Я – суперорганизм! Человек и его микробиом

Тёрни Джон

Глава 7. Работая вместе

 

 

Специалист по клеточной биологии говорит иммунологу:

– Тут мой эксперимент показал, что содержание ИЛ-6 (интерлейкина-6, сигнальной молекулы) полезло вверх. Это плохо, да?

– Да, это плохо, – отвечает иммунолог.

Прошла неделя.

– Я изменил условия эксперимента. Теперь ИЛ-6 пошел вниз. Это ведь хорошо?

– Нет-нет, – невозмутимо отвечает иммунолог. – Это тоже плохо.

Сей научный анекдот, рассмешивший участников одной конференции по микробиомам, отражает устоявшиеся представления биологов, работающих в разных областях, друг о друге. Иммунологов считают неспособными доходчиво рассказывать всем остальным о результатах своих исследований. И даже если они попытаются это сделать, вам все равно непросто понять суть их открытий. Честно говоря, иммунологи сами не всегда их понимают.

Но иммунную систему нам никак не обойти. Человеческий микробиом взаимодействует с четырьмя главными информационными и контрольными системами организма – с геномом, с эндокринной системой (гормонами), с мозгом + нервной системой, а также с иммунной. Все они также взаимодействуют друг с другом. Вот почему исследование микробиома приводит к формированию новых междисциплинарных связей.

Перенос сигналов между микробиомом и иммунной системой – вероятно, самый сложный из всех подобных процессов. Он уходит корнями в глубины эволюционной истории. Вполне вероятно, что наш микробиом и наша иммунная система возникли (или приобрели именно такую форму) только благодаря друг другу. По мере того, как биологи разных направлений, работая сообща, выясняют, что это такое – быть суперорганизмом, меняются и наши представления об иммунной системе человека, подходы к ее изучению. Коммуникация (удачная или неудачная) с иммунной системой является не только ключевой составляющей обычных «дипломатических переговоров» микробиома со своим хозяином, но и частью почти всякого механизма, который, как предполагается, отвечает за связь микробиоты и заболеваний.

Масштабное переосмысление роли микробиома в иммунных механизмах начинается с отказа от идеи, которая стоит почти за всеми обывательскими разговорами о нашем иммунитете. Эта идея – еще одно наследие микробной теории.

 

Внутренняя война

Почти все знают об иммунной системе следующее. Сегодняшняя официальная медицина – это война с болезнями, и иммунная реакция – первая линия обороны, помогающая нам бороться с вторжением смертоносных микробов. Мир молекул и клеток становится полем битвы, где звучат сигналы тревоги, где враги ведут наступление, где проводится мобилизация, осуществляются операции «Найти и уничтожить», где можно встретить прирожденных убийц. В одной весьма расхваленной детской книге 1990-х годов говорится: «Мы расскажем вам подлинную историю о замечательных защитниках вашего тела, о героическом отряде клеток, помогающих вам сохранять здоровье и хорошую физическую форму благодаря тому, что они постоянно сражаются со всевозможными захватчиками-микробами. Каждую секунду, каждую минуту, каждый час, каждый день вашей жизни ведут они свой бой…».

И это не просто распространенное заблуждение. В учебниках для медицинских вузов и даже в научных статьях иммунологов звучат те же идеи. Они являются столь основополагающими, что часто их принимают как должное, особенно не задумываясь. Упомянутый образ войны – фирменный знак иммунологии. А вот другая часто используемая базовая идея: иммунная система работает, проводя разграничение между клетками (или антигенами), маркированными как «свое» и «не свое». Что ж, это вполне укладывается в представление о неизбежном конфликте, ведь именно таким образом вы сумеете выяснить, с кем же, собственно, предстоит сражаться. Антрополог Эмили Мартин, много общавшаяся с иммунологами в 1980-е годы, подметила: даже те, кому не очень-то по душе все эти военные метафоры, не представляют себе, как их избежать. Один из таких специалистов заключил: «В иммунной системе не происходит разумного диалога». Впрочем, его успокаивает мысль, что она «ведет справедливую войну».

Деятельность иммунной системы во всей ее клеточной сложности дарит нам массу открытий, которые не совсем укладываются в такую схему. Однако предлагаемые ее замены пока не очень-то убедительны: вряд ли они будут работать лучше. В 1990-е годы на короткое время вошла в моду идея, согласно которой иммунный отклик провоцируется «ранением или оскорблением», которые наш организм регистрирует как сигнал опасности, но эта гипотеза не прижилась.

Теперь же довольно-таки внезапно ученые и медики стали воспринимать иммунную систему совсем иначе. Поговаривают о «парадигматическом сдвиге» или даже о «революции» в научном мышлении. Вероятно, одной из причин такой революции стало наше осознание того, что в нашем теле и на нем постоянно присутствует гигантское число клеток, которые кажутся скорее «чужеродными», нежели «своими», однако мы вовсе не ведем с ними войну: напротив, пускаемся на всевозможные ухищрения, дабы заманить их к себе в качестве жильцов. И для иммунной системы они совсем не враги-захватчики. Но каковы же их отношения? Чтобы попытаться ответить на данный вопрос, нужно внимательнее вглядеться в то, как устроена иммунная система.

 

Краткий путеводитель по иммунной системе

Иммунные функции не выполняет какой-то один орган. В иммунную систему входят тимус и селезенка (довольно таинственные органы), костный мозг, лимфатические узлы и другое. Иммунная система не локализована в каком-то определенном месте. Чтобы выполнять свою работу, она должна быть представлена по всему организму. В крови, поте и слезах содержатся иммунные молекулы. Благодаря развитию микробиомной науки ученые обратили особое внимание на две другие зоны, весьма важные для иммунной деятельности: на кожу, а главное – на кишечник (который, вероятно, вообще является самым крупным иммунным органом, как ни странно это звучит).

Что же такое «деятельность иммунной системы»? Самый первый – и довольно беспомощный – ответ таков: эта деятельность включает в себя множество самых разных вещей. Иммунная система – штука древняя, как и бактерии. Мы уже знаем, что первые многоклеточные, формировавшиеся как отдельно действующие существа, постоянно находились в окружении одноклеточной жизни, а значит, им требовались способы распознавания того, какие из соседствующих с ними клеток входят в клуб избранных, а какие – нежелательные гости.

Столкнувшись с необходимостью проводить такое базовое разделение, наша иммунная система в процессе чрезвычайно долгой эволюции постепенно выработала целый ряд многочисленных механизмов идентификации, распознавания и отклика. Наша теперешняя версия иммунитета довольно-таки сложна. Причина такой сложности – отчасти в необходимости распознавать великое множество разновидностей чужеродного материала посредством рецепторов, форма которых приспособлена для работы с конкретной разновидностью чужаков. Впрочем, эту задачу природа решила с блистательной простотой, снабдив нас небольшим набором генов, управляющих формированием «гипервариабельных» фрагментов молекул-антител (и определяющих, какой будет структура этих фрагментов). Обмениваясь порциями ДНК, небольшое число генов способно создавать практически неограниченный диапазон белковых форм, соответствующих любой химической структуре, какая только может объявиться в организме. Так удалось решить проблему «генератора разнообразия» (термин «generator of diversity» давно существует в англоязычной литературе, иногда его даже сокращают до GOD).

Не забудем также, что клетки разными путями следят за своим окружением, по-разному откликаются на сигналы (когда такой отклик необходим) и – это не менее важно – такие отклики тоже регулируются по-разному. Поэтому разобраться в механизмах работы иммунной системы не так-то просто.

Не будем брать полный перечень иммунных приспособлений, чтобы поговорить о том, как микробиом связан с иммунной системой: для такого списка потребовалась бы отдельная книга. Впрочем, полезно вкратце перечислить основные компоненты.

Весь этот ансамбль клеток, сигналов и откликов можно разделить на две большие категории. Система врожденного иммунитета – относительно простой аппарат распознавания и реакции, с которым мы появляемся на свет. Это наиболее древняя часть иммунного механизма, но ее открыли совсем недавно – в конце 1990-х годов. Она вырабатывает клетки, способные распознавать присутствие бактерий по характерным молекулам, находящимся на поверхности микроорганизмов. В числе подобных клеток – рецепторы, предназначенные для обнаружения таких молекул, как липополисахариды, располагающиеся на внешней мембране у некоторых бактерий. Иммунные клетки, обладающие рецепторами, обычно оснащены и для того, чтобы вырабатывать антимикробные вещества. Да, всё это напоминает оборонительную машину, о которой мы говорили выше. Обнаружить опасных захватчиков и уничтожить их! Подавляющее большинство многоклеточных наделено лишь таким иммунным аппаратом, и он, судя по всему, работает сравнительно неплохо. Любопытно, что у животных (за немногими исключениями, к которым относятся главным образом термиты) микробиом устроен просто.

За остальную часть нашего иммунитета отвечает другая ветвь – адаптивная иммунная система. В эволюционном смысле она появилась позже, однако в ней есть компоненты, которые биологи открыли за десятки лет до того, как наука узнала о существовании более древней иммунной системы. Адаптивная иммунная система реагирует на менее распространенные угрозы в основном благодаря тому, что в ней содержатся чрезвычайно многообразные клетки, вырабатывающие антитела; каждая из таких клеток начинает быстро размножаться, если ее уникальные антитела встречаются с ее уникальным соперником. У большинства клеток адаптивной системы такая встреча никогда не происходит, но те, кому она все-таки выпадет, в результате проходят через целую череду процессов развития, которые способствуют уничтожению соответствующего антигена и в будущем поддерживают повышенное содержание данного антитела – как своего рода «памятную записку». Вот почему работают вакцины: они готовят адаптивную иммунную систему к определенным опасностям, которые могут встретиться ей в будущем. Мы вкладываем немало ресурсов в построение этой системы иммунологической памяти и распознавания. Количество молекул иммуноглобулина в одном миллилитре нормальной крови в 1000 раз выше, чем число человеческих клеток во всем организме (10 квадриллионов и 10 триллионов соответственно). Обе ветви иммунитета – система врожденного иммунитета и адаптивная иммунная система – управляют целой армией клеток многочисленных типов.

Во многих тканях имеются клетки-часовые. Они обслуживают главным образом систему врожденного иммунитета. В их число входят дендритные клетки, макрофаги и лаброциты.

Существуют так называемые циркулирующие клетки: они присутствуют в лимфе и крови, а при обострении положения – и в самых разных межклеточных областях. Среди них особое внимание следует обратить на лимфоциты – основу адаптивной иммунной системы. Они способны распознавать определенные антигены («химические формы»), а значит, зачастую могут ощущать присутствие определенного микроорганизма.

Огромное многообразие типов лимфоцитов соответствует многообразию их ролей. Всё начинается просто – с набора широко распространенных клеток костного мозга, от которых происходят все разновидности белых кровяных телец, в том числе и лимфоциты. Лимфоциты представлены двумя основными популяциями. Одни в ходе своего развития остаются в костном мозге, а затем начинают вырабатывать специфичные антитела. Это так называемые В-лимфоциты. Другой тип – Т-лимфоциты, названные так потому, что они мигрируют в тимус, где и заканчивают свое созревание. Тимус – своего рода колледж для незрелых Т-лимфоцитов. При выпуске они становятся либо эффекторными Т-лимфоцитами, прямо или косвенно атакующими зараженные клетки, либо регуляторными Т-лимфоцитами, которые, как и подсказывает их название, влияют на функционирование всех прочих компонентов иммунной системы. Опять-таки здесь можно выделить множество разных типов. На поверхности лимфоцита могут быть сотни или даже тысячи разновидностей рецепторов; обычно Т-лимфоциты именуются по наличию одного или нескольких важных рецепторов (или, со знаком минус, по их отсутствию).

Среди других важнейших категорий – двойные отрицательные и двойные положительные клетки. Первые – незрелые тимоциты, которым на ранней стадии своего развития не удается экспрессировать два немаловажных клеточных маркера – CD4 и СВ8 (отсюда термин «двойные отрицательные»). Более зрелые тимоциты, начавшие выработку и CD4, и CD8, называются (что вполне логично) двойными положительными. Когда эти клетки становятся действующими (в полной мере) агентами иммунной системы, они вырабатывают либо CD8 (зрелые клетки-киллеры), либо CD4 (клетки-хелперы, организующие иммунный отклик).

Можно погрузиться в дальнейшие подробности, но нам это пока не нужно.

Все эти разнообразные типы клеток образуют сложную сеть передачи сигнала. Так, дендритные клетки выделяют сигнальные молекулы под названием цитокины, когда ощущают присутствие инфекционного агента или фрагментов поврежденной ткани. Цитокины воздействуют на близлежащие клетки и кровеносные сосуды, сзывая на помощь другие иммунные клетки, которые затем и аккумулируются на участке, вызвавшем тревогу. Стенки кровеносных сосудов и эпителиальные слои ослабляют межклеточные соединения, которые обычно запечатывают просветы между клетками, тем самым позволяя жидкости протекать через этот барьер, принося с собой другие иммунные компоненты (скажем, антитела). Всё вместе это приводит к воспалению.

Таков основной из замечаемых нами эффектов иммунного отклика. Вот почему зараженный палец, который вы укололи, занимаясь садовыми работами, распухает, краснеет и заметно мягчает (всё это хорошо). Боль, которую вы при этом чувствуете, вызвана не самой инфекцией, а воспалением. Вот почему тот же палец краснеет, распухает и мягчает в случае обморожения первой степени (это уже не очень-то хорошо, но такие случаи все-таки относительно редки). В каких-то обстоятельствах воспаление приносит нам даже некоторое утешение, но в каких-то оно лишь досаждает нам. Соответственно, в организме существует тончайшая система сдержек и противовесов, призванная гарантировать, чтобы воспалительная реакция возникала лишь тогда, когда она приносит пользу. Некоторое представление о сложности системы дает хотя бы тот факт, что у человека обнаружено около 50 разновидностей цитокинов. Большинство иммунных клеток, а также клеток многих других типов реагируют на присутствие более чем одного типа цитокинов. Некоторые цитокины пробуждают иммунные клетки, другие же подают им сигналы продолжать нести вахту (как бы служа своего рода посредниками, направляющими действия других компонентов системы), так что окончательный результат зачастую оказывается весьма тонко сбалансированным. Иммунные клетки, выполняющие свою работу не на том месте, становятся причиной многих проблем, от которых страдают многоклеточные организмы.

Даже упрощенные представления об иммунной системе вызывают кое-какие сомнения в правомочности рассуждений о «клеточных войнах». На первый взгляд адаптивная иммунная система может показаться полезным дополнением к вооруженным силам организма. Клетки, вырабатывающие антитела, специфичные к новым чужеродным молекулам, улучшают точность обнаружения противника и разведывательные возможности оборонительных подразделений, а также точность наведения химического и клеточного оружия на нужные цели.

Однако вглядитесь в происходящее более пристально и окажется, что метафора воинской операции здесь не очень-то применима. Накапливаются вопросы, на которые пока нет ответа. Почему, например, человеческий иммуноглобулин А прикрепляется к поверхностным молекулам некоторых кишечных бактерий так, чтобы облегчать им сцепление с кишечной стенкой, а значит, образование биопленок? Как и почему адаптивная иммунная система дополнила собой более древнюю систему – врожденного иммунитета? Почему существует так много типов клеток, которые, по-видимому, все посылают друг другу сигналы, зачастую направленные на достижение явно противоположных эффектов? Всякий студент-медик, тонущий в море деталей, спрашивает: почему наша иммунная система такая сложная и запутанная?

Ответ: из-за необходимости жить в непосредственной близости от гигантского ансамбля всевозможных микроорганизмов. Во всяком случае, так отвечают большинство ученых. Они хотят коренным образом изменить наш подход к иммунной системе, чтобы получить новые сведения о том, как мы обращаемся к своей микробиоте и как она отвечает нам.

 

Дипломатические отношения

Если вам требуется оборонительная система для борьбы с патогенами, то система врожденного иммунитета вполне годится для этих целей. Но если мы обратим это утверждение в вопрос (Достаточно ли системы врожденного иммунитета для борьбы с патогенами?), нам придется разбираться в том, как у позвоночных возникла куда более сложная иммунная система – адаптивная. Сейчас этой проблемой занимаются многие ученые. Почему появился гораздо более изощренный аппарат иммунитета, ныне приносящий нам столько пользы? Новый ответ на этот вопрос впервые дает в краткой статье, опубликованной журналом Nature в 2007 году, даже не иммунолог, а специалист по бактериальной системе кальмара, долгое время пристально ее изучавший (см. предыдущую главу). Речь идет о Маргарет Макфол-Нгаи.

Ее не удовлетворяли существующие версии, обычно подгонявшиеся к конкретным случаям. Позвоночные с их адаптивной иммунной системой (впервые она появилась у рыб) часто вырастают до значительных размеров, отличаются большой продолжительностью жизни и могут выращивать единственного детеныша. Как полагали некоторые специалисты, все эти особенности требуют более эффективных методов защиты против других организмов. Вероятно, потому-то и возникла дорогостоящая и сложно устроенная адаптивная иммунная система с ее огромной клеточной памятью. Однако, указывает Макфол-Нгаи, некоторые беспозвоночные тоже живут долго, вырастают до крупных размеров и дают лишь по одному потомку ежегодно, тем не менее преспокойно обходятся без этого нового иммунного оружия.

Она предположила, что появление адаптивной иммунной системы может объясняться чем-то еще. Если сравнить симбиотические отношения, существующие у всех животных с их микробными сообществами, можно выявить довольно четкую закономерность. Беспозвоночные обычно налаживают плодотворное взаимодействие лишь с малым количеством видов микробов, а часто и вообще только с одним видом. В сравнительно немногочисленных случаях (скажем, у насекомых чуть больше чем для одного вида из десяти) микробы живут внутри клеток организма-хозяина. Такая внутриклеточная экологическая ниша позволяет микробам оставаться невидимыми для системы врожденного иммунитета. Другие микробы (к примеру, находимые в кишечнике беспозвоночных) обычно являются просто случайными прохожими. Лишь у позвоночных мы, как правило, обнаруживаем столь большое количество микробов, работающих на взаимовыгодной основе в рамках ансамблей видов (такие ансамбли часто называют консорциумами). Это – яркое свидетельство того, что они эволюционировали совместно со своими хозяевами и стали постоянными их жильцами.

Излагая свою гипотезу, Макфол-Нгаи замечает: «На эволюцию иммунной системы позвоночных, по-видимому, существенно влияет необходимость поддерживать значительную резидентную микробиоту». Поначалу это предположение мало кто принял. Макфол-Нгаи вспоминает, что иммунологи встретили ее статью негодованием и возмущением. Теперь же она с некоторым удовлетворением отмечает, что целый ряд ученых, работающих в этой сфере, стали развивать ее идею. Макфол-Нгаи понимает, отчего ее предположение сначала встретили в штыки. Дело в том, что сама она не иммунолог. «А специалисты по биологии клетки обычно не очень-то обращают внимание на эволюционную биологию или видовое разнообразие животных». Тем не менее «у них не нашлось правдоподобного объяснения, как могла эволюционировать такая система, по запутанности напоминающая машину Руба Голдберга». Понять, что она имеет в виду, можно по другому ее оригинальному объяснению, касавшемуся появления первой адаптивной иммунной системы при развитии челюстей у хрящевых рыб. По мнению некоторых иммунологов, обретение челюстей означало, что такие рыбы могли жевать более твердую пищу, а та могла с большей вероятностью повреждать стенку кишечника, увеличивая риск инфекции. По сравнению с таким рассуждением, нарочно подгоняемым к конкретному случаю, гипотеза Макфол-Нгаи выглядит куда привлекательнее. Она утверждает: «Идея управления микробными консорциумами имеет куда больше смысла, чем любая другая теория в этой области».

Согласно этой активно разрабатываемой новой гипотезе изощренная система распознавания антител и вся соответствующая сеть регуляторных клеток и химических сигналов возникла лишь для того, чтобы предоставить организму более широкую свободу выбора касательно того, что не атаковать. По отдельности система врожденного иммунитета работает для организма, чья позиция всегда – твердое «нет», добавляет Макфол-Нгаи. Однако существо, где обитает большой набор других организмов, в определенном смысле представляющих собой «не свое», явно нуждается в применении более тонкого и избирательного подхода.

Среди разделяющих эти воззрения – Саркис Мазманян из Калифорнийского технологического института, углубляющийся в тонкости иммунных взаимодействий у безмикробных мышей, которым подселена микробиота определенного состава. Он и его коллега Юн Ли утверждают, что микробы, обитающие в нашем организме всю нашу жизнь, оказали более мощное влияние на эволюцию адаптивной иммунной системы, чем мимолетные встречи с болезнетворными микроорганизмами, раньше казавшимися нам главными игроками на этом поле. Ученые добавляют еще один смелый поворот: «Возможно, симбиотические микробы влияли на особенности эволюции и функционирования адаптивной иммунной системы более глубоко, чем патогены, – по-видимому, чтобы защищать и хозяина, и его микробиоту от вторгающихся инфекций» (курсив мой).

Согласно такому подходу адаптивная иммунная система эволюционировала совместно с микробиомом, населенным куда плотнее. Так достигается и поддерживается тонкое динамическое равновесие. Микробам позволяют оставаться в организме-хозяине, поскольку они приносят ему пользу, однако их всё же следует держать в узде. Они должны находиться в нужном месте, им не разрешают плодиться где-либо еще. А потенциально опасные микроорганизмы все равно надо уничтожать. С другой стороны, хотя за микробами нужно следить, иммунной системе тоже не надо давать особой воли: она не должна чересчур сильно реагировать на присутствие разнообразных микроорганизмов. Если в этой части иммунного уравнения что-то пойдет не так, возникает долгое ненужное воспаление, а скорее всего – болезнь.

 

По ту сторону дуализма

Как лучше всего – сжато и ярко – изложить эти новые представления об иммунной системе? Стивен Хендрик из Калифорнийского университета в Сан-Диего описывает гипотезу Маргарет Макфол-Нгаи так: «Иммунная система действует, как охранник в клубе, приподнимая бархатную полосу для полезных бактерий, но давая от ворот поворот их менее желательным собратьям». Другие иммунологи уже предложили более детальные версии, и каждый норовит украсить свое описание собственными метафорами, лишь бы заполнить брешь, оставшуюся на месте всех этих разговоров о войне против захватчиков; таких разговоров теперь многие ученые стараются избегать. Свой взгляд на картину в целом предложил Жерар Эберл, сотрудник Института Пастера. Он делит историю развития теорий иммунной системы на три этапа. По его мнению, наше теперешнее (более детальное, чем прежде) понимание взаимодействия микробов с организмом-хозяином означает, что нам следует отказаться от примитивных концепций того, что является патогеном, как и от однобокого представления об иммунитете.

Эберл показывает, как нужно модифицировать изначальную идею о том, что адаптивная иммунная система призвана проводить разграничение между «своим» и «не своим» (Я и не-Я). Слишком уж много примеров чужеродных агентов, которые не вызывают иммунного отклика. Полезнее, считает ученый, рассматривать иммунную систему как реагирующую главным образом на по-настоящему опасные сигналы (как и полагали еще в 1990-х годах). Можно по-прежнему считать, что она толерантна по отношению к «своим», но теперь в понятие «свои» входят, например, микробы, которые приносят пользу организму-хозяину.

Однако, по мнению Эберла, такое рассуждение заходит недостаточно далеко. В сущности, пока это по-прежнему дуалистическая теория, где всё вращается вокруг суждений о добре и зле. «Добро – это нормальное „свое“ и микробы, которые находятся с ним во взаимовыгодном сотрудничестве, тогда как зло – это измененное „свое“: к примеру, погибшие клетки, которые распространяют опасные сигналы, или патогенные микробы, которые меняют антигенный ландшафт нормального „своего“».

Однако возникает большая проблема: все подробности механизмов клеточного отклика трудно объединить в такую схему. Придерживаясь дуалистической концепции, мы волей-неволей вынуждены изобрести два класса воспалений. Должен существовать нормальный уровень воспаления (физиологический или гомеостатический), который помогает системе сохранять стабильность – например, способствуя тому, чтобы компоненты кишечной микробиоты оставались там, где следует, а не разбредались куда попало. Повреждение тканей или присутствие патогенов запускают более острую реакцию, приводя к «полномасштабному» воспалению; это знакомая нам краткосрочная реакция на возникшую проблему.

Но такое объяснение не очень-то применимо к тому, что мы реально видим, настаивает Эберл. Дуальности нет, а есть непрерывность. Подобно литературному критику или культурологу, он описывает клеточный мир как систему, где всё зависит от контекста. В иммунной системе, рассматриваемой как континуум, «микробы находят путь среди оттенков добра и зла». Конкретный оттенок определяется взаимодействием с организмом-хозяином и может меняться в зависимости от хозяина, ткани, времени. Иммунная система формирует микробную среду, которая позволяет организму сосуществовать с микробами. Речь не идет о борьбе добра и зла; «это скорее равновесие между микробами и хозяином, как раз и создающее суперорганизм».

Этот суперорганизм живет в состоянии динамического равновесия. Организм, который, подобно нам с вами, сосуществует с постоянно обновляющейся популяцией микробов, должен поддерживать баланс между гостеприимством и враждебностью. На этот баланс могут влиять различные факторы среды: поступающие в систему химические вещества, пища, микробы. Могут смещать его и изменения в организме-хозяине, вызванные в свою очередь мутацией, повреждением или другими типами стрессовых воздействий. Организмам, сталкивающимся с этой проблемой, требовалось выработать в процессе эволюции определенную систему, которая (в нормальном состоянии) будет, как правило, реагировать на изменения так, чтобы в системе сохранялось равновесие. «Наша иммунная система идеально приспособлена для выполнений такой функции», – подчеркивает Эберл.

Для описания динамического аспекта описываемых процессов он прибегает к метафоре из области механики. «Иммунная система суперорганизма никогда не находится в состоянии покоя. Это как с пружиной: чем больше микробов колонизируют экологические ниши организма-хозяина или ведут себя, как патогены, тем сильнее они сжимают пружину иммунитета и тем сильнее пружина иммунитета стремится вернуть микробы в прежнее состояние. У безмикробных животных иммунная пружина близка к состоянию покоя, но у животных, выросших в нормальном микробном мире, она всегда находится под нагрузкой. Это напряжение необходимо для поддержания гомеостаза».

Расскажу об одной серии экспериментов, которая дала результаты, показывающие, как иммунная система помогает формировать ниши, занимаемые микробами. Если вы накачаете мышей (или людей) антибиотиками, уничтожающими почти всю богатую микробную жизнь в кишечнике, для таких мышей (или людей) возникнет очень большой риск заражения устойчивым к действию антибиотиков штаммом Enterococcus – обычного кишечного жителя, иногда любящего пошалить. При нормальных условиях в подобной ситуации другие организмы, живущие в кишечнике, начали бы посылать сигналы, побуждающие эпителиальные клетки, которыми устлана внутренняя поверхность кишечника, выделять антимикробные пептиды, сдерживающие рост популяции Enterococcus. Эксперименты показали, что восстановить внутреннее производство антимикробных агентов у мышей можно, просто вводя им липополисахарид – вещество, молекулы которого находятся на поверхности клеток тех бактерий, которых у безмикробных мышей нет. Липополисахарид идентифицируется рецептором клеток организма-хозяина, входящих в состав системы врожденного иммунитета, после чего клетки начинают вырабатывать нужные антимикробные пептиды. По выражению Эберла, симбиотическая микробиота «дергает иммунитет за ниточки». Ниточки ли, пружины ли приводят иммунную систему в действие – суть гипотезы от этого не меняется: антимикробные вещества помогают формировать в кишечнике экологическую нишу, которая позволяет бактериям-симбионтам процветать, однако токсична для потенциальных патогенов, вроде устойчивого к антибиотикам Enterococcus.

 

Развитие чувства равновесия

Поддержку для этой новой картины иммунной системы можно найти в целом ряде других экспериментов, проливающих свет на то, как общаются друг с другом микробиота и наши собственные клетки. Выясняется, что взаимоотношения между микробными сообществами и иммунной системой не ограничиваются коэволюцией. В каждом отдельном человеке они созревают вместе, при этом влияя друг на друга. Для понимания механизмов поддержания нашего здоровья важно осознать, что существуют ключевые периоды, когда некоторые из наших любимых микробов попросту необходимы для того, чтобы побудить иммунную систему к нормальному развитию. Но прежде чем посмотреть, как это происходит, давайте вспомним кое-какие подробности насчет главного вместилища микробов, которые сосуществуют с млекопитающими. Речь идет, конечно же, о кишечнике.

Как я уже писал в главе 5, кишечник должен одновременно отвечать двум противоречащим друг другу требованиям. Он абсорбирует питательные вещества и другие малые молекулы при помощи своего эпителия, имеющего огромную общую площадь поверхности. При этом он стремится поддерживать существование триллионов микробов, обитающих в толстой кишке и помогающих удовлетворять потребности наших клеток в этих молекулах, но ему нужно каким-то образом не пускать их в остальные области тела.

Это достигается путем своеобразного сочетания откровенных и недвусмысленных барьеров с более тонкими действиями иммунной системы. Сами по себе эти барьеры довольно эффективны. Эпителиальные клетки представляют собой плотно уложенный слой (о клеточных контактах в нем мы уже упоминали). А внешняя поверхность кишечника покрыта слизью, и ее слой делается всё внушительнее по мере спуска в толстую кишку. Специализированные клетки эпителия выделяют особые белки – муцины. Это белки снабжаются молекулами сложных углеводов и образуют водянистый слой, прилипающий к поверхности эпителия. Собственно, там есть два слоя, причем каждый со своей сложной структурой, в которой мы пока еще до конца не разобрались. По крайней мере, нам известно, что внутренний слой обычно лишен микробов.

Наряду с клетками, вырабатывающими слизь, кишечник наделен иммунными клетками, которые также вносят значительнейший вклад в формирование среды, где проживает кишечный микробиом. Как я уже отмечал, кишечник – самый крупный из иммунных органов. По-видимому, в нем содержится около 70 % всех иммунных клеток нашего организма. Эти клетки располагаются в эпителии и под ним, образуя большие комплексы, удобно названные ассоциированной с кишечником лимфоидной тканью (АКЛТ, или GALT – gut-associated lymphoid tissue). Разнообразие этих клеток весьма велико, но давайте не будем на нем останавливаться. Сейчас для нас важно то, что между этими иммунными клетками и микробами, проживающими вне эпителия, постоянно идет поток сигналов, причем в обоих направлениях. Основная часть этого потока приходится на сигналы, которыми обмениваются иммунные клетки и непатогенные бактерии.

Некоторых из таких посланий можно вычленить в ходе экспериментов на безмикробных мышах, варьируя разновидности микробов, с которыми им дозволено встречаться, и разновидности генов, которые экспрессируются их собственными клетками, или то и другое. Результаты все-таки зависят от особенностей конкретного живого существа. Но тщательно продуманные и тщательно проведенные эксперименты проливают кое-какой свет на связи, существующие в коммуникационных клеточных сетях кишечника.

Вот первое серьезное открытие, которое удалось сделать организаторам эксперимента: если мыши остаются безмикробными, они вырастают с неполноценной иммунной системой кишечника. Все составляющие АКЛТ, в том числе лимфатические узлы и специализированные комплексы иммунных клеток, остаются недоразвитыми; организм мыши вырабатывает значительно меньше цитокинов (служащих, как мы уже знаем, для передачи сигналов между клетками), образует меньше лимфоцитов, чем обычно, и выбрасывает в систему меньше иммуноглобулина. Аппарат для разговоров с микробами-колонистами молчит, поскольку незрелый кишечник считает, что беседовать попросту не с кем.

Если безмикробному мышонку привить нормальную мышиную микробиоту, то его иммунная функция может восстановиться. Что еще удивительнее, использование микробов человеческого (или даже крысиного) кишечника в таком случае не срабатывает. Оказывается, эффект здесь видоспецифичен. Бывает, что иммунную функцию восстанавливает один-единственный вид микробов. Впрочем, общий эффект не сводится к действию какого-то одноразового триггера, запускающего иммунное развитие. Какая-то иммунная активность есть всегда, и контрольные сигналы постоянно распространяются по всей системе. Пока кишечник не колонизирован, иммунные отклики могут приглушаться (по большей части регуляторными сигналами), что поощряет развитие микробиоты без воспаления эпителия. Бактерии-колонисты затем, в частности, провоцируют координированную выработку большого количества слизи, антибактериальных пептидов, иммуноглобулина и иммунных клеток в коллективе, именуемом «слизистой защитной перегородкой». Микробы обеспечивают мирное сосуществование, создавая условия, гарантирующие сдерживание их собственной экспансии.

А когда кишечник уже полон микробов, их пробы постоянно берут специализированные клетки нашего организма. Некоторые микробы все-таки просачиваются сквозь эпителиальную стенку, но большинство отслеживается белыми кровяными тельцами. (Мы уже встречались с ними, они называются дендритными клетками.) Главным образом они сосредоточены в куполообразных структурах, именуемых пейеровыми бляшками; это своего рода депо для иммунных клеток, и такие депо рассеяны по всему эпителию кишечника. Дендритные клетки – стражи активные. Они умеют ощупывать окружающее пространство тонким отростком, протягивая его сквозь эпителий и слизистый слой (над бляшкой эти слои тоньше) и захватывая кусок другой клетки. Затем они приносят свою добычу (антиген, а иногда и целую бактериальную клетку) обратно в бляшку и предоставляют ее на рассмотрение созревающим лимфоцитам. В результате некоторые из них развиваются в регуляторные Т-лимфоциты, что вносит большой вклад в установление определенного уровня иммунной активности.

Помимо всего прочего, существование таких внутриклеточных механизмов служит подтверждением недавно возникших идей о предназначении аппендикса – этого странного мешка, торчащего из нашего толстого кишечника. У нас аппендикс меньше, чем у других млекопитающих. Долгое время этот орган человека считали эволюционным атавизмом. Хирурги частенько вырезали его не только в случаях, когда он инфицировался при остром аппендиците, но и для профилактики при кишечных операциях, осуществляемых по другими причинам, или же чтобы пациент в будущем избежал проблем.

Однако, как заявляет Билл Паркер из Университета Дьюка, обычно аппендикс полон нормальных кишечных бактерий и может служить резервуаром для полезных видов. Он вступает в игру, когда численность бактериального населения остальных частей кишечника резко снижается при болезни. По мнению Паркера, аппендикс мог бы «перезагружать» кишечник после дизентерии.

Возможно, и так. Но аппендикс может обладать и другой функцией. Он хорошо обеспечен иммунными клетками, а значит, является одним из ключевых участков, где суперорганизм определяет, какие бактерии желанны для кишечного сообщества, а какие – нет.

Ученые постепенно распутывают мешанину перекрывающихся друг с другом сигнальных сетей кишечника и других тканей, где иммунная система оказывается лицом к лицу с микробиомом. Процесс распутывания идет медленно. Многие клетки должны одновременно получать самые разнообразные подсказки от целого набора рецепторов и каким-то образом собирать воедино получаемую информацию, так что активность отдельной иммунной клетки зависит от состояния набора различных рецепторов на ее поверхности. Чем-то это напоминает то, как нейрон в мозгу «решает» активироваться в зависимости от баланса сигналов, которые поступают через активирующие и ингибирующие синапсы от других нейронов той же группы, только первичные сигналы в иммунной системе химические, а не электрические.

Некоторые обнаруживаемые взаимодействия довольно своеобразны. Одна из немаловажных разновидностей лимфоцитов – Т-хелперы-17 – побуждается к развитию в кишечнике (во всяком случае, у мышей) так называемыми нитчатыми сегментированными бактериями, способными прикрепляться к слизистым поверхностям. Впрочем, нет, и не может быть, уверенности, что это совершенно специфичный эффект. Другие разновидности этих бактерий наверняка делают какие-то другие вещи, также влияющие на иммунную систему. Какие-то иные бактерии могут оказывать такое же влияние на этот вид Т-лимфоцитов, а следовательно, и на выработку ими немаловажного цитокина, способствующего воспалению. Но пока это кажется маловероятным. Кропотливая проверка сложных микробных смесей на безмикробных мышах показывает, что данный эффект возникает лишь в присутствии этой разновидности бактерий.

У здоровых людей общий результат множества таких взаимодействий (после того как в организме сложился стабильный микробиом) можно назвать проявлением «эффекта Златовласки». Иммунная система остается активной, но при этом не должна проявлять слишком уж большую бдительность, чтобы не стать гиперчувствительной. Воспаление должно быть не слишком сильным и не слишком слабым, а как раз достаточным. Такое сбалансированное состояние иммунологи называют гомеостазом, позаимствовав этот термин у физиологов, описывающих с его помощью саморегулирующиеся системы в тканях и клетках. Каким-то образом иммунная система ухитряется сортировать сигналы, указывающие на присутствие молекул пищи, полезных бактерий, патогенов, клеток нашего собственного тела, и реагировать соответственно. Картина таких откликов определяется и нашими генами, и первыми взаимодействиями с первыми микроскопическими поселенцами. Всю историю мы пока не знаем, но самая правдоподобная гипотеза – что эти взаимодействия имеют долгосрочный эффект отчасти благодаря ферментам, которые приводят к изменению важнейших иммунных клеток эпигенетическим путем, то есть добавлением химических групп к их ДНК (или удалением химических групп из ДНК), что позволяет включать или выключать определенные гены.

 

Огрехи просвещения

Сам по себе этот новый взгляд на иммунную систему позволяет применять удобные образы; ныне ученые вовсю пишут о переговорах, дипломатии и сотрудничестве. Однако старомодная военная метафора все-таки содержит в себе одну несомненную истину. Наша иммунная система действительно обладает некоторыми устрашающими видами оружия. Посмотрите, к примеру, на что способны нейтрофилы. Эти многофункциональные клетки постоянно циркулируют в крови и лимфе, перемещаясь к тем участкам, откуда раздается сигнал иммунологической тревоги. Прибыв на место, они окружают патогенные бактерии и убивают их. Кроме того, они могут выделять антимикробные пептиды, повреждая клетки, которые им окружить не удалось. Наконец, нейтрофилы могут выдворить из организма целую группу болезнетворных агентов, опутав их паутиной из ДНК и белка, которая именуется нейтрофильной внеклеточной ловушкой и при иммобилизации уничтожает бактерии. По сути у нас есть сторожевой пес, умеющий кусаться, плеваться ядом или (если его совсем уж разозлить) пускаться на крайнее средство – создавать оружие из собственных внутренностей и самоотверженно бросать его на вторгшихся врагов.

Эти вооруженные и очень опасные клетки должны пребывать в постоянной боеготовности, поскольку мы живем в среде, кишащей всевозможными микробами. Однако этим клеткам не дозволено чересчур уж возбуждаться в ходе своего каждодневного дежурства. Наши сторожевые псы должны быть бдительны, но их следует держать на очень коротком поводке.

Такого положения вещей непросто достичь в мире, где клетки и молекулы находятся в постоянном движении. Баланс здесь зависит и от продуманного просвещения компонентов системы, и от их врожденных способностей. Некоторые ученые опасаются. что резкие изменения, иногда происходящие в современном микробиоме, вредят такому просвещению. Роды, при которых плод не контактирует с вагинальными бактериями; регулярное введение антибиотиков новорожденным; скупое потребление клетчатки при обильном потреблении жиров и сахара; даже устранение паразитов (вроде круглых червей) – всё это меняет условия, в которых микробиом и иммунная система учились организовывать свою деятельность.

С изменением этих условий меняется состояние нашего здоровья. Вообще-то оно в целом неуклонно улучшается начиная с момента создания микробной теории. Однако нельзя отрицать: люди все равно время от времени заболевают, да и сама картина наших болячек стала другой. Если посмотреть на длинный список хворей, которые имеют какое-то отношение к сегодняшним сдвигам в микробиоме, окажется, что почти все они связаны с нарушениями в работе иммунной системы. В их числе аутоиммунные заболевания, возникающие, когда иммунные клетки с испорченной программой разрушают собственные клетки нашего организма. На развитие некоторых болезней влияет то, что в последнее время приводится как универсальное объяснение плохого самочувствия; речь идет о хронических воспалениях. Похоже, общение между микробиотой и иммунной системой приобретает опасный оттенок. Как пишут авторы одного недавнего обзора, «изменения состава и функций микробиоты… превратили наших союзников-микробов в потенциальную обузу».

Насколько тяжелым бременем они могут стать? Пора обратиться к возможным медицинским последствиям нарушений нормального режима нашего общения с собственными микробами.