том случае, если по линии все время передается один символ или последовательность символов. Аналогичная ситуация, возникает и с сигналами на линиях микропроцессорной системы. Для получения устойчивого изображения необходим периодический сигнал.

По-видимому, осциллограф оказывается одним из самых дорогих приборов в большинстве лабораторий и домашних мастерских, поэтому использовать, его нужно максимально эффективно. Приведем некоторые соображения, которые, возможно, неизвестны или малоизвестны читателю.

При наличии на экране сетки и с учетом соответствующих положений переключателей диапазонов можно довольно точно измерить напряжение и время. Конечно, прежде чем. производить измерение, нужно откалибровать сетку, переведя органы управления в положение CAL (калибровка). Несоблюдение этого простого правила может привести к получению неточных и просто неверных результатов.

Во всех современных осциллографах усилитель вертикального отклонения имеет вход по постоянному току, поэтому изменение уровня входного сигнала вызывает сдвиги изображения по вертикали. В реальных схемах переменный сигнал часто накладывается на постоянный уровень. Убрать этот уровень можно с помощью входного конденсатора, который подсоединяется к входу переключателем «Переменный ток — Земля — Постоянный ток». В положении «Переменный ток» конденсатор подключен, а в положении «Постоянный ток» — закорочен. В положении «Земля» на вход вертикального усилителя подается нулевой потенциал (конечно, при этом собственно вход отключается). Для измерения постоянного уровня входного сигнала переключатель «Переменный ток — Земля — Постоянный ток» вначале переводится в положение «Земля» и развертка смещается на центральную горизонтальную ось. Затем переключатель переводится в положение «Постоянный ток» и по вертикальному отклонению развертки измеряется уровень.

В двухлучевых осциллографах с «расщеплением» луча предусматриваются два режима работы. В режиме коммутации развертка показывает небольшую часть сигнала по одному вертикальному каналу, а затем — такую же часть по другому каналу. Благодаря высокой частоте коммутации на экране видны как бы две непрерывные развертки. Такой режим удобен для наблюдения сравнительно низкочастотных сигналов (ниже частоты коммутации), так как сохраняются точные фазовые соотношения между индицируемыми сигналами. Во втором режиме (режиме «чередования») каждому каналу отводится развертка на весь экран попеременно. Это удобно для наблюдения высокочастотных сигналов, хотя фазовый сдвиг между ними воспроизводится неточно.

В большинстве современных осциллографов предусматриваются несколько запускающих сигналов: внутренний сигнал, сформированный в тракте вертикального отклонения, сигнал 50 Гц от сети и внешний сигнал со входа запуска.

Выбор осциллографа. При покупке осциллографа нужно учитывать не только его стоимость. Желательно, чтобы выбранный Вами прибор прослужил как можно дольше.

Двухлучевые осциллографы ненамного дороже однолучевых, поэтому целесообразно выбрать именно двухлучевой прибор. Рекомендуется, чтобы прибор обладал широкой полосой пропускания и максимальной чувствительностью по вертикали. Для хорошего и сравнительно дешевого осциллографа полоса пропускания должна составлять не менее 25 МГц, а чувствительность по вертикали — не менее 10 мВ/см.

Необходимо обратить внимание на четкость и ясность маркировки органов управления. Сетка на экране должна быть видна отчетливо и не должна затруднять восприятие изображения (в хороших осциллографах обычно предусматривается подсветка сетки). По возможности проверьте качество изображения, вращая ручки яркости и фокусировки. Важно убедиться в том, что сфокусированная развертка по всему экрану получается при максимальной яркости.

Некоторые осциллографы оснащаются также внутренними калибраторами и тестерами. Если вы располагаете достаточными средствами, целесообразно подумать о приобретении осциллографа с цифровой памятью. Такой прибор может зафиксировать достаточно быстрые непериодические и однократные сигналы и очень полезен при работе с более сложными цифровыми схемами.

Спецификации универсального осциллографа:

Чувствительность по вертикали … 10 мВ/см — 10 В/см

Полоса пропускания тракта усиления по вертикали … Постоянный ток — 25 МГц (=) 10 Гц — 30 МГц (~)

Время размаха по вертикали … 12,5 нс

«Расщепление» луча … Коммутация/поочередность

Скорость развертки … 10 мкс/см —1 с/см

Чувствительность запуска … Лучше 10 мВ в диапазоне 10 Гц-10 МГц

Размер экрана … 8x10 см

Пробник осциллографа. Важнейшее требование, предъявляемое к осциллографу, — это правильно воспроизводить короткие импульсы и не вносить большую емкостную нагрузку в проверяемый узел.

К сожалению, входная емкость осциллографа, варьируемая в диапазоне от 20 до 30 пкФ, включается параллельно емкости коаксиального кабеля, превышающей 150 пкФ, поэтому общая шунтирующая емкость для проверяемого узла составляет примерно 200 пкФ. На низких частотах этой емкостью можно пренебречь, но на частотах в несколько десятков килогерц и выше ее влияние уже начинает сказываться и импульсы с крутыми фронтами значительно искажаются. Эта проблема полностью снимается, если имеется компенсирующий пробник. Самый распространенный пробник дает десятикратное ослабление и обычно маркируется символами «Х10». Благодаря наличию пробника входное сопротивление увеличивается примерно в 10 раз, а входная емкость примерно во столько же раз уменьшается. Обычный пробник «Х10» обладает входным сопротивлением 10 МОм, входной емкостью 15 пкФ и дополняется множеством насадок для подключения в различных схемах.

 

4. Таблица обозначений основных логических элементов

 

5. Указатель зарубежных изделий электронной техники и их отечественных аналогов

 

6. Функциональное назначение зарубежных изделий электронной техники

Микромощные логические ИМС КМОП-типа

CD4001 — четыре логических элемента 2ИЛИ — НЕ

CD4002 — два логических элемента 4ИЛИ — НЕ

CD4012 — два логических элемента 4И — НЕ

CD4013 — два D-триггера

CD4020 — 14-разрядный двоичный счетчик-делитель

CD4023 — три трехвходовых элемента И — НЕ

CD4025 — три трехвходовых элемента И — НЕ

CD4027 — два JK-триггера

CD4049 — шесть логических элементов НЕ

CD4050 — шесть преобразователей уровня

CD4069 — шесть инверторов

CD4070 — четыре логических элемента Исключающее ИЛИ

CD4081 — четыре логических элемента 2И

CD4076 — четыре D-триггера с тремя состояниями на выходе

Логические ИМС ТТЛ- и ТТЛШ-типа

SN7400 — четыре логических элемента 2И — НЕ

SN7401 — четыре логических элемента 2И — НЕ с открытым коллекторным выводом

SN7402 — четыре логических элемента 2ИЛИ — НЕ

SN7403 — четыре логических элемента 2ИЛИ — НЕ с открытым коллекторным выводом

SN7404 — шесть логических элементов НЕ (инверторов)

SN7405 — шесть логических элементов НЕ с открытым коллекторным выводом

SN7406 — шесть буферных инверторов с повышенным выходным напряжением (30 В), с открытым коллекторным выводом

SN7407 — шесть буферных формирователей с повышенным выходным напряжением (30 В), с открытым коллекторным выводом

SN7408 — четыре логических элемента 2И

SN7409 — четыре логических элемента 2И с открытым коллекторным выводом

SN7410 — три логических элемента 3И — НЕ

SN7411 — три логических элемента 3И

SN7412 — три логических элемента 3И — НЕ с открытым коллекторным выводом

SN7413 — два триггера Шмитта с четырьмя логическими элементами

SN7414 — шесть триггеров Шмитта с инвертором

SN7415 — три логических элемента 3И с открытым коллекторным выводом

SN7416 — то же, что SN7406, но с выходным напряжением 15 В

SN7417 — то же, что SN7407, но с выходным напряжением 15 В

SN7420 — два логических элемента 4И — НЕ, один из них расширяемый по ИЛИ

SN7421 — два логических элемента 4И

SN7422 — два логических элемента 4И — НЕ с открытым коллекторным выводом и повышенной нагрузочной способностью

SN7423 — два логических элемента ИЛИ — НЕ со стробированием на одном элементе и возможностью расширения по ИЛИ на другом

SN7425 — два логических элемента 4ИЛИ — НЕ со стробированием

SN7426 — четыре высоковольтных (с выходным напряжением 15 В) логических элемента

SN7427 — 2И — НЕ с открытым коллекторным выводом

SN7428 — три логических элемента ЗИЛИ — НЕ четыре буферных логических элемента 2ИЛИ — НЕ

SN7430 — логический элемент 8И — НЕ

SN7432 — четыре логических элемента 2ИЛИ

SN7433 — четыре логических элемента ИЛИ — НЕ с повышенной помехостойкостыо с открытым коллекторным выводом

SN7437 — четыре логических элемента 2И — НЕ с повышенной нагрузочной способностью

SN7438 — четыре буферных логических элемента 2И — НЕ с открытым коллекторным выводом

SN7440 — два логических элемента 4И — НЕ с большим коэффициентом разветвления

SN7442 — дешифратор 4 на 10

SN7450 — два логических элемента 2—2И—2ИЛИ — НЕ, один из них расширяемый по ИЛИ

SN7451, SN74LS51 — два логических элемента 4–2—3—2И—4ИЛИ — НЕ

SN7453 — логический элемент 2–2—3И—4ИЛИ — НЕ — с возможностью расширения по ИЛИ

SN7454 — логический элемент 2–3—3—2И—4ИЛИ — НЕ

SN74LS55 — логический элемент 4—4И—2ИЛИ — НЕ с расширением по ИЛИ

SN7460 — два 4-входовых логических расширителя по ИЛИ

SN7475 — четыре D-триггера (защелки данных)

SN7477 — четыре D-триггера

SN7480 — одноразрядный полный сумматор SN7482

SN7483 — двухразрядный полный сумматор

SN7486, SN74LS86 — четырехразрядный двоичный сумматор четыре двухвходовых логических элемента Исключающее ИЛИ

SN7490 — двоично-десятичный четырехразрядный счетчик

SN7491 — 8-разрядный сдвиговый регистр с последовательным входом и выходом

SN7492 — счетчик-делитель на 12

SN7493 — 4-разрядный двоичный счетчик

SN7495 — 4-разрядный сдвигающий регистр

SN7496 — 5-разрядный универсальный сдвигающий регистр

SN74107 — два JK-триггера со сбросом

SN74109 — два JK-триггера

SN74110 — JK-триггер со сбросом и предустановкой

$N74111 — два JK-триггера со сбросом и предустановкой

SN74LS112 — два JK-триггера со сбросом и предустановкой

SN74LS113 — два JK-триггера с предустановкой

SN74LS114 — два JK-триггера с предустановкой и общим сбросом

SN74121 — одновибратор с логическим элементом на выходе

SN74122 — одновибратор с повторным запуском

SN74123 — сдвоенный одновибратор с повторным запуском

SN74124 — сдвоенный генератор, управляемый напряжением

SN74125, SN74126 — четыре буферных усилителя с тремя состояниями

SN74128 — четыре логических элемента 2ИЛИ — НЕ (магистральный усилитель)

SN74132 — четыре триггера Шмитта с логикой 2И — НЕ на входе

SN74136 — четыре двухвходовых логических элемента Исключающее ИЛИ с открытым коллекторным выводом

SN74138 — двоичный дешифратор

SN74139 — два дешифратора-демультиплексора 2 на 4

SN74141 — высоковольтный (60 В) двоично-десятичный дешифратор управления газоразрядными индикаторами

SN74145 — двоично-десятичный дешифратор с выходным напряжением 15 В

SN74150 — селектор-мультиплексор на 16 каналов со стробированием

SN74151 — селектор-мультиплексор на 8 каналов со стробированием

SN74152 — селектор-мультиплексор на 8 каналов

SN74153 — сдвоенный цифровой селектор-мультиплексор 4—1

SN74155 — сдвоенный дешифратор-мультиплексор 2—4

SN74173 — 4-разрядный регистр с тремя состояниями на входе

SN74174 — шесть синхронных D-триггеров

SN74175 — четыре D-триггера

SN74176 — десятичный счетчик с предустановкой

SN74177 — двоичный счетчик с предустановкой

SN74178 — 4-разрядный сдвигающий регистр

SN74179 — 4-разрядный сдвигающий регистр

SN74180 — 8-разрядная схема контроля четности и нечетности

SN74184 — преобразователь двоично-десятичного кода в двоичный

SN74190 — синхронный реверсивный десятичный счетчик

SN74192 — двоично-десятичный реверсивный счетчик

SN74193 — 4-разрядный двоичный реверсивный счетчик

SN74194 — 4-разрядный универсальный регистр сдвига

SN74199 — 8-разрядный сдвигающий регистр

SN74240 — 8-канальный магистральный буферный усилитель с тремя: состояниями и инверсией

SN74241 — 8-канальный магистральный буферный усилитель с тремя состояниями без инверсии

SN74242 — 4-линейный передатчик

SN74243 — 4-линейный передатчик

SN74244 — 8-канальный однонаправленный шинный формирователь

SN74245 — 8-канальный двунаправленный шинный формирователь

SN74LS266 — четыре двухвходовых логических элемента Исключающее ИЛИ с открытым коллектором

SN74273 — 8-разрядный D-триггер со сбросом

SN74279 — четыре RS-григгера

SN74283 — 4-разрядный двоичный полный сумматор с ускоренным переносом

* * *