Естественные технологии биологических систем

Уголев Александр Михайлович

Глава 2. ЭКЗОТРОФИЯ. МЕХАНИЗМЫ ПИЩЕВАРЕНИЯ

 

 

Метаболический цикл начинается с поступления веществ, необходимых для выполнения живыми системами их основных функций. Все живые организмы нуждаются в пище, т.е. источниках энергии, строительных и пластических материалах, солях и других элементах, обеспечивающих состав внутренней среды.

Принципиальной особенностью представителей царств животных и грибов, а также большинства простейших является обязательное использование органических молекул, синтезируемых другими организмами. Добывание, поглощение и усвоение пищи как растительного, так и животного происхождения характеризуется как питание. Как правило, биологический материал не может быть усвоен без’ предварительной деградации полимерных молекул до сравнительно простых элементов, лишенных видовой специфичности и способных проникать во внутреннюю среду организма или клетки. Деградация сложных пищевых структур в алиментарной системе, происходящая под влиянием гидролитических ферментов с образованием преимущественно мономеров, обозначается как пищеварение.

За пищеварением следуют процессы, реализующие перенос веществ во внутренние среды организма или клетки, объединяемые под названием «всасывание». Весь комплекс ассимиляции пищевых веществ из окружающей среды может быть объединен термином «экзотрофия».

 

2.1. Деятельность пищеварительного аппарата

Процессы экзотрофии у большинства животных и человека реализуются пищеварительной системой. На протяжении XIX в. было дано множество технологических описаний этой системы. Одно из самых ярких в 1897 г. сделал И.П. Павлов, который писал: «В своей основной задаче в организме пищеварительный канал есть, очевидно, химический завод, подвергающий входящий в него сырой материал — пищу — обработке, главным образом химической, чтобы сделать его способным войти в сока организма и там послужить материалом для жизненного цикла. Этот завод состоит из ряда отделений, в которых пища, смотря по ее свойствам, более или менее сортируется и или задерживается на время, или сейчас же переводится в следующее отделение. В завод, в его различные отделения, подвозятся специальные реактивы, доставляемые или из ближайших мелких фабрик, устроенных в самих стенках завода, так сказать, на кустарный лад, или из более отдаленных обособленных органов, больших химических фабрик, которые сообщаются с заводом трубами, реактиво-проводами. Это так называемые железы с их протоками. Каждая фабрика доставляет специальную жидкость, специальный реактив, с определенными химическими свойствами, вследствие чего он действует изменяющим образом только на известные составные части пищи, представляющей обыкновенно сложную смесь веществ» (с. 20).

Из этого описания ясно, что И.П. Павлов характеризует идеализированный «химический завод» конца XIX в. Поражает технологичность описания И.П. Павловым такого «завода». Современный «химический завод» несравненно совершеннее того, каким его можно было представить себе столетие назад. Крупнейшие научные открытия и теоретические обобщения в корне изменили представления об оснащении этого «завода<> и о главных технологических принципах его работы. Начнем с наиболее фундаментальных проблем, касающихся общих представлений об экзотрофии и механизмах переваривания пищи.

Пищеварение, т.е. превращение исходных пищевых веществ во всасываемые продукты, — основной технологический процесс переработки пищи — происходит в результате действия различных гидролитических ферментов. Они осуществляют поэтапное расщепление биополимеров за счет особо организованных ферментных систем, или цепей. Примером такой цепи может служить протеазная цепь, включающая в себя кислые протеазы желудка, нейтральные протеазы поджелудочного сока и пептидазы кишечного происхождения, реализующие конечные стадии расщепления белков также в нейтральной среде. Аналогичные цепи существуют для гидролиза углеводов, липидов, фосфолипидов и других полимеров.

Общей закономерностью, справедливой, по-видимому, для всех живых существ, является первоначальное переваривание в кислой среде и последующий гидролиз и всасывание в нейтральной. У примитивных организмов это достигается изменением реакции, например, в пищеварительных вакуолях. У высших животных и человека отдельные звенья цепи реализуются в различных отделах желудочно-кишечного тракта, что позволило выделить следующие специализированные регионы пищеварительной системы.

1. Регион поглощения.

2. Передающий регион, который может также осуществлять функцию хранения.

3. Пищеварительный регион: а) регион начального пищеварения, б) регион конечного пищеварения и всасывания.

4. Регион всасывания воды, который имеет особое значение для всех наземных организмов, включая человека.

Однако такая классификация нуждается в некоторых уточнениях и дополнениях. Так, регион 1 должен быть охарактеризован как область механической обработки пищи и ее подготовки к дальнейшей обработке, в частности под действием слюны. Регион 3б следует называть пищеварительно-транспортным, а регион 4 — реабсорбции, так как в нем осуществляется всасывание не только воды и солей, но и ряда эндогенных компонентов (например, конъюгированных желчных кислот и др.).

Все существующие организмы (за исключением некоторых эндопаразитов) в качестве пищевых веществ используют преимущественно макромолекулы. Последние включают белки, жиры, углеводы и нуклеиновые кислоты. В ходе эволюции был сформирован набор специфических гидролитических ферментов, осуществляющих деполимеризацию всех указанных групп пищевых веществ до мономеров, пригодных к всасыванию и ассимиляции. Деградация пищи включает в себя три этапа: механическое измельчение, физико-химическое разрушение (кислый pH, биологические детергенты) и ферментативный гидролиз. По-видимому, последний механизм играет наиболее существенную роль в деполимеризации пищевых веществ.

 

2.2. Общая характеристика пищеварительных ферментов

 

Обращает на себя внимание принципиальное сходство, а иногда и поразительное совпадение ферментных систем, реализующих пищеварение у различных организмов. Поэтому те характеристики, которые будут представлены ниже, применимы для ферментных систем как высших, так и низших организмов, включая простейших. Все пищеварительные ферменты являются гидролазами и делятся на три основные группы: 1) пептид-гидролазы (КФ 3.4.—), расщепляющие пептидные связи в белках и полипептидах; 2) гликозидазы, или карбогидразы (КФ 3.2.1.—), гидролизующие глюкозидные связи в углеводах; 3) липазы (КФ 3.1. —), действующие на эфирные связи в жирах.

 

2.2.1. Пептид-гидролазы

Эти ферменты, называемые также протеиназы, протеазы, пептидазы, подразделяются на эндо- и экзоферменты. Первые связаны с инициацией протеолизаи расщепляют пептидные связи во внутренних областях белковых молекул, образуя более короткие полипептид-ные цепи (однако они могут также расщеплять пептидные связи, расположенные на концах молекул белков или полипептидов). Ферменты действуют как внутриклеточно (в пищеварительных вакуолях), так и внеклеточно. Экзоферменты последовательно расщепляют концевые пептидные связи полипептидных цепей, образованных эндопептидазами при гидролизе белков и более высокомолекулярных полипептидов. Они освобождают аминокислоты и образуют более короткие полипептиды, а также олиго-, три- и дипептиды. Последние вновь атакуются соответствующими экзофер-мептами, завершающими гидролиз белковой молекулы до составляющих ее аминокислот.

Эндоферменты специфичны по отношению к определенным пептидным связям, и поэтому только часть свободных внутренних пептидных связей фактически атакуется каким-либо из них. Эндоферменты (протеазы, КФ 3.4.21—24), расщепляющие до полипептидов большую часть белков пищи, обладают как сходством, так и определенными различиями с ферментами, действующими внутри клеток. Внутриклеточные протеазы, называемые катепсинами, с оптимумом активности при слабокислых значениях pH, локализованы в лизосомах и обладают относительно широкой субстратной специфичностью. Так называемые кислые протеазы (пепсин) у беспозвоночных животных практически не встречаются. У позвоночных животных пепсин (КФ 3.4.23.1) секретируется клетками желудка в форме профермента пепсиногена, который после активации соляной кислотой желудочного сока гидролизует преимущественно связи, прилегающие к остаткам ароматических или дикарбоновых L-аминокислот полипептидных цепей. Пепсин расщепляет белки главным образом до полипептидов, хотя среди продуктов гидролиза встречаются низкомолекулярные пептиды и аминокислоты.

В желудке представителей одного вида можно встретить несколько различающихся форм пепсина. У человека в желудочном соке идентифицирована еще одна протеаза — гастриксин. В желудке жвачных животных, еще сосущих молоко, обнаружен химозин, или реннин (КФ 3.4.23.4) — фермент, створаживающий молоко.

На том основании, что частично известная последовательность аминокислотных остатков пепсина, гаст-риксина и реннина весьма близка, высказано предположение, что эти ферменты произошли в ходе эволюции от одного общего предшественника — кислой протеазы — в результате удвоения гена через гипотетическую промежуточную протеазу.

У представителей всех позвоночных животных, а также у человека, клетки поджелудочной железы секретируют сериновые протеазы — трипсин, химотрипсин (несколько изоферментов) и эластазу (панкреатопепгидазу). Все эти ферменты первоначально продуцируются в неактивном состоянии в виде предшественников трипсиногена, химотрипеиногена и проэластазы (пропанкреатопептидазы). Трипсиноген после активации энтеропептидазой (энтерокиназой) или аутолитической активации расщепляет пептидные связи, образованные карбоксильными группами L-apгинина и L-лизина. Химотрипсин образуется из химотрипсиногена после активации последнего трипсином и гидролизует преимущественно пептидные связи, образованные карбоксильными группами ароматических а-аминокислот. Эластаза секретируется в виде профермента проэластазы. После активации трипсином фермент гидролизует связи, образованные нейтральными аминокислотами, особенно в эластине.

Сопоставление последовательности аминокислотных остатков у трипсина, химотрипсина и эластазы выявило ее отчетливую гомологию. Их активные центры также идентичны и включают остатки серина и гистидина. Высказана гипотеза, что эти ферменты произошли от общей нейтральной протеазы в результате эволюционного процесса, предполагаемого для пепсина.

Ферменты, обладающие трипсино- и химотрипсино-подобной активностями, обнаружены в кишечнике целого ряда беспозвоночных животных (в частности, у кишечнополостных, насекомых и др.). Следует отметить, что микроорганизмы, и в том числе актиномицеты, продуцируют ряд протеолитических ферментов. Так, у некоторых из них обнаружена кератиназа (КФ 3.4.99.11), обладающая способностью расщеплять нативный кератин.

Коллагеназа (КФ 3.4.24.3) выявлена в гепатопан-креасе некоторых крабов, а также в ядах различных змей. При этом протеазы беспозвоночных животных (например, коллагеназа и фибринолизин бактерий), а также трипсино- и химотрипсиноподобные активности по своей молекулярной структуре и молекулярным массам близки с пепсином, трипсином и химотрипси-ном позвоночных. Однако в отличие от ферментов позвоночных они продуцируются в активной форме. Эти свойства внеклеточных протеаз сходны с таковыми внутриклеточных ферментов, например таких, как ка-тепсипы. Основное различие между этими группами ферментов состоит в том, что внеклеточные ферменты требуют предварительной активации, что может рассматриваться как предосторожность против самопереваривания. Не исключено, что физиологическая роль ингибиторов Кунитца и Казеля, продуцируемых клетками поджелудочной железы позвоночных, также заключается в предупреждении внутриклеточной активации протеолитических ферментов.

В число экзопептидаз (КФ 3.4.11 —15) входит несколько групп ферментов, среди них карбоксипептидазы (КФ 3.4.12. — ), аминопептидазы (КФ 3.4.11.—) и дипептидазы (КФ 3.4.13. —), которые специфичны по отношению к одному или группе субстратов. Карбоксипептидазы А и В позвоночных секретируются клетками поджелудочной железы в неактивном состоянии как прокарбоксипептидазы А и В. Активация происходит под влиянием комбинированного действия трипсина и энтеропептидазы в случае карбоксипептидазы А и трипсина в случае карбоксипептидазы

В. Карбоксипептидаза А гидролизует пептиды, отщепляя С-концевой остаток L-аминокислоты. Карбоксипептидаза В гидролизует пептиды с остатками L-apгинина и L-лизина на С-концевом участке цепи, отщепляя эти остатки. Эти карбоксипептидазы обнаружены также в кишечнике беспозвоночных.

Аминопептидазы составляют основную часть пептидазной активности щеточной каймы клеток кишечного эпителия. Они отвечают также за ариламидазную и всю аминопептидазную активность по отношению к олигопептидам, за половину трипептидазной активности и имеют несомненное отношение к части дипептидазной активности. Ферменты этой группы содержатся также в клетках поджелудочной железы и желудка различных животных. Аминопептидазы реализуют гидролиз пептидной связи, образованной терминальной аминокислотой, имеющей свободную аминогруппу.

Завершает гидролиз белков третий тип экзопептидаз — дипептидазы, расщепляющие оставшуюся пептидную связь между двумя аминокислотными остатками. Дипептидазы обычно обладают групповой специфичностью, и одна дипептидаза может гидролизовать ряд пептидов, если они обладают общей аминокислотой. Дипептидазы участвуют в мембранном гидролизе пептидов в тонкой кишке высших животных и человека, а также в пищеварительных органах ряда беспозвоночных. Существуют сведения, что дипептидазы, локализованные в цитоплазме клеток, участвуют во внутриклеточном гидролизе дипептидов у бактерий и в тонкой кишке млекопитающих. Однако скорее внутриклеточные дипептидазы кишечной слизистой высших организмов участвуют в сложных процессах катаболизма белков, а не в расщеплении поступающих в клетку пищевых субстратов. Таким образом, дипептидазы пищеварительного аппарата в зависимости от организации животных могут участвовать как во внеклеточном, так и во внутриклеточном пищеварении.

Внутриклеточные эндо- и экзопептидазы могут встречаться и в непищеварительных органах животных. Предполагается, что их функция состоит в поддержании динамического гомеостаза между белками и другими азотистыми соединениями клетки. Важную роль в этих процессах играют синтез и деградация соответствующих ферментативно активных белков.

 

2.2.2. Гликозидазы

Гликозидазы (глюкозидазы, карбогидразы), принимающие участие в гидролизе углеводов, можно разделить на две группы: 1) эндоферменты (преимущественно амилазы) и 2) экзоферменты (ди- и олиго-сахаридазы). Первые расщепляют a-1,4-глюкозидные связи в молекулах полисахаридов (крахмал, гликоген, родственные им полисахариды) до олиго- и дисахаридов (количество образующейся глюкозы крайне незначительно), которые гидролизуются до моносахаридов соответствующими экзоферментами.

Многие ферменты, гидролизующие углеводы, представлены различными амилазами. К ним относятся амилаза слюны млекопитающих, в том числе человека, некоторых других хордовых и ряда беспозвоночных; панкреатическая амилаза млекопитающих (КФ 3.2.1.1.), кишечная гамма-амилаза (КФ 3.2.1.3) хордовых и беспозвоночных, внутриклеточные амилазы кишечнополостных и простейших. Все амилазы гидролизуют крахмал и гликоген, но не целлюлозу.

Крахмал растительного происхождения является смесью амилозы и амилопектина, в то время как гликоген (полисахарид животного происхождения) состоит из одного компонента, сходного с амилопектином, но имеющего более разветвленную молекулу. Амилазы в присутствии ионов хлора гидролизуют а-1,4-глюкозидные связи в молекулах амилозы, амилопектина и гликогена до декстринов (промежуточных продуктов гидролиза полисахаридов) с различной длиной цепи. Затем амилазы расщепляют декстрины до мальтозы и мальтоолигосахаридов, которые в свою очередь гидролизуются до мальтозы и глюкозы. В итоге под действием амилаз происходит полная конверсия крахмала и гликогена в мальтозу, изомальтозу и небольшое количество глюкозы.

Экзогликозидазы (а- и β-глюкозидазы) гидролизуют олиго- и дисахариды (мальтозу и изомальтозу, образованные при гидролизе крахмала и гликогена, сахарозу, лактозу и трегалозу) до конечных продуктов гидролиза — моносахаридов. Так, мальтаза (КФ 3.2.1.20) расщепляет молекулу мальтозы на две молекулы глюкозы, изомальтаза (КФ 3.2.1.10) — изомальтозу на две молекулы глюкозы, сахараза, или инвертаза (КФ 3.2.1.26 и 3.2.1.48) — сахарозу на глюкозу и фруктозу, лактаза (КФ 3.2.1.23) — лактозу на глюкозу и галактозу и т.д. Гамма-амилаза (КФ 3.2.1.3) гидролизует мальтозу, а также отщепляет концевые глюкозидные остатки в полисахаридных цепях, принимая участие в расщеплении крахмала и гликогена.

Перечисленные экзогликозидазы синтезируются в кишечных клетках как хордовых, так и беспозвоночных животных. Важно, что внутриклеточные гликозидазы беспозвоночных животных, у которых имеет место внутриклеточное пищеварение, по своим функциям и многим характеристикам сходны с таковыми внеклеточных ферментов.

Что касается переваривания целлюлозы, составляющей большую часть пищи травоядных, то лишь небольшое число организмов обладает ферментными системами (КФ 3.2.1.4, целлюлаза), которые могут расщеплять это вещество на более простые продукты, способные к всасыванию и дальнейшему усвоению. В эту группу входит ряд брюхоногих и пластиножаберных моллюсков, некоторые ракообразные, рептилии и рыбы, насекомые, а также простейшие, использующие целлюлазу для деградации клеточных стенок зеленых водорослей и утилизации их содержимого. Целлюлаза играет важную роль в переваривании целлюлозы у кольчатых червей и иглокожих. Большинство травоядных животных (как позвоночных, так и беспозвоночных) для гидролиза целлюлозы используют симбионтные организмы. Кроме того, целлюлаза обнаружена у гнилостных бактерий и грибов.

 

2.2.3. Липазы

Ферменты как внеклеточные, например панкреатическая липаза и кишечная моноглицеридлипаза хордовых, так и липазы беспозвоночных животных, реализующие внутриклеточное пищеварение, расщепляют жиры. Липазы гидролизуют преимущественно триглицериды с образованием 2-моноглицеридов и жирных кислот, при этом активирующее действие оказывают соли желчных кислот.

Панкреатическая фосфолипаза (КФ 3.1.1.4) секретируется в виде профермента профосфолипазы А и активируется трипсином. Фермент гидролизует эфирную связь глицерина и- жирной кислоты у второго атома углерода, превращая лецитин в изолецитин и жирную кислоту. Кишечная моноглицеридлипаза (КФ 3.1.1.23) гидролизует эфирные связи 2-моноглицеридов, образующихся при гидролизе триглицеридов. В гидролизе жиров у беспозвоночных животных, по-видимому, участвуют преимущественно эстеразы. Эти ферменты (кроме липазы) наблюдаются в средней кишке ракообразных, у насекомых, двустворчатых моллюсков, у которых встречаются как вне-, так и внутриклеточные пищеварительные эстеразы, у брюхоногих моллюсков, в кишечнике многощетинковых червей и иглокожих, а также у простейших.

Кроме указанных групп ферментов, существует несколько других, также играющих важную роль в пищеварительных процессах. Эти ферменты известны главным образом у хордовых животных, но, возможно, существуют также и у беспозвоночных. В качестве примера могут быть приведены щелочная фосфатаза (КФ 3.1.3.1), гидролизующая моноэфиры ортофосфор-ной кислоты, а также нуклеазы (РНКаза и ДНКаза), нуклеотидазы, нуклеозидазы и другие (КФ 3.1.3.—), продуцируемые клетками поджелудочной железы и синтезируемые клетками кишечного эпителия хордовых животных. Эти ферменты расщепляют полинуклеотиды и нуклеиновые кислоты пищи до пуринов, пиримидинов, дезоксирибозы, рибозы и фосфата.

 

2.2.4. Молекулярная структура и некоторые характеристики мембранных пищеварительных ферментов

Основные процессы гидролиза и транспорта у высокоорганизованных животных и человека, а также у ряда беспозвоночных реализуются в кишечнике. В связи с этим рассмотрим особенности структуры пищеварительных ферментов апикальной мембраны кишечных клеток млекопитающих, которые осуществляют заключительные этапы гидролиза основных групп пищевых веществ. При этом возможна прямая экстраполяция характеристик кишечных мембранных ферментов теплокровных организмов на характеристики ферментов более низкоорганизованных животных, так как строение мембраны и ферментативно активных белков, встроенных в фосфолипидный матрикс мембраны, практически универсально.

Большинство кишечных ферментов является трансмембранными интегральными белками (точнее, гликопротеинами) с большой молекулярной массой. Так, молекулярная масса кишечной щелочной фосфатазы — около 120 000—130 000 дальтон, аминопептидазы — варьирует от 225 000 до 280 000 в зависимости от вида животного, карбогидраз, в том числе сахаразно-изомальтазного комплекса, более 200 000. Однако некоторые ферменты, например дипептидаэы апикальной мембраны кишечных клеток, могут быть периферическими интегральными белками, т.е. лишь частично включенными в фосфолипидный бислой мембраны, о чем можно судить по их спонтанной солюбилизации (рис. 1). По-видимому, в естественных условиях мембранные ферменты существуют в виде олигомеров, примером чему служит сахаразно-изомальтазный комплекс.

Рис. 1. Схема различных типов локализации интегральных белков в мембране.

1,4 — трансмембранные интегральные белки; 2 — периферический интегральный белок; 3 — периферический белок.

Рис. 2. Положение сахаразно-изомальтазного комплекса в щеточнокаемной мембране клеток тонкой кишки.

(СНО) — углеводные цепи; с — С-конец цепи; N—N-конец цепи; С — сахаразная субъединица; И — изомальтазная субъединица; М — мембрана.

Рис. 3. Модель включения кишечной щеточнокаемной аминопептидазы в мембрану за счет N-концевых аминокислотных остатков.

1 — внеплазматическая поверхность; 2 — цитоплазматическая поверхность; 3 —мембрана; 4 — гидрофобный домен фермента, состоящий примерно из 20 аминокислотных остатков; «+» — положительно заряженный N-концевой тирозин и лизин в позиции 4; «—» — отрицательно заряженные внутренние фосфолипидные головки (или цвиттерионы). I — связывание образующейся цепи благодаря электростатическим взаимодействиям с цитоплазматической поверхностью мембраны; II — прямое перемещение гидрофобной части фермента во внутреннюю область мембраны; III, IV — дальнейший рост цепи за счет предполагаемого механизма, выдвигающего цепь на внеплазматическую поверхность мембраны.

Часть фермента может выступать над поверхностью трехслойной мембраны примерно на 10—15 нм. Простетическая группа молекулы фермента — олигосахаридная цепь (цепи) занимает наружное положение по отношению к мембране и выдается в полость тонкой кишки, возможно, принимая участие в формировании структур гликокаликса, рецепции биологически активных веществ и связывании субстратов (рис. 2).

Мембранные интегральные ферменты обладают амфипатической структурой и состоят из гидрофильного и гидрофобного доменов. Гидрофильный домен, составляющий от 90 до 95% массы фермента, несет на себе углеводные остатки и каталитический центр, обращенный в полость тонкой кишки. Такая локализация каталитического центра постулирована нами еще в начале 60-х гг. и окончательно подтверждена в последние годы. Остальная масса фермента относится к гидрофобному домену, который состоит преимущественно из гидрофобных аминокислот и пронизывает насквозь фосфолипидный бислой, в некоторых случаях заканчиваясь небольшим гидрофильным пептидом, экспонированным на внутренней поверхности мембраны (рис. 3). По мнению ряда исследователей, роль гидрофобного домена фермента заключается во взаимодействии с фосфолипидным матриксом мембраны и в фиксации гидрофильного каталитического домена (якорная функция).

В нашей лаборатории в дополнение к якорной функции гидрофобного домена фермента продемонстрированы его некоторые другие жизненно важные функции: 1) поддержание оптимальной конформации гидрофильного каталитического домена; 2) стабилизация структуры фермента при действии различных факторов; 3) реализация регуляторных функций и ряда других. Действительно, при отделении гидрофобного домена от гидрофильного утрачиваются регуляторные свойства фермента. На этом основании мы высказали предположение, что гидрофобные субъединицы ферментов участвуют в передаче регулирующих сигналов из цитоплазмы клетки на внешнюю поверхность мембраны и таким образом выполняют функции не только внешнего, но и внутреннего регулирования. Регулирующими сигналами могут служить пищевые вещества. Благодаря регулируемости многих ферментов происходит саморегуляция естественного пищеварения на молекулярном уровне. Кроме того, гидрофобный домен участвует в температурных адаптациях, как и фосфолипидный матрикс мембраны.

Благодаря системе регулируемых ферментов ферментный пул кишечной поверхности представляет собой систему, легко адаптируемую к различным программам работы в зависимости от состава пищи. Ферментные и транспортные системы обеспечивают высокую приспособляемость ассимиляторного аппарата к условиям функционирования, так как их регулируемость способствует повышению или понижению активности в широких пределах без изменений состава соответствующего пула. В последние годы документировано, что обмен мембранных белков, в частности ферментов и транспортеров, превращает плазматическую мембрану кишечных клеток в поверхность, обладающую высокой динамичностью и способностью к быстрым адаптивным перестройкам.

 

2.3. Основные типы пищеварения

 

По механизму действия ферментов на субстраты, по механизмам их поступления к месту функционирования, по взаимоотношениям пищеварительных процессов и клеточной границы и, наконец, по отношению к процессам транспорта можно выделить три основных типа пищеварения: внеклеточное дистантное, внутриклеточное и мембранное (рис. 4).

 

2.3.1. Внеклеточное дистантное пищеварение

Этот тип пищеварения характеризуется тем, что синтезированные секреторными клетками ферменты выделяются во внеклеточную среду, где реализуется их гидролитический эффект. Этот тип пищеварения является основным у организмов, стоящих на более высоком этапе эволюционного развития, чем плоские черви, и преобладает у кольчатых червей, ракообразных, насекомых, головоногих, оболочников и хордовых. Он особенно развит у высокоорганизованных животных и человека, у которых обеспечивает начальное переваривание пищевых веществ. У этих организмов секреторные клетки расположены достаточно далеко от полостей, где реализуется действие ферментов, поэтому внеклеточное пищеварение определяется как дистантное. Дистантное пищеварение, происходящее в специальных полостях, обозначается как полостное. Дистантное пищеварение может происходить и за пределами организма, продуцирующего ферменты. Так, насекомые вводят пищеварительные ферменты в обездвиженную добычу, а бектерии выделяют разнообразные ферменты в культуральную среду.

Так как секретируемые в составе пищеварительных соков ферменты растворены в водной фазе, их пространственная организация невозможна или весьма ограничена. Если в растворе действует несколько ферментов, то их распределение имеет вероятностный характер. Растворенные ферменты эффективны при расщеплении как поверхностно, так и глубоко локализованных пептидных, глюкозидных, эфирных и других связей благодаря любой ориентации активного центра фермента относительно атакуемых молекул субстрата.

Рис. 4. Основные типы пищеварения.

А — внеклеточное дистантное пищеварение; Б — внутриклеточное цитоплазматическое пищеварение; В — внутриклеточное вакуолярное, или вне-плазматическое, пищеварение, связанное с эндоцитоэом (фаго- и пиноцитозом); Г — мембранное пищеварение. 1 — внеклеточная среда; 2 — внутриклеточная среда; 3 — внутриклеточная пищеварительная вакуоль; 4 — лизосома; 5 — ядро; 6 — мембрана; 7 — ферменты; 8 — субстраты и продукты их гидролиза.

Вместе с тем целостное пищеварение не обеспечивает эффективного перехода от гидролиза к транспорту, так как резорбирующая мембрана и освобождающиеся в процессе гидролиза мономеры разделены значительным расстоянием и требуется определенное время, чтобы мономеры достигли поверхности всасывающей клетки. Существует определенная вероятность перехвата продуктов гидролиза (прежде чем они достигнут резорбирующей поверхности) бактериями, населяющими полость тонкой кишки высших организмов.

 

2.3.2. Внутриклеточное пищеварение

Этим термином обозначаются случаи, когда не-расщепленные или частично расщепленные пищевые вещества проникают внутрь клетки, где подвергаются гидролизу ферментами цитоплазмы, не выделяемыми за пределы клетки. Внутриклеточное пищеварение распространено у простейших и наиболее примитивных многоклеточных организмов, например у губок и плоских червей. Как дополнительный механизм гидролиза пищевых веществ оно встречается у немертин, иглокожих, некоторых кольчатых червей и многих моллюсков. У высших позвоночных животных и человека оно выполняет главным образом защитные функции, например фагоцитоз.

Различаются два типа внутриклеточного пищеварения. Первый связан с транспортом небольших молекул через клеточные мембраны и последующим перевариванием ферментами цитоплазмы. Внутриклеточное пищеварение может также происходить в специальных внутриклеточных полостях — пищеварительных вакуолях, присутствующих постоянно или образующихся при фагоцитозе и пиноцитозе и исчезающих после расщепления захваченной пищи. Второй тип пищеварения в большинстве случаев связан с участием лизосом, которые содержат широкий набор гидролитических ферментов (фосфатаз, протеаз, глюкозидаз, липаз и др.) с оптимумом действия в кислой среде (pH 3.5—5.5). Пищевые структуры или пищевые растворы в околоклеточной среде вызывают впячивания плазматической мембраны, которые затем отшнуровываются и погружаются в цитоплазму, образуя пиноцитозные и фагоцитозные вакуоли. Соединяясь с последними, лизосомы образуют фагосомы, где происходит контакт ферментов с соответствующими субстратами. Образовавшиеся продукты гидролиза всасываются через мембраны фагосом. После завершения пищеварительного цикла остатки фагосом выбрасываются за пределы клетки путем экзоцитоза. Лизосомы играют также важную роль в расщеплении собственных структур клетки, которые используются в качестве пищевого материала либо данной клеткой, либо за ее пределами.

По своим механизмам внутриклеточное пищеварение может быть рассмотрено как сочетание микрополостного и мембранного гидролиза в пределах клетки. Действительно, при внутриклеточном пищеварении ферменты могут оказывать свой гидролитический эффект в цитоплазме клетки или в фагосоме, т.е. в среде, что свойственно полостному пищеварению, а также на внутренней поверхности фагосомной мембраны, что свойственно мембранному пищеварению.

Внутриклеточное пищеварение лимитировано проницаемостью мембраны и процессами эпдоцитоза, которые характеризуются небольшой скоростью и, по-видимому, не могут играть существенной роли в обеспечении пищевых потребностей высших организмов.

Тем не менее они могут способствовать проникновению в клетку некоторых уникальных веществ, в частности иммуноглобулинов.

Эндоцитозам приписывается важная роль в ассимиляции пищевых веществ в период раннего постнатального развития.

 

2.3.3. Мембранное (пристеночное, контактное) пищеварение

Мембранное пищеварение, открытое в конце 50-х гг., пространственно занимает промежуточное положение между внеклеточным и внутриклеточным и осуществляется ферментами, локализованными на структурах клеточной мембраны и ее дериватов (у высших животных и человека — на апикальной поверхности кишечных клеток). Активные центры ферментов ориентированы определенным образом по отношению к мембране и водной фазе. Свободная ориентация каталитических центров ферментов по отношению к субстратам невозможна. Глубоко расположенные связи, по-видимому, недоступны действию ферментов, осуществляющих мембранное пищеварение. Этим оно существенно отличается от полостного и внутриклеточного типов, если последнее происходит в фагосомах.

Мембранное пищеварение осуществляется как адсорбированными из полости тонкой кишки ферментами (преимущественно панкреатического происхождения), так и собственно кишечными, или мембранными, синтезированными в кишечных клетках и встроенными в состав их апикальной липопротеиновой мембраны (табл. 1). Ферменты, адсорбированные на структурах кишечной слизистой (главным образом в гликокаликсном пространстве), реализуют в основном промежуточные этапы гидролиза всех основных видов пищевых веществ. Собственно кишечные ферменты осуществляют преимущественно заключительные этапы расщепления пищевых биополимеров. По-видимому, адсорбированные ферменты связаны в основном со структурами гликокаликса (рис. 5), а собственно кишечные встроены в структуры плазматической мембраны кишечных клеток. Тем не менее на поверхности липопротеиновой мембраны могут адсорбироваться ферменты, поступающие в полость тонкой кишки с панкреатическим соком, а собственно кишечные ферменты, по крайней мере частично, могут включаться в гликокаликс.

Основные ферменты, реализующие мембранное пищеварение в тонкой кишке млекопитающих

Происхождение фермента Фермент КФ
Адсорбированные панкреатические ферменты Амилаза 3.2.1.1
Липаза 3.1.1.3
Трипсин 3.4.21.4
Химотрипсин 3.4.21.1
Карбоксипептидаза А 3.4.12.2
Карбоксипептидаза В 3.4.12.3
Эластаза 3.4.21.11
Рибонуклеазэ 3.1.4.22
Собственно кишечные ферменты Мальтаза 3.2.1.20
Сахараза 3.2.1.48
Изомальтаза 3.2.1.10
Гамма-амилаза 3.2.1.3
Лактаза 3.2.1.23
Трегаяаза 3.2.1.28
Щелочная фосфатаза 3.1.3.1
Моноглицеридлипаза 3.1.1.23
Пептидазы 3.4.11 - 15
Аминопептидаза * 3.4.11.2
Дипептидиламинопепти- даза 3.4.14.1
Карбоксипептидаза 3.4.12.4
Энтерслептидаза 3.4.21.9
Гамма-глутамилтранспептидаза 2.3.2.2
Холестеролэстераза 3.1.1.13

* Аминопептидаза М, аминопешчдаза N, аланинаминопептидаза.

Рис. 5. Упрощенная схема распределения адсорбированных ферментов на поверхности гликокаликса (I), в гликокаликсном пространстве (II) и на липопротеиновой мембране (III) кишечной клетки.

1 — полость тонкой кишки; 2 — ферменты;3 — гликокаликс; 4 — мембрана.

Рис. 6. Схема отделения апикального гликокаликса от липопротеииовой мембраны кишечной клетки.

1 — агаровая реплика; 2 — апикальный гликокаликс; 3 — микровор-синки; 4 — латеральный гликокаликс.

Рис. 7. Щеточная кайма кишечной клетки крысы.

А— продольный разрез апикальной зоны интактной клетки; виден гликокаликс на внешней (апикальной) и боковой (латеральной) поверхностях микроворсинок. В — продольный разрез апикальной зоны клетки после отделения агаровой реплики; гликокаликс на внешней поверхности микроворсинок отсутствует, видны неповрежденная липопротеиновая мембрана клетки и латеральный гликокаликс. 80 000х.

Рис. 8. Роль ферментно-транспортных комплексов в предотвращении конкуренции между мономерами на стадии всасывания.

А — конкуренция между мономерами за общий вход в транспортную систему; Б — конкуренция между финальными продуктами гидролиза за общий вход в транспортную систему; В — ферментно-транспортный комплекс: передача конечных продуктов гидролиза с фермента на вход в транспортную систему (без конкуренции). 1 — мономер; 2 — димер; 3 — фермент; 4 — транспортная система; 5 — мембрана.

Несколько лет назад нами впервые препаративно отделен апикальный гликокаликс от плазматической мембраны кишечных клеток крыс без повреждения этой мембраны (рис. 6, 7). Было обнаружено, что в апикальном гликокаликсе, отделяющем мембрану от внеклеточной среды, сосредоточено около 60% панкреатической амилазы, более 80% трипсина и около 20% химотрипсина, адсорбированных на структурах кишечной слизистой оболочки. Следовательно, примерно 40% амилазы, 20% трипсина и 80% химотрипсина, адсорбированных на этой оболочке, могут быть локализованы в латеральном гликокаликсе, т.е. в межмикрозорсинчатом пространстве, а также, возможно, частично на липопротеиновой мембране. В этих же экспериментах продемонстрировано, что такие собственно кишечные ферменты, как сахараза, гамма-амилаза, ди- и трипептидазы, связаны преимущественно с липопротеиновой мембраной. Однако щелочная фосфатаза, рассматриваемая как трансмембранный интегральный фермент, присутствует в довольно значительных количествах (до 20%) в апикальном гликокаликсе. (Сходные данные получены па курах). Кроме того, выявлено, что в апикальном гликокаликсе содержится 3.6% лейцинариламидазы, менее 2% пролилглициндипептидазы и менее 1% глицилпролинди-пептидазы.

Благодаря локализации кишечных ферментов на липопротеиновой мембране в непосредственной близости от транспортных систем мембранное пищеварение обеспечивает сопряжение конечных этапов переваривания и начальных этапов всасывания. Это достигается в результате специальной организации пищеварительных и транспортных функций клеточной мембраны в виде своеобразного пищеварительно-транспортного конвейера, способствующего передаче конечных продуктов гидролиза с фермента на вход в транспортную систему и предотвращению конкуренции между ними за обладание входом в последнюю (рис. 8). Иными словами, мембранный фермент и транспортная система образуют олигомерный комплекс, между частями которого существуют кооперативные и аллостерические взаимодействия (рис. 9, 10).

Мембранное пищеварение наблюдается у организмов на всех уровнях эволюционного развития, т.е. является универсальным механизмом. Оно обнаружено у всех млекопитающих, включая человека, у птиц, рыб, амфибий, круглоротых, а также у беспозвоночных животных, в том числе у насекомых, ракообразных, моллюсков, у различных паразитирующих форм. Существуют данные о наличии мембранного пищеварения у дрожжей, бактерий и в корнях растений.

Для правильной оценки мембранного пищеварения существенны следующие факторы.

1. Ферменты, реализующие этот процесс, относятся к структурированным. В связи с этим возможна пространственная организация как ферментных, так и транспортных систем, объединяющих заключительные этапы переваривания и начальные этапы всасывания.

2. Структурирование ферментов приводит к изменению их свойств. Так, отделение ферментов от мембраны меняет их каталитические и регуляторные характеристики.

3. Зона мембранного пищеварения обладает особыми физико-химическими свойствами, в частности такими как pH, концентрация органических и неорганических ионов, неперемешиваемый слой жидкости.

4.    Мембранное пищеварение осуществляется в стерильной зоне, недоступной для бактерий, что предотвращает поглощение последними легко усвояемых низкомолекулярных пищевых веществ.

5.    Благодаря ферментному аппарату гликокаликсный слой превращается в высокоспецифический фильтр. Через этот слой проникают те вещества, для которых на поверхности и внутри гликокаликсного пространства имеются адекватные ферменты, но не проникают другие вещества с такими же размерами молекул.

6.    Для понимания эффективности мембранного пищеварения и трансмембранной проницаемости важны сведения о сократительной функции щеточной каймы, регулируемой кальцием. Показано, что микрофиламенты микроворсинок, выполняющие эти функции, содержат актин и миозин и связаны с апикальной мембраной кишечных клеток.

7.    Следует учитывать не только процессы синтеза кишечных ферментов и их включения в состав апикальной мембраны кишечных клеток, по и скорость их деградации. (Более подробно см. гл. 5).

Рис 9. Схема последовательных конформационных взаимодействий и транспортной частей комплекса.

1 - субстрат; 2 - продукт; 3 - трансмембранный фермент; транспортная система; 5 - мембрана

 

2.4. Схема переваривания пищи как сочетание трех основных типов пищеварения

После обнаружения мембранного пищеварения классическая схема ассимиляции пищи претерпела существенные изменения. Согласно классическим представлениям, пищевые вещества — нутриенты, способные к всасыванию и ассимиляции, освобождаются в результате ферментативного гидролиза сложных органических соединений за счет внеклеточного (полостного) и внутриклеточного типов пищеварения. При этом усвоение пищевых веществ происходит в два этапа: полостное пищеварение—всасывание. Согласно современной схеме, усвоение пищи реализуется не в два, а в три этапа: полостное пищеварение—мембранное пищеварение—всасывание с более или менее выраженным компонентом внутриклеточного пищеварения. Таким образом, мембранное пищеварение, занимая по функциональной позиции промежуточное положение между полостным пищеварением и всасыванием, является акцепторным механизмом по отношению к полостному гидролизу и донорным по отношению к всасыванию. Следовательно, полостное пищеварение без мембранного не имеет существенного значения, так как всасывание без предварительного мембранного гидролиза невозможно из-за отсутствия адекватных субстратов. Вместе с тем нельзя недооценивать роль полостного пищеварения, так как обычные пищевые продукты не способны проникать в зону щеточной каймы и гликокаликсное пространство без обработки в пищеварительных полостях.

В реальных условиях имеет место сочетание двух или трех механизмов пищеварения (вне-, внутриклеточного и мембранного) у одного и того же организма. Возможно, благодаря этому достигается особенно высокая эффективность и экономичность работы пищеварительного аппарата.

Для высших животных и человека наиболее характерным является сочетание полостного и мембранного пищеварения (рис. 11). Начальные стадии гидролиза реализуются с помощью секретируемых в полость тонкой кишки преимущественно панкреатических ферментов. Здесь происходит разрушение клеточных структур пищевых продуктов и гидролиз некоторой части химических связей в молекулах биополимеров. Сравнительно мелкие молекулы проникают в зону щеточной каймы, где под влиянием адсорбированных и собственно кишечных мембранных ферментов гидролиз завершается и осуществляется переход к всасыванию. Важно, что за счет мембранного пищеварения расщепляется около 80—90% химических связей.

Рис. 10. Упрощенная схема аллостерических взаимодействий ферментной и транспортной частей комплекса,

А — аллостерические влияния фермента на вход в транспортную систему; Б — аллостерические влияния транспортной системы на активность фермента. 1 — субстрат; 2 — продукт; 3 — фермент; 4 - транспортная система; 5 — мембрана.

Большинство надмолекулярных агрегаций и крупных молекул (белки и продукты их неполного гидролиза, углеводы, жиры) у млекопитающих расщепляются в полости тонкой кишки в нейтральной или слабощелочной средах преимущественно под влиянием ферментов (эндогидролаз), секретируемых клетками поджелудочной железы. Пептиды, образовавшиеся в кислой среде желудка под влиянием кислых протеаз, и нерасщепленные белки гидролизуются трипсином, химотрипсином, карбоксипептидазами А и В и эластазон. В результате последовательного действия этих ферментов в полости тонкой кишки из крупных белковых молекул образуются ннзкомолекулярные пептиды и незначительное количество аминокислот. Углеводы (полисахариды крахмал и гликоген) расщепляются амилазой поджелудочного сока до три- и дисахаридов без значительного накопления глюкозы. Жиры подвергаются гидролизу в полости тонкой кишки панкреатической липазой, которая поэтапно отщепляет жирные кислоты, что приводит к образованию ди- и моноглицеридов, свободных жирных кислот и глицерина. В гидролизе жиров существенную роль играет желчь.

Рис. 11. Схема взаимодействий полостного и мембранного пищеварения.

А — последовательная деполимеризация пищевых субстратов в полости и на поверхности тонкой кишки; Б — фрагмент липопротеиновой мембраны с адсорбированными и собственно кишечными ферментами. М — мембрана; МБ — микроворсинки; Га — апикальный гликокаликс; Гл — латеральный гликокаликс; С1—С2 — субстраты; Фп — панкреатические ферменты; Фм — мембранные ферменты; Т транспортная система; Р — регуляторные центры ферментов; К — каталитические центры ферментов; НЭ — неэпзиматические факторы.

Образующиеся в полости тонкой кишки продукты гидролиза благодаря перистальтическим движениям кишечной мускулатуры контактируют с поверхностью кишки, где происходит их дальнейшая обработка за счет мембранного пищеварения. Продукты частичного гидролиза поступают из полости тонкой кишки в зону щеточной каймы кишечных клеток (если размеры их молекул не слишком велики), чему способствует их перенос в потоках растворителя, возникающих за счет всасывания ионов натрия и воды кишечными клетками. Именно в зоне щеточной каймы и происходит мембранный гидролиз. При этом промежуточные стадии гидролиза биополимеров осуществляются панкреатическими ферментами (амилазой, трипсином, химотрипсином, карбоксипептидазами А и В и др.), адсорбированными на структурах щеточной каймы в гликокаликсном пространстве, а заключительные — собственно кишечными мембранными ферментами (гамма-амилазой, мальтазой, Пзомальтазой, сахаразой, лактазой, трегалазой, ди- три- и тетрапептидазами, аминопептидазой, щелочной фосфатазой, моноглицеридлипазой и др.), встроенными в липопротеиновую мембрану микроворсинок кишечных клеток. Некоторые ферменты (гамма-амилаза и аминопептидаза) гидролизуют высокополимеризованные продукты.

Олигопептиды, поступающие в зону щеточной каймы, расщепляются до аминокислот, способных к всасыванию, за исключением глицилглицина и некоторых дипептидов, содержащих пролин и оксипролин, которые всасываются в нерасщепленном виде. Дисахариды, поступающие с пищей и образующиеся при расщеплении крахмала и гликогена, гидролизуются собственно кишечными гликозидазами до моносахаридов, которые транспортируются через кишечный барьер во внутреннюю среду организма. Триглицериды расщепляются не только под действием панкреатической липазы, но и под влиянием кишечной моноглицеридлипазы.

На рис. 12 представлена схема структуры и функций кишечной клетки. Ее апикальная и базолатеральная мембраны содержат различные функциональные элементы, реализующие мембранный гидролиз и транспорт различных нутриентов, ионов, воды, а также энергизацию этих процессов.

Рис. 12 Схема структурных и функциональных компартментов кишечной слизистой оболочки.

А - структура компартментов; Б - потоки веществ; В - потоки воды.

 

2.5. Специализированные механизмы пищеварения

 

Пищеварительные процессы можно классифицировать не только по механизмам (внеклеточное дистантное, внутриклеточное, мембранное), но и по источникам ферментов. В зависимости от этого критерия можно выделить три типа пищеварения: 1) собственное пищеварение, когда источником фермента служит сам организм; 2) симбионтное пищеварение, для которого характерна продукция ферментов симбионтами — бактериями и простейшими; 3) аутолитическое пищеварение, происходящее за счет ферментов, содержащихся в пище. На основе технологических элементов, освещенных при описании собственного пищеварения, строятся чрезвычайно эффективные и сложные процессы симбионтного и аутолитического пищеварения.

 

2.5.1. Симбионтное пищеварение

Этот тип пищеварения реализуется за счет микроорганизмов желудочно-кишечного тракта. Они играют роль, которую следует учитывать почти во всех случаях. У человека и животных многих видов симбионтное пищеварение имеет второстепенное значение, хотя в отличие от желудка и тонкой кишки в их толстой кишке присутствует большое количество постоянной микрофлоры, состав которой определяется возрастом и типом питания. Вместе с тем продукция витаминов и некоторых незаменимых аминокислот у этих организмов осуществляется благодаря участию микроорганизмов.

Симбионтное пищеварение наряду с собственным характерно для жвачных животных. В ходе эволюции у этих организмов имели место структурные и функциональные перестройки желудочно-кишечного тракта, в частности развитие сложного желудка. Жвачные среди растительноядных занимают особое место, так как растительноядными они могут считаться лишь по качеству потребляемой пищи. По существу же их следует отнести к микробо- и протозоаядным. Их желудок (рубец и сетка) заполнены микрофлорой. Среда рубца и рефлекторная регуляция его pH благоприятствуют размножению микробов, что, по-видимому, является специальным приспособлением, выработанным в ходе эволюции. Содержимое желудка большинства других млекопитающих, напротив, обладает антисептическими свойствами. Важно, что в слюне и рубце жвачных ферменты отсутствуют, что способствует развитию микробной популяции.

Микрофлора рубца участвует в переваривании целлюлозы, ксилана, пектина, лигнина, белков и липидов, а продукты реакции сбраживает до летучих жирных кислот, углекислого газа и метана. Кислоты всасываются в этом же отделе, уксусная и масляная — окисляются с выделением энергии, а пропионовая используется для синтеза гексоз и жиров. Однако целлюлазной активностью обладает лишь 1—5% бактериальных клеток. Эти клетки образуют целлюлазу, действующую внеклеточно и расщепляющую целлюлозу до глюкозы.

Микробная популяция рубца растет, причем микроорганизмы поступают в сычуг, где в кислой среде за счет протеаз хозяина начинается их переваривание, заканчивающееся в кишечнике. Таким образом, значительную часть энергетических и пластических материалов у жвачных составляют их симбионтные бактерии и простейшие. Не менее важным свойством микрофлоры как источника питания служит ее способность синтезировать аминокислоты из мочевины, а также важнейшие витамины. В результате образуются вещества, не нуждающиеся в дальнейшем гидролизе (аминокислоты, глюкоза, жирные кислоты и т.д.). Возможно, этим обусловлена меньшая ферментативная активность секретов жвачных по сравнению с соками пищеварительных органов других животных.

Симбионтное пищеварение характерно также для длинноногих сумчатых и ряда других животных, подобных жвачным. У золотистого хомячка и некоторых других млекопитающих оно дополняет обычный процесс пищеварения. Симбионтное пищеварение широко распространено также у низших организмов, в частности у членистоногих.

 

2.5.2. Аутолитическое пищеварение и индуцированный аутолиз

Если оставить в стороне человека, потребляющего пищу после специальной термической обработки, а также сапрофитов, использующих деградированные объекты, все другие случаи биотрофии связаны с поглощением живых объектов (животных, растений, бактерий и т.д.). Их умерщвление и начальная деградация являются первым этапом ассимиляции, механизм которого недостаточно ясен. Привлекательно думать, что кислая среда, характерная для начальных стадий переваривания и создаваемая организмом-ассимилятором, эффективна для умерщвления пищевого объекта и денатурации белков. Если это предположение правильно, то у некоторых форм организмов кислотная денатурация пищевого объекта не обязательно связана с наличием кислых протеаз. Так, обнаружено, что первичная кислотная обработка пищевого объекта, по-видимому, более древний механизм, чем пепсинно-кислое пищеварение. В частности, в кислой среде вновь образующихся пищевых вакуолей простейших в ряде случаев не содержится кислых протеаз. Дальнейшая обработка пищевого материала протекает при нейтральных или даже щелочных значениях pH.

Ферменты, содержащиеся, в пище, могут иметь определенное значение в разрушении ее полимеров. Такое пищеварение можно было бы назвать аутолитическим. По-видимому, оно является древним и важным в развитии животного мира. Однако аутолиз не утратил своего значения и в питании современных животных. Например, при использовании травоядными свежих кормов расщепление пищи отчасти обусловлено ферментами, содержащимися в клетках растений. Некоторое значение в гидролизе пищевых веществ в желудочно-кишечном тракте новорожденных детей могут иметь гидролитические ферменты материнского молока. Наконец, «созревание» мяса есть не что иное, как частичный аутолиз, который можно рассматривать как некоторый элемент пищеварения.

Несколько лет назад нами опубликованы результаты исследований, позволившие предположить, что в основе начальных этапов расщепления пищи решающую роль играет индуцированный аутолиз (рис. 13).

Рис. 13. Схема, демонстрирующая роль индуцированного аутолиза в деградации клеточных структур.

А — многоклеточная структура; Б — влияние пищеварительных соков на многоклеточную структуру; В — влияние индуцированного аутолиза на многоклеточную структуру за тот же временной интервал. Стрелками на Б и Б показан временной интервал.

Суть этого механизма состоит в том, что кислый желудочный сок хищника индуцирует самопереваривание жертвы ее же ферментами. Под действием кислого желудочного сока происходит разрушение лизосом и выход в клетку многочисленных лизосомных гидролаз, разрушающих все структуры клетки при pH 3.5—5.5. Ионы водорода вызывают гибель клетки и нарушение мембранного барьера лизосом. По-видимому, механизм индуцированного аутолиза реализуется не только у хищных, но и у растительноядных организмов. Пищеварительные ферменты биотрофов, таким образом, дополняют индуцированный аутолиз пищевого объекта.

Итак, организм-ассимилятор индуцирует расщепление структур пищевого объекта его собственными ферментами, активируя их и создавая оптимальные условия среды, в том числе pH. В отличие от классических представлений о механизмах переваривания ферменты пищеварительных соков осуществляют свой эффект только поверхностно, причем скорость диффузии внутрь даже при низком диффузионном сопротивлении лимитирована их сравнительно большой молекулярной массой. Скорость диффузии гидратированного протона примерно в 1000 раз выше. При этом возникает множество центров гидролиза в каждой клетке, что Создает практически тотальное расщепление ткани. Следует добавить, что в кислых секретах организма-ассимилятора содержатся главным образом протеазы, тогда как ферментный спектр лизосом практически универсален. Однако в ассимилируемых объектах имеются структуры (белки соединительной ткани, жировые депо, в тканях растений — полисахаридные депо), лишенные лизосом и не подвергающиеся аутолизу. Следовательно, можно предположить, что ферменты пищеварительных соков (гидролазы, расщепляющие белки, жиры и углеводы) особенно важны для утилизации указанных структур с высокой скоростью.

Примеры индуцированного аутолиза обнаружены среди низших животных, в частности у простейших п плоских червей. После захвата пищевого объекта происходит образование новых вакуолей, обладающих кислой реакцией. Общепринято, что ацидификация окружающей среды связана с действием пепсин- или катепсинподобных ферментов. Хотя кислая фаза переваривания была интерпретирована как выполняющая лишь денатурацию структур пищевого материала, представленные данные свидетельствуют о значительном расщеплении пищи. Эти данные невозможно объяснить без гипотезы индуцированного аутолиза. В соответствии с этой гипотезой кислая среда пищеварительных вакуолей приводит к активации лизосомных ферментных систем двумя путями: 1) увеличивая проницаемость мембраны лизосом; 2) провоцируя адекватные условия для лизосомных ферментов, которые активны в слабокислой среде. Следовательно, возможен не только протеолиз, но и расщепление множества других пищевых веществ.

***

Обратим внимание на те особенности процессов переработки пищи, которые позволяют рассматривать их как естественную технологию. Несомненно, перед нами чрезвычайно сложная химическая технология, обеспечивающая извлечение из пищевого сырья важных компонентов и их перенос из кишечной во внутреннюю среду организма. В основном переработка пищевой массы сводится к механическим и гидролитическим (при участии многих ферментов) процессам.

Возможно, большое значение имеет специфическая адсорбция. Следует учитывать также, что ряд необходимых веществ вырабатывается в желудочно-кишечном тракте бактериальной флорой. В современном понимании работа пищеварительного аппарата не может ограничиться лишь извлечением полезных пищевых веществ, т.е. нутриентов, из пищевых продуктов, а включает в себя также их образование под влиянием симбионтов. У организмов многих видов этот механизм является решающим. Таким образом, процесс экзотрофии представляет собой сочетание механических, физических и химических преобразований, поражающих совершенством координации и высокой эффективностью. Так, приблизительные подсчеты показали, что из 10 молекул мальтозы лишь одна или две возвращаются в полость тонкой кишки, тогда как 8 или 9 немедленно утилизируются благодаря совершенной системе взаимодействий фермента и транспортера в пределах пищеварительно-транспортного комплекса.

Пищеварительные процессы управляются очень точно. Интенсивность переваривания пищи, а также скорость ее перемещения вдоль желудочно-кишечного тракта контролируются нервными и гормональными механизмами. Кроме того, пищеварение как многоступенчатый процесс складывается из ряда операций.

Для понимания удивительной целесообразности естественных технологий, сформировавшихся в ходе эволюции, перейдем к характеристике питания.