В цифровых схемах часто требуется источник импульсов с точно определенной длительностью. Обычно необходимы и одиночный импульс с заданной длительностью, и непрерывная последовательность импульсов с заданными частотой и коэффициентом заполнения. Первому требованию удовлетворяет моностабильная схема (см. гл. 3), а второму — астабильная схема. (Термин «астабильный» означает, что выход схемы не находится в стабильном или устойчивом состоянии, а непрерывно изменяется между низким и высоким уровнями, т. е. схему можно считать разновидностью генератора.)

Вместо проектирования схемы из традиционных логических элементов проще и экономичнее использовать одну из выпускаемых микросхем таймеров. Таймер может работать в обоих режимах, а для задания его рабочих параметров требуется очень мало внешних элементов.

До рассмотрения схемы типичного таймера уточним некоторые относящиеся к нему термины.

Частота повторения импульсов f импульсного сигнала характеризует число импульсов, приходящихся на заданный временной интервал, обычно на 1 с. Сигнал с частотой 1 кГц соответствует 1000 импульсам в секунду.

Период импульсов t импульсного сигнала — это время одного полного цикла импульса:

t = 1/f.

Период указанного выше импульсного сигнала составляет 1/1000 c, или 1 мс.

Коэффициент заполнения (КЗ), %, импульсного сигнала равен отношению t вкл (высокий уровень) к сумме t вкл и t выкл (низкий уровень), т. е.

Сигнал, у которого t вкл = 1 мс и выкл = 1 мс, имеет коэффициент заполнения 50 %, т. е. собственно импульс действует в течение половины периода.

Коэффициент формы (КФ) импульсного сигнала равен отношению t вкл  (высокий уровень) и t выкл (низкий уровень).

Ширина импульса прямоугольной формы равна временному интервалу, измеренному на уровне 50 % амплитуды, в течение которого сигнал имеет высокий уровень (включен).

Время нарастания (фронта) импульса равно временному интервалу между точками 10 и 90 % его амплитуды. Время нарастания «идеального» импульса равно нулю.

Время спада (среза) t c импульса равно временному интервалу между точками 90 и 10 % его амплитуды. Время спада «идеального» импульса равно нулю.

На рис. 4.1 представлен типичный импульсный сигнал и показаны рассмотренные параметры.

Рис. 4.1. Типичные параметры импульсного сигнала.

4.1. Таймер 555

Микросхема таймера 555, по-видимому, является одной из наиболее универсальных микросхем. Она не только сочетает в себе комбинацию аналоговых и цифровых схем, но и широко применяется в области цифровых генераторов импульсов. Чтобы разобраться в работе микросхемы, остановимся на ее внутреннем устройстве.

Упрощенная схема таймера 555 приведена на рис. 4.2.

Рис. 4.2. Упрощенное внутреннее устройство таймера 555 .

По существу, таймер состоит из двух операционных усилителей, используемых в качестве компараторов, и RS-триггера. Кроме того, предусмотрен инвертирующий выходной буфер, обеспечивающий достаточно высокую нагрузочную способность. Для быстрого разряда внешнего времязадающего конденсатора имеется транзисторный ключ TR1.

На рис. 4.3 показано включение стандартного таймера 555 в качестве астабильного генератора импульсов.

Рис. 4.3. Астабильная конфигурация таймера 555 .

Предположим, что на Выходе (контакт 3) первоначально действует напряжение высокого уровня и транзистор выключен. Тогда конденсатор С начнет заряжаться от источника питания через резисторы R1 и R2.

Когда напряжение на входе Порог (контакт 6) превысит две трети напряжения питания, состояние на входе верхнего компаратора изменится, RC-триггер сбросится (0) и на выходе Q¯ появится напряжение высокого уровня, которое включает транзистор TR1. Из-за наличия инвертирующего буфера на Выходе (контакт 3) формируется напряжение низкого уровня.

Теперь конденсатор С будет разряжаться током, который протекает через резистор R2 и транзистор TR1.

Через некоторое время напряжение на входе Запуск (контакт 2) уменьшится до одной трети напряжения источника питания и нижний компаратор изменит свое состояние, возвратив триггер в исходное состояние (1). На выходе Q¯ образом, весь цикл работы таймера повторяется непрерывно.

Форма выходного сигнала схемы, показанной на рис. 4.3, аналогична сигналу на рис. 4.1. Основные параметры генератора рассчитываются следующим образом:

Для получения симметричного прямоугольного сигнала следует выбрать резистор R2 намного больше R1.

На рис. 4.4 показан стандартный таймер 555, работающий в моностабильном режиме. Для получения выходного импульса на входного импульса на вход Запуск подается спадающий

Рис. 4.4. Моностабильная конфигурация таймера 555.

Запуск подается спадающий фронт, т. е. осуществляется переход от 1 к 0. Когда действует этот сигнал и запускающее входное напряжение уменьшается ниже одной трети напряжения питания, на выходе нижнего компаратора появляется напряжение высокого уровня и триггер переводится в состояние 1. На выходе Q¯ триггера формируется напряжение низкого уровня, транзистор TR1 выключается, и на выходе схемы (контакт 3) появляется напряжение высокого уровня.

После этого конденсатор С заряжается от источника питания через резистор R до тех пор, пока напряжение Порога не достигнет двух третей напряжения питания. В этот момент напряжение на выходе верхнего компаратора изменяется и триггер сбрасывается. На его выходе Q¯ оказывается напряжение высокого уровня, транзистор TR1 включается, а на выходе (контакт 3) формируется напряжение низкого уровня. Следовательно, схема переводится в пассивное состояние и ожидает следующего запускающего импульса.

Для этого режима справедливы следующие расчетные соотношения:

временной интервал, в течение которого на выходе действует напряжение высокого уровня, t = 1,1 x RС;

рекомендуемая ширина запускающего импульса t зап  < t вкл /4.

4.2. Семейство таймеров 555

Стандартный таймер 555 выпускается в 8-контактном корпусе типа DIP (рис. 4.5).

Рис. 4.5. Разводка контактов одиночного таймера 555

Диапазон рабочего напряжения питания составляет от 4,5 до 15 В. Он перекрывает обычный диапазон TTЛ-схем, поэтому таймер может работать вместе с ними. Выпускаются также и другие разновидности стандартного таймера 555.

Маломощный КМОП-таймер 555 (например, ICM7555IPA). Эта микросхема является аналогом стандартного таймера, но изготавливается по КМОП-технологии. Благодаря этому расширяется диапазон напряжения питания (от 2 до 18 В) и уменьшается потребляемый ток (120 мкА при питании 18 В). Несмотря на то что выходная нагрузочная способность микросхемы уменьшается, все же допускается подключать к схеме до двух стандартных ТТЛ-нагрузок.

Сдвоенный таймер 555 (например, NE556A). Это просто сдвоенный вариант стандартной микросхемы 555, выпускаемый в 14-контактном корпусе (рис. 4.6).

Рис. 4.6. Разводка контактов сдвоенного таймера 555

Оба таймера можно использовать независимо друг от друга; они обладают такими же электрическими характеристиками, как и стандартный таймер 555.

Маломощный сдвоенный таймер (например, ICM7556IPA). Микросхема представляет собой сдвоенный вариант КМОП-таймера 555 и оформлена в 14-контактном корпусе, так же как и приведенная на рис. 4.6. Оба таймера автономны и обладают электрическими характеристиками, аналогичными КМОП-таймеру 555.

4.3. Поиск неисправностей в схемах с таймерами

Определить неисправности в схемах с таймерами довольно просто. Прежде всего требуется выяснить, в каком режиме (астабильном или моностабильном) работает таймер. Затем следует сделать обоснованное предположение о длительности выходного импульса. При этом можно воспользоваться приведенными выше соотношениями либо номограммами, приведенными на рис. 4.7 и 4.8.

Рис. 4.7. Номограмма для определения частоты импульсов таймера  555 в астабильном режиме. При С = 0,22мкФ и R  = R1 = R2 = 10 кОм частота составляет около 400 кГц.

Рис. 4.8. Номограмма для определения ширины импульса таймера 555 в моностабильном режиме. При С = 0,1 мкФ и R =47 кОм ширина импульса составляет около 5 мс.

Выходное состояние таймера (сигнал на контакте 3, см. рис. 4.6) определяется с помощью логического пробника (схема самодельного пробника дана в приложении 2) или осциллографа, если, конечно, он есть. В астабильном режиме логический пробник при касании его зондом контакта 3 стандартного таймера должен показать наличие непрерывной импульсной последовательности (индикация светодиодами логических 0 и 1). По относительной яркости свечения светодиодов можно даже грубо оценить коэффициент заполнения импульсов.

Отметим, что для обеспечения астабильного режима работы на входе Сброс (контакт 4) должен действовать сигнал высокого уровня. В некоторых устройствах этот вход используется для переключения триггера. Поэтому, если астабильная работа не обнаруживается, целесообразно проверить сигнал на входе сброса.

Для проверки моностабильной работы также достаточно одного логического пробника. Но если длительность выходного импульса невелика (например, менее 100 мс), важно, чтобы в пробнике была схема расширения импульсов. Зондом пробника следует коснуться выхода (контакт 3 в стандартном таймере 555) и осуществить запуск. В некоторых схемах запуск реализуется очень просто, например с помощью специально предусмотренной для этого кнопки.

В других случаях запуск можно смоделировать, закоротив контакт 2 на землю, как показано на рис. 4.9.

Рис. 4.9. Моделирование запуска спадающим фронтом.

Подчеркнем, что при сопряжении сигнала запуска по постоянному току спадающий фронт импульса должен иметь достаточную амплитуду, чтобы напряжение на контакте 2 упало ниже одной трети напряжения питания.

Если длительность выходного импульса не совпадает с ожидаемой (особенно в схемах с электролитическим времязадающим конденсатором), приходится проверять постоянные напряжения на входах Порог и Разряд (см. рис. 4.6). Для измерения следует пользоваться только вольтметром с очень высоким входным сопротивлением.

Обычные мультиметры со входным сопротивлением около 20 кОм/В для таких измерений не подходят, так как сильно изменяют постоянные времени заряда и разряда.