Катастрофы: неистовая Земля

Уолтхэм Тони

Проседание грунта

 

 

Это было в 1965 г. в городе Лексингтон, штат Кентукки. Около строительной площадки остановился грузовик и стал спускать цемент в форму для фундамента дома. Внезапно раздался глухой грохот, земля под цементовозом разверзлась, и он тут же провалился в зияющую дыру глубиной около 4 м. В Лексингтоне коренной породой является известняк, содержащий многочисленные полости. Обрушение кровли одной из них могло послужить причиной возникновения провала.

Проседание грунта может происходить многими разнообразными путями. Внезапному проседанию может подвергнуться очень небольшой участок, но и этого бывает достаточно для падения одной опоры здания. Иногда проседание грунта вызывает медленное опускание целых городов. Наиболее известным примером такого рода является Венеция. Хотя проседание грунта бывает и естественным процессом, оно также может быть и следствием человеческой деятельности; наиболее очевидный пример этого — обвалы в старых шахтах. Важно помнить, что большинство случаев проседания земли связано, хотя бы косвенно, с влиянием человека на естественную стабильность грунтов. Искусство строительства на сегодняшний день достигло таких успехов, что почти любая проблема может быть разрешена, если известна ее природа, но вопрос о проседании грунта представляет непреодолимую трудность.

Во многих случаях проседание затрагивает небольшие и вполне доступные для исследования площади. Однако предсказание такого процесса является трудной задачей. Естественные полости в грунте, например в известняках, чрезвычайно трудно обнаружить. Для этого необходимо проведение дорогостоящих работ, предусматривающих бурение скважин на очень малых расстояниях друг от друга. Региональное проседание, затрагивающее большие площади, предвидеть в общем легче. Сейчас технически возможно остановить опускание области, соизмеримой по площади с Венецией, но стоимость подобных работ необычайно высока.

Вероятно, единственный тип проседания, который не подчиняется контролю человека, — это образование изгибов геологических слоев, затрагивающих всю толщу земной коры. Это явление становится катастрофическим, если оно сопровождается землетрясениями. Обычно же подобные движения совершаются очень медленно, так что их результаты становятся заметными через сотни лет. Таким образом, проседание земли, за исключением последнего случая, — процесс, теоретически предсказуемый и контролируемый, однако добиться этого на практике значительно сложнее.

Проседание при растворении пород

Известняк, гипс и каменная соль в естественных условиях хорошо растворяются в воде. Из этих пород наибольшее распространение и наименьшую растворимость имеет известняк. Он отличается от гипса и каменной соли еще и тем, что в результате его подземного растворения образуются полости, которые обычно обладают очень устойчивой кровлей. Проседание и обрушение — для известняков явления распространенные и всегда связанные с полостями. Каменная соль, напротив, — порода гораздо более хрупкая и к тому же лучше растворимая; она часто подвергается проседанию, но это редко бывает связано с наличием полостей. Гипс по этим" свойствам занимает промежуточное положение между известняком и каменной солью.

Легко растворимый в воде сульфат кальция образует два минерала, которые формируют мощные толщи пород, — гипс и ангидрит. Наиболее распространенной — гидратной — формой является гипс, а ангидрит представляет собой менее представительную — безводную — форму. Эти минеральные вещества входят в состав толщ, занимающих большие территории в Соединенных Штатах Америки, Западной Европе, Советском Союзе. Проседание в этих толщах нередко бывает связано с растворением. Кроме того, ангидрит гв контакте с грунтовой водой образует гипс, что влечет за собой большое увеличение объема материала; в свою очередь это вызывает сильное поднятие поверхности земли.

В течение многих лет в северо-западном Техасе раздавались взрывы, причиной которых было сильнейшее поднятие, связанное с расширением ангидрита. Затем, в сентябре 1955 г., около города Новика взрыв возвестил о вертикальном поднятии на 5,5 м блока грунта с поперечными размерами в несколько сотен метров; обломки почвы и породы взлетели в воздух, осколком ударило человека, находившегося на расстоянии около километра от места взрыва.

Однако более распространенным типом движения земли, связанного с растворением гипса, является проседание. Знаменитые Бездонные Озера Розуэлл на краю долины Пекос в штате Нью-Мексико представляют собой серию обрывистых, заполненных водой структур обрушения, образовавшихся в доисторическое время вследствие растворения гипсовой коренной породы. Самая крупная из этих структур достигает сейчас в поперечнике 90 м и в глубину 40 м. Сходное, но более позднее происхождение имеют разнообразные карстовые воронки в гипсовых отложениях гор Кутеней в Британской Колумбии. В 1967 г. на дне гипсового карьера в Уиндермире за одну ночь образовалась шахта с вертикальными стенками диаметром 20 м; к счастью, никакого вреда она не нанесла.

В Европе гипсовые отложения наиболее широко распространены в северной части ФРГ. Городок Бад-Франкенхаузен — один из пострадавших от проседания: многие постройки, стоящие над теми местами, где подстилающий гипс был растворен, наклонены или повернуты. Париж является, вероятно, одним из самых больших городов, затронутых проседанием; на окраинах Парижа в коренной породе постоянно образуются полости, что создает проблемы для инженеров.

Хотя хлорид натрия (каменная соль) не так широко распространен, как гипс, он гораздо более известен в связи с проседанием, поскольку его растворимость гораздо выше и опускание происходит в больших масштабах. В феврале 1954 г. в Виндзоре (Канада) неожиданно в результате обрушения образовалась пропасть; она имела в поперечнике 90 м, глубину 8 м и быстро наполнилась водой. Был нанесен большой ущерб, полностью разрушено два здания. Причиной обрушения послужило растворение подстилающей толщи соли, хотя, возможно, этому способствовали также проводившаяся неподалеку откачка соляного раствора и обрушение старых глубоких выработок.

Неожиданное обрушение в селе Рундж (северная Индия) в 1970 г. совершенно не связано с деятельностью человека. 21 ноября в начале ночи жители этого села были разбужены оглушительным грохотом, их дома вибрировали. Выбежав на улицу, люди обнаружили, что в середине поля, которое еще накануне вечером было покрыто бамбуком, образовалась глубокая зияющая яма шириной около 18 м и глубиной 12 м. Дно ямы было заполнено слоем обломков, толщина которого оказалась достаточной, чтобы завалить по самые верхушки бамбуковые посадки высотой 15 м. Село было построено на вулканических лавах, под которыми на глубине около 100 м залегал соляной пласт. Грунтовые воды, просачиваясь через соль в течение многих лет, растворяли ее, что привело к образованию большой полости, кровлей которой служили перекрывающие лавы. Постепенно пласт за пластом слои вулканических образований падали в пустоту, в конце концов обруше- ч ние достигло земной поверхности и поглотило бамбуковые посадки. Возможно, обрушение в Рундже является предвестником более крупных опасностей в будущем. Во всяком случае, в Канаде есть данные о гораздо более грандиозных обрушениях в геологическом прошлом. Прерии в провинции Саскачеван подстилаются обширными отложениями соли. Основная толща мощностью 120–200 м залегает на глубине больше 1,5 км. Растворение соли естественно циркулирующей грунтовой водой вызвало локальное обрушение перекрывающих пластов. Озеро" Кратер в 160 км к северо-востоку от города Реджайначлежит во впадине, образовавшейся в результате такого обрушения. Оно имеет форму почти правильного круга диаметром более 200 м, глубина его в связи с накоплением осадков сейчас составля т всего 150 м. Вокруг озера прослеживаются цилиндрические разломы с вертикальным сдвигом примерно на 60 м. Распределение поверхностных осадков показывает, что это движение осуществлялось в^ течение различных ледниковых периодов примерно миллион лет назад.

Еще более древним является проседание в Розтауне, в 160 км к юго-западу от города Саскатун; этот процесс, очевидно, доледниковый. Депрессия Розтаун заполнена ледниковыми отложениями, и в настоящее время никаких следов былого обрушения на земной поверхности усмотреть невозможно, однако масштабы его были гигантскими. Поверхность земли просела здесь на глубину свыше 900 м на участке с поперечными размерами более 19 км. При помощи глубоких скважин было показано, что соляные пласты, залегающие на глубине 1,5 км, как раз под территорией Розтауна отсутствуют, а в тех местах, где они должны были бы находиться, скважины вскрыли только массы обрушенной породы. 26 марта 1879 г. в Мид-Каунти (штат Канзас) в результате обрушения образовалась пропасть с крутыми стенками диаметром около 60 м. Следы телег, оставленные три недели назад, были отчетливо видны по обе стороны пропасти. Это еще один пример последствий подземного растворения соли. Той же причиной объясняется и ночное исчезновение железнодорожной станции Розел. Здесь яма, образовавшаяся в результате обрушения, имела глубину 20 м и площадь 4000 м2. Она сразу же заполнилась водой, и от железнодорожной станции, а также от нескольких зданий не осталось никаких следов. Эти два случая обрушения представляют собой чисто природные процессы; они чрезвычайно трудно поддаются предсказанию на основании каких-либо геологических данных. Гораздо более определенно можно ожидать обрушения, вызванного вмешательством человека, особенно откачиванием соленых грунтовых вод из пластов соли, однако и в этих случаях точное место возможного проседания указать трудно. Откачивание грунтовых вод при добыче нефти в районе озера Сауэр (штат Техас), несомненно, ускорило подземное растворение соли. Утром 9 октября 1929 г. произошло крупное обрушение. Оно началось с образования небольшого углубления, стенки которого затем стали проседать, и за 5 ч глуб на ямы достигла почти 30 м

Наиболее знаменитые случаи проседания связаны с добычей соли в графстве Чешир (Англия); они поистине катастрофичны. Чеширская равнина — это однообразная плоская территория, которая простирается примерно на 30 км между холмами северного Уэльса на западе и Пеннинскими горами на востоке. Отметки рельефа редко превышают 150 м. На равнине расположено множество небольших озер. Считают, что они представляют собой заполненные водой впадины, которые образовались вследствие проседания, вызванного растворением соли на глубине. Эти мелкие прогибы имеют ширину до 200 м и глубину до 10 м. Проседание и обрушение в этом районе регулярно отмечались начиная с 1533 г., когда произошло проседание в Комбермире. Соляные пласты впервые были открыты здесь в 1670 г. (в ходе поисков угля), и с тех пор стала развиваться соледобывающая промышленность, причем основные предприятия концентрировались вокруг городов Нортуич и Уинсфорд.

Поверхностные слои в районе города Нортуич представлены песками и плейстоценовыми валунными глинами ледникового или межледникового происхождения. Этот слой неконсолидированных осадков по мощности составляет в среднем около 15 м и полностью скрывает подстилающие кейперские мергели триасового возраста. Кейперский ярус мощностью около 1200 м сложен главным образом рыхлыми алевролитами, глинами, сланцами, песчаниками. Соль в этих породах приурочена к двум горизонтам, известным как Соленосные слои. Мощность верхних Соленос-ных слоев составляет более 300 м, а нижних — в среднем 200 м. Вся толща триасовых пород образует пологую синклинальную складку, погруженную к югу. Поскольку соль легко растворяется, Соленосные слои не обнаружены в зоне грунтовых вод непосредственно под плейстоценовым покрытием, здесь соль вымыта вплоть до глубины 75—140 м. Последующее обрушение этих отложений вызывает образование просадочных озер.

Все случаи проседания на Чеширской равнине непосредственно связаны с растворением пластов соли. Начиная с последнего отступления ледника, которое произошло примерно 10 000 лет назад, грунтовые воды текли по соляным пластам и выходили на поверхность в виде мощных соляных источников. Эти источники использовались для добычи соли еще со времен, предшествовавших Римской империи, однако в XVII веке с внедрением откачки рассолов они пересохли. Добыча соли из недр началась в 1682 г. Были вырыты, главным образом в XVIII и XIX столетиях, сотни небольших шахт. Эти шахты имели такую конструкцию, что их надо было бросать после совсем короткого периода эксплуатации. При этом для поддержки кровли нередко оставляли не более 10 % соли, что было явно недостаточно- и делало обрушение неизбежным. В XVII веке добычу вели и так называемым «диким способом», т. е. выкачиванием рассола — грунтовых вод, насыщенных солью. Вскоре было выяснено, что наиболее продуктивными оказались те скважины, которые вошли в природные потоки рассола, в кровлю соляных пластов вдоль линии проседания. Еще более богатой оказалась так называемая «вторичная добыча», которую стали практиковать с середины XIX века. Она заключается в откачке рассола из затопленных заброшенных выработок. Но, будучи очень выгодным для промышленников, этот метод вызывает быстрое разрушение тех немногих соляных целиков, которые были оставлены в шахте для поддержки кровли, что приводит к обрушению шахт.

Эти дешевые, но опасные методы добычи соли в настоящее время вытеснены более современными. Начиная с 1930 г. проводится контролируемая откачка рассола. Пресную воду нагнетают в сухую (и потому водонепроницаемую) каменную соль и затем откачивают образовавшийся рассол. Размер полости тщательно контролируется, утечка воды минимизируется продуманной системой расположения скважин. Когда полость достигает максимального допустимого размера, ее заполняют твердой пустой породой, например известковыми отходами близлежащих химических предприятий. Максимальное количество извлекаемой соли составляет всего 25 %, поэтому опасности проседания нет. Обрушений не бывает и в том случае, если при забойной добыче оставляют в качестве целиков по крайней мере 30 % соли, как это делается, например, с 1928 г. в копях Медоубэнк близ Уинсфорда. Не удивительно, что бесконтрольная разработка, проводившаяся в основном с 1780 по 1930 г., привела к наиболее обширным проседаниям и обрушениям. Отдельные шахты почти всегда были небольшими, и каждая из них действовала до тех пор, пока кровля не начинала проваливаться. Затем шахту оставляли, вскоре она заполнялась водой, которая подтачивала соляные столбы, что приводило к обрушению пород кровли и к проседанию поверхности земли над шахтой. Воронка обрушения в свою очередь заполнялась водой, что создавало дополнительную опасность для соседних шахт.

Самое позднее крупное проседание соляной разработки произошло в 1928 г. и повлекло за собой обрушение шахты Аделаида-Майн — последней действовавшей шахты в Нортуиче. Озера, образовавшиеся во впадинах проседания, называются в этой местности «провалами». Они являются непосредственным результатом неконтролируемой добычи. Провал Уиттон, образовавшийся в 90-х годах XVIII века в Нортуиче, и провалы Верхний и Нижний, появившиеся в 20-х годах XIX века в Уинсфорде, были самыми большими; площадь каждого из них более 4000 м2. Низкий рельеф местности способствовал их непрерывному расширению по мере откачки рассола. Особенные затруднения причинял провал Уиттон, поскольку он образовался в центре главного промышленного района того времени.

Подобные озера могут развиваться даже в нескольких километрах от места откачки. При этом максимальное растворение соли, очевидно, происходит там, где пресная вода впервые попадает в соляные пласты. Примером такого «отдаленного проседания» является процесс в районе Биллингс-Грин, где начиная с 1900 г. десятки гектаров сельскохозяйственных земель подверглись проседанию и затоплению; сильно пострадали и транспортные пути.

Проседание грунтов деформирует дренажные системы на соляных месторождениях и заставляет постоянно их ремонтировать. Проседанием было вызвано и обрушение набережной канала в Нортуиче 21 июля 1907 г.; при этом канал полностью пересох и многие баржи остались на мели. Железнодорожная линия между городами Кру и Ливерпуль была проложена в Уинсфорде в 1866 г. на уровне грунта, однако непрерывные оседания и соответствующее регулирование положения рельсов привели к тому, что к 1882 г. линия оказалась на насыпи высотой 9,2 м.

Во второй половине XIX века был сильно разрушен Данкерк — пригород Нортуича. Данкерк в то время являлся центром разработки соляных месторождений и откачки рассола.

К 1830 г. провал Уиттон уже вполне оформился и в него впадал ручей Уинчем. Дома, дороги, каналы и соляные выработки продолжали непрестанно разрушаться, и в 1880 г. эту местность описывали так: «Одни дома нависают над улицей на два фута, другие наклонены в сторону соседних домов и опрокидывают их. Участок длиной 1000 футов и такой же ширины быстро опустился на глубину 40 или 50 футов в средней своей части. Почти 400 домов и прочих сооружений общей стоимостью свыше 100 000 фунтов стерлингов более или менее серьезно повреждены в результате проседания грунта. Район катастроф с каждым годом разрастается».

Типичным примером проседания является пропасть Плэттс-Хилл на северной стороне Данкерка. Первый признак приближающейся катастрофы появился здесь 9 декабря 1892 г., когда уровень рассола в шахте Уиннингтон за ночь поднялся на 9 м и в течение следующих двух суток продолжал быстро возрастать. Очевидно, под землей происходили какие-то большие изменения. Было зарегистрировано дальнейшее повышение уровня рассола, а затем 26 мая 1893 г. вблизи местечка Уинчем-Роуд произошло проседание участка 27,5x4,6 м. Через 17 дней пропасть, развившаяся в результате проседания и известная теперь под названием Плэттс-Хилл, имела глубину 40,3 м и была затоплена. К осени 1894 г. пропасть еще больше увеличилась, по ее крутым стенкам сползал грунт, в провал продолжала поступать вода. Земля вокруг провала растрескалась, что вызвало повреждение близлежащих зданий. 28 июля 1896 г. пропасть Плэтсс-Хилл была измерена; оказалось, что ее диаметр составляет 87 м, а максимальная глубина 50,3 м; пропасть все еще росла. Повреждения дорог, зданий и соляных выработок в окрестности продолжались до осени 1897 г., когда провал постепенно перестал расширяться и стабилизировался.

Не таким типичным, но имеющим в основном то же происхождение и гораздо более ярким было Великое проседание, случившееся в Данкерке 6 декабря 1880 г. В 6 ч утра местные жители были разбужены сильным грохотом. Участок земли около 0,5 км в поперечнике начал трястись, то поднимаясь, то опускаясь. Из трещин в земле вырывался воздух. Наиболее впечатляющим это зрелище было у озера Эштонс-Олд-Рок, где струи грязевых фонтанов били вверх почти на 4 м. Очевидно, все эти явления были следствием массовых обрушений старых шахт и прорыва воды. Источник ее был впоследствии обнаружен: поперек течения ручья Уинчем образовалась громадная трещина, через которую вся вода ручья ушла под землю. В 9 ч на дне ручья возникла еще одна трещина, которая повредила часть близлежащих соляных выработок. В низовьях же ручья Уинчем направление течения сменилось на обратное, это привело к частичному осушению довольно большого озера.

Кроме того, значительная часть вод реки Уивер устремилась |в пропасть в земле. Народ собрался посмотреть, как от берега отваливаются куски и исчезают в пучине. В 4 ч дня в соседнем водоеме раздался сильный взрыв, и толпа бросилась врассыпную, ибо из-под земли забила струя грязи и воды на 9 м вверх. Очевидно, произошло еще одно обрушение, которое замедлило развитие первого, блокировав какой-то подземный канал. Водоворот ослабел. Часом позже на месте соляных разработок рухнула высокая труба, так как площадь проседания расширялась. В 6 ч вечера около скважины неожиданно осел кусок грунта диаметром 150 м, глубокие ямы поглотили две печи для обжига кирпича и несколько строений. На следующий день все уже было спокойно.

Можно заключить, что естественное растворение соли и последующее проседание в Чешире всегда будут создавать трудности, пусть даже относительно небольшие. Кое-что можно предусмотреть, например, где будет происходить естественное проседание, поскольку многие водные потоки в соляных пластах уже установились, а максимальное растворение наблюдается там, где пресная вода впервые проникает в соляной пласт. Многие соляные потоки текут вдоль простирания пластов к местам выхода на поверхность источников, и их движение может направляться структурой пластов каменной соли и существующими разломами. Там, где растворенные соляные пласты перекрываются плейстоценовыми песками, проседание грунта однородное и слабое; в местах же, где перекрывающими породами являются более твердые мергели, обрушения происходят довольно редко, однако они бывают более значительными, поскольку мергелевые пласты имеют ограниченную несущую способность.

Старые методы добычи, имевшие гибельные последствия в районе Нортуич, сейчас не применяются, поскольку нет возможности сделать их безопасными. Естественным растворением сейчас добывается в Чешире менее 10 % соли, и в будущем эта доля будет сокращаться. Комиссия по ликвидации проседания эффективно борется с порчей земли и повреждением строений, связанными с добычей соли. Образованная в 1891 г., эта комиссия получила достаточные полномочия только в 1952 г. В ее функции входят также консультации строительных предприятий по вопросам обвалов грунта и мерам предосторожности против этой опасности. Приятно отметить, что деятельность комиссии сокращается, поскольку человеческих жертв нет уже с 1939 г., а способы добычи не вызывают опасного проседания. Сейчас соль разрабатывается безопасным путем. Уроки бесконтрольной добычи были усвоены.

 

Проседание в неконсолидированных осадках

Уплотнение — это естественный процесс, при котором осадки уменьшаются по объему, что чаще всего происходит вследствие давления перекрывающих осадочных слоев. Большинство осадочных пород отлагается в воде, и уплотнение — это часть процесса превращения их в твердую породу. Следует отметить, что геологи называют это уменьшение первоначального объема уплотнением, тогда как инженеры-строители называют его консолидацией. Отсюда и происходит термин «неконсолидированные осадки», обозначающий рыхлые, крошащиеся и еще не уплотненные породы. Для инженеров термин «уплотнение» относится к искусственным методам, таким как трамбовка или вибрация, вызывающим сокращение объема, называемое ими консолидацией. В последующих разделах термин «уплотнение» будет использоваться в геологическом смысле этого слова.

Экстремальный случай уплотнения касается породы растительного происхождения — торфа. Определить уплотнение торфа сложно, так как этот процесс может продолжаться миллионы лет, до тех пор пока торф в конце концов не превратится в уголь. Можно считать, что торф уплотняется более чем в 10 раз относительно своего первоначального объема. Большая часть этого сокращения связана с удалением воды, что лежит в основе уплотнения большинства осадков. Следовательно, уплотнение торфа может сильно зависеть от деятельности человека. Район Фенланд к югу от залива Уош в восточной Англии являет собой классический пример уплотнения торфа и проседания, связанного с осушением (поскольку торфяники создают очень плодородную землю). В 1848 г. в лежащий ниже торфа слой была поставлена железная труба, по положению которой можно судить о погружении поверхностных слоев. К 1932 г. земля осела более чем на 2,5 м, а мощность торфяного слоя сократилась почти на 4,5 м. Уплотнение на 56 % произошло менее чем за 100 лет. В 1848 г. нижние слои торфа уже были значительно уплотнены под влиянием веса перекрывающих пород, уплотнение продолжается и в настоящее время.

Если из торфа удалена вода, то идет дальнейшее сокращение объема, связанное с потерей материала при окислении. В маломощных слоях торфа это может в конце концов привести к непригодности их для сельскохозяйственного использования из-за недостаточной мощности. В США есть примеры проседания торфа, особенно на Флоридской низменности. Здесь уровень грунта при культивации падает примерно на 30 см за 10 лет. При этом участки максимального проседания примыкают к осушительным каналам. Дельта реки Сакраменто в Калифорнии представляет собой обширный торфяной район, который осушался в сельскохозяйственных целях. Вследствие этого местность опустилась ниже уровня моря, и при возникновении проломов в искусственных речных дамбах происходят грандиозные наводнения.

Торф является не единственным материалом, который так сильно уплотняется. Голландские инженеры при осушении земель, ранее покрытых морем, обнаружили, что глины уплотнились на 25–50 % в зависимости от размера зерен и содержания алеврита. Глины по сравнению с торфом сокращаются в объеме в меньшей степени, кроме того, это не связано с химическими изменениями. Поэтому последствия процесса легче предсказать. Собор Темпль в городе Бристоль (Англия) был построен в XIV–XV веках, когда геологические условия установки фундамента еще были неизвестны. Возведенный на влажном грунте аллювия реки Эйвон, он имел шансы устоять. Сейчас башня собора отклонена на 1 м 22 см от первоначального положения, но все еще стоит. В более просвещенные времена, т. е. недавно, в городе Ноттингем (Англия) было построено промышленное предприятие на похожем с геологической точки зрения месте — на аллювии реки Трент. Были приняты во внимание и учтены уплотнение и просадка, и сооруженные заводские корпуса осели с очень небольшими деформациями. Зато возникла дополнительная проблема — наклон флигелей, расположенных в сфере оседания, вызванного большими зданиями.

Можно рассмотреть еще случай со строительством зернового элеватора в центральной Канаде между 1911 и 1913 г. Он был возведен на тонкозернистых алевритистых глинах озерно-ледни-кового происхождения. Бетонный фундамент на ростверке размещался в котловине глубиной 3,5 м. Испытания показали, что глина на этой глубине может выдержать необходимую нагрузку. Но когда в октябре 1913 г. впервые был засыпан зерновой силос, элеватор сразу осел на 30 см и в течение 24 ч отклонился на 26° от вертикали. К счастью, бетонная конструкция не была сильно повреждена. Впоследствии обнаружилось, что под верхними достаточно прочными слоями глины на глубине около 10 м залегали более сырые и гораздо менее надежные породы. Именно эти породы не были проверены заранее и осели под нагрузкой. Потом элеватор был выпрямлен, а его фундамент помещен на глубину 16 м, где подстилающей породой служил твердый песчаник. Элеватор функционирует до сих пор.

Дельты являются районами активного осадконакопления, где проседание происходит не только в результате уплотнения самих осадков, но и вследствие других причин. Дельта реки Миссисипи в Соединенных Штатах активно изучалась, было рассчитано, что уплотнение осадков обусловливает проседание в среднем на 9 см за 100 лет. Кроме уплотнения имеет место опускание пород земной коры, связанное с нагрузкой дельтовыми осадками, оно составляет 2 см за 100 лет. Одновременно происходит повсеместное повышение уровня моря на 9,8 см за 100 лет, которое затрагивает и дельту. Амплитуды проседания приведены усредненные, и если учитывать местные вариации, зависящие от типа осадков, то перспективы положения уровня дельтовой области кажутся весьма неясными. Город Бэйлайз на Луизианской стороне дельты был оставлен жителями в 1888 г. во время эпидемии лихорадки, а через 50 лет улицы города оказались на 1 м 22 см покрытыми водой.

Тогда как удаление воды является главной причиной уплотнения одних осадков, привнос воды может вызвать сходные результаты в некоторых других осадках. Лёсс представляет собой эоловые алевритовые отложения, которые встречаются в разных концах света. Когда лёсс впервые намокает, он подвергается гидре» уплотнению, сопровождающемуся значительным сокращением объема. Если при ирригационных работах в аридных или полуаридных зонах встречается лёсс, возникают сложности. Район, расположенный к западу от города Фресно, в Центральной Калифорнийской долине, испытал обширное проседание вследствие гидроуплотнения. Ирригационные каналы поставляли в этот район воду, земля намокала, и результатом этого стала просадка на 5 м с повреждением зданий, дорог, трубопроводов, скважин и, наконец, самих каналов. В последнее время найдено решение этой проблемы: земля затопляется водой заранее, чтобы гидроуплотнение произошло до того, как канал будет построен.

Справедливо было бы отметить, что слабые просадки не являются помехой для строительства, особенно в тех случаях, когда оно ведется не в прибрежных, а во внутриконтинентальных районах. Однако проседание таит в себе серьезную опасность, если оно неоднородно для одного и того же строения, что может быть обусловлено разной степенью уплотнения грунтовых материалов. Ряд домов, построенных вдоль одной улицы в Ноттингеме (Англия) в начале XX века, — яркий пример этого явления. Через много лет после того как эти дома были возведены, одна из стен последнего дома так сильно осела, что жителям пришлось покинуть его. В поисках причины проседания исследователи обнаружили старинную карту, которая была составлена задолго цо строительства осевших домов. На ней был показан небольшой карьер, край которого лежал как раз под поврежденным домом. Позднее карьер, вероятно, был засыпан бытовыми отбросами, и на поверхности от него не осталось никаких следов. Проектировщики домов не сделали ни малейшей попытки исследовать место застройки и даже не проверили имеющиеся документы и карты. Поэтому дом, одна сторона которого стояла на твердой породе, другая — на уплотненном мусоре, был обречен.

Наклонение и повреждение строений может быть обусловлено не только разной степенью уплотненности их основания, как это было в Ноттингеме, но и другими причинами. Любое здание, построенное на мягкой и пластичной глине, находится в неустойчивом равновесии, и даже самое слабое нарушение этого равновесия повлечет за собой осадку здания. Падающая Пизанская башня, привлекающая множество туристов, фигурирует во всех работах по оседанию грунта. Древний город Пиза был построен на широкой плоской равнине, лежащей почти на уровне моря; над городом возвышаются хребты Апеннин. Хотя плоский рельеф и был благоприятен для строительства, однако рыхлые осадки, из которых сложена равнина, а также инженерно-геологические условия закладки фундамента надо считать крайне неподходящими для любой крупной постройки.

Падающая Пизанская башня представляет собой колокольню, пристроенную к собору. Главное здание собора, сооруженное в XI веке, пострадало от проседания, которое произошло вскоре после того как строительство его было закончено. Однако собор наклонился незначительно, поскольку высота и ширина его различались ненамного. Возведение колокольни началось веком позже, в 1173 г. Через несколько лет, когда были готовы три этажа, башня уже наклонилась так сильно, что архитектор остановил строительство и покинул Пизу. Поскольку вес башни теперь не возрастал, она стабилизировалась и движение прекратилось, так что в 1275 г. другой архитектор решил продолжить строительство, ликвидировав наклон добавлением лишних слоев каменной кладки по осевшей стороне, другими словами, башне был искусственно придан изгиб. Однако башня продолжала наклоняться. Ее постройка закончилась только в 1350 г., после того как за работу взялся третий архитектор и на оседающую стену было добавлено еще несколько слоев кладки. С тех пор башня непрерывно продолжает наклоняться, и на сегодняшний день она отстоит от вертикали более чем на 5 м.

Движение, которому подверглась Пизанская башня, определяется техническим термином «неравномерная осадка». Общая осадка башни составляет около 2 м; чтобы попасть в ее входную дверь, надо спуститься по ступенькам, ведущим вниз. Но 2 м — это средняя цифра. В связи с наклоном южная сторона башни осела примерно на 3 м, а северная — на 1 м. Неодинаковая осадка первоначально была связана с небольшими изменениями в подстилающих отложениях. Когда появился наклон, сдвиг центра тяжести башни создал вращающий здание момент, который возрастает с увеличением наклона. Непосредственно под поверхностью земли залегает слой алевритов и глин плиоценового возраста. Этот слой мощностью 4,6 м очень пластичен и легко поддается сжатию. Простое лабораторное испытание этих осадков на физическую прочность сразу же позволило бы предсказать их уплотнение и осадку под действием веса башни. Фундамент башни состоял всего-навсего из кольцеобразной каменной кладки диаметром около 18 м, заложенной на 1,5 м ниже уровня земной поверхности. Башня поднимается на 55 м, т. е. ее высота в 3 раза превышает ширину основания. Если такую конструкцию установить на очень мягких алеврите и глине, то наклон неизбежен.

Поверхностный слой под башней постепенно переходит в слой песка, залегающий в интервале между 4,6 и 9,2 м. Песок, в сущности, не поддается сжатию, и он гораздо менее подвижен, чем глино-алевритовые пласты. Хотя песок и не является идеальным фундаментом, он почти наверняка играет положительную роль в сдерживании скорости осадки и сохранении относительно небольшого угла наклона башни. Можно даже предполагать, что 3-метровый слой глин и алевритов, залегающий между фундаментом башни и песком, к настоящему времени стал прочнее в связи с осушением при медленном уплотнении под нагрузкой. Этим и объясняется, почему башня все еще стоит вот уже в течение 700 лет. Однако слой песка, залегающий на глубине примерно 5—10 м, содержит тонкие глинистые и алевритовые зоны, которые становятся мощнее по направлению к югу. Их сильная подверженность сжатию объясняет первоначальный наклон башни. К тому же под слоем песка залегает более мягкая пластичная глина, прослеживающаяся до глубины 40 м, где она^подстилается горизонтомплот-ных песков. Движения в глино-алевритовом, песчаном и глинистом слоях могут начаться в любой момент, и тогда наклон башни должен увеличиться.

Что же ждет знаменитую Пизанскую башню? Она вполне может быть зафиксирована в ее теперешнем положении путем подведения фундаментов и закрепления их на слое песка, лежащем на глубине 39,7 м. Уже было испробовано впрыскивание жидкого цементного раствора в подстилающие осадки, однако это не дало заметных результатов. Надо искать какое-то другое смелое решение, причем необходимо учитывать тот факт, что работать придется под такой слабоуравновешенной постройкой. Предложен ряд проектов укрепления башни. При благоприятном стечении обстоятельств они будут успешно проведены в жизнь, в противном случае Пизанская башня сможет продержаться еще примерно столетие.

 

Проседание при удалении грунтовых жидкостей

Уплотнение рыхлых осадков, ведущее к проседанию грунта, почти невозможно предотвратить, если нагрузка, оказываемая на материал, обусловливается крупным строением. В большинстве случаев такое уплотнение сопровождается удалением воды из пор под давлением. Песок фактически не поддается сжатию, и вода из него вытесняется с трудом. Однако если межзерновая вода откачивается из песка и соседствующих с ним глинисто-алевритовых отложений, то падение гидростатического давления может повлечь за собой значительное уплотнение и последующие сдвиги грунта. Поскольку пески, особенно их несцементированные или слабо консолидированные разновидности, представляют собой высокопродуктивные водоносные горизонты, то грунтовые воды всегда активно откачивались из них. Во многих случаях это сильно влияло на состояние земной поверхности.

В долине Сан-Хоакин в центральной Калифорнии выпадает очень мало осадков. Интенсивное сельское хозяйство в этом районе обязано своим существованием ирригационным водам, большая часть которых откачивалась из осадков, подстилающих долину. Это были пески и грубозернистые алевриты, мощность которых местами превышала 600 м. Из этих пород в течение XX века активно извлекались воды, и в результате произошло проседание грунта, затронувшее площадь в несколько сотен квадратных километров, максимальная глубина просадки составила более 8 м. При понижении артезианского напора на 6–9 м грунт оседал на 30 см. Поскольку долина Сан-Хоакин — это район сельскохозяйственных земель, такое опускание, хотя оно и сопровождалось даже образованием трещин в грунте, не повлекло за собой катастрофических последствий. Забавно, что основное повреждение в долине Сан-Хоакин было нанесено ирригационным системам, которые сами и явились его причиной. Движение грунта разрушило многие скважины (ремонт скважины обходится до 1 млн. долл. в год), и ирригационные каналы с их очень низкими перепадами постоянно надо было восстанавливать. Чтобы прокладывать каналы через осевшие районы, не затопляя их, необходимо создавать длинные насыпи. Очевидно, единственным способом борьбы с проседанием в долине Сан-Хоакин является прекращение откачки грунтовых вод. Частичная их замена водами, которые подаются с гор, позволила значительно снизить скорость проседания грунта.

Подобное проседание в городских районах, особенно в тех, которые находятся почти на уровне моря, может иметь гораздо более разрушительные последствия. Так, значительная часть Токио пострадала от проседания, происходившего со скоростью 15 см в год в связи с извлечением воды из подстилающего горизонта алевритов. Многие крупные здания Токио были построены на более глубоко залегающих слоях плотной породы, поэтому создавалось впечатление, что они поднимаются, в то время как окружающая поверхность оседает. Движение было таким сильным, что к 1961 г. площадь около 40 км2 на окраине Токио оказалась ниже уровня моря. Эти районы пришлось защищать большими и дорогостоящими дамбами.

Сходные проблемы возникают и в Китае, например в городе Шанхай. Под Шанхаем залегают неконсолидированные осадки мощностью 300 м, содержащие большое число водоносных горизонтов, из которых выкачивается вода. Общая глубина просадки в районе судостроительной верфи за период между 1921 и 1973 г. составила 2,5 м. Участившиеся здесь случаи затопления вызвали попытки сократить скорость проседания. Так, проводилась закачка воды обратно в скважины во время влажных сезонов. Это делалось для поддержания уровня грунтовых вод в период сухих сезонов, когда грунтовые воды приходится откачивать.

При извлечении грунтовых вод просадке подвергаются не только пески и алевриты. Например, в Лондоне вода интенсивно откачивалась из мела, на котором стоит город, и в результате артезианский напор упал на десятки и даже сотни метров. Падение давления поровых вод в перекрывающих мел глинах Лондон-Клей вызвало проседание около 30 см. К счастью, этого недостаточно, чтобы повлечь за собой значительные последствия.

Проседание района вокруг города Саванна (штат Джорджия) происходит вследствие откачки вод из толщ известняка. Большинство известняков, даже если они трещиноватые и содержат водоносные горизонты, достаточно прочны, чтобы выдержать любую нагрузку. Однако третичные известняки Окала под Саванной являются исключением: они очень пористые, слабо консолидированные и при уменьшении давления поровых вод уплотняются. Очень серьезному проседанию подвергся также район между городами Хьюстон и Галвестон (штат Техас), расположенный западнее Саванны. Начавшись в 1943 г., проседание к 1961 г. местами достигало полутора метров; этот процесс продолжается в настоящее время со скоростью 7,5 см в год.

Проседание чаще всего бывает связано с извлечением воды из песчаных водоносных горизонтов, но иногда оно может быть вызвано откачкой из толщ проницаемых осадков другой жидкости — нефти или каких-либо растворов. Например, город Ниигата в Японии подвергся катастрофическому проседанию и местами опустился ниже уровня моря вследствие извлечения- соляных растворов, содержащих метан. Нефть является второй по значению после воды причиной проседания. Яркий тому пример — опускание в Лос-Анджелесе.

Портовый район Лонг-Бич на юге Лос-Анджелеса расположен непосредственно над месторождениями нефти Уилмингтон, находящимися в частном владении. Из небольшого купола в толще осадков мощностью около 180 м в значительных количествах откачивались как нефть, так и вода. Результатом этого явилось образование чаши проседания эллиптической формы, имевшей в поперечнике почти 10 км и повторявшей очертания лежащей под ней геологической структуры. В центре этой чаши вертикальное опускание за период с 1928 по 1971 г. достигло 9 м. Горизонтальное движение по краям чаши местами составило 3 м. Возмещение убытков, нанесенных городу, превысило 100 млн. долл. Наиболее пострадавшей оказалась морскчя судоверфь, большая часть которой сейчас находится ниже уровня моря и окружена высокими бетонными стенами. Эти стены приходится постоянно надстраивать, иначе море зальет верфь.

К 1957 г. ситуация в районе Лонг-Бич стала настолько опасной, что Министерство юстиции США запретило эксплуатацию здесь нефтяных скважин. Был предложен проект, согласно которому следовало закачать миллионы литров воды обратно в грунт по 200 скважинам. Эта процедура должна была не только восстановить давление воды в осадках и тем самым прекратить проседание, но и увеличить напор нефти в других, еще используемых скважинах. Действительно, нагнетание воды является стандартным методом повышения продуктивности нефтяного месторождения, хотя в данном случае оно рассматривалось лишь в качестве побочного эффекта. Работы прошли настолько успешно, что к 1963 г. проседание было в значительной степени остановлено, а в некоторых местах даже скомпенсировано. Надо отметить, что положительный эффект был достигнут в относительно простой ситуации, вообще же возможность полного восстановления уровня, существовавшего до проседания, ничтожна и требует предусмо-трения многих факторов.

К сожалению, закачка воды не разрешает проблемы проседания того типа, который существует и по сей день в городах Венеция и Мехико.

Венеции — всемирно известному городу, представляющему собой настоящее произведение искусства, — угрожает реальная опасность разрушения, поскольку она постоянно опускается ниже уровня моря. Венеция была заложена более 1300 лет назад. Город находится почти в центре большой лагуны, длина которой 56 км, ширима 10 км. Лагуна' отделена от Адриатического моря длинным рядом песчаных валов, которые еще в XVIII веке были укреплены дамбами. При этом были оставлены три пролива, открывающиеся в лагуну.

Венеция давно страдает от проседания. В 1902 г. обрушилась, превратившись в груду камней, колокольня собора Святого Марка. Столь полному разрушению подверглись немногие здания, но постепенно опускается большинство строений, поскольку весь город оседает. Примерно 70 % площади города в настоящее время находится на высоте чуть больше метра над средним уровнем моря, и эта территория часто подвергается затоплению. Наводнения, называемые здесь «аква альта» («высокая вода»), обусловлены совместными действиями ветра, прилива, резких колебаний уровня Адриатического моря, осадков и пониженного атмосферного давления. Самая ужасная «аква альта» отмечалась в 1966 г., когда ущерб, нанесенный городу, был оценен в 30 млн. фунтов стерлингов. Наводнения становятся все более частыми. Если на рубеже XIX и XX веков они происходили в среднем каждые пять лет, то к 1930 г. стали повторяться ежегодно, а начиная с 1960 г. — даже трижды в год. Затопление площади Святого Марка сейчас уже надо считать событием предрешенным.

Здания Венеции были построены на деревянных сваях, погруженных в дно мелководных частей лагуны. Отложения, подстилающие лагуну, представляют собой неконсолидированные материалы четвертичного возраста мощностью около 800 м, под которыми залегают еще менее плотные осадки, датированные плиоценом. Четвертичные отложения примерно на 50 % состоят из песков, на 35 % — из алевритов и на 15 % — из алевритовых глин. При таком фундаменте в морских дельтовых условиях следует ожидать проседания. В Венеции же есть множество предпосылок для этого.

Археологические исследования показали, что проседание лагунной зоны в доисторические времена местами достигало 6 м, а с древнеримских времен составило 2–3 м. Таким образом, среднее проседание в древности равнялось примерно 1 см в год — такова скорость, ожидаемая в любом дельтовом районе, где идет аккумуляция осадков. Главная дельта реки По расположена несколько южнее Венеции, и осадконакопление в этом районе вызывает изгибание слоев коренных пород под нагрузкой аккумулированных осадков. Поскольку четвертичные отложения мощностью около 800 м имеют мелководное происхождение, опускание фундамента за этот период составило, по-видимому, также около 800 м. В то же время должно было осуществляться уплотнение осадков, однако лабораторные исследования керна скважин, пробуренных под Венецией, показали, что такое первичное уплотнение существенной роли в проседании города не играет.

В XX веке скорость проседания катастрофически возросла, как показывают следующие данные о среднем опускании в год: 1926–1942 гг. — 0,23 см; 1943–1952 гг. — 0,35 см; 1953–1961 гг. — 0,50 см. Очевидно, появились какие-то новые факторы, и самым главным из них надо считать откачку грунтовых вод. Венеция всегда снабжалась водой, извлекаемой через неглубокие скважины из многочисленных водоносных горизонтов в четвертичных отложениях. Однако с начала нашего века потребность в воде существенно возросла. Начиная с 1930 г. промышленным предприятием в городе Маргера (западнее Венеции) в подстилающих лагуну осадках было пробурено более 7000 скважин. Активная откачка понизила гидростатический напор под Маргерой более чем на 18 м, а под Венецией — более чем на 7,5 м. Наибольшее уплотнение осадков произошло в интервале между глубинами 100 и 300 м, а большинство скважин в Маргере откачивали воду из водоносных горизонтов, залегающих на глубине от 200 до 300 м. К счастью для Венеции, удаление грунтовых вод не привело к слишком сильному уплотнению осадков и проседание составляет в среднем около 1,5 см на каждый метр падения артезианского напора. Для сравнения можно отметить, что в Центральной Калифорнийской долине отмечена скорость опускания в 6 раз больше, а оседание в Мехико составляет 15 см на каждый метр падения артезианского напора.

Имеются и другие факторы, обусловливающие постоянное опускание Венеции. Большую нагрузку на осадки вызвала интенсивная застройка лагунного района, развернувшаяся в XX веке. Кроме того, начиная с 1935 г. из четвертичных отложений, залегающих под дельтой реки По, добывался природный газ, пока в 1955 г. добыча его не была запрещена из-за проседания. Однако недавно было высказано предположение, что извлечение газа вызывало проседание только в районе, расположенном гораздо южнее самой Венеции.

Ко всем известным разнообразным типам проседания суши надо добавить еще повышение уровня моря. Этот процесс, происходящий во всем мире, связан с постепенным таянием полярных льдов вследствие постоянного повышения средней температуры на Земле. Подъем уровня моря эквивалентен опусканию суши на 1,5 см в столетие.

Таким образом, опускание Венеции происходит как в результате естественных процессов, так и вследствие действия гораздо более сильного фактора — извлечения воды. Последнее влияние, безусловно, может быть предотвращено. Однако только гигантское разрушительное наводнение 1966 г. подвигнуло правительство к действиям. В 1973 г. было отпущено более 200 млн. фунтов стерлингов на защитные сооружения. Другим важным результатом действий правительства было запрещение откачивать воды из горизонтов под Маргерой. Был построен акведук, подающий воду из реки Силь, протекающей к северу от города. Благодаря этому гидростатическое давление в осадках, залегающих под Венецией, стало повышаться, а проседание зи последние несколько лет значительно сократилось, но оно не остановилось, поскольку природные процессы продолжают развиваться.

Из многих выдвинутых предложений по спасению Венеции выделяются два проекта.

Один из них заключается з том, чтобы установить огромные плавучие плотины в каналах между лагуной и Адриатическим морем. При наводнении эти плотины можно закрепить и тем самым отвратить повышение уровня воды в городе. Единственным недостатком этого проекта является резкое сокращение приливно-отливной очистки каналов Венеции, что до настоящего времени спаслло город от засорения отбросами, которые просто спускаются в каналы. Поэтому в стоимость этого проекта должны входить расходы на сооружение современной очистной системы для всего города. Надо отметить, что этот план направлен на защиту от воды, а не на предотвращение проседания, которое в будущем потребует все более частого закрытия плотин, т. е. возможной изоляции лагуны.

Другой, более смелый, проект предусматривает фактическое приподнятие всего города. В дно лагуны предлагается врыть стену глубиной около 100 м и длиной 13 км, которая полностью окружала бы город. Она должна изолировать водоносные, горизонты в песчаных осадках, залегающих непосредственно под городом, от их продолжений под остальной частью лагуны, поскольку песчаные пласты, по существу, горизонтальны и подстилаются водонепроницаемыми глинами. Затем воду следует накачивать обратно в водоносные горизонты, что повысит давление поровых вод. В результате город приподнимется, поскольку осадки снова расширятся, по крайней мере до своего прежнего объема. Правда, могут возникнуть определенные трудности; например, замедление движения грунта при трении о стену может обусловить куполообразное выгибание территории города. Однако этот план все же дает лучшее решение проблемы, чем первый, и опыт Лос-Анджелеса по закачке воды показывает, что такой проект может сработать. Если же этого не произойдет, Венеция будет медленно опускаться до тех пор, пока совсем не исчезнет под водами своей знаменитой лагуны.

Город Мехико расположен весьма живописно: он раскинулся в широкой котловине с плоским дном на 2257 м выше уровня моря и окружен горами. Котловина имеет длину более 80 км и среднюю ширину 24 км. Она пересекается множеством небольших речек. Плоская форма дна котловины обусловлена мощным слоем подстилающих осадков, представленных грубозернистыми песками, перекрытыми тонкозернистыми глинами. Геологический разрез этого района имеет следующее строение.

Нижняя пачка песков и галечников прослеживается до глубины 500 м; ее обломочный материал представлен главным образом вулканическими андезитами. Эти отложения являются высокопродуктивным водоносным горизонтом. Залегающие выше две мощные пачки верхнеплейстоценовых глин сходны между собой; они представлены бентонитами, т. е. состоят главным образом из монтмориллонита с небольшой примесью других глинистых минералов, а также глинистых алевритов. Хотя все глинистые минералы имеют некоторую способность удерживать воду благодаря слабым электрическим связям, монтмориллонит проявляет это свойство сильнее всех. При увеличении в тысячи раз под электронным микроскопом можно видеть, что кристаллическая структура монтмориллонита состоит из полых трубочек, похожих на макароны, которые и придают монтмориллониту способность абсорбировать воду.

Верхний слой глины имеет среднюю пористость 88 %, а нижний — около 82 %. Другими словами, 88 % (или 7/8) верхнего слоя мягкой глины — это вода, и только 12 % —твердый минеральный материал. Тот факт, что вода в глинистых минералах связана (хотя и очень слабо), означает, что этот материал представляет собой не просто жидкую грязь, а является очень мягким, пластичным веществом. На такой породе не следовало бы строить большой город. К сожалению, все это стало известно через много лет после того, как город Мехико был построен.

Проседание Мехико впервые было отмечено в XIX веке; в это время как раз была усилена откачка воды из скважин, пройденных в высокопродуктивных песчаных водоносных горизонтах, залегающих ниже 50-метровой отметки. К 1959 г. часть города осела на 4 м, максимальное проседание составило 7,6 м. Скорость опускания в настоящее время заметно увеличилась, поскольку город растет, а следовательно, растет и откачка воды. С 1898 по 1938 г. ежегодное проседание в среднем составляло 4 см, за следующие 10 лет оно увеличилось до 15 см, в период 1948–1952 гг. достигло 30,5 см, а местами даже превысило 60 см. К 1948 г. стало ясно, что причиной проседания Мехико является добыча воды, но еще многие годы после этого существовало более 3000 скважин, поивших растущий город и одновременно подтачивавших его фундамент.

Артезианский напор в главных водоносных горизонтах до выкачивания воды располагался примерно на уровне поверхности грунта, в конце 50-х годов XX века он понизился на 20–30 м. Очевидно, падение гидростатического давления в песках и галечниках произошло очень быстро, но при крайне низкой проницаемости перекрывающих слоев глины вода через них просачивалась очень медленно. Это связывание воды глиной в данном случае имело благоприятные последствия, поскольку оно замедлило общее падение давления и, следовательно, проседание грунта. В результате проседания многие обсадные трубы скважин вышли на поверхность. Так, одна из скважин, пробуренная до глубины 90 м, была остановлена, причем ее обсадная труба находилась на уровне поверхности земли. К 1954 г. этот район опустился на 6 м, а обсадная труба выступила из грунта на 5,5 м. Это ясно показывает, что почти все проседание было обусловлено уплотнением верхних 90 метров осадков.

К сожалению, выход обсадных труб на земную поверхность — не единственное последствие проседания Мехико. Были повреждены здания, сильно пострадали водопровод и осушительные каналы, особенно в тех местах, где шло неоднородное проседание, вызванное разной нагрузкой. Пожалуй, самым печальным последствием проседания было повреждение великолепного Дворца изящных искусств, находящегося в самом центре города. Строительство дворца началось в 1904 г. и было закончено только в 1934 г. Если фундаментом служила бетонная площадка толщиной 3 м, верхняя часть которой находилась на уровне поверхности земли. Еще до того момента, когда началось строительство, бетонный настил заметно прогнулся посредине и во время возведения здания он все больше проседал, погружаясь в землю. К 1908 г. частично построенное здание опустилось более чем на 1,5 м, а через два года в фундаменте появилась трещина. В 1910 г. была сделана попытка стабилизировать дворец, и в подстилающий слой глины было залито в виде жидкого раствора 70 000 мешков цемента. Однако мелкозернистая структура глины не позволяла раствору распределиться однородно, и вместо цементирования и стабилизации произошло следующее: цементный раствор осел в виде сгустков и сообщил дополнительную нагрузку на глину, что, вероятно, ускорило дальнейшее проседание.

Через 5 лет вокруг дворца были забиты стальные сваи, так как предполагали, что опускание обусловлено боковым смещением глины под влиянием нагрузки. Однако эти меры тоже оказались бесплодными, ведь глина не съехала, а просто уплотнилась вследствие просачивания воды вниз. Несмотря на это строительство продолжалось, и уже возведенный дворец все больше погружался в землю. Сейчас он опустился более чем на 3 м ниже уровня окружающих улиц. Неоднородность проседания обусловлена гигантским весом дворца. Чтобы попасть на его первый этаж, надо спуститься по ступеням, ведущим вниз. Более легкие дверные арки погрузились меньше и поэтому оторвались от главного здания. Проезжие части окружающих дворец улиц растрескались и приобрели наклон по направлению к дворцу.

Подведение соответствующих несущих конструкций, опирающихся на песчаные породы, залегающие на глубине 33,6 м, быстро остановило бы проседание Дворца изящных искусств. Этот инженерный проект вполне осуществим. Забивка глубоких свай применялась при постройке многих современных зданий в городе. Но эти сваи, как и обсадные трубы скважин, со временем начинают выступать над поверхностью земли — по мере того, как продолжается проседание окружающих улиц. Поэтому такой способ не дает в Мехико полного решения проблемы. Необходимо остановить проседание, ликвидировав его причину, а для этого надо сократить откачку вод. В 1952 г. начали подводить воду к городу, извлечение грунтовых вод было остановлено, а на следующий год стали закачивать воду обратно в обезвоженные, ранее водоносные горизонты. В результате к 1974 г. проседание города уменьшилось до 2,5 см в год, что уже вполне приемлемо. Прекрасным образцом инженерного решения проблемы борьбы с проседанием грунтов является Латиноамериканская башня. Это 43-этажное административное здание, построенное в 1951 г., было установлено на сваях, которые на 34 м погружены в грунт и достигают толщи песчаника. В окружающем здание районе вода из глин не откачивается, и породы поэтому не испытывают дополнительного уплотнения. Латиноамериканская башня расположена всего в одном квартале от Дворца изящных искусств, однако вход в нее соответствует уровню земли.

 

Проседание и обрушение в кавернозных известняках

Известняк известен тем, что эта порода часто содержит полости. Такие совершенно открытые пустоты представляют реальную опасность для стабильности земной поверхности. Когда слои породы, лежащие над полостью, обрушиваются, это вызывает проседание, обычно резкое — в противоположность медленной осадке, обусловленной проседанием пластичных отложений. С другой стороны, известняк обычно бывает очень прочным (его часто используют как строительный материал), и поэтому он способен образовывать своды даже над довольно большими пустотами (естественные полости могут иметь диаметр до 250 м). Кровля полости характеризуется тенденцией к частичному обрушению, пока не достигнет стабильной куполообразной формы. Большие камеры имеют ответвления и коридоры гораздо меньшего размера. Подземное обрушение даже в непрочных, сильнотрещиноватых известняках обычно происходит локализованно и в небольших масштабах.

Сочетание таких свойств, как прочность известняка, замедленность процессов растворения породы и ограниченный размер большинства полостей, делает обрушение их кровли сравнительно редким событием. В центральной части штата Флорида, где имеются обширные залежи известняка, несколько лет назад произошло обрушение полости. Внезапно, за одну ночь в открытой местности образовалась пропасть с отвесными стенами глубиной 30 м и диаметром около 34 м. Ее появление, вероятно, было обусловлено обрушением маломощной кровли над полостью довольно значительных размеров. Мел — тонкозернистая разновидность известняковых пород, обладающая малой прочностью. Мел подстилает обширные площади в южной Англии и северной Франции. Во Франции, недалеко от города Труа, в конце 60-х годов в результате обрушения меловых отложений образовался провал глубиной 15 м и диаметром 9 м.

Хотя большинство случаев обрушения известняков имело гораздо меньший масштаб, кавернозные породы представляют потенциальную опасность для построек. В 1956 г. в Пен-Парке города Бристоль (Англия) было предложено построить школу. В местных исторических документах упоминалось о большой пещере с вертикальным входом, который был закрыт веком раньше, после того как в нее свалился и разбился человек. Утверждалось, что кровля пещеры находится на глубине 6 м от поверхности земли. Вход был вскрыт, пещера тщательно осмотрена, и в результате этого обследования решено было выбрать другое место постройки. Известняк — не единственная порода, содержащая полости. Гипс и каменная соль, как уже отмечалось, тоже могут быть кавернозными, однако они менее прочны и быстрее растворяются, поэтому процесс проседания идет здесь по-иному. Обрушение же в базальтовых лавах сравнимо с проседанием известняка. Лавовые потоки, извергаемые вулканом, состоят из расплавленной породы, которая охлаждается и затвердевает, причем быстрее в своей поверхностной части. В базальтовых лавах еще горячие нижние слои могут вытекать из-под затвердевшей корки, в результате чего образуются полости.

Отличительной чертой лавовых каверн является то, что они почти хусегда расположены близко от поверхности, а их маломощная кровля имеет тенденцию к обрушению. Это представляет очевидную опасность в местностях, где дороги и дома построены на вулканогенных отложениях, как, например, в районе Маунт-Худ в Вашингтоне (округ Колумбия) или во многих местах Исландии. В 1970 г. было обнаружено, что главная магистраль, проходящая южнее Рейкьявика, пересекает лавовую пещеру Рау-фархолсхеллир. Непрочный базальтовый покров мощностью не более 4 м перекрывает одно из ответвлений пещеры и фактически поддерживает дорогу. Возможность обрушения очевидна, хотя неизвестно, случится ли оно наследующий год или же через Шлет. Сейчас ведут наблюдение за скоростью обрушения кровли, регулярно проверяя количество обломков, скапливающихся на дне пещеры. Этот способ оценки состояния трещиноватых пород, образующих арку над пещерой, нельзя признать удачным. Дорога же остается пока на своем прежнем месте.

Если обрушение твердых пород, перекрывающих полости, — ¦ явление довольно редкое, то проседание и обрушение мягких осадков, залегающих над кавернозными и ячеистыми известняками, случаются часто. Широко распространенные в мире известняковые отложения перекрываются обычно молодыми неконсолидированными осадками, чаще всего аллювием речного происхождения или ледниковой глиной. Оба эти типа осадков являются в основном полупроницаемыми, так что вода просачивается через них в залегающий ниже известняк. Там, где известняк трещиноватый, его растворение приводит к образованию в нем открытых щелей. Вода вымывает более мелкие частицы из перекрывающих осадков и уносит его вниз через эти щели; полости в известняке оказываются перекрытыми неустойчивым и несцементированным грубозернистым материалом. В конце концов этот материал обрушивается в полости в известняке и на земной поверхности образуется коническая впадина, называемая карстовой воронкой. Карстовые воронки могут появиться также в результате длительного растворения пород, в процессе которого поверхность известняка приобретает причудливую форму. Когда такая поверхность покрывается более поздними отложениями, под их гладким профилем могут скрываться ячейки и карманы, промытые в толще подстилающего известняка. Процесс выщелачивания способствует формированию депрессий проседания, которые часто сопровождаются обрушением карстовых воронок.

Долины проседания и карстовые воронки — обычное природное явление в местностях, где развиты известняки. Известняковые пещеры, лежащие ниже, зачастую имеют выход на земную поверхность. В 1944 г. на горе Айрбай-Фелл в Пеннинах обрушился 3-метровый слой валунной глины и в известняке открылась полость диаметром 7,5 м и глубиной 12 м с коридором. На плато Салем в штате Миссури при обрушении возникла пропасть, и хотя ее диаметр составлял 13 м, а глубина 20 м, вся она сформировалась в осадках, залегающих над известняком. В 1966 г. в толще Сикамор-Крик (тоже в Миссури), образовалась еще одна карстовая воронка. Ее глубина составляла 18 м, а диаметр 8 м. Двумя годами позже подобная пропасть, прорезавшая не только рыхлые приповерхностные отложения, но и сам известняк, разверзлась во время сильной бури в местечке Мэйнор-Фарм (Мен-дип-Хиллс). К счастью, ни один из этих четырех случаев непредсказуемого естественного обрушения не причинил никаких повреждений.

Для прогнозирования карстовых обрушений необходимо знать расположение соответствующих пещер. Там, где пещеры имеют открытые выходы, возможно их непосредственное исследование. Пещеры можно обнаружить также при помощи частой сети скважин, однако это чрезвычайно дорогостоящая операция. К сожалению, предсказать локализацию пещер, исходя из общих геологических соображений, обычно не удается. Были испробованы и дистанционные методы, но полученные результаты не дали однозначного ответа. Гравитационными методами можно обнаружить очень большие камеры либо погребенные карстовые воронки, однако уточнить детали при этом не удается. Сейсмические методы непригодны для четкого определения локализации пещеры, однако с их помощью можно проследить форму дна заполненных карстовых воронок. Электрическим зондированием можно успешно выявить зоны сильно трещиноватого известняка и даже точно указать положение отдельных коридоров пещеры, как это было сделано в Пен-Парке (Бристоль).

Обычная аэрофотосъемка имеет весьма ограниченное применение при установлении положения пещер и при поисках погребенных карстовых воронок, однако методами инфракрасной фотографии и микроволновой радиометрии (этот метод особенно эффективен) можно выявить колебания температуры грунта и изменения распределения воды, что в свою очередь бывает связано с конфигурацией пещеры. Итак, обнаружение пещер и предсказание обрушений — трудные задачи, и это вдвойне неприятно в наше время, когда обрушения участились вследствие нарушения природного равновесия деятельностью человека. Строительство дорог, земляные работы при возведении зданий, ирригация, откачка воды — все это вызывает изменения в характере движения природных вод, а толщи неконсолидированных осадков, перекрывающих кавернозные известняки, особенно чувствительны к такого рода изменениям.

В окрестностях города Бирмингем в штате Алабама залегает мощная толща доломитовых известняков, перекрытая глинами мощностью от 0,5 до 20 м, образовавшимися в результате эрозии верхней части известняковой толщи. Карстовые воронки в этом районе были почти неизвестны, пока в конце 50-х годов нашего века в результате дренажа двух карьеров не понизился местный уровень грунтовых вод. В 60-х годах произошли многочисленные обрушения. Были повреждены заводы, дороги, коммуникации. На одной из строек вскоре после закладки фундамента совершенно неожиданно образовалась карстовая воронка. Был также причинен ущерб железной дороге, а вдоль шоссе, соединяющего штат с соседними районами, появилось 150 карстовых воронок разного размера. Остановить бедствие можно было, только повысив уровень грунтовых вод (с последующим затоплением карьеров) или создав чрезвычайно дорогостоящую эффективную дренажную систему.

Еще более трагичный случай произошел с дорожным мостом у источников Тарпон-Спрингс в соседнем штате Флорида. Январской ночью 1969 г. под мостом образовалась карстовая воронка. Три опоры мЛста обрушились настолько быстро, что транспорт не успели остановить и один человек утонул. Невдалеке от источников Тарпон-Спрингс, на участке Вики-Вочи, в сентябре 1974 г. разверзлась карстовая воронка, поглотившая буровую вышку. И на этом участке глины покрывали трещиноватый известняк. Оказалось, что как только глубина бурения достигла 6 м, бур вошел в трещину, и неожиданный напор воды послужил началом обвала глины. Земля грохотала и трещала, и буровой бригаде пришлось спасаться бегством. Когда появилась воронка, вышка, смонтированная на грузовике, провалилась в нее; следом исчез и второй автомобиль, на котором были цистерна для воды, насосы и инструменты; в провал упало даже несколько сосен. За 10 мин оборудование стоимостью 100 000 долл. безвозвратно кануло в пропасть диаметром 45 м и глубиной 23 м, которая почти до краев заполнилась водой.

Долина Херши расположена в Аппалачах, в штате Пенсильвания. Она подстилается круто падающими ордовикскими известняками и ограничивается с боковых сторон сланцами и песчаниками. Большая часть известняка покрыта слоем неконсолидированных осадков и почвы мощностью около 18 м. Город Херши стоит на дне долины. Здесь же расположена большая фабрика по производству шоколада, местоположение которой частично обусловлено наличием мощных водных источников. В 3 км к северо-востоку велись подземные и вскрышные работы по добыче известняка. Когда в 1949 г. горные выработки углубились и было выкачано огромное количество воды, произошло сильное понижение уровня грунтовых вод, который до этого располагался на 9 м ниже днища долины. Результаты не замедлили сказаться. Колодцы пересохли, источники стали ослабевать и в конце концов тоже высохли. Реки иссякли, и за 5 месяцев в дне долины образовалось 100 карстовых воронок.

Большинство воронок представляло собой цилиндрические провалы диаметром от 1,5 до 6 м и глубиной около 8 м. Мосты, здания и дороги были разрушены или повреждены, хотя, к счастью, человеческих потерь не было. В основном карстовые воронки появились там, где уровень грунтовых вод упал на 15 м и более.

Поскольку одна из воронок росла в направлении фабрики, шоколадная корпорация Херши, осознавшая, что причиной всех бед является понижение зеркала грунтовых вод, начала нагнетать в скважины воду для восстановления прежнего уровня. Проседание удалось замедлить, но в ходе этих работ пришлось затопить шахты, иначе потребовались бы большие затраты. Поэтому в 1950 г. шоколадная компания и компания по добыче известняка оказались вовлеченными в сложную судебную тяжбу друг с другом. В результате стороны пришли к такому решению: в известняк вокруг горных выработок было проведено нагнетание цементного раствора, который создал гидроизоляцию и позволил продолжить добычу, тогда как вокруг шахт уровень грунтовых вод в долине оставался высоким. Это увенчалось полным успехом, и добыча продолжалась без образования карстовых воронок вплоть до 1953 г., когда горные выработки были куплены шоколадной компанией и затоплены.

Движение грунтовых вод всегда служит помехой при строительстве домов или дорог, сколь бы ни были эффективны дренажные сооружения. Подтверждение этого можно видеть на бесчисленных примерах. В августе 1910 г. три карстовые воронки диаметром более 15 м частично поглотили четыре здания в городе Стонтон (штат Виргиния). В течение 1950 г. на дорогах в центре города Бридженд в Уэльсе возникла серия провалов. В 1965 г. в городе Каслберри (штат Флорида) в результате образования карстовой воронки диаметром 24 м был разрушен один дом, а еще три повреждены. В январе 1964 г. после периода особо сильных дождей карстовая воронка глубиной 30 м разверзлась под домом в городе Фармингтон, штат Нью-Мексико; чтобы ее засыпать, понадобилось 300 грузовиков щебня. Все перечисленные случаи явились следствием обрушения осадков в трещины и полости, развитые в известняках; существование таких камер предсказать затруднительно.

Несколько отличается случай, происшедший в городе Акрон (штат Огайо) в 1969 г. Часть фундамента двухэтажного универсального магазина была установлена на мягкой глине и алевритах, заполнявших погребенную карстовую воронку. Эта воронка не обрушилась, однако глина настолько уплотнилась и осела, что здание, остальная часть которого стояла на твердом известняке, искривилось и упало; при этом 10 человек было ранено и один убит. Очевидно, при инженерно-геологических изысканиях перед сооружением магазина скважины бурили на недостаточно малых расстояниях друг от друга, поэтому карстовая воронка была пропущена. Впоследствии это здание было восстановлено, но уже на бетонном ростверке.

Из всех известных случаев проседания, вызванных воздействием человека на природу, самое крупное и самое трагическое произошло на золотых приисках в Южной Африке. Широкая долина Вандерфонтейн лежит в низине на востоке района Ранд (в окрестностях Иоганнесбурга). Ее поперечные размеры составляют 8—16 км. Добыча золота — одна из главных отраслей промышленности в районе Ранд. В настоящее время эти месторождения дают примерно 4/5 мировой добычи самородного золота, и самые богатые золотые прииски находятся в долине Вандерфонтейн. В долине вокруг приисков живет около 150 000 человек. Хотя первая горная выработка была пройдена здесь только в 1938 г., сейчас на приисках в Карлтонвилле достигнута рекордная глубина — 3,8 км.

Залежи золота встречаются здесь в маломощных пропластках кварцита и концентрируются в нижнедокембрийской осадочной серии Витватерсранд, представленной главным образом кварцитами и сланцами. Основные золотоносные рудные тела залегают на глубине 900 м. Они несогласно перекрываются верхнедокем-брийскими породами, которые начинаются маломощным горизонтом "кварцитов Блэк-Риф; выше залегает доломитовая толща мощностью до 1200 м, сложенная массивными доломитовыми известняками с прослоями кремнистых сланцев. Затем следуют сланцы серии Претория, кварциты и лавы. Все эти отложения падают на юг под углом 6—12 и выходят на поверхность, ориентируясь параллельно долине. Доломиты подстилают большую часть долины, породы серии Претория обнажаются южнее (на холмах), а кварциты Блэк-Риф наблюдаются севернее. Поверх всех^этих слоев залегают песчаники, сланцы и каменные угли серии Кару, которые большей частью эродированы и присутствуют в виде отдельных островков. Наиболее молодыми отложениями района являются разнообразные пески и галечники четвертичного возраста.

Доломиты редко выходят на поверхность, будучи перекрыты слоем неконсолидированных осадков, мощность которых редко бывает меньше 10 м, обычно она превышает 100 м, а местами составляет 150 м и более. Эти отложения представлены четвертичными песками и галечниками, а также продуктами выветривания пород серии Кару и доломитовой толщи, содержащими главным образом обломки кремнистых сланцев и сопутствующих им песчаников, глин и марганцевых окислов. Другой важной чертой геологического строения является наличие вертикальных сиенитовых даек мощностью 30–60 м, которые ориентированы в меридиональном направлении поперек долины.

С гидрогеологической точки зрения долина Вандерфонтейн представляется уникальной. Поверхностный сток направлен на запад, однако доломиты являются чрезвычайно проницаемыми водоносными горизонтами и определяют интенсивное движение грунтовых вод. Кососекущие сиенитовые дайки разбивают доломитовую толщу на независимые в гидрогеологическом отношении блоки. Грунтовые воды накапливаются внутри каждого из этих блоков и выходят на земную поверхность вдоль границ даек в виде источников, называемых в этой местности «глазками». Огромные количества воды, скапливающиеся в доломитах, постоянно затрудняли добычу золота из подстилающих толщ. В течение многих лет в рудниках велись работы по откачке, чтобы поддерживать стабильный уровень поступающих вод. Но с 50-х годов перешли к полному обезвоживанию доломитов, т. е. к выкачиванию из них всей воды. Водонепроницаемость сиенитовых даек позволяет независимо обезвоживать каждый блок пород. За время этих работ произошли следующие события.

1955 г. — начато обезвоживание блока Вентерспост.

1957 г. — в блоке Вентерспост стали появляться карстовые воронки; за последующие 4 года их образовывалось все больше и больше.

1960 г. — начато обезвоживание блока Оберхольц; за короткое время родник Оберхольц пересох и начали появляться карстовые воронки.

1962 г. — образовалась воронка с вертикальными стенками диаметром 55 м и глубиной 30 м, поглотившая дробильную фабрику на прииске Уэст-Драй-фонтейн, что повлекло за собой 29 смертных случаев.

1963 г. — медленное проседание грунта на протяжении года привело к опусканию на 6 м дна карстовой воронки в Карлтонвилле, известной под названием «депрессия Шутте», что повлекло за собой полное разрушение одного дома.

1964 г. — среди ночи в деревне Бливооруитцихт разверзлась карстовая воронка диаметром 60 м и глубиной 30 м, в которую провалился жилой дом, при этом погибла семья из пяти человек; продолжающееся обрушение стенок провала уничтожило еще три дома.

1966 г. — самая большая карстовая воронка (диаметр 122 м, глубина 51,9 м) образовалась около города Карлтонвилль; жертв не было.

1967 г. — карстовая воронка появилась на школьной спортплощадке в городе Вестонария.

1968 г. — на прииск Уэст-Драйфонтейн внезапно хлынул поток воды, вырвавшийся из блока Банк.

1959 г. — начато обезвоживание блока Банк.

1972 г. — жители села Банк эвакуированы, а село брошено, поскольку возникло множество карстовых воронок и крупных трещин в грунте вдоль краев зон проседания.

В общей сложности за несколько лет образовались сотни карстовых воронок. Хотя в этом районе и отмечен ряд древних проявлений природных карстовых процессов, однако события последних лет ясно указывают на связь между формированием карстовых воронок и обезвоживанием приисков. В большинстве случаев обрушение непосредственно связано с понижением уровня грунтовых вод по мере откачки воды из шахт, а периодическое поступление в горные выработки илистых вод усиливало деформацию поверхности грунтов. Кроме образовавшихся естественным путем карстовых воронок, которые существовали до обезвоживания шахт, в долине Вандерфонтейн имеется еще четыре различных типа воронок.

Широкие и мелкие воронки, развивающиеся в течение нескольких лет, составляют первый тип. Примером этого типа является депрессия Шутте. Общее погружение грунта может достигать 6 м и более, но поскольку она происходит медленно, повреждения строений почти не бывает (исключение составляют дома на краю впадины, где имеется тенденция к образованию трещин). Этот тип проседания не затрагивает доломитовую толщу; он обусловлен только уплотнением глины и перекрывающих ее неконсолидированных осадков. Поэтому такое проседание обычно происходит там, где широкие и глубокие депрессии размещаются на поверхности раздела между погребенными осадками и известняком. Само уплотнение осадков обусловлено падением давления воды в связи с дренированием. Очевидно, при этом имеется некоторая связь с образованием трещин в доломитовой толще. Нет сомнения в том, что громадная карстовая воронка, появившаяся в 1966 г. в Карлтонвилле, расположена у края четко выраженной линейной депрессии.

Случаи крупного проседания грунта с последующим обрушением также связаны с формой поверхности раздела между доломитом и осадками. Эти опускания обусловлены вымыванием осадков вниз сквозь трещины в доломите, поскольку направленный вниз сток усиливается благодаря понижению уровня грунтовых вод. Когда нижние слои осадков вымываются, то верхние остаются в виде сводов над образовавшимися пустотами. Однако эти своды недолговечны. Именно их обрушение и дает карстовые воронки с вертикальными стенками. Небольшие воронки связаны с отдельными трещинами в доломите, а восемь огромных карстовых воронок, развившихся на площади блока Оберхольц, вероятно, образовались над погребенной поверхностью доломита, которая в результате эрозии приобрела значительные неровности рельефа. Эти большие карстовые воронки наблюдаются там, где глубокие узкие долины врезаются в погребенную поверхность известняковых пород. Они также могут образовываться вдоль склонов широких погребенных долин, как, например, это было в Карл-тонвилле. Такие карстовые воронки тоже связаны с падением уровня грунтовых вод; так, восемь больших воронок возникли вслед за понижением зеркала грунтовых вод на 150 м. Небольшие воронки этого типа образуются там, где уровень воды упал на 15 м и более.

Образование третьего типа карстовых воронок начинается с формирования воронки естественного происхождения, которая затем заполняется обломками горных пород. Повторное обрушение вызывается понижением уровня грунтовых вод. Такое двухфазное проседание может происходить во многих случаях. Оно проявляется при обрушении карстовых воронок с четвертичным заполнением в осадках Кару, которые, как ранее считалось, не имеют тенденции к образованию карстовых воронок в настоящее время. К этому же типу принадлежат провалы, возникшие на спортплощадке в Вестонарии. К несколько иному типу относятся небольшие карстовые воронки, появляющиеся вокруг домов и дорог вследствие дренирования, не связанного с обезвоживанием шахт.

Причины проседания в долине Вандерфонтейн были достаточно ясны, но тем не менее работы по обезвоживанию все-таки продолжались, будучи предприняты по экономическим соображениям, которые диктуются характером,'золотодобывающей промышленности. Со свойственной им привычкой оценивать события после их свершения компании, может быть, и пришли бы к заключению, что обезвоживание — не лучший путь. Однако поскольку эти работы были уже начаты, решили их продолжать, обходя районы, которые имеют наибольшую тенденцию к проседанию.

В начале 60-х годов была поставлена обширная геофизическая программа, имевшая целью предсказать возможность будущих обрушений. Однако в процессе выполнения этой программы пришли к выводу, что прямое прогнозирование появления карстовых воронок находится за пределами возможностей современных методов. Можно только в общих чертах оценить потенциальную опасность и руководствоваться этими данными при решении вопроса, какие районы скорее всего подвергнутся проседанию. Эта оценка должна основываться на анализе состава и мощности осадков и на сведениях о степени понижения уровня грунтовых вод. Если по наблюдениям в скважинах отмечается очень сильное падение уровня грунтовых вод, это переводит район в разряд потенциально опасных. Мощность осадков может быть оценена по комплексу данных бурения и гравитационной съемки. Станции гравитационных измерений в городах следует располагать через 15–60 м, а в открытой местности — через 90 м. Для контроля геофизических данных используют результаты бурения скважин, располагаемых на расстоянии около 1,6 км друг от друга.

Исследования в рассматриваемом районе дали некоторые положительные результаты, поскольку с их помощью удалось выявить участки, имевшие тенденцию к сильному проседанию. Однако чувствительность гравитационных измерений оказалась недостаточной для обнаружения малых структур, которые могут подвергнуться более слабым просадкам. Большие размеры карстовых воронок в долине Вандерфонтейн несколько облегчают предсказание их появления. Так, по данным гравитационных наблюдений предполагалось образование карстовых воронок в Вестонарии в 1967 г. Спортивный комплекс был объявлен опасным местом и закрыт еще до того времени, когда произошло обрушение. Таким образом, этот метод стал шагом вперед в прогнозе потенциальных обвалов грунта.

Когда в 1962 г. на прииске Уэст-Драйфонтейн провалилась дробильная фабрика, то явная опасность угрожала и новому заводу, строящемуся рядом. Пробуренные скважины обнаружили полость, и строительство было приостановлено до тех пор, пока она не была заполнена. Операция эта оказалась весьма дорогостоящей, однако она предотвратила потерю новых сооружений.

 

Обрушение и проседание над горными выработками

Обрушение выработок может быть бедственным вдвойне: для шахтеров, работающих под землей, и для людей и материальных ценностей на территории непосредственно над местом обрушения. Хотя обрушения кровли случаются часто и представляют огромную опасность, они очень редко достигают масштаба, достаточного для проседания земной поверхности. Тем не менее заброшенные шахты могут таить угрозу для строений и людей, находящихся над ними.

Обычно работу в шахтах ведут таким образом, чтобы некоторое количество породы оставалось в виде целиков для опоры кровли. Однако всегда существует искушение — перед тем как шахта будет оставлена, извлечь из нее как можно больше полезного ископаемого. Медленное течение процессов разрушения пород обеспечивает некоторый латентный период, до того как опора и кровля обрушатся.

Город Скрантон (штат Пенсильвания) в начале нашего века подвергся сильному повреждению, обусловленному добычей антрацита на глубине всего 20 м. Оставленных целиков оказалось недостаточно, и вскоре после консервации шахты кровля обвалилась, что затронуло большие площади. В городе сильно пострадали многие здания. Поскольку столбы породы подпирали кровлю через равные интервалы, главная улица города покрылась углублениями, располагающимися через 1,5 м и больше, что соответствовало расстоянию между целиками.

Слабо консолидированные породы являются плохим материалом для кровли, и это делает ее обрушение по истечении определенного времени почти неизбежным, даже если добыча велась осторожно и разумно. Кровля старых железорудных шахт в Нет-тлтоне (восточная Англия), сложенная мягкими глинами и песчаниками, к настоящему времени обрушилась, и на окрестных полях появились депрессии конической формы.

Другая крупная опасность, грозящая со стороны старых шахт, связана со способом их консервации. До начала XX века шахты редко засыпались каким-либо материалом после того, как их эксплуатация прекращалась. Вместо этого поперек верхней части шахты укладывали конструкцию из бревен и досок, которую затем покрывали почвенным слоем толщиной 30–50 см. По прошествии времени бревна под слоем почвы начинали гнить, что создавало весьма серьезную опасность. В 1892 г. в железнодорожном депо Линдэйл вблизи станции Барроуин-Фернесс (Камберленд) под локомотивом разверзлась старая рудная выработка. Машинист успел выпрыгнуть за секунду до того, как локомотив провалился. В населенном пункте Абрам близ города Уиган (Ланкашир) старая угольная шахта была заполнена и опечатана перед тем, как над ней построили железнодорожное депо. Однако заполняющий материал был уложен неудачно и со временем уплотнился; в 1945 г. покрытие шахты обрушилось и погребло 13 вагонов с углем, паровоз и машиниста. Под городом Уилкс-Барре в штате Пенсильвания находится множество старых угольных шахт, и в 1968 г. покрытие одной из них, расположенной под крупной дорожной магистралью, обрушилось; медленное растрескивание асфальта дало шоферу время спастись бегством, но его автомобиль провалился в пропасть диаметром 9 м. В окрестностях Матлока в Пеннинах на лесистых холмах имеется множество старых свинцовых выработок, и случаи падения людей в них, если их путь пролегал по сгнившему деревянному покрытию, в этой местности довольно часты.

Встает задача обнаружения этих старых шахт. Если такая шахта найдена, ее можно легко заполнить или бронировать бетоном. Бурение скважин с целью поисков старых шахт является исключительно дорогостоящей операцией, даже если надо разведать лишь небольшую площадь для застройки, поскольку малые размеры этих шахт требуют очень близкого расположения скважин друг от друга. Ограниченные размеры шахт затрудняют также их обнаружение геофизическими методами, хотя Национальное управление угольной промышленности Великобритании добилось некоторых успехов в этой области при помощи чувствительных протонных магнитометров. Эти приборы определяют различия в магнитных характеристиках между коренными породами и обломочным материалом, использованным для засыпки шахт. Однако хотя с их помощью и можно локализовать старые шахты, из-за недостаточной разрешающей способности приборов это делается не столь детально, чтобы обойтись без бурения скважин.

К сожалению, обследование и регистрация горных выработок стали в Англии обязательными только с 1872 г., поэтому сведения о более старых разработках отыскать не всегда возможно. В тех районах, где следы выработок на земной поверхности отсутствуют, лучшим источником информации о местонахождении старых шахт является опрос местного населения. В 1964 г. на улице Жаклин-Клоуз в городе Бери-Сент-Эдмендс (Суффолк) было построено несколько домов. В этом районе коренной породой является мел. Исследования местности проведено не было, хотя позже выяснилось, что двое местных жителей в юности работали в меловых шахтах, находившихся под данным участком. Однако карта шахт отсутствовала, а местных жителей никто не спрашивал. Сточные воды из домов сбрасывались в несколько поглощающих колодцов, расположенных на глубине 9—15 м. Жидкая грязь затем стекала в горные выработки, что приводило к образованию ориентированных вертикально к поверхности земли трубчатых полостей. В декабре 1968 г. подъездная дорога к дому 9 на улице Жаклин-Клоуз провалилась в одну из таких полостей диаметром 4,6 м и глубиной 1,8 м. Когда в ходе расследования выявили протяженность шахт, то дома, построенные за четыре года до этого, были признаны опасными для жизни, и людей заставили выселиться, поскольку под канализационными системами все чаще и чаще случались обрушения. Все это произошло потому, что строительная компания, планирующие организации и местные жители не контактировали друг с другом до тех пор, пока уже не стало слишком поздно.

Есть один особый тип проседания шахт, который можно предсказать. Принятые методы горизонтальной разработки, при которой галереи прокладываются между целиками, оставленными для поддерживания кровли, с экономической точки зрения нерентабельны для извлечения маломощных пластов, а таковыми является большая часть всех угольных пластов. Поэтому в современных угольных шахтах врубовые машины вынимают уголь по всей длине забоя, имеющего протяженность в десятки метров. Подвижные опоры поддерживают кровлю над забоем, пока ведется работа, затем их убирают, и происходит постепенное обрушение кровли. Этот процесс обязательно вызывает проседание поверхностной части грунта, поэтому возмещение убытков за поврежденные дороги и строения расценивается как одна из статей расходов при этом методе добычи. Многолетние наблюдения и исследования привели к тому, что теперь характер такого проседания стал понятным и, как правило, предсказуемым.

На практике метод сплошной выемки приводит в действие следующие процессы: возникновение волны проседания, которая затрагивает поверхность земли, создавая первичное напряжение; затем наклон, сопровождающийся сжатием, и, наконец, оседание до нового, более низкого уровня. Если волна проседания чересчур сильна, то возникающее напряжение может привести к тому, что стены строений изогнутся или в них образуются трещины. Наклон представляет менее серьезную проблему, так как он обычно устраняется путем саморегуляции.

Повреждение строений в городских районах, расположенных над угольными шахтами, вполне предсказуемо, а стоимость возмещения убытков вполне приемлема для горнодобывающих компаний. В тех местах, где наземные здания и сооружения очень дорогостоящие, вести под ними сплошную добычу, учитывая возможные повреждения, с экономической точки зрения бессмысленно. В этом случае для поддержания кровли в шахте можно оставлять целики угля. Размеры этих естественных подпорок определяются тем, какая порода залегает между угольным пластом и земной поверхностью. Чем глубже шахта, тем более массивными должны быть оставляемые целики. Новое английское месторождение угля в Селби, восточная часть Йоркшира, пересекается железнодорожной линией, по которой ходят скоростные поезда Лондон — Эдинбург. Можно рассчитать, что ширина полосы целиков в данном случае должна быть не менее 1,6 км. Такое количество угля стоит слишком дорого, чтобы оставлять его в шахте, поэтому в данных условиях наиболее правильным выходом будет перенесение железной дороги за границы месторождения.

На месторождении Селби столкнулись и с другой проблемой: река Уз, которая его пересекает, имеет очень небольшой уклон русла. Общая амплитуда проседания обычно оценивается как 00 % мощности извлеченного пласта или несколько меньше, если некоторое количество пустой породы было возвращено в выработку. Согласно этим расчетам, извлечение пласта Барнсли мощностью около 3 м вызовет опускание района реки Уз ниже уровня моря, что приведет к сильным наводнениям. Поэтому горнодобывающее предприятие в Селби вынуждено идти на сооружение вдоль реки дренажных систем и больших рвов, хотя это и требует дополнительных затрат.

Волна проседания может развиваться только в виде слабых изгибов в достаточно пластичных породах, таких как глины или сланцы. Более хрупкие породы, например песчаники или известняки, а также трещиноватые разности не изгибаются, а растрескиваются, и проседание происходит в виде ряда последовательных сдвигов. Если дом построен на краю двух независимо проседающих блоков породы, пусть даже степень их проседания одинакова, он будет сильно поврежден. На каменноугольных копях Сигма в Южной Африке проседание мощного трещиноватого горизонта долеритов, залегающего над угольным пластом, вызвало сильные местные повреждения.

В районах Хакнолл и Мэнсфилд на угольном месторождении в Ноттингемшире столкнулись с иными проблемами. Если здание оказывается расположенным над трещиной в известняке, оно может подвергаться повторным повреждениям. Один дом в Хакнолле пришлось совсем разрушить, так как одна из его стен сильно осела в том месте, где ее фундамент отделился по разлому от остальной части здания. Потом на этом месте был построен новый дом, на этот раз на неподвижном бетонном- ростверковом фундаменте. Предсказание движений грунта, что необходимо учитывать при планировании новых строительных работ, в данном случае з ависит от локализации крупных трещин в известняке. Обнаружение их затруднено из-за перекрывающего поверхностного слоя пластичной валунной глины, однако исследования с помощью аэрофотосъемки дали некоторый положительный результат, особенно по выявлению трещин у бортов долины, где прочность подстилающих отложений ослаблена.

Знание свойств трещиноватых пород сыграло, таким образом, ¦, важную роль в сокращении повреждений от проседания, которые '" на заре горнодобывающей промышленности случались очень  часто.

 

Будущее

В разные времена и в разных концах света из-за неожиданного проседания грунта будут разрушаться дороги, дома и поля, гибнуть люди. Для отдельного человека вероятность такой гибели крайне незначительна, однако она все же существует. Судьба некоторых домов и дорог уже предрешена. Но будут случаи проседания и совершенно неожиданные, поскольку они действительно непредсказуемы и могут расцениваться как настоящее несчастье. Однако будут и такие ситуации, когда после проседания вдруг выяснится, что в распоряжении людей было вполне достаточно информации, чтобы избежать катастрофы или предотвратить ее. Но будет'уже слишком поздно, и людские жизни, и материальные ценности будут потеряны без всякого оправдания.

Это мрачное пророчество изречено автором потому, что, хотя методы прогноза и существуют, но многие люди считают, что не стоит тратить время на предсказание таких маловероятных событий, как катастрофическое проседание. Еще серьезнее тот факт, что люди избегают брать на себя отвественность за такие исследования, и ни один орган власти нельзя назвать обязанным отвечать за планирование, которое позволило бы полностью избежать такого рода опасностей. Проводимый Национальным управлением угольной промышленности Великобритании прогноз проседаний в настоящее время используется инженерами и сокращает вероятность возникновения опасных ситуаций. Однако никто в Англии непосредственно не отвечает за брошенные шахты и подземные полости, возникшие в результате растворения горных пород. Поэтому никто не обращает на них внимания даже тогда, когда имеются факты, требующие рассмотрения и интерпретации.

В Вентерспосте (Южная Африка) в течение многих лет ведется наблюдение за движением грунтов, связанным с карстовыми явлениями. В некоторых случаях это позволяет выявить симптомы, предвещающие неожиданное обрушение. В 1973 г. за ночь образовалась карстовая воронка; результатом были человеческие жертвы и потеря материальных ценностей. Только впоследствии выяснилось, что это обрушение можно было предсказать. Почему же данные наблюдений не были обработаны сразу после того, как они были получены? Потому, что никто не был ответственным за это?

В 1977 г. пол кухни одного из домов в городе Честерфилд (графство Дербишир) обрушился в старую горную выработку, пройденную около 100 лет назад в угольном пласте, который залегал всего в метре под поверхностью земли. Такие старые мелкие выработки не являются чем-то необычным, и когда на место катастрофы прибыли инженеры из Национального управления угольной промышленности для выполнения работ по укреплению дома, они заявили, что знали о существовании подобных выработок в данной местности и что это обрушение не было для них неожиданностью. Но тогда почему же здесь строили дома? Почему никто не проверил зарегистрированные выработки?

В 1959 г. муниципалитет города Бери-Сент-Эдмендс в графстве Суффолк отказался купить предложенный ему участок земли «из-за слухов о том, что этот район подвержен проседанию». Однако в 1964 г. тот же муниципалитет дал разрешение на строительство домов на этом участке, не сделав никаких указаний о возможной нестабильности грунта. В 1966 г. этот муниципалитет отказался выдать закладную покупателю одного из домов на улице Жаклин-Клоуз, «потому что в этом месте имеются подземные выработки». Строительная компания «Трикорд Девелопментс Ли-митед» организовала здесь бурение скважин до глубины 6 м, хотя геологи указывали, что шахты расположены на глубине не менее 12 м. Вооружившись отчетом о результатах бурения, которое, как можно догадаться, не выявило никаких шахт, муниципалитет дал разрешение на дальнейшее строительство домов. В 1967 г. на улице Жаклин-Клоуз образовалась первая карстовая воронка. Затем ход событий ускорился. Произошли многочисленные обрушения, названная строительная компания была ликвидирована, муниципалитет объявил дома непригодными для жилья, главный инженер города преждевременно ушел в отставку. Но при этом муниципалитет заявил, что не имеет права тратить общественные деньги на обеспечение жильем выселенных с улицы Жаклин-Клоуз. И несколько десятков семей продолжают платить по закладной за нежилые дома. Почему же ни муниципалитет, ни строительные компании не проверили слухов (которые оказались правдивыми) о наличии в районе старых шахт? Потому что никто серьезно не думал о проседании и никто не взял на себя ответственность за такую проверку.