Я – суперорганизм! Человек и его микробиом

Тёрни Джон

Глава 5. Нечто по-настоящему большое

 

 

Откройте банку консервированного супа обычных размеров и опорожните ее в глубокую чашу. Повторите процедуру один-два раза. Порция органической похлебки, которая окажется перед вами, будет примерно равна по объему всем бактериям, обитающим в вашей толстой кишке.

Факт неновый, но он постоянно всплывает у меня в сознании, когда я пытаюсь как-то осмыслить микробиом. Микробы – существа маленькие и незаметные. Они только рады вести незаметное существование. Приличных размером колония бактерий может жить на пятнышке, точечке, завитке, тонкой пленке жизни. Легко забыть о том, что при своем стремительном размножении бактерии способны быстро набрать значительную общую массу, едва им представится такая возможность. Сегодня существуют промышленные ферментационные установки, производящие микроорганизмы миллионами литров.

Современные микробиомные исследования позволяют яснее осознать, что у человеческого тела имеется множество экологических ниш для других организмов. Однако в основном они так и остаются утешительно-миниатюрными как по размерам, так и по общему объему. С кишечником дело обстоит иначе. Если собрать все микробы из других участков тела в одну пробу, она займет меньше чайной ложки. А вот для микробов из моего пищеварительного тракта понадобится большой черпак.

Уже сама их совокупная масса подразумевает, что кишечный микробиом вполне можно представить себе как отдельный орган, причем весьма важный: по метаболической активности он не уступает печени. Но орган это необычный. Он состоит из клеток, предки которых обитали в самых разных местах. От значительной части этих клеток организм ежедневно избавляется. Могу ли я предположить, что данный орган, подобно другим, блюдет мои интересы? (Во всяком случае, касательно других органов вполне естественно сделать такое предположение.) И чем он, собственно, вообще занимается?

В совокупный микробиом человека входят и другие участки тела, где живут свои виды микробов, играющие свою роль. Но, судя по всему, важнее всего разобраться именно в микробиоме кишечника, особенно в микробиоме толстой кишки. Процессы, которые там происходят, влекут за собой далеко идущие последствия. В ближайших трех главках – о том, что ученым удалось выяснить.

 

Спускаясь в люк

Очевидный способ попасть в кишечник – через рот. Но бактерия, которая хочет присоединиться к кишечному микробиому, должна проделать долгий путь. И она может очутиться в самых разных местах.

Желудочно-кишечный тракт человека – единая система, но в ней можно выделить несколько областей, существенно отличающихся друг от друга. Три основные – желудок, тонкий кишечник (уложенный в брюшной полости) и толстый кишечник, или толстая кишка. Если представить все это как одну прямую трубку, ее общая длина (для взрослого) составит целых 7 м.

Проследим за маршрутом потребляемой еды. Рот богат микробами, однако содержимое желудка (смесь измельченной пищи, слюны и высококислотных выделений, помогающих расщеплять поступающие с пищей белки) поддерживает существование лишь десяти микробных клеток на грамм. Далее количество бактерий стремительно возрастает. К тому времени как мы достигнем двенадцатиперстной кишки, первой части тонкого кишечника (как мы знаем, он довольно длинный), плотность микробного населения составит уже 1000 организмов на грамм; при движении по тонкому кишечнику нас ждет рост этой величины еще в 10 тысяч раз: последний участок тонкого кишечника содержит 10 миллионов микробных клеток на грамм. Однако самый большой количественный скачок происходит между тонким и толстым кишечником. Толстую кишку, последнюю из основных частей нашего кишечника, когда-то считали довольно примитивной трубкой, где реабсорбируется жидкость из материала, который вот-вот превратится в фекалии. Однако именно здесь кормится несусветное количество микробов – миллион миллионов (1012) на грамм.

Вся эта живность обитает в зоне, чье сложное устройство, сформировавшееся в ходе эволюции, само являет собой микроскопическое чудо. Как толстый, так и тонкий кишечник выполняет две работы, требования к которым противоречивы. В отличие от кожи, на которой спокойно резвятся микробы, поверхность кишечника не может действовать просто как барьер. Все малые молекулы, производимые при переваривании пищи (главное занятие этого органа), должны абсорбироваться в кровь, чтобы их можно было использовать там, где они требуются. А значит, кишечник должен обладать не слишком толстой оболочкой и как можно большей поверхностью. Толщину оболочки легко оценить: для эпителия, внутреннего поверхностного слоя кишечника, она составляет около 10 микрон – примерно вдесятеро больше размера типичной бактерии. Площадь оценить труднее, поскольку кишечник имеет весьма извилистую форму. Если бы стенка кишечника (упомянутый нами тонкий слой) была плоской, она заняла бы меньше квадратного метра. Но она неплоская. Бесчисленные мелкие отростки (ворсинки) высовываются во внутреннее пространство кишечника – его полость. Каждая из этих ворсинок питает одноклеточной толщины слой эпителия. Но у клеток тоже есть внешний слой, едва различимый при помощи оптического микроскопа и кажущийся чуть щетинистым. Называется он щеточной каймой. Электронный микроскоп покажет вам, что она в свою очередь состоит из микроворсинок, усеивающих ту сторону клеточной мембраны, что обращена в сторону полости.

Подсчитать общую площадь всего этого – то же самое, что попытаться оценить общую поверхность самого пушистого из ваших банных полотенец. Анатомы сходятся во мнении, что этот показатель составляет от 200 до 250 м2 (что сравнимо с размером теннисного корта). Возможно, это и не очень точная оценка, однако все равно понятно, так сказать, на какой площадке идет игра. Ясно одно: мы имеем дело с большой цифрой.

И это хорошо. Кишечнику (как и легким с их мелко разветвленными альвеолами, предназначенными для газообмена) для проведения эффективного молекулярного переноса необходима большая территория. Но здесь мы сталкиваемся с другим требованием. Кишечник полон не только пищи, но и бактерий, а нам не хочется, чтобы бактерии попадали в кровь. Мы привыкли считать кожу главным препятствием на пути бактерий, которые пытаются глубже проникнуть в наши ткани, и она действительно выполняет немаловажную барьерную роль. Но кишечник куда больше по общей площади, и ему приходится иметь дело с куда более значительным количеством бактерий в течение куда более значительного времени. Как он с этим справляется?

Свой барьер тут тоже, конечно, имеется. Эпителий, как и все биологически активные пограничные слои, осуществляет молекулярный перенос, при этом преграждая путь более крупным объектам, вроде микробных клеток. Соседствующие эпителиальные клетки объединены белковой сетью в тесную структуру наподобие той, что используют многоклеточные (так называемое «плотное соединение»). Она также помогает задерживать нежелательных гостей.

Однако для полного ответа на вопрос следует вспомнить об иммунной системе. Поскольку кишечник – центр метаболизма и основная часть нашего микробиома, он является к тому же самым крупным участком действия всех молекулярных и клеточных объектов, обеспечивающих иммунитет. Присутствие в кишечнике триллионов бактерий, вероятно, является главной движущей силой развития иммунитета как в эволюционном масштабе, так и у каждого конкретного человека. Это влияние мы лишь сейчас начинаем осознавать. Подробнее о том, как оно меняет наши представления о живом, читайте в главе 7.

А пока давайте рассмотрим микробное содержимое самого плотно заселенного региона – толстой кишки. Здесь находится наиболее сложная микробная экосистема нашего тела, а по клеточному разнообразию и по количеству клеток на единицу объема – возможно, и вообще самая сложная экосистема в мире. Ей посвящена основная часть обзоров, где дается количественная оценка наших микробов и их генов. И чем больше людей обследуют ученые, тем большее разнообразие выявляется. Первый опубликованный каталог микробных генов, составленный на основе данных по 124 добровольцам, содержит 3,3 миллиона генов кишечника. Самый же новый, объединяющий результаты обследования примерно 1300 жителей Америки, Европы и Азии, доводит это количество до десятка миллионов.

Так что эта единая система/культура, в которую постоянно поступают питательные вещества и из которой с более или менее постоянной скоростью выводятся микробы (при каждом опорожнении кишечника из нее вымывается несколько триллионов живых и мертвых бактерий), и в самом деле устрашающе сложна. Впрочем, можно придумать кое-какие полезные упрощения, помогающие нам понять, что важнее в толстой кишке. Приведу два таких упрощения. Первое более противоречиво, чем второе.

Сейчас вовсю обсуждается идея, что кишечные микробиомы могут принадлежать к небольшому числу довольно широких типов. Она появилась при первом анализе данных проекта «Метагеномика желудочно-кишечного тракта человека» («Metagenomics of the Human Intestinal Tract», «metaHIT»), осуществлявшегося (главным образом европейскими специалистами) примерно в то же время, что и американский проект «Микробиом человека». В 2011 году участники проекта сообщили, что выявили три группы людей, которые можно разделить по особенностям кишечной микрофлоры. В каждой группе доминировала своя разновидность микробов – Bacteroides, Prevotella или Ruminococcus.

Последовали бурные споры. Можно ли разработать на основе этого открытия диагностические тесты, в которых давно назрела необходимость? Способно ли это открытие помочь при идентификации людей (как при опознании по группам крови)? Однако эти результаты получены на основе обследования всего 39 человек; чем больше образцов анализировали, тем туманнее становилась картина: обычная история. У группы из 35 шимпанзе, живущих в кенийском национальном парке Гомбе, выявили энтеротипы, в некоторых отношениях сходные с нашими. Однако при повторном отборе пробы год спустя у одной и той же обезьяны иногда обнаруживается другой энтеротип, так что долговременная стабильность данных остается под вопросом. Изменения не следуют какой-то явной закономерности. У одного семейства из трех особей (самец, самка и их мать) при первом отборе пробы обнаружили три разных энтеротипа (у каждого свой). Дальнейшие проверки показали, что эти энтеротипы со временем изменились, однако по-прежнему отличались друг от друга.

Я подробнее поговорю об эволюции микробиома в главе 6, пока же замечу, что в самом деле наблюдается тенденция к поддержанию соотношения энтеротипов (или хотя бы видовых кластеров), уходящая корнями в прошлое – к общему предку людей и шимпанзе. Домовые мыши, судя по работе 2014 года, также обладают такой особенностью, хотя пока удалось выявить лишь два их энтеротипа. Возможно, это лишь кластеры, выстраиваемые в соответствии с определенными параметрами. Возможно, это вообще лучший на данный момент способ описания того, что происходит с нашей микрофлорой: бактериальные кластеры в человеческих кишках отличаются от тех, которые мы находили у других животных. Ни у мышей, ни у шимпанзе пока не обнаружен энтеротип, где доминировали бы Prevotella.

Основная работа по изучению состава микробных популяций кишечника в зависимости от того, что человек (или мышь) ест, заключалась в выяснении того, как микробы влияют на ожирение (я коснусь этой проблемы в главе 8). Однако продолжается и более глубокий анализ данных проекта «Микробиом человека», предоставляющий новые подтверждения того, что микробиомы всех участков нашего тела, вероятно, существуют лишь в немногих широко распространенных состояниях, а все типичные кластеры микробных типов (свойственные кишечнику, рту, вагине и т. п.) можно обнаружить у здорового человека, имеющего эти органы. В интригующей статье, опубликованной группой ученых Мичиганского университета, перечислены все эти микробные типы, выявленные на основе анализа проб в рамках проекта «Микробиом человека». Как заявляет один из соавторов, Патрик Шлосс, удалось лишний раз подтвердить, что «не существует какого-то одного здорового человеческого микробиома». Обнаружены довольно таинственные корреляции, например, между составом микрофлоры рта, вагины, локтевых сгибов, заушных складок. Однако ярче всего прослеживаются корреляции между микрофлорой кишечника (или образцов кала) и микробными сообществами во рту. Как отмечает Шлосс, «по типу бактерий у вас во рту можно предсказать тип бактерий у вас в кишках». Возможно, это хорошая новость для тех, кто верит, будто можно стать здоровее, сознательно поедая «хорошие» бактерии.

Еще одно, менее противоречивое упрощение предполагает непосредственное изучение ошеломляющего разнообразия обитателей кишечного микробиома. Тут есть два аспекта: можно заниматься количеством видов, которые человек несет в себе и на себе, а можно обратиться к микробным различиям между людьми.

Микробное разнообразие в каждой толстой кишке громадно и обычно измеряется сотнями видов. Однако зачастую лишь несколько видов (может быть, с полдюжины) присутствуют в значительных количествах, а численность всех остальных постоянно остается на гораздо более низком уровне. Неизвестно, можно игнорировать эти длинные хвосты графика распределения или хотя бы какую-то их часть. Вероятно, эти малочисленные виды представляют некий ресурс, генофонд, из которого при необходимости можно черпать материал. При благоприятных условиях бактерии размножаются быстро, а значит, любое меньшинство может вмиг стать большинством. Однако такое положение вещей всё же заставляет обращать главное внимание на самые распространенные и массовые виды, тем самым помогая формировать приоритеты для дальнейших исследований.

Из первого обзора данных проекта «Микробиом человека» ученые вывели еще одно упрощение. Этот подход остается действенным и сегодня. Дело в том, что при выявлении видов, обнаруживаемых в кале, соответствующие микробиомы разных людей оказываются весьма различными. Но если не только применять разбиение на типы при помощи 16S рРНК, но и проанализировать весь массив ДНК иным способом, не обращая внимания на конкретные виды, картина становится более четкой.

Чтобы ее увидеть, нужно вычленить все фрагменты ДНК, похожие на функционирующие гены; такие фрагменты идентифицируют по характерным контрольным последовательностям. Будем игнорировать те, у которых нет явного аналога в базах данных. Выяснением того, что они делают, займемся позже. Но значительное число фрагментов, имеющих уже известные функции (или создающих такое впечатление), можно объединить в функциональные группы. Большинство генов кодируют ферменты. Метаболическая обработка часто представляет собой цепочку химических реакций, каждую из которых катализирует определенный фермент. Эти ферменты-заговорщики обычно кодируются наборами генов – так называемыми «метаболическими модулями».

Постройте карту распространенности таких модулей, и окажется, что вариации в функциях микробных генов между образцами гораздо меньше, чем можно было бы предположить, исходя из различий между представленными в этих образцах видами. Похоже, даже если у всех кишечных микробиомов неодинаковые бактерии (и бактериальные гены), их гены делают примерно одно и то же. Это верно и для других участков тела, откуда брались пробы для «Микробиома человека», но данные по кишечнику позволяют построить наиболее стабильную генетическую карту. Можно прийти к выводу, что пищеварительные функции кишечных бактерий, по-видимому, подвергаются тщательному внутреннему контролю.

Данные продолжают накапливаться, и их анализ не прекращается. Новые сведения заполняют пробелы в этой картине, однако не вносят в нее радикальных изменений. Расширенный каталог из 10 миллионов бактериальных генов, обнаруженных в кишечных образцах, предоставляет отличный материал для дальнейшей работы в этом направлении. Вот хитроумный вариант: когда удастся собрать всю нужную информацию, можно будет (несмотря на то что в базе данных значатся лишь индивидуальные гены) использовать ее для того, чтобы снова погрузиться в общую базу образцов и идентифицировать те микроорганизмы, которых мы не знали раньше. В природе гены никогда не встречаются как отдельные, изолированные куски ДНК: они собираются в хромосомы. У бактерий по одной хромосоме. Если компьютерное сопоставление покажет, что какая-то комбинация генов всегда встречается совместно, это означает, что они объединены в том или ином виде бактерий. Такой подход (идея соприсутствия) действительно позволяет составлять списки генов, соответствующих тем геномам видов, которые уже имеются в отдельных базах данных по бактериям с полностью секвенированным геномом. А значит, разработанный алгоритм действительно можно применять. Он позволит выявить не замечавшиеся прежде комбинации генов, представляющие совершенно новые виды, чью роль в микробном сообществе затем можно будет исследовать. Вот еще один метод просеивания информации с целью разглядеть невидимое.

Этот всеобъемлющий каталог позволил провести более детальный анализ индивидуального микробного разнообразия, который отчасти реабилитировал идею о «главном» кишечном микробиоме человека – в функциональном, а не в видовом отношении. Широкомасштабный анализ полного набора всех генов, какие когда-либо удавалось обнаружить в человеческом кишечнике (мы уже знаем, что их более 10 миллионов), также позволил ученым показать, что примерно 300 тысяч из них присутствуют почти у всех, кто сдал образцы. Каждый из нас в тот или иной момент времени несет в себе лишь около 600 тысяч бактериальных генов из этого набора. Так что, возможно, половина метагенома здорового кишечника у всех одинаковая.

Все это вполне понятно на интуитивном уровне. Даже если бактерии образуют экосистему путем случайной колонизации и в ходе последующей борьбы за существование, потенциальные питательные вещества в одной и той же (к примеру) толстой кишке должны оказаться у них в значительной мере сходными. А если какой-то вид не сможет использовать какие-то из присутствующих в системе непереваренных кормов, то ими воспользуется другой вид, задействуя такие же или сходные ферменты. Когда тот или иной вид приживется в системе, другому виду труднее поселиться в ней таким же манером. Результат – различные экосистемы со сходным коллективным метаболизмом. Это подводит нас к попытке получить общий ответ на вопрос, который немедленно возникает при мысли обо всех этих триллионах бактерий, населяющих кишечник. Вопрос такой: чем они там все занимаются?

 

Предоставляемые услуги

Если вы руководите организацией, вам приходится принимать серьезные решения насчет того, какие работы следует поручить собственным сотрудникам, а какие выгоднее отдать сторонним компаниям. С организмами точно так же, как с организациями. Как выясняется, большой организм отдает множество работ на аутсорсинг более мелким существам.

Кишечные бактерии часто рассматриваются как организмы-комменсалы. В предисловии я уже упоминал, что этот экологический термин (означающий «сотрапезники») применяется к организмам, которые живут на каких-то других существах, не причиняя им вреда.

В микробиоме вполне могут иметься микробы-комменсалы, но кишечные бактерии – явно не просто комменсалы. В основе всей этой системы лежит взаимовыгодное сотрудничество, то есть такая деятельность, от которой выигрывают обе стороны. Мы обеспечиваем своих микробов пищей, уютным местом для жизни, где поддерживается комфортная температура, а посредством выведения части этих существ с фекалиями – возможностью распространения, которая необходима всем организмам для осуществления их долгосрочных планов. Бактерии в свою очередь выполняют для нас целый ряд немаловажных задач, о которых именно по этой причине совершенно незачем заботиться нашему собственному геному.

В числе этих задач помощь при пищеварении: переработка неиспользованных компонентов пищи с целью высвобождения энергии частично для самих бактерий, частично же – для нас. Кроме того, они производят для нас целый ряд малых молекул (в том числе витамины), а еще помогают избавляться от самых разных токсинов и метаболизировать многие лекарства.

Самая же заметная их роль (благодаря ей толстую кишку называют вторым желудком) состоит в переваривании сложных углеводов. Растения, трудно поддающиеся разжевыванию, выстраивают свои клетки, используя множество крупных молекул, которые без изменения проходят через желудок и тонкий кишечник. Часть потребляемого нами крахмала, уклончиво именуемая резистентным крахмалом, также избегает расщепления в желудке или тонком кишечнике. Когда этот частично переваренный или непереваренный материал попадает в толстую кишку, за него берутся тамошние бактерии, которые доделывают работу. Их ферменты помогают расщепить растительный материал на малые молекулы, которые затем можно использовать в наших собственных клетках для выработки энергии. Средний взрослый приобретает таким путем от 10 до 15 % энергии, получаемой с пищей.

Эту бактериальную помощь обеспечивает целый арсенал ферментов, которые умеют справляться с самой разной пищей. Взять хотя бы все известные нам типы пищевых волокон – от овсяных и пшеничных отрубей до сложного углевода инулина, входящего в состав лука, чеснока и спаржи. Растения строят свои клеточные стенки из молекул, от которых требуется долговечность. Эти молекулы создаются путем связывания растворимых сахаров в сложные разветвленные цепочки, которые уже отнюдь не являются растворимыми в воде. Почти все фрукты, овощи и зерновые поставляют в наш рацион вещества, которые достигают толстой кишки без особых изменений.

Над многими из сложных крахмалов и других углеводов, попадающих в нашу пищеварительную систему, совместно трудятся различные виды бактерий. Некоторые микробы, в ходе эволюции приспособившиеся к работе с нами, чрезвычайно хорошо экипированы для того, чтобы справляться с самым неподатливым материалом.

Чемпион в этом смысле (по крайней мере среди микроорганизмов, которые ученые успели изучить подробно) – Bacteroides thetaiotaomicron, вид, обнаруживаемый лишь в кишечнике. Эта бактерия обладает генами для синтеза 260 различных ферментов, помогающих разлагать углеводы. В нашем собственном геноме всего 95 генов, ориентированных на синтез ферментов, хотя ДНК в нем в тысячу раз больше. Оказывается, нам удобнее позволить сверхмногофункциональному микробу проделывать за нас всю остальную работу. Бактерия умеет ловко переключаться между разными комбинациями ферментов в зависимости от того, какая пища в данный момент доступна, реагируя на сочетание питательных веществ, которые потребляет организм-хозяин, на то, какие ферменты вырабатываются клетками хозяина и какие продукты метаболизма могут использовать окрестные бактерии. Набор разнообразных генов, нацеленных на синтез ферментов, дополняется двумя сотнями бактериальных генов, которые, как предполагается, кодируют белки, участвующие в связывании или транспортировке крахмала. Вот вам бактерия, всерьез посвятившая себя перевариванию неперевариваемого. Это своего рода столп микробного сообщества кишечника. Благодаря ей мы извлекаем из пищи больше пользы; кроме того, она помогает другим бактериям, которые используют некоторые из продуктов ее ферментативных процессов для поддержания собственной жизни.

Bacteroides thetaiotaomicron эволюционировала вместе с нами (и другими млекопитающими) в сторону взаимовыгодного сосуществования. Опыты на безмикробных мышах, подвергнутых воздействию B. thetaiotaomicron, показали, что в ее присутствии эпителиальные клетки мышиного кишечника усиливают выработку одного сложного углевода с определенным сахаридным фрагментом на конце цепочки; этот фрагмент бактерия может отсекать и использовать в пищу. То, что эпителиальные клетки вырабатывают молекулы, столь хорошо приспособленные к предпочтениям бактерии, как бы поощряет ее к колонизации кишечника.

На самом деле эти взаимоотношения еще теснее. У взрослой безмикробной мыши меньше (по сравнению с обычной мышью) капилляров в ткани, залегающей под поверхностным слоем кишечника. Введение этого микроорганизма заставляет кровеносные сосуды расти снова, тем самым помогая новому хозяину бактерии абсорбировать питательные вещества, которыми она будет его снабжать, расщепляя при помощи своего арсенала ферментов те углеводы, с которыми иначе не смогла бы справиться пищеварительная система мыши.

Вспомним, что бактерии отлично умеют обмениваться генами. Это один из способов, при помощи которых один вид может приобрести такое огромное количество ферментов, направленных на работу с определенным рационом. Представление о том, как B. thetaiotaomicron получила в распоряжение некоторые из этих ферментов, дает нашумевшая статья 2010 года. Показано, как родственный вид кишечных микробов (представитель рода Bacteroides) некогда заполучил фермент порфориназу от морской бактерии, принадлежащей к тому же роду. Этот фермент часто встречается в кишечном микробиоме жителей Японии, многие из которых регулярно потребляют сложный полисахарид порфиран, входящий в состав водорослей, использующихся для приготовления суши, известного японского блюда. Возможно, рассуждение носит косвенный характер и движется несколько кружным путем, однако вывод очевиден: в Японии (но не в Северной Америке) ген, отвечающий за синтез порфориназы, перенимается микроорганизмами кишечника у морской бактерии, которую человек может потреблять вместе с водорослями.

Легко представить себе аналогичный сценарий и для других растений. Всякая пища, нуждающаяся в ферментативной обработке, наверняка будет поступать в организм (по крайней мере иногда) вместе с некоторым количеством бактерий, которые берутся расщеплять сложные молекулы, с таким трудом синтезируемые растением. Остальное – дело бактериальной генетики. Существуют убедительные доказательства, что в человеческом кишечнике процессы генетического обмена у бактерий происходят гораздо чаще (порой в 25 раз), чем у похожих микробов, живущих где-то еще.

Метаболическая виртуозность кишечных микробов простирается и в другие стороны. Они расщепляют полифенолы, содержащиеся в порошке какао, производя малые молекулы, которые могут оказывать противовоспалительное действие на кровеносные сосуды; поэтому, возможно, темный шоколад весьма полезен (очень приятное предположение). Вообще-то они не только расщепляют. Ферменты микробов помогают вырабатывать многообразные малые молекулы, в том числе витамины В и К, некоторые нейротрансмиттеры, а также основные питательные вещества для клеточной деятельности – скажем, аминокислоты. Некоторые из этих веществ синтезируются нашими собственными клетками, но многие – нет. Согласно приблизительной оценке, часто цитируемой в литературе, целая треть малых молекул, разносимых кровеносной системой по нашему организму, создается в кишечных бактериях.

Как и для многих разновидностей бактерий, мы мало что выясним, если просто попытаемся перечислить все молекулы, которые они помогают нам производить. Давайте попробуем хотя бы понять, на что способен лишь один тип молекул. Оказывается, на большее, чем вы могли бы себе представить.

 

Молекулярный промискуитет

«Маленькая молекула с впечатляющей эволюционной историей и хорошим ч/ю ищет партнера. При необходимости может служить источником энергии.»

Нет, молекулы не помещают объявления в газетных разделах знакомств, но некоторые из них все-таки заводят интрижки, устраивая краткие спаривания с целым рядом других. Эти альянсы имеют далекоидущие последствия. Эволюция всегда рада воспользоваться всем, что подвернется под руку; если какая-то небольшая и довольно стабильная молекула долго крутится в системе, эволюция обязательно находит ей новые области применения.

Частично поэтому роль кишечных бактерий далеко не исчерпывается помощью при пищеварении. Они вырабатывают множество малых молекул, которые воспринимаются как сигналы многими нашими клетками, тканями и органами. В результате создаются сети почти неисчерпаемой сложности. Полная карта, отражающая все взаимодействия, походила бы на схему Интернета. Заполучив такую карту, ученые наверняка открыли бы какие-нибудь общие принципы и свойства.

Во всяком случае ясно, что один из ключевых уровней взаимодействия здесь – молекулярный. А теперь я попробую дать вам, читатель, хоть какое-то представление о том, как набор крошечных организмов, обитающих у нас в кишечнике, может влиять на гораздо более крупную систему – наш организм. Для этого мы рассмотрим поведение всего одной молекулы.

Знакомьтесь: масляная кислота. Вот ее структурная формула (как нетрудно догадаться, буквы обозначают элементы, в данном случае углерод, водород, кислород, а линии – их связи).

Вещество относится к классу соединений, именуемых короткоцепочечными насыщенными жирными кислотами. Кислотная часть – карбоксильная группа – СООН на конце – неизменно присутствует у всех представителей этого класса. Атом углерода склонен образовывать 4 связи, что является ключевой особенностью, позволяющей таким атомам соединяться в цепочки, создавая множество веществ, что делает углерод одним из главнейших элементов живого. Используя четвертую связь группы – СООН для соединения с атомом водорода, вы получите HCOOH, муравьиную кислоту, раздражающее вещество, которое имеется в жалах насекомых. Цепочка из двух углеродов даст вам более благодушную уксусную кислоту, бутылочка которой наверняка есть у вас на кухне. Легко видеть, что в масляной кислоте имеется цепочка из 4 углеродных атомов. Такие цепочки могут быть довольно длинными (скажем, в молекуле церотиновой кислоты содержится цепь из 26 атомов углерода); они могут обладать множеством свойств, на которых здесь незачем останавливаться. Вещества с короткими цепочками – не очень «жирные»; масляная кислота, как и ее родичи с небольшим количеством атомов углерода в молекуле, растворима в воде. Она является кислотой, поскольку водород в ее ОН-группе может отщепляться в виде самой простого химического объекта – положительно заряженного иона водорода (иными словами, в виде протона). Атом кислорода, от которого он отщепился, в результате приобретает отрицательный заряд. Получается бутират-ион, дающий всевозможные бутираты.

Бутираты выделяют многие кишечные бактерии. На первый взгляд может показаться, что причина здесь та же, которую мы уже излагали выше. Выработка короткоцепочечных жирных кислот позволяет нам гораздо эффективнее использовать то, что мы едим. Данные, полученные при изучении безмикробных мышей, как будто подтверждают: бактерии делают именно это. Грызуны, лишенные естественных бактерий, обычно вынуждены есть на 10 % больше, чем мыши с нормальным микробиомом, чтобы поддерживать такую же массу тела. Это наблюдение позволяет по-новому взглянуть на пищевые волокна, к потреблению которых нас вечно призывают. Сложные углеводы, главный компонент клетчатки, обычно попадают в толстую кишку непереваренными. Мы привыкли думать, что они полезны, ибо каким-то образом помогают толстой кишке работать более гладко, увеличивая объем ее содержимого. Питаясь лишь такой едой, где нет клетчатки, вы рискуете заработать запор, а в конечном счете – рак толстой кишки.

Выяснятся, однако, что судьба клетчатки куда интереснее: это далеко не только добавка к фекалиям, доводящая их до необходимого объема. Если в толстой кишке присутствуют нужные бактерии, крупные молекулы расщепляются при помощи бактериальных ферментов, давая короткоцепочечные насыщенные жирные кислоты. А те в свою очередь могут использоваться нашими собственными клетками для выработки энергии. Ацетат (обычно его производится втрое больше, чем бутирата) попадает в кровь, а потом используется мышцами и печенью, подобно глюкозе. Часть бутирата также абсорбируется из толстой кишки и применяется в печени. Однако свою важную метаболическую роль он начинает играть уже в толстой кишке, где быстро делятся эпителиальные клетки, жадные до бутирата. Не получая достаточного его количества, они переваривают собственное содержимое.

Прелестная, изящная схема: бактерии представляют собой удобный источник энергии для близлежащих человеческих клеток, которым эта энергия так нужна. Однако молекула бутирата, избежавшая съедения клетками человеческого тела, может проделывать множество других вещей. Похоже, существуют рецепторы, способные повсюду распознавать ее – по форме и по распределению электрического заряда между ее атомами. Сколько таких рецепторов? Вероятно, пока мы знаем не все, но давайте остановимся хотя бы на некоторых. Молекулярные взаимодействия в живых системах зачастую мимолетны. Представьте себе молекулу в жидкой среде, окруженную другими, постоянно толкаемую, да при этом еще и ее собственные атомы «вибрируют» или даже вращаются вокруг межатомных связей. Она может совершить краткое «рукопожатие» с каким-то рецептором или участком идентификации, но затем ее выталкивают обратно в поток. Если бы оказавшемуся в толстой кишке бутират-иону вручали список «двадцати действий, которые необходимо соверщить, прежде чем вас метаболизируют», этот список мог бы начинаться следующим образом.

Найдите рецептор, сопряженный с G-белком, и соединитесь с этим рецептором. Речь идет об обширном семействе рецепторов, расположенных на поверхности клеток и проделывающих то, на что указывает их название; находясь на клеточной мембране, они связывают малые молекулы, имеющиеся во внеклеточном пространстве. Это небольшое изменение заставляет рецептор изменить форму. Затем он активирует какой-то G-белок (G-белки – один из классов белковых молекул), который после этого передает сигнал внутрь клетки, тем самым вызывая целый ряд эффектов.

Многие сигнальные системы клеток работают таким образом. В наших тканях существуют тысячи различных рецепторов, сопряженных с G-белком, как и других рецепторов из того же семейства, действующих посредством разных агентов передачи сигнала. Поэтому не удивительно, что некоторые из них связывают бутират (и ацетат). Их так много, что им присваивают названия с номерами. В данном случае первый рецептор, который встречает наша молекула, именуется Gpr43. Его форма предназначена для связывания трех наиболее распространенных короткоцепочечных насыщенных жирных кислот. Он помогает приглушать воспалительные реакции.

Затем наша молекула бутирата слезает с этого рецептора и попадает на другой – Gpr109a. Он игнорирует иные короткоцепочечные насыщенные жирные кислоты и захватывает лишь бутират (хотя, поскольку клеточная биология вообще полна скрещивающихся путей, он способен также откликаться на присутствие витамина B3 – ниацина, еще одного продукта жизнедеятельности кишечных бактерий). Этот рецептор после активации выполняет в кишечнике сходную противовоспалительную роль. Похоже, он также снижает вероятность развития рака толстой кишки. И вот пример типичной сложной взаимосвязи, помогающей клеточным сообществам самоорганизовываться: выработка этого рецептора в толстой кишке резко усиливается в присутствии кишечных бактерий. Что это – еще один эффект бутирата? Мы пока не знаем.

Но и это лишь краткая встреча. Наша универсальная молекула бутирата плывет дальше, чтобы соединиться с рецептором Gpr41, который подает клеткам сигнал усилить выработку лептина – гормона, играющего весьма важную роль в контроле аппетита, метаболизма жиров и их накопления. И наконец, бутират прочно связывается с рецептором еще одного типа – транспортным белком, который переносит бутират внутрь клетки нашего тела (в данном случае – клетки эпителия толстой кишки). Оказавшись там, молекула высвобождается и может взаимодействовать с новыми партнерами. Так, одна из хорошо изученных функций внутриклеточного бутирата – ингибирование фермента, который ускоряет отщепление ацетильных групп от гистонов – белков, участвующих в упаковке нитей ДНК. Здесь следует отметить, что повышенная активность данного фермента – одна из характерных особенностей клеток злокачественной опухоли толстой кишки.

Таков лишь один из множества возможных конечных пунктов этого молекулярного путешествия. Если клетка, переносящая в себе бутират, окажется Т-лимфоцитом, присутствие бутирата может побудить ее стать более специализированной иммунной клеткой. Существуют транспортные агенты, переправляющие бутират через эпителий кишечника, чтобы это вещество попало в кровь. А уж вместе с кровью бутират может направиться практически куда угодно. По мнению некоторых специалистов, похожие транспортные агенты могут нести короткоцепочечные насыщенные жирные кислоты в мозг и нервные клетки. Возможно, существует даже некая связь между такой доставкой и тем фактом, что опыты на мышах как будто показывают – введение значительных доз бутирата может оказывать антидепрессивное действие. (К этой находке мы еще вернемся в главе 9.)

Но давайте закончим наше воображаемое путешествие именно здесь. Оно позволяет представить себе лишь некоторые детали, известные нам о бутирате и о том, что он способен делать. Конечно, пока мы знаем далеко не все. Однако этот беглый рассказ позволяет представить себе и другие похожие истории о молекулах, каждая разновидность которых успела сыграть множество ролей с тех самых пор, как в ходе эволюции начали складываться пути координации различных систем нашего организма (и организма наших эволюционных предшественников).

Ученые пытаются столь же детально изучить другие подобные истории, каждая из которых напоминает о тонко настроенном взаимодействии и тщательной координации, необходимых, когда речь идет об управлении организмом, состоящим из триллиона клеток. Переход же на уровень суперорганизма подразумевает, что система в целом включает триллионы других клеток, которые действуют в какой-то степени независимо и интересы которых не всегда полностью совпадают с интересами «родных» клеток нашего тела.

Из истории о бутирате можно сделать еще два вывода. Обычно ни одна малая молекула не ограничивается выполнением лишь одной функции. Чаще всего молекула вовлечена в деятельность разных систем, причем ее функции подчас кажутся в чем-то противоречивыми. Одна молекула может участвовать в тонкой настройке многих систем организма. Более того, сети передачи сигнала, чью деятельность она модулирует, переплетаются со многими другими; ко всем этим взаимодействиям следует подходить весьма тщательно, если мы хотим получить сколько-нибудь ясное представление об их возможных конечных результатах. Все эффекты, которые оказывает моя гипотетическая гиперактивная молекула бутирата, зависят от конкретных клеточных обстоятельств. Нужно иметь все это в виду, пытаясь разобраться, означают ли новые открытия касательно микробиома именно то, о чем заявляют их авторы и пропагандисты.

А теперь следует вернуться на более высокие уровни микробиома – к экосистемам и комплексным взаимодействиям. Но пока мы еще здесь, внизу, играем в рьяных редукционистов и пытаемся изучать объекты по одному, давайте обратимся к очередной истории с единственным главным героем. Речь у нас пойдет не о молекуле, а о некоей бактерии.

 

«Хорошая» бактерия, «плохая» бактерия

Мешанина из бесчисленных результатов ДНК-анализа, получаемых современными специалистами, определенно говорит лишь одно: существует несметное множество разновидностей бактерий, которые могут оказаться среди микробного населения человеческого организма. Это разнообразие наряду с еще более огромным разнообразием генов, которые все эти микробы имеют в своем коллективном распоряжении (как мы уже знаем, таких генов больше 10 миллионов), представляет собой во всех смыслах гигантскую проблему, в которой еще только предстоит разобраться.

Впрочем, если сосредоточиться всего на одной бактерии, тоже можно немало узнать. Как и в случае с E. coli, лабораторное исследование которой плодотворно уже много лет, выяснение как можно большего количества информации об одной-единственной бактерии способно показать, как бактерии взаимодействуют с нашим организмом.

Возьмем, к примеру, интригующую историю Helicobacter pylori. Это существо особенно удобно для одновидовых штудий, поскольку устойчиво к воздействию кислой среды и поэтому может жить в желудке (где численность бактериального населения значительно ниже, чем в кишечнике). Возможно, по этой причине данная бактерия – нелучшая иллюстрация того, как мы взаимодействуем с прочими компонентами нашего микробиома, однако она позволяет демонстрировать немаловажные особенности наших связей с бактериальными видами.

История эта может похвастаться удивительными поворотами: в частности, за 30 лет она дважды коренным образом переменила господствующее в научных и медицинских кругах мнение, причем во второй раз потребовалось выкорчевать воззрения, прочно укоренившиеся на предыдущем этапе.

Пожалуй, H. pylori известнее всего благодаря исследованиям, в ходе которых утверждалось: она вызывает язву. До 1970-х годов ученые полагали, что язва – эта болезненная и иногда опасная эрозия стенки желудка – возникает из-за чрезмерного количества кислоты; эффект, к которому может приводить стресс. Затем австралийский патолог Робин Уоррен подметил, что в желудке имеются бактерии, активно заселяющие слизистую оболочку его стенок при воспалении. Эти бактерии наблюдали еще в XIX веке, но с тех пор столь основательно забыли, что преподаватели внушали будущим врачам: желудок стерилен. Как выяснилось, присутствие этих бактерий в организме человека напрямую связано с развитием язвы.

Эта ассоциация оказалась достаточно четкой, чтобы предположить: данный микроб – патоген, подчиняющийся правилам Коха. В 1982 году его удалось вырастить в лабораторной культуре. Раньше у микробиологов это не получалось. Затем даже удалось показать, что H. pylori можно выделить у пациентов, страдающих язвой, и у большего количества людей, страдающих гастритом (желудочным воспалением). Кроме того, Барри Маршалл, работавший вместе с Уорреном, выяснил, что проглатывание этих бактерий вызывает приступ гастрита. Еще более впечатляющее открытие: медикаментозное лечение заражения H. pylori помогает избавляться от язвы. Результат – Нобелевская премия по физиологии и медицине, присужденная Уоррену и Маршаллу в 2005 году, и мгновенно возникшая у множества врачей убежденность, что эта новая (для них) бактерия – опаснейший патоген. Итак, если желудок почему-либо оказался нестерильным, нужно срочно сделать его таковым. Хорошая H. pylori – мертвая H. pylori. А потому – принимайте антибиотики!

Однако дело с язвой оказалось не столь простым. Мартин Блейзер из Нью-Йоркского университета давно подметил, что не все носители H. pylori зарабатывают язвенную болезнь. В конце 1980-х он приступил к более тщательному исследованию этого микроорганизма. Вскоре его научная группа выяснила, что существует несколько вариантов данной бактерии и в крови зараженных ею людей содержатся антитела к ней.

Далее Блейзер принялся разделять H. pylori на разновидности, отличающиеся друг от друга по способам взаимодействия с эпителиальными клетками желудка, и показал, почему какие-то из этих разновидностей вызывают язву с большей вероятностью, чем другие. Вместе с коллегами он продемонстрировал также, что присутствие этих бактерий увеличивает риск развития рака желудка – одной из главных причин смерти современного человека. Что ж, тем больше оснований прописывать антибиотики: мы должны при первой же возможности избавляться от этого смертоносного микроба!

Однако на этом дело не закончилось. Связь с болезнью была обнаружена только потому, что не все люди оказались носителями H. pylori. Эта особенность возникла у человечества сравнительно недавно. Работы XIX века и современные обследования жителей Африки и Азии показали, что почти у всех испытуемых эти бактерии обитают в стенках желудка либо в их крови имеются антитела, свидетельствующие о наличии этих бактерий. Более тщательные изыскания, проведенные совсем недавно, позволяют заключить, что эта бактерия – наш весьма древний спутник. Похоже, в желудке у каждого млекопитающего имеется какой-то родич этой бактерии, эволюционировавший вместе со своим хозяином. Можно показать, что человек является ее носителем по меньшей мере на протяжении последних 100 тысяч лет, а скорее всего даже дольше. H. pylori живет лишь на человеке, а значит, после рождения ребенок должен как-то приобретать ее от себе подобных. В менее гигиеничные времена большинство детей подхватывали ее в течение первых десяти лет жизни.

Потом пришла современная санитария, а позже – практика частого введения антибиотиков для борьбы с детскими инфекциями. Заражаемость бактериями H. pylori стала неуклонно снижаться. Между взрослыми людьми они не так-то легко передаются, а дети могут приобрести их, лишь если матери или братья-сестры являются их носителями. Поэтому доля людей, зараженных этим микробом, уменьшалась с каждым новым поколением. По оценкам Блейзера, у подавляющего большинства рожденных в США в начале прошлого века имелись в животе H. pylori, однако этой бактерией заражены лишь менее 6 % появившихся на свет после 1995 года.

Ну и отлично. У новых поколений будет куда меньший риск получить болезненную язву или рак желудка (зачастую летальный).

Однако не всё так безоблачно. Язвенная болезнь бывает и у взрослых, а рак желудка обычно возникает в среднем возрасте или позже. Если до недавнего времени все дети в истории человечества несли в себе бактерию, адаптировавшуюся к жизни в желудке человека, то, может быть, она оказывает и какое-то другое воздействие, в том числе и благотворное? Первое указание на это содержится в еще одной работе Блейзера. Ему хотелось выяснить, превышает ли норму содержание H. pylori у страдающих острым кислотным рефлюксом (попросту говоря, изжогой).

Вопреки всем ожиданиям ученых выяснилось: для тех, у кого нет H. pylori, вдвое больше вероятность развития тяжелой формы изжоги – гастроэзофагального рефлюкса. При такой болезни часть содержимого желудка время от времени поднимается к глотке. Это может происходить несколько раз в день, приводя к образованию рубцов и к еще более неприятным последствиям. Конечным результатом может стать аденокарцинома – заболевание, которое в последнее время становится все более распространенным (как и кислотный рефлюкс).

Группа Блейзера и другие команды ученых, продолжавшие ее работу, обнаружили, что избавление от H. pylori при помощи антибиотиков часто вызывает кислотный рефлюкс. Дальнейшие результаты выявили факт, который может показаться каким-то биологическим извращением. Оказывается, штаммы H. pylori, вырабатывающие белок под названием cagA, который способен повреждать эпителиальные клетки, с большей вероятностью вызывают язвенную болезнь и рак желудка, но при этом более сильно (по сравнению с другими H. pylori) снижают риск возникновения рефлюкса и аденокарциномы. Возможно, столь запутанная картина объясняется особенностями регуляции процессов выработки кислоты в желудке, хотя мы пока не до конца разобрались в соответствующих механизмах.

Но и этого мало. Как выясняется, дети, которые все-таки заражаются H. pylori (особенно штаммами, ассоциируемыми с язвенной болезнью), меньше рискуют заработать астму – еще один недуг, который врачи наблюдают все чаще и чаще. То же самое верно для сенной лихорадки и целого ряда других аллергических заболеваний.

Чтобы понять, как такое может быть, следует рассмотреть причины и преимущества воспалительных процессов, а также то, как наши спутники-бактерии взаимодействуют с нашей же иммунной системой. (Об этом мы поговорим в главе 7.)

Многообразные эффекты H. pylori побудили ученых заняться активным выявлением связей этой бактерии (как негативных, так и позитивных) с другими заболеваниями. Обзор положения дел в этой сфере, сделанный в 2014 году, включает ссылки на примерно 140 работ, авторы которых занимались такими различными недугами, как рак поджелудочной железы, анемия (малокровие), болезни печени и артериальный тромбоз.

Связи здесь по большей части слабые или противоречивые, но исследования продолжаются. Так или иначе, пример H. pylori показывает: по меньшей мере для некоторых видов бактерий не существует четкого разделения между безвредным (или даже полезным) микроорганизмом и патогеном. Иногда микроб делает одно, иногда – другое. Возможно, все зависит от мелких различий между штаммами, от генетических особенностей организма-хозяина, от других индивидуальных факторов и факторов среды. Возникает в лучшем случае весьма расплывчатая картина причинно-следственных связей, если хоть какая-то картина возникает вообще. Чтобы прояснить ее, придется собрать поистине гигантскую группу испытуемых, наблюдать их в течение долгого времени и затем анализировать чертову кучу полученных данных. И это лишь для одной бактерии, пускай нам и кажется, что она играет в нашем организме весьма важную роль.

 

Мое собственное

Есть ли H. pylori у меня в желудке? Не знаю. Зато я знаю, что когда-то у меня была легкая форма астмы и никогда не было язвы. Так что есть искушение дать отрицательный ответ на этот вопрос. Однако в моей пищеварительной системе все-таки имеется несметное количество микробов. Чтобы попытаться выяснить какие-то полезные вещи о микробиоме, можно перейти от мелких подробностей действия одной молекулы или единичной бактерии к широкомасштабному взгляду, охватывающему всё наше микробное сообщество. Так что для финала этой главы я приберег краткий отчет о конгломерате микроорганизмов, обитающих в моей собственной толстой кишке.

При желании вы легко сумеете заказать обследование своего микробиома. Оно даже может стать вкладом в науку, заполнить пробелы в наших знаниях о том, насколько сильно отличается микробиота у разных людей и что влияет на ее изменения.

Существует несколько учреждений, предлагающих услуги по отбору биологических проб и выяснению их состава. «Американский кишечник» – краудфандинговый проект, цель которого – выстроить максимально полную картину кишечной микробиоты американцев, индивидуально обследуя всех, кто захочет пройти такое обследование. Я обратился в «uBiome» – проект, также ставший одним из первых в этой сфере (и также американский). По словам организаторов, задача проекта – «снабдить всех желающих необходимыми средствами для изучения уникального бактериального баланса в организме».

Поначалу проект тоже финансировался путем сбора частных пожертвований, набрали таким образом 350 тысяч долларов. На сайте написано, что это вклад в «гражданскую науку». Идея создателей проекта состоит в том, чтобы предоставить всем возможность пользоваться данными, полученными при помощи секвенсоров «uBiome», и информацией, извлекаемой из сравнения этих данных с появляющимися сейчас другими результатами анализа, дабы планировать собственные исследования.

Пока проект действует довольно прямолинейно. За 89 долларов вы заказываете в «uBiome» специальный набор для анализа, и по почте вам присылают коробку с тампонами и пробирками. Я предпочел пойти по самому простому пути: соскоблил образец кала с туалетной бумаги, поместил его в пробирку со стабилизирующим раствором, встряхнул и запечатал. За дополнительную плату я мог бы приложить пробы, взятые из носа, рта, с половых органов и кожи, но мне показалось разумным начать с кишечника (по крайней мере, с конечного продукта его деятельности). Остальное подождет.

Количество использованного материала выглядело смехотворным, и я сомневался, хватит ли его для анализа, когда готовил посылочку для отправки в Сан-Франциско, где располагается штаб-квартира «uBiome». Всё ли я сделал правильно? (Кроме того, как-то странно отправлять образец фекалий по почте. Но, судя по всему, это никого не беспокоит.) Остальной мой вклад был онлайновым: я зарегистрировал свой набор и заполнил довольно простую анкету, тем самым заведя личный профиль в системе.

Проект пока находится в процессе развития, но после нескольких месяцев ожидания, как раз когда я писал эту книгу, мне представили доступ к бета-версии сайта, и я увидел данные о своем микробиоме.

Перед тем как углубиться в детали, отмечу, что сайт заранее предупреждает: эти данные предназначены исключительно для того, чтобы помочь мне больше узнать о моем микробиоме, их не следует использовать в медицинских целях. Кроме того, «названия некоторых бактерий могут походить на термины, которыми именуются инфекционные и другие болезни». Это не значит, что у меня есть соответствующая инфекция (или что у меня ее нет). Я и так это знал, поскольку «uBiome» использует секвенирование 16S рРНК, дающее весьма общую классификацию бактерий. Но я порадовался, увидев столь откровенное предостережение.

Из информации, предоставленной таким путем, всё же можно узнать массу деталей. Первым делом вам показывают красивенькую цветную диаграмму, отражающую распределение бактериальных филумов в вашем кишечнике (или по крайней мере в крошечной пробе вашего кала).

Основную часть бактерий в моем образце составляли Firmicutes – 74,5 %, что заметно выше среднего показателя для базы данных «uBiome», где представлены, по-видимому, в основном североамериканцы, а у них в среднем по 61,6 % микроорганизмов из этого филума. Это среднее значение основано на анализе образцов из всевозможных участков тела, но в данном случае оно почти полностью совпадает с результатом для кишечных проб здоровых всеядных существ (именно к ним я отнес бы себя), составляющим 61,67 %.

Ближе к среднему показателю я оказался по менее распространенным Proteobacteria (3,83 % при среднем в 3,46 %) и Actinobacteria (3,01 % при среднем в 2,72 %), почти вдвое ниже среднего – по Bacteroidetes (11,8 % при среднем в 20,4 %). Эта разница показалась несущественной, когда я углубился в детали и посмотрел на разброс значений для проб из кишечника здоровых всеядных людей: практически от нуля до примерно 50 %. Лишь чуть больше 1 % найденных разновидностей бактерий не удалось классифицировать.

Дальше меня ждал сюрприз. Оказывается, существует целый филум, о котором я никогда раньше не слышал, – Tenericutes. Судя по данным анализа, к нему принадлежат целых 5,4 % моих кишечных бактерий. А среднее по всей базе «uBiome» – 0,183 %.

Вот это да! Интересное открытие. Значит, мой кишечный микробиом – необычный. По крайней мере, хоть в каком-то отношении. В образцах из кишечного микробиома других людей эта величина обычно ниже 0,5 % (у веганов – в среднем 0,65 %, но я не веган). Диапазон значений довольно узок, статистические выбросы очень редки. А я оказался далеко за пределами нормального диапазона. Почему?

Пока мне придется умерить интерес. Я понятия не имею, что означает эта высокая величина. И, насколько мне известно, никто ее сейчас объяснить не может.

Все мои Tenericutes, сообщил мне «uBiome», принадлежат к классу Mollicutes – сравнительно простым бактериям, не имеющим клеточной стенки и являющимся паразитами с весьма примитивным геномом, вероятнее всего возникшим путем избавления от как можно большего числа маловажных генов.

Такие бактерии часто обнаруживают прикрепившимися к клеткам легких или гениталий. Одна из них хорошо известна, поскольку имеет, вероятно, самый скудный геном среди всех клеток: в нем меньше 600 тысяч нуклеотидных пар. Речь идет о Mycoplasma genitalium – чрезвычайно простой прокариоте, которая, по-видимому, обладает почти минимальным геномом, необходимым для независимого существования. Именно поэтому она очень популярна среди генетиков-экспериментаторов. Но, как подсказывает ее название, живет она не в кишечнике.

Может быть, дело в какой-то нехарактерной пробе? Ведь она представляла собой очень маленькую часть результата одного акта опорожнения кишечника. И вообще все эти тесты проводятся пока не так уж долго, чтобы мы могли удостовериться в воспроизводимости результатов анализа; научный журналист Тина Сэй сообщает, что она получила весьма различные результаты, отправив порции одного и того же своего образца в «uBiome» и «Американский кишечник». По ее словам, соотношение Firmicutes и Bacterioidetes в двух образцах фекалий с одной той же части одного и того же куска туалетной бумаги оказалось «более или менее противоположным». Когда она обратилась с вопросом к сотрудникам компаний, ей ответили, что на такое расхождение результатов могли повлиять самые разные факторы – от методики выделения ДНК до алгоритмов обработки данных. Еще одно напоминание, что микробиомные штудии пока еще очень далеки от стандартизации.

Я пока не знаю, подтвердятся ли мои собственные результаты, если я снова раскошелюсь и повторю отбор пробы. Если они подтвердятся, мне наверняка захочется узнать, почему этот конкретный класс бактерий прижился у меня в кишечнике. Впрочем, возможно и такое объяснение: моя микрофлора кажется необычной лишь из-за того, что база данных «uBiome» пока сравнительно невелика. Обратившись к научной литературе, я выяснил, что неведомые мне прежде Tenericutes уже удавалось найти в кишечном микробиоме. Одно сравнительное исследование, выполненное в 2013 году, показало, что Tenericutes составляют 12 % кишечных бактерий у бангладешских детей, предоставивших образцы для анализа, и 4 % у обследованных американских детей. Мой результат сразу перестал выглядеть необычным: возможно, он лишь чуть выше, чем у среднего жителя Запада.

Так или иначе, мне забавно было посмотреть на мои результаты. Сравнение с базой данных «uBiome» служит полезным напоминанием о том, как сильно отличаются друг от друга микробиомы разных людей. Больше мне эти данные почти ничего не говорят. Подобного рода персональный анализ следует существенно детализировать, прежде чем он станет по-настоящему полезным для владельца микробиома (если здесь уместно использовать слово владелец). Уже сейчас доступны и другие подробности: скажем, что мои Firmicutes разделяются на Clostridia (69 % в пробе), Negativicutes, Lactobacilli и какие-то Erysipelotrichia (по 1–2 %). Но все эти классы в свою очередь делятся на множество видов. Так что пока мы находимся на том уровне исследования, когда еще не чувствуем, будто вот-вот по-настоящему познакомимся с разновидностями бактерий, которые действительно населяют наш кишечник. С другой стороны, информация, полученная в ходе исследований на этом уровне, позволяет предположить, что индивидуальные отличия еще больше, возможно, отчасти из-за того, что речь идет об огромном количестве видов бактерий. А значит, далек тот день, когда вы сможете, получив в руки личный микробный профиль, получить и четкие указания на то, что означают все эти данные.

По сути это моментальный снимок кишечного микробиома взрослого человека, сделанный в какой-то день. Население этого микробиома явно велико и впечатляет разнообразием, даже если принимать в расчет лишь бактерии и игнорировать другие типы микробов. Более того, я уверен, что начинал свою жизнь без всяких микроорганизмов внутри меня. Как же все они туда попали?