Как воспроизводятся клетки, как поддерживается порядок в сообществах клеток, как клетки зарождаются и как умирают

Лишь изучая клетки, мы можем выяснить, что же такое жизнь. Я не буду пытаться решить непосильную задачу и дать всеобъемлющее определение жизни — вместо этого я просто опишу ее главные свойства. Первым является способность к размножению, к воспроизводству самой себя, что происходит, например, когда клетка вырастает и делится на две новые клетки. Вторым свойством является способность к упорядочиванию и выработке энергии для происходящих в клетке процессов — таких, как перемещение молекул и синтез новых химических соединений. Третье свойство — способность клетки к развитию, а четвертое, и последнее, — к смерти. Удивительно, но во всех этих процессах ключевую роль играют одни и те же нитевидные молекулярные образования — ДНК и белки.

Белки внутри клеток — настоящие волшебники. Однако еще более важную роль играют ДНК, из которых образуются гены в хромосомах и которые обеспечивают матрицы для строительства новых белков. При этом все ДНК обладают уникальным общим свойством — это единственное внутриклеточное образование, которое точно воспроизводит само себя. Перед тем как происходит деление клетки, создается точная копия-двойник ее ДНК. Определяя структуру различных белков клетки, ДНК эффективно контролирует многие из происходящих внутри клетки процессов.

ДНК содержатся в клеточном ядре — на находящемся внутри клетки плоском диске, окруженном оболочкой. Оболочка эта очень тонка, и даже при рассматривании в мощный электронный микроскоп представляет собой лишь тонкую линию. Однако именно она является внешними границами клетки и отделяет ее содержимое от окружающей среды. Но клеточная оболочка — это нечто большее, чем просто граница клетки, ибо она содержит в себе специальные белки, которые позволяют определенным молекулам легко проникать внутрь клетки и так же легко выводиться из нее; одновременно они служат преградой для проникновения других молекул. Словом, белки клеточной оболочки играют активную роль в переносе отдельных молекул и атомов, которые вводятся в клетку и выводятся из нее. Ведь в клетку необходимо ввести пищу и обеспечить вывод из нее продуктов распада. Особой функцией клеточной оболочки является ее способность проводить электрические импульсы, что позволяет действовать в организме клеткам нервной системы.

Белки, которых всего в нашем организме около ста тысяч разновидностей, представляют собой связанные друг с другом цепочки небольших простых молекул, называемых аминокислотами. В белках содержится двадцать различных видов аминокислот. Десять из них вырабатываются клетками нашего организма, другие же десять мы получаем из пищи.

Белки отличаются друг от друга числом аминокислот и последовательностью их расположения. От этого зависят трехмерная структура и принципы функционирования каждого отдельного белка. Белки похожи на акробатов, которые складываются, изгибаются и меняют свою форму самым причудливым образом. Большая часть наших клеток содержит несколько тысяч различных белков, всего же в организме находятся миллионы белков самых разных видов. Если было бы возможно проникнуть внутрь этого миниатюрного царства и окинуть его взглядом, то оставалось бы только удивляться, как что-то может выйти из всей этой лихорадочной активности, ибо белки не только меняют форму, но и большую часть времени движутся очень быстро и хаотично — каждые несколько секунд они входят в соприкосновение с миллионами других молекул. Почти все, что происходит внутри наших клеток, является следствием взаимодействия белков друг с другом или с другими молекулами — нуклеиновыми кислотами, углеводами и жирами.

Самой важной функцией клетки является ее способность образовывать новые клетки, что происходит благодаря ее увеличению и последующему делению. Новые клетки формируются за счет роста и последующего деления существующих клеток. Однако прежде чем мы перейдем к изучению процесса деления клеток, мы должны понять, как происходит подготовка к этому событию.

Содержимое готовящейся к делению клетки удваивается, чтобы каждая из двух дочерних клеток получила все, что ей требуется: гены, белки, митохондрии, клеточную оболочку и множество других необходимых молекул. Чтобы это стало возможным, клетка должна сначала значительно вырасти. И действительно, перед моментом разделения клетка весьма увеличивается в размерах.

Перед разделением клетки должна быть продублирована и находящаяся внутри клеточного ядра молекула ДНК. Это единственная молекула клетки, которая подвергается точному дублированию, и это не случайно — в ДНК содержится информация, на основе которой образуются белки, выполняющие основные жизненно важные функции внутри клетки. Специальные белки отвечают за то, чтобы соединить длинные молекулы ДНК в нити хромосом, которые образуют систему витков и петель, благодаря чему ДНК не переплетаются ни друг с другом, ни с другими хромосомами. Точная копия каждой из 46 хромосом, содержащихся в каждой клетке нашего тела, во время процесса митоза переходит в каждую из двух дочерних клеток.

Все другие компоненты клетки также должны быть продублированы перед ее разделением. Каждая митохондрия — а митохондрий в каждой клетке содержится несколько сотен — также будет скопирована вместе с содержащейся внутри нее спиралью ДНК. Во время роста клетки перед ее делением происходит синтез новых белков, жиров и углеводов, и во всех этих процессах ведущую роль играют белки.

Простые одиночные клетки, такие, как клетки дрожжей, делятся каждые два часа. У большинства же клеток цикл жизнедеятельности от одного деления до другого занимает обычно 24 часа. Этот цикл разбит на четыре фазы. Первой и самой длительной является фаза роста. Во время второй фазы происходит дублирование хромосом со всеми их ДНК и генами. За ней следует третья фаза, подготовка к делению, и после нее наступает четвертая — деление клетки, то есть митоз. Точно так же, как, скажем, в любой стиральной машине, каждая фаза этого процесса заранее запрограммирована — и подготовка к ней, и ее завершение происходят в строгом порядке и очередности.

Процесс деления клетки имеет основополагающее значение для ее жизнедеятельности, поэтому нет ничего удивительного в том, что существует особая система контроля за делением, которая обеспечивает то, что непосредственное физическое разделение клетки происходит только в нужное время, а не раньше того, например, момента, когда будут точно и достоверно продублированы хромосомы. Сам митоз происходит в течение относительно короткого времени — не более одного часа, однако подготовка к нему может длиться от 12 до 24 часов. В рамках цикла жизнедеятельности клетки существуют отдельные контрольные точки, которые обеспечивают правильное и последовательное прохождение всех подготовительных фаз деления. Ни одна следующая фаза не может начаться до того, пока она не будет полностью подготовлена.

Время и последовательность событий в каждой фазе контролируются в основном за счет специальных белков, называемых циклинами, концентрация которых по необходимости возрастает и убывает. Циклины позволяют исполнять свои функции другим белкам клетки главным образом за счет того, что либо присоединяют к белку главный источник энергии — фосфор, производимый молекулами АТФ, либо, наоборот, отнимают его. Например, ряд циклинов начинает вырабатываться сразу же после разделения клетки в процессе митоза, и их концентрация постепенно нарастает в течение всего периода жизнедеятельности клетки вплоть до начала следующего митоза, наступлению которого эти циклины и способствуют. В момент, когда завершение митоза близится, концентрация циклинов резко снижается, а затем постепенно начинает нарастать вновь. Эта последовательность роста и снижения концентрации циклинов в клетке повторяется вновь и вновь. Другие виды циклинов вызывают начало других важных процессов внутри клетки — например, таких, как синтез ДНК.

Внутри клетки имеются контрольные и ограничительные механизмы, действующие на всем протяжении ее роста и деления. Главный механизм включается в самом начале цикла, перед тем как клетка начнет синтезировать новый набор хромосом и дублировать содержащиеся в ней ДНК. И если в спирали ДНК имеются повреждения, то синтез новой ДНК не начинается. В выполнении этих контрольных функций участвует крайне важный белок «р53», который откладывает начало синтеза ДНК до тех пор, пока повреждение ДНК не будет восстановлено. Его воздействие либо вызывает прекращение роста и деления клетки, либо приводит к самоуничтожению клетки ради того, чтобы в организме не появлялись раковые клетки с поврежденными ДНК.

Этот же контрольный механизм определяет, имеются ли благоприятные условия для роста и деления клетки — скажем, есть ли необходимые питательные вещества. Если результаты такой проверки оказываются неудовлетворительными, то весь процесс роста и деления клетки приостанавливается. Оказавшаяся в подвешенном состоянии клетка может оставаться пассивной в течение длительного времени. Перед митозом вступает в действие другой контрольный механизм, который должен проследить за тем, чтобы все спирали ДНК оказались продублированными. Существуют также контрольные механизмы, которые выявляют поврежденные хромосомы перед разделением клетки и откладывают митоз клетки до устранения повреждения.

Процесс дублирования хромосом прямо связан с особенностями структуры ДНК. Главным открытием в области ДНК, случившимся в 1953 году и дополнившим то, что ранее обнаружили Уотсон и Крик, стало обнаружение спиралеобразной структуры ДНК. Ученые выяснили, что ДНК состоит из двух спирально закрученных вокруг друг друга цепочек, построенных из четырех различных типов нуклеотидов. Молекулы ДНК лежат в основе 46 наших хромосом. Каждая хромосома представляет собой длинную молекулу ДНК, состоящую из двух цепочек, закрученных в знаменитую двойную спираль. При этом сами цепочки ДНК представляют собой набор из связанных воедино четырех различных видов нуклеотидов, благодаря которым саму ДНК следует считать разновидностью нуклеиновой кислоты.

Четырьмя различными видами нуклеотидов являются аденины (А), цитозины (Ц), тимины (Т) и гуанины (Г). Цепочка ДНК представляет собой набор отдельных нуклеотидов, соединенных друг с другом в строгой последовательности. Нуклеотиды всегда располагаются так, что аденин (А) в одной нити спирали ДНК соответствует цитозину (Ц) в противоположной нити, а тимин (Т) соединен с аденином (А), и так далее. Благодаря такому соединению и образуется двойная спираль ДНК. Поскольку одна нить молекулы ДНК в плане расположения в ней нуклеотидов четко соответствует другой нити, и наоборот, дублирование спирали ДНК не вызывает затруднений: каждая из нитей ДНК служит матрицей, согласно которой формируется ее точная копия. Когда начинается формирование одной нити спирали ДНК, одновременно с ней в строгой последовательности начинает формироваться и другая нить, пока не образуется двойная спираль ДНК, являющаяся точной копией уже присутствующей в данной клетке. Подобный порядок формирования ДНК делает эту молекулу уникальной и позволяет ей служить главным передаточным механизмом наследственной информации от поколения клеток — или людей — в другое поколение.

Процесс дублирования спирали ДНК начинается с того, что белки способствуют разведению в разные стороны нитей, из которых состоит эта спираль. Разведение нитей в разные стороны начинается одновременно в нескольких местах. Процесс этот идет довольно быстро — за одну секунду разводятся в разные стороны до ста нуклеотидов. Затем белковый механизм, отвечающий за дублирование ДНК, принимается строить новую двойную спираль ДНК, используя каждую из разведенных нитей в качестве матрицы и помещая нуклеотиды на точно обозначенные места. Процесс синтеза новой двойной спирали ДНК происходит сразу с двух направлений. В результате вместо одной первоначальной молекулы ДНК образуются две новые, совершенно одинаковые.

Когда процесс репликации достигает концевых участков нити ДНК, возникает проблема их недорепликации из-за нехватки места для воспроизведения цепочки ДНК. Эта проблема решается за счет того, что на концевых участках хромосом существуют особые структуры, которые называются теломерами («теломер» по-гречески означает «концевой участок»). При каждом следующем делении клетки участок теломер на конце спирали ДНК становится все короче, если только специальные энзимы не восстанавливают длину участка теломер в прежнем виде. Чем большее число раз делится клетка, тем короче становится участок теломер. Если спираль ДНК утрачивает участок теломер, то ее репликация становится более невозможной. Укорачивание участка теломер на концах хромосом может являться одним из факторов старения организма.

Процесс репликации хромосом должен осуществляться с исключительной аккуратностью: каждый следующий нуклеотид должен четко следовать за предыдущим нуклеотидом и соответствовать другому нуклеотиду на противоположной нити спирали ДНК, иначе неправильное воспроизводство структуры клеточной хромосомы приведет к ее мутации. Ошибки при репликации хромосом встречаются крайне редко, как если бы появлялась одна неправильная буква при перепечатке тысячи книг. Однако неправильное размещение даже одного-единственного нуклеотида в цепочке ДНК может привести к серьезным последствиям, и для того, чтобы предотвратить или скорректировать подобные сбои во время репликации, существует особый механизм.

Каждая дочерняя клетка должна получить свой набор хромосом, абсолютно идентичный хромосомам, присутствующим в изначальной материнской клетке. После завершения процесса дублирования хромосомы переходят в компактное состояние и становятся ясно различимыми в микроскоп. Именно в таком состоянии их удалось увидеть впервые. После этого хромосомы должны разделиться и перейти каждая в свою часть клетки, чтобы в дальнейшем образовались две дочерние клетки с одинаковым набором хромосом.

Процесс деления клетки называется «митоз», и главным инструментом его осуществления становится митотическое веретено деления. Как и подразумевает это название, оно представляет собой веретенообразную структуру, построенную из микротрубочек, которые, в свою очередь, созданы из белков. Микротрубочки обладают способностью быстро собираться в определенных местах, реагируя на необходимые химические сигналы, и так же быстро рассасываться. Их относительная нестабильность позволяет им быстро перестраиваться и принимать любые формы, поэтому они активно участвуют в процессе разделения клетки и расхождении хромосом. Своим видом митотическое веретено напоминает рождественское печенье, концы которого имеют звездообразную форму. Эти звездчатые зоны называются цитастерами.

При митозе центральная часть веретена начинает выпячиваться в районе клеточного экватора; к этому месту в последующем устремятся хромосомы. Само веретено деления имеет два полюса. Они состоят из белков и являются системообразующими элементами веретена. В самом начале митоза оба этих полюса находятся вместе внутри клеточного ядра. Затем они отделяются друг от друга и начинают движение к противоположным концам ядра, и между ними вытягивается тело самого веретена деления. После этого оболочка клеточного ядра разрывается, и хромосомы двигаются в направлении экваториальной плоскости веретена. Там они прикрепляются к микротрубочкам так, что каждая пара хромосом оказывается разделенной. При взаимодействии микротрубочек полюса веретена расходятся к противоположным сторонам клетки, в результате чего веретено растягивается в длину.

Затем сила, заставляющая реплицированные хромосомы держаться вместе, перестает действовать, и хромосомы с равномерной скоростью расходятся к противоположным полюсам веретена деления. В результате у каждого из полюсов образуется одинаковый набор хромосом, вокруг которого сразу же начинает формироваться ядерная оболочка, и образуются два новых клеточных ядра. Теперь клетка полностью готова к тому, чтобы разделиться на две.

Представьте себе, как вы завязываете веревку вокруг детского шарика и затем начинаете тянуть за оба конца этой веревки так, что середина шарика сжимается и у вас в руках образуется сразу два шарика. В разделяющейся клетке роль подобной веревки играет поперечная клеточная перетяжка, которая формируется внутри клетки и располагается между двумя вновь созданными ядрами будущих дочерних клеток. Положение поперечной перетяжки определяют цитастеры веретена деления. Перетяжка начинает воздействовать на клеточную оболочку, создавая силу давления на нее. Взаимодействие цитастер с участками клеточной оболочки в районе полюсов веретена деления приводит к тому, что давление на оболочку в этих местах ослабевает, но при этом продолжается в экваториальной плоскости, где образуется кольцо из актиновых и миозиновых филаментов. Постепенно образуется борозда деления, которая углубляется вплоть до полного разделения клетки и образования двух дочерних. Так происходит размножение клеток.

Второй важнейшей особенностью жизни является поддержание порядка внутри клетки. Это означает способность вызывать рост и синтез новых молекул и поставлять энергию для этих процессов. В некотором смысле клетка является миниатюрной химической фабрикой, внутри которой происходит большое количество химических реакций с участием мельчайших молекул углеводов и жиров и образуются крупные молекулы белков и нуклеиновых кислот. Крайне важную роль в этом играют энзимы, способствующие ряду химических реакций, которые в конечном счете ведут к образованию либо разрушению молекул.

Поддержание порядка и предотвращение хаоса требуют энергии. Ведь, согласно второму закону термодинамики, материя стремится к неупорядоченному состоянию. Например, когда горсть подброшенных в воздух монет падает на землю, то соотношение монет, упавших орлом или решкой, никогда не будет упорядоченным. То, что все монеты упадут или орлом, или решкой, практически невероятно. Это касается всех изолированных систем — они имеют тенденцию скатываться к хаосу, если только для предотвращения этого состояния не тратится определенная энергия.

Синтез новых молекул во время фазы роста клетки, движение материи внутри клеток и сокращение мускульных клеток, вывод из клеток солей натрия — все это требует расходов энергии. Ключевым вопросом является то, откуда и как клетки эту энергию добывают. Подобно нам, людям, им приходится питаться для того, чтобы выжить. И большая часть питания, которое потребляют клетки, идет на выработку энергии, хотя некоторая его часть идет на образование новых белков и иных молекул.

Питание клеток осуществляется за счет той еды, которую мы потребляем, и именно она служит их основным источником энергии. Энергия же вырабатывается благодаря соединениям атомов кислорода и водорода, содержащимся в молекулах углеводов и жиров и в других молекулах, поставляющих питание клеткам.

Животные клетки, подобные клеткам человека, получают энергию от расщепления пищи во время ее переваривания и соединения получившихся элементов с атомами кислорода, в то время как растения вырабатывают энергию за счет солнечного света. Органами, отвечающими за выработку энергии в клетках животных, являются митохондрии. Они производят основной источник внутриклеточной энергии — АТФ, аденозинтрифосфорную кислоту. Объемы внутриклеточной активности обычно зависят от того, сколько в них используется молекул АТФ. Мы едим и дышим прежде всего для того, чтобы наши клетки могли вырабатывать АТФ. А АТФ необходима, чтобы обеспечивать энергией все происходящие внутри нас процессы. Когда мы занимаемся физическими упражнениями, мы ускоренно потребляем эту энергию, и именно это приводит к усталости.

АТФ является универсальным источником энергии для всего, что происходит внутри клетки — от мускульных сокращений до синтеза белков. Когда молекула АТФ вырабатывает энергию, жертвуя для этого одной из трех своих фосфатных групп, то она превращается в АДФ — аденозина дифосфат. АДФ может затем быть вновь превращена в источник энергии благодаря тому, что митохондрия снова присоединит к ней фосфатную группу, которая образуется при расщеплении углеводов.

В клетке в среднем содержится несколько миллиардов молекул АТФ. Все они используются и синтезируются вновь каждые две минуты. Почему в процессе эволюции в качестве основного источника возобновляемой энергии была выбрана именно АТФ, не совсем ясно, однако она работает очень эффективно. В принципе, это и есть тот результат, к которому должна была стремиться эволюция.

Клетки заботятся о том, чтобы, расщепляя еду на молекулы ради получения энергии или строительного материала, по ошибке не расщепить собственные молекулы. Отчасти эта задача решается за счет того, что первичное расщепление пищи происходит в небольших клеточных органеллах, которые называются лизосомами. В лизосомах содержатся энзимы, помогающие перевариванию пищи. Следующая и самая важная фаза процесса происходит в митохондриях, куда поступают продукты переваривания пищи и где происходит разрушение молекул углеводов и выработка на основе этого АТФ. Там вырабатывается большая часть энергии, и ключевым элементом для этого служит кислород.

Чтобы представить себе, как энергия, получаемая от сжигания углеводов, преобразуется в полезную энергию АТФ, вообразите себе камни, отрывающиеся от скалы и падающие вниз. Энергия их падения обратится в тепло и исчезнет, едва они коснутся земли. Однако можно установить на пути катящихся вниз камней гребное колесо и заставить их поворачивать его, да к тому же привязать к нему наполненное водой ведро, которое это колесо при своем вращении будет поднимать вверх. Когда вода в ведре поднимается выше уровня земли, она сама становится источником энергии, и эту энергию можно получить, если пропустить воду через машину, действующую по принципу гребного колеса, — точно так же источником энергии может стать АТФ, когда это потребуется.

У клеток нет таких проблем, которые испытываем мы при поглощении пищи, ибо они не знают, что такое тучность. Расщепление питательных веществ за счет их переваривания энзимами происходит в нашем кишечнике. Образующиеся при расщеплении молекулы могут затем проникнуть в клетки кишечника и использоваться для извлечения из них энергии. Главным и наиболее предпочтительным для клеток источником энергии являются углеводы. Когда клетки расщепляют углеводы на воду и двуокись углерода, высвобождающаяся при этом энергия накапливается в молекулах АТФ. На каждую расщепляемую молекулу глюкозы приходятся две молекулы вновь образованной АТФ.

Большинство вырабатываемых в нашем организме молекул АТФ — результат деятельности митохондрий. Впоследствии мы установим, что митохондрии — это не что иное, как бактерии, видоизмененные в процессе эволюции для того, чтобы обеспечивать энергией клетки нашего тела. Процесс производства митохондриями АТФ происходит на протяжении уже миллиардов лет. Его механизм достаточно сложен, он основан на прохождении через оболочки митохондрий электронов. Митохондрии имеют двойную оболочку — внешнюю и внутреннюю. При этом внешняя оболочка митохондрий обладает большой степенью проницаемости, в то время как внутренняя проницаема гораздо в меньшей степени.

Попадая в пространство между внешней и внутренней оболочками митохондрий, электроны заставляют двигаться протоны — ионы водорода. Протоны устремляются вдоль оболочки и проходят через специальный белковый механизм, который производит АТФ путем добавления одной фосфатной группы к АДФ. При расщеплении одной молекулы глюкозы образуется примерно тридцать молекул АТФ.

Открытие этого удивительного механизма произошло совершенно неожиданно. Вплоть до 1960 года исследователи полагали, что митохондрии вырабатывают энергию на основе того принципа, по которому расщепление молекул сахаров приводит к образованию АТФ. И только в 1961 году Питер Митчелл выдвинул идею о том, что этот механизм в действительности функционирует на основе движения протонов и возникновения электрохимического градиента. Неудивительно, что такая революционная идея была поначалу встречена с большой долей скепсиса.

Третьим основным признаком жизни является ее способность к эволюции. Именно эволюция обусловила появление живых существ — от бактерий и растений до человека. Краеугольным камнем удивительного открытия Дарвина стало представление о том, что характерные особенности живых организмов могут по наследству передаваться из поколения в поколение, видоизменяясь при этом под воздействием окружающей среды и внешних условий жизни. Если подобные изменения приведут к появлению более конкурентоспособных особей, то их количество неизбежно вырастет по сравнению с теми особями, которые не приобрели подобных преимуществ. Наследование характерных признаков живых существ осуществляется исключительно благодаря наличию в организме генов. Гены — единственная часть клетки, которая реплицируется и позволяет передавать наследственную информацию из поколения в поколение.

Характер эволюции живых существ зависит от изменений в генах и контрольных механизмах, регулирующих структуру генов, поскольку именно от генов зависит, какие именно белки будут вырабатываться в организме. Для того чтобы изменились наследственные характеристики живых организмов, необходимо, чтобы произошли изменения в генах, содержащихся в мужских и женских половых клетках, из которых в результате оплодотворения может развиться новый организм. В нашем случае речь идет о сперматозоидах и яйцеклетках.

Изменения в коде ДНК выражаются в том, что клетка начинает синтезировать другие белки, и в том, что она начинает синтезировать белки в иное время и в иных условиях. Если подобные измененные признаки помогут организму выжить, то они сохранятся и в будущих поколениях. Если же они, наоборот, осложнят существование организма, то организм с подобными мутациями вскоре погибнет. Сама мутация может выражаться в изменении всего лишь одного нуклеотида в составе гена, но это в конечном счете влияет на всю белковую структуру.

Наконец, важным отличительным признаком жизни является… смерть. Это может прозвучать странно, но для того, чтобы умереть, надо жить. Смерть клетки наступает тогда, когда прекращают функционировать ее основные органы и структуры. Ключевыми факторами смерти клетки являются непоправимые повреждения оболочки клетки и митохондрий, в результате чего перестает вырабатываться энергия, необходимая для жизнедеятельности. И, как и все, что связано с клетками, механизм их смерти способен удивить.

Точно так же, как в процессе эволюции развились сложные системы, отвечающие за рост и размножение клеток и позволяющие корректировать различные сбои в их работе, развились и механизмы, обеспечивающие самоубийство клеток. В нас ежедневно умирают миллиарды клеток костного мозга и пищеварительного тракта. Смерть клеток в результате самоубийства кардинальным образом отличается от их гибели, вызванной различными травматическими воздействиями, ибо во втором случае содержимое клетки выплескивается наружу и может вызвать воспалительные процессы.

Самоубийство клеток называется апоптозом. На него в соответствующих обстоятельствах запрограммированы все клетки, за исключением кровяных, которые не имеют ядра. Когда программа апоптоза начинает осуществляться, клетка уменьшается в размерах, и все, что находится внутри ее, расщепляется и погибает в результате воздействия особых энзимов. Особые белые кровяные тельца, отвечающие за очистку тканей нашего организма, получают в случае апоптоза сигнал и устремляются к умершим клеткам, чтобы поглотить их содержимое — дабы оно не выплеснулось наружу и не навредило окружающим клеткам.

Страшно даже представить себе, что может произойти, если у всех клеток разом запустятся механизмы самоуничтожения. К счастью, подобные механизмы обычно включаются только тогда, когда организм больше не нуждается в той или иной клетке либо они представляют для него угрозу — например, являются раковыми. Клетки также совершают самоубийство, если обнаруживается, что отсутствуют факторы, которые будут способствовать их дальнейшей жизни и развитию. Это особенно характерно для эмбрионов. Очень многие нервные клетки, как мы еще убедимся, погибают, если в процессе своего развития им не удается установить необходимые связи с другими клетками. Классическим примером запрограммированной гибели клеток является гибель клеток в пространстве между формирующимися пальцами в процессе развития человеческого эмбриона, дабы у людей не формировались перепонки, как у уток.

Далее мы подробно исследуем то, как функционируют клетки, и особенно внимательно рассмотрим роль белков, которые во многом определяют действие разнообразных клеточных механизмов.