Катастрофы: неистовая Земля

Уолтхэм Тони

Подземные аварии

 

 

В 1924 г. в высоком хребте к юго-западу от Токио велось строительство туннеля Танна. К 10 февраля 1924 г. он протянулся уже на 2100 м. Ничто не предвещало опасности, и вдруг порода кровли туннеля, располагавшегося в 150 м под землей, обрушилась, и в туннель устремился разрушительный поток из воды и грязи. Под этой волной погибло 16 рабочих, находившихся в тот момент в туннеле.

Туннель Танна стал печально заменитым, поскольку сооружался в очень слабом грунте. Сложное переслаивание пород, представленных высокопроницаемым вулканическим пеплом и глинами, разбитыми множеством разломов, было настоящим кошмаром для строителей туннеля, ведь катастрофа 1924 г. не была единственной.

Насыщение неустойчивых пород водой обычно приводит к обрушению и затоплению; эти явления наиболее опасны для людей, ведущих подземные работы. Возможно, безопасность строителей туннелей и шахтеров в большей степени, чем от чего бы то ни было, зависит от природы и свойств пород, а также от умения людей предвидеть поведение этих пород. Здесь, как и вообще в строительстве, можно решить практически все проблемы, если мы знаем, в чем они заключаются. При сооружении туннелей или проведении горных работ это означает, что мы должны знать, какая порода обнажится после проходки очередного пласта. Но точный прогноз геологических структур, залегающих на большой глубине от поверхности земли, всегда труден, а иногда почти невозможен. Поэтому в настоящее время, прежде чем построить туннель или штрек в шахте, обычно пробуривают длинные разведочные скважины вдоль оси выработки.

Самой страшной, но далеко не единственной опасностью для шахтера или проходчика туннеля является обрушение кровли. Хотя большинство пород при наличии благоприятной геологической структуры проявляет устойчивость и может удерживаться над подземными пустотами почти без всяких крепей, но обычно они не выдерживают нагрузки и обрушиваются. Еще большую опасность таит вода. Вода — это постоянная угроза при проведении подземных работ: она может затапливать горные выработки или, смешиваясь при высоком давлении с неуплотненными осадками, образовывать жидкие грязевые потоки.

 

Опасное воздействие подземных вод

При проходке туннелей под рекой в рыхлых, насыщенных водой осадках речного русла, когда буквально над головой находится грозный водный поток, возникает множество проблем. Впервые сооружение туннеля, пересекающего реку, было начато известным инженером Марком Брунелем и его сыном знаменитым Исам-бардом Брунелем в 1825 г. под Темзой в Лондоне. По совету геологов, которые пробурили множество разведочных скважин, проходка была начата всего на глубине 4 м под руслом реки, где, как предполагали, залегала плотная глина. Однако распределение осадков в русле реки почти всегда бывает очень сложным, н истинный их состав и строение редко можно предсказать на основании данных, полученных по разбросанным буровым скважинам. По мере того как велась проходка, на пути туннеля встречались всевозможные неуплотненные, подвижные и насыщенные водой осадки, для борьбы с которыми пришлось изобрести специальную систему защиты.

Два года спустя, когда горизонтальная выработка протянулась под рекой на 30 м, вода под давлением прорвалась через рыхлые слои, слагавшие ложе реки, и через образовавшееся отверстие устремилась в туннель. Чтобы осушить затопленный туннель, надо было запечатать отверстие в дне реки снаружи. Невероятно, но это удалось сделать, сбросив с барж мешки с глиной (несколько сотен тонн). После того как из туннеля выкачали воду, было признано, что кровля его достаточна прочна, и работы возобновились. Вода прорывалась в туннель еще раз, но, несмотря на все трудности, строительство все-таки было завершено.

Впоследствии, чтобы предотвратить проникновение речной воды через проницаемый грунт в туннель, расположенный под рекой, в него стали нагнетать под давлением сжатый воздух, и вода туда уже не поступала. Так были вырыты первые туннели под рекой Гудзон в Нью-Йорке и под рекой Клайд в Глазго. Практика показала, что в этом случае важно создать равновесие давлений, поскольку, если давление воздуха в туннеле было слишком низким, река «врывалась» в туннель, если же оно оказывалось чрезвычайно высоким, то воздух «вырывался» в реку. В обоих случаях таилась потенциальная опасность. Несомненно, самый безопасный метод проходки туннелей под реками — это сооружение их на достаточной глубине, где залегают коренные породы. Так, знаменитый туннель под рекой Мереей в Ливерпуле проходит в коренном песчанике, минуя несцементированные речные осадки. Даже в том случае, если порода консолидированная, следует опасаться, что туннель может войти в зону разломов, где породы обладают повышенной водопроницаемостью.

Туннель Сейкан, строительство которого в настоящее время ведется между островами Хонсю и Хоккайдо в Японии, является едва ли не самой дерзновенной из всех известных конструкций. Планируемая длина туннеля — 55 км; он пройдет в 135 м под морским дном в нарушенном комплексе изверженных и осадочных пород. В мае 1976 г. здесь произошла катастрофа: вода ворвалась в туннель на глубине 200 м ниже уровня моря. Первоначальный сток составил около 0,6 м3 в секунду, и вода затопила участок туннеля длиной в 3 км, прежде чем системы дренажа справились с потоком; лишь несколько недель спустя туннель был окончательно осушен.

В зоне разломов вода грозит катастрофами двух типов. Трещиноватые породы, присутствующие в этих зонах, могут играть роль каналов, по которым пойдет водоток, а тектонические глины, образовавшиеся в результате истирания пород при их движении по разлому, могут стать гидрологическими барьерами. Оба эти явления наблюдались одновременно в туннеле Сан-Хасинто в Калифорнии, где, как было установлено, порода, залегавшая над наклонными плоскостями разлома, была сильно нарушенной и высокопроницаемой, а по плоскостям разломов располагались слои водонепроницаемой жильной глинки.

Для ряда пород характерна очень высокая проницаемость, и они могут служить проводниками огромных потоков воды. Если при проходке туннелей или проведении горных работ глубоко под землей встречаются подобные породы, то они обычно бывают насыщены водой под высоким давлением. Песчаники, известняки, вулканический пепел и лава — наиболее проницаемые породы. Они характеризуются наивысшими содержаниями воды. Кроме того, слабая сцементированность песчаника может порождать дополнительные сложности. В 1959 г. при сооружении туннеля Авали в Ливане наткнулись на крутонаклонный пласт песчаника, в результате участок туннеля протяженностью в 2,5 км был затоплен и забит илом. Геологические исследования показывали присутствие песчаника, однако никаких сведений относительно свойств породы, находящейся в туннеле под давлением на глубине около 600 м, получено не было. Проводившееся в штреке туннеля искусственное дренирование при слабой сце-ментированности песчаника вызвало подпочвенную эрозию и кавитацию, что в свою очередь позволило большому количеству воды затечь в туннель. Когда, наконец, все это поняли, направление туннеля на участке более 1,5 км было изменено, чтобы он не проходил в песчанике.

Известняк — тоже высокопроницаемая порода, хотя ее свойства совершенно иные, чем у песчаника. Сам по себе известняк обычно почти водонепроницаем и все ж он пропускает огромные количества воды через имеющиеся в нем пустоты растворения. Дело усложняется еще и тем, что расположение подобных водоносных камер предсказать практически, невозможно.

Под рекой Северн был построен туннель, по которому шла железная дорога из Англии в Уэльс; этот туннель был частично проложен в каменноугольном известняке. В 1879 г. при проходке со стороны Уэльса на значительной глубине от поверхности земли была подсечена затопленная пещера в кровле известняка. Проходку, естественно, прекратили, но длительное время не могли справиться с затоплением. Оказалось, что пещера была соединена с подземным руслом реки Северн, и поэтому поступление воды в туннель продолжалось. Лишь после того, как было пройдено множество вертикальных и горизонтальных выработок, через которые велись дренирование и откачка, строительство туннеля было завершено. Аналогичные проблемы возникли и при строительстве туннеля Грехенберг в горах Юра (Швейцария), когда достигли участка, где вода пропитывала два маломощных прослоя сильно трещиноватого известняка. В одном из штреков приток воды был настолько сильным, что работы пришлось приостановить на два месяца, пока течение не ослабло.

Но не только проходчики туннелей сталкиваются с неприятными неожиданностями в кавернозных известняках. Эти породы нередко преподносят сюрпризы и горнякам при разработке месторождений полезных ископаемых. Медные рудники Морокоча в Перу и свинцовые рудники в горах Холкин в Уэльсе — вот лишь два примера месторождений, где постоянно возникают различные серьезные проблемы, связанные с опасностью затопления подземных выработок водами из известняковых пещер.

Однако самое сильное затопление произошло на крупнейшей золоторудной шахте мира в Южной Африке. Шахта Уэст-Драйфонтейн находится в самом сердце богатого месторождения золота Ранд в долине Вандерфонтейн близ Иоганнесбурга. Золото добывают из конгломератов, залегающих в мощной толще кварцитов. И кварциты, и конгломераты абсолютно водонепроницаемы. Золотоносные слои встречаются лишь на значительной глубине, между этими слоями и земной поверхностью располагается толща доломитов мощностью около 900 м; доломиты — породы трещиноватые, ячеистые, являющиеся прекрасными водоносными горизонтами. Гидрология грунтовых вод усложняется еще и присутствием вертикальных сиенитовых даек, секущих доломиты, кварциты и золоторудные тела. Дайки водонепроницаемы и представляют собой барьеры, препятствующие движению грунтовых вод.

Большинство выработок на шахте Уэст-Драйфонтейн располагается на ограниченном дайками участке, который известен под названием «блок Оберхольц». Для того чтобы сделать работы в шахте более эффективными и безопасными, этот участок был давным-давно осушен путем массированной откачки воды. В 1964 г. общая площадь шахты увеличилась к востоку в результате проходки подземных галерей в дайке и блоке Банк. Доломиты в блоке Банк обезвожены не были, но горные выработки располагали лишь в залегающих ниже доломитов водонепроницаемых кварцитах. Как и следовало ожидать, некоторое количество воды просачивалось в шахту, но ее удавалось откачивать. На шахте Уэст-Драйфонтейн имелось множество насосных установок и дренажных канав, которые отводили лишнюю воду в старые выработки, игравшие роль временных водохранилищ. Одной из задач этих мероприятий было устранить опасность внезапных прорывов воды, которые повторялись периодически.

Так продолжалось до 26 октября 1968 г. В тот день в 9 ч утра кровлю выработок блока Банк разорвала трещина, в которую устремился поток воды. Этого никто не ожидал. Сток воды из трещины составил 4,5 м3 в секунду, что в 6 раз превысило обычно существовавший здесь суммарный сток. После образования трещины объем воды, поступавшей в шахту, в полтора раза превысил общую производительность водоотлива. Когда шахта начала медленно заполняться водой, спасательные работы развернулись с поистине фантастической быстротой. Только благодаря быстрой эвакуации наверх всех работавших в шахте, а их было 13 500 человек, люди были спасены.

К счастью, вся вода устремилась в главную часть шахты: от восточного края выработки, где произошел прорыв, она поступала в две подземные галереи, откуда текла потоками глубиной около метра. Лишь после 26 суток упорного труда в ужасных условиях и благодаря смелой инженерной изобретательности в галереях удалось соорудить бетонные перемычки и наводнение было остановлено. К тому времени глубина воды в стволе шахты уже составила 750 м, но верхние горизонты и основные насосные установки были спасены. Восточный участок был еще скрыт под водой, а западный — главный — участок шахты Уэст-Драйфон-тейн уже осушили насосами, и добыча возобновилась.

При расследовании причин катастрофы установили, что вода прорвалась из водонасыщенных доломитов, перекрывавших шахту, а столь грандиозные масштабы наводнения объясняются двумя факторами — почти 700-метровым напором воды и кавернозностыо доломитов. Однако вода преодолела и кварциты мощностью около 30 м, отделявшие шахту от доломитов.

Разработка месторождения осуществлялась путем выемки золотоносных пород. При этом, естественно, нарушалась целостность пород в кровле выработок. Несмотря на то что при проходке сооружались крепи, определенные подвижки блоков породы в кровле были неизбежными. Кроме того, недалеко от места прорыва воды разрабатываемые золотоносные породы и перекрывающие их доломиты были рассечены крупным разломом, направление которого могло определять развитие каверн в доломите, локализацию зон трещин и сдвигов пород, залегающих в кровле выработок. Возможно, сыграли свою роль и слабые толчки, наблюдавшиеся в ночь перед прорывом воды. Во всяком случае, образование трещины в водонепроницаемом барьере кварцитов между насыщенным водой доломитом и шахтой вполне объяснимо.

Возникает вопрос: можно ли было предсказать это затопление? Пессимисты утверждают, что проведение горных работ под водо-насыщенным кавернозным доломитом делало катастрофу неизбежной, однако это не так. Если в кровле залегает водонепроницаемый кварцит, горные работы можно вести в течение многих лет и при этом будут наблюдаться лишь слабые протечки.

К сожалению, наука о механике пород еще не достигла того уровня, когда горным инженерам до начала возведения подземных сооружений могла бы быть предложена надежная количественная оценка всех шансов за и против. Если сопротивление отдельных пород и можно определить, то до сих пор не существует достоверного способа предсказания устойчивости тысяч трещин, которые скрыты в породах глубоко от поверхности земли. При планировании работ в шахте инженеры полагались лишь на свой опыт; было решено рискнуть, и в данном случае — напрасно. Правильное решение заключалось в отводе вод из доломитов блока Банк. Однако по предварительным расчетам специалистов эта операция казалась слишком дорогостоящей, и ее решили не осуществлять. Доломиты были осушены только после затопления шахты, поскольку добычу золота надо было продолжать и другого выхода не было.

 

Угроза погребенных долин

«Рокхед» — это термин, которым пользуются шахтеры и инженеры для обозначения подземной границы между твердыми, консолидированными породами и вышележащими неуплотненными осадками. Этот раздел может находиться как на небольшой глубине —¦ под маломощным слоем почвы, так и на значительной глубине — под рыхлыми осадками. В последнем случае это создает серьезную угрозу для проходчиков туннелей и шахтеров: если туннель или штрек неожиданно выйдет из твердых пород в слабые, рыхлые, подвижные осадки (обычно это песок или глина), насыщенные водой под высоким давлением, неизбежна катастрофа. Как проходчикам туннелей, так и шахтерам необходимо знать, где на данном участке залегает нижняя граница рыхлых отложений. Если этот рубеж относительно плоский, особых проблем не возникает, однако форма его может быть очень сложной. Обычно эта форма отражает погребенный рельеф местности, существовавший здесь до захоронения его под перекрывающими осадками. Чтобы выявить строение этой поверхности, необходимо знать прошлые процессы, влиявшие на формирование рельефа, которые в свою очередь зависят от движений земной коры и от климатических условий. Многочисленные оледенения и перемены климата в течение последних нескольких миллионов лет еще больше затрудняют осуществление подобных реконструкций.

Самая грозная опасность подстерегает шахтеров и проходчиков туннелей там, где ложе выполненной осадками древней долины неожиданно резко опускается на большую глубину. С поверхности же форму таких погребенных долин и положение их днища установить почти невозможно. В 1907 г. в горах Юра (Швейцария) велось строительство туннеля Вайссенштайн. Однако. проектировщики совершенно не учли, что на одном из участков существовала погребенная долина. Когда же при проходке туннеля строители достигли этой долины, сдержать насыщенные водой осадки оказалось весьма непросто.

Ложе погребенных долин может располагаться ниже современного уровня моря — на глубине базиса эрозии, существовавшего в ледниковый период, когда уровень моря был гораздо ниже, чем сейчас. Последующее повышение уровня моря сопровождалось отложением осадков в древней долине. Под рекой Тайн в Ньюкасле (Англия) имеется выполненная осадками значительная по протяженности долина глубиной 40 м; при добыче угля в многочисленных мелких шахтах района эту долину издавна старались по мере возможности избегать.

Очень трудно определить местонахождение погребенных долин там, где они не соответствуют очертаниям современных долин. При сооружении гидротехнического канала Ваггиталь под долиной Швендибах в Швейцарии предполагали, что рыхлые осадки достигают значительной глубины. Поэтому по линии будущего канала была заложена серия горных выработок, одна из которых вскрыла границу коренных и рыхлых пород на глубине 12 м. Канал предполагалось вести на глубине 30 м, поэтому разведочные горные работы продолжали, и другая выработка — в 50 м к северу от первой — вошла в погребенную долину, расположенную на проектной глубине закладки канала. Во избежание катастрофы строительные работы были законсервированы.

Самые глубокие и опасные погребенные долины приурочены к районам, подвергавшимся оледенению. Это объясняется тем, что достаточно мощные ледники при своем движении через уже существовавшие долины могли перемещаться вверх по склонам, переуглубляя отдельные их участки. При отступлении ледника происходит накопление переносимых водой осадков и заполнение ими углубленных частей долины. Это — одна из основных проблем, с которой сталкиваются инженеры при строительстве туннелей, поскольку многие районы Европы и Северной Америки в ледниковую эпоху были охвачены оледенением. В Колмене (Канадские Скалистые горы) шахтеры-угольщики обнаружили погребенную долину, заполненную рыхлыми осадками и погружающуюся почти на 90 м под реку Кроуснест. Во время строительства знаменитого туннеля Сен-Готард в Швейцарских Альпах чуть не произошла катастрофа, когда вели проходку под долиной Андерматт на глубине 300 м и на расстоянии около 3 км от северного устья туннеля. В 70-х годах XIX века ничего не было известно о погребенной долине, она была обнаружена лишь 70 лет спустя при помощи буровых скважин. Глубина погребенной долины Андерматт достигает 270 м, слагающие ее водонасыщенные пески и глины протягиваются на 40 м в пределы туннеля.

Детальное изучение древней и современной геоморфологии помогает ориентировочно определить местоположение погребенной долины, но этого недостаточно для безопасного ведения подземных работ. Следовательно, при обнаружении любого признака, свидетельствующего о возможном присутствии погребенной долины, необходимо проводить детальные геологические исследования, несмотря на то что бурение надлежащего числа скважин может потребовать очень больших затрат.

В настоящее время довольно успешно применяются сейсмические геофизические методы. Скорость сейсмических волн, проходящих через горные породы, по существу является функцией плотности этих пород. Поскольку волны преломляются или отражаются различными слоями, определить геологическое строение недр можно, установив время возвращения волны к поверхности земли. Рубеж, разграничивающий рыхлые осадки и твердую породу, обычно легко находят таким образом. Но при наличии глубоких узких погребенных долин решение вопроса затрудняется, поскольку со склонов долины могут поступать ложные сейсмические сигналы. По-видимому, именно это и произошло в районе Мовуазен в Швейцарии, где под долиной велась проходка туннеля. По данным геофизических исследований стало известно, что здесь имеется погребенное ущелье. Но подземная выработка вошла в эти отложения в совершенно неожиданном месте, и в туннель устремился поток воды, смешанной с песком; погибло четыре человека.

Последствия недостаточно тщательной разведки погребенных долин могут быть ужасными. С самого начала сооружения туннеля Летшберг в Швейцарии совершенно не учитывались местные геологические условия. По этому туннелю протяженностью около 15 км должна была проходить железнодорожная магистраль через Бернские Альпы — от Кандерштега на севере до Гоппенштайна на юге. Оба входа в туннель планировалось расположить в живописнейшей местности на уровне дна ледниковых долин.

У Кандерштега долина имеет удлиненный профиль с четко выраженными уступами, что характерно для многих ледниковых долин. Железная дорога должна была входить в туннель у одного из таких уступов, вздымавшегося почти на 200 м. Выше по течению погребенная долина разветвлялась, и одно ответвление — Гастернталь — проходило как раз над туннелем. Инженеры, проектировавшие туннель в конце XIX века, плохо знали геологию местности. Предполагалось, что у Кандерштега туннель пройдет через известняки под горой Физишток, а затем войдет в твердый гранит под горой Бальмхорн; не было полной ясности и в геологическом строении долины Гастернталь.

Туннель должен был строиться на глубине 180 м от поверхности земли. Грунт в долине был представлен рыхлыми осадками, однако геологи, консультировавшие строителей туннеля, авторитетно заявляли, что мощность рыхлых осадков не превышает 60 м и «никакого риска» нет. Один из геологов, правда, высказал мнение, что мощность рыхлых осадков, возможно, достигает 200 м и часть туннеля пройдет через них. Он рекомендовал поставить буровые работы в долине Гастернталь. Однако проект строительства туннеля был уже утвержден, и на сообщение этого геолога не обратили никакого внимания.

В октябре 1906 г. была начата проходка туннеля Лётшберг. Два года спустя его протяженность со стороны Кандерштега уже превысила 2,5 км. Предполагаемая «опасная зона» под северным бортом долины Гастернталь осталась позади, и проходка туннеля уже велась под долиной. Шли обычные подземные строительные работы. В половине третьего ночи 24 июля 1908 г. был проведен очередной взрыв. Еще не смолкло его эхо, когда лавина из валунов, грязи, воды и песка прорвалась в туннель и заполнила его на протяжении 1300 м. Все находившиеся здесь люди, а их было 25, погибли. Одновременно наверху, в долине Гастернталь, в русле реки образовалась типичная депрессия опускания диаметром 150 м.

Нет почти никаких сообщений о причинах этой катастрофы и о последовавших за ней событиях. Однако совершенно ясно, что туннель вошел в отложения очень глубокой погребенной долины, выполненной рыхлыми осадками. Разведочные скважины, пробуренные впоследствии в долине Гастернталь, достигли глубины 215 м, но о полученных результатах тоже ничего не сообщалось. Тем временем работы по строительству туннеля продолжались. Вести проходку в насыщенных водой, рыхлых отложениях, выполнявших долину, можно было только после их укрепления нагнетанием цементного раствора либо замораживанием. В данном случае применить любой из этих методов было очень трудно, к тому же рыхлые отложения, заполнившие туннель, невозможно было удалить, так как под давлением они постоянно перемещались.

Было принято единственно возможное решение — забетонировать штрек и забросить участок туннеля протяженностью около 1,5 км, заполненный рыхлыми осадками. Это и было осуществлено; проходку затем начали вести в новом направлении, вследствие чего в туннеле образовалось три изгиба. Туннель прошел под долиной Гастернталь выше по течению, где между выработкой и рыхлыми осадками залегали коренные породы мощностью 150 м. В 1913 г. по туннелю Лётшберг началось движение поездов.

Катастрофы в Лётшберге могло бы и не быть, если бы предварительно были проведены более детальные геологические исследования или хотя бы учтены все имеющиеся данные. Гастернталь являет собой прекрасный пример глубокой ледниковой долины, заполненной рыхлыми отложениями. В таких долинах совершенно невозможно заранее предсказать, до какой глубины эти рыхлые отложения распространяются. Коренные породы выходят здесь на земную поверхность в ущелье Клюз ниже долины Гастернталь. Для того чтобы при проходке туннеля встретились рыхлые отложения, было достаточно даже незначительного (не более 1: 10) обратного уклона дна погребенной долины. Такое явление весьма характерно для альпийских ледниковых долин Швейцарии, где крутые склоны часто выпаханы ледниками, двигавшимися вверх по склону. Все настораживающие признаки были налицо, но ни инженеры, ни «геологи-консультанты» не придали им никакого значения.

По существу ни один геолог не мог точно указать, на какую глубину распространяются рыхлые отложения в долине Гастернталь. Однако любой знающий геолог, как, например, тот, на заявление которого перед катастрофой не обратили никакого внимания, должен был предупредить, что рыхлые отложения вполне могут достигать уровня проходки туннеля. Возможно, стоило пойти на некоторый финансовый риск и повести туннель в другом направлении, что в конце концов и пришлось сделать. Тогда по крайней мере было бы спасено 25 человеческих жизней

Как выяснилось впоследствии, дешевле всего было бы до сооружения туннеля пробурить скважину в дне долины. Если бы этот туннель строился сейчас, мощность рыхлых отложений можно было бы определить геофизическими методами. Однако в связи с тем что долина Гастернталь очень узкая, результаты могли оказаться и ошибочными. Мораль истории туннеля Лётш-берг такова: ничто не может заменить буровую скважину.

 

Проблемы горных работ в породах со сложной структурой

Если проходка туннеля или иной горизонтальной выработки ведется в породах, которые могут быть охарактеризованы как «достаточно однородные с геологической точки зрения», особых трудностей не возникает и опасности обрушения грунта нет. Независимо от того, крепкая порода или рыхлая, можно применять принципы горной механики, а метод извлечения, соответствующий данным условиям, можно выбрать на основании математических расчетов. Однако очень часто строительство туннеля приходится вести в породах с разными свойствами и сложной структурой. Если при этом определять и учитывать все геологические условия, сооружение туннеля будет очень дорогостоящим и потребует много времени. С другой стороны, если геология участка недостаточно хорошо изучена, проходка туннелей или проведение горных работ в слабом грунте могут привести к катастрофе.

Железнодорожный туннель Квинешей в Норвегии был построен в 1940 г. Через 8 лет он частично обрушился. В результате постепенного разрушения кровли туннеля в ней образовалась трубо-образная полость диаметром до 6 м и высотой более 30 м. Эта «труба» возникла вдоль пересечения двух разломов.

Разломы — это проблема, с которой инженеры-строители сталкиваются постоянно. Тип разломов обычно бывает невозможно предсказать, и они почти всегда являются плоскостями ослабления. Разломы развиваются в результате движения, происходящего между двумя блоками горных пород, поэтому они включают зоны обломочных пород, известных под названием брекчий, или пласты тонкоразмолотой породы — «жильной глинки», которая может содержать очень рыхлые глинистые минералы, щ

При обрушении в туннеле Квинешей одна трещина включала брекчию, слабо сцементированную растворимым кальцитом, а другая — монтмориллонитовую жильную глинку, этот глинистый минерал широко известен благодаря своему свойству разбухать при контакте с водой. Как обычно наблюдается вблизи разломов, порода была сильно трещиноватой; вода, поступившая из разлома, где содержался кальцит, вызвала разбухание монтмориллонита. В конце концов давление и вес породы стали чрезмерно большими для неукрепленной облицовки туннеля, и произошло обрушение. .

В гидроэнергетических системах обрушения туннелей происходят особенно часто в связи с тем, что на породы воздействуют огромные гидростатические силы, а также изменения давления, которые в свою очередь обусловлены неравномерным использованием водной энергии. В 1956 г. обрушился туннель Кемано на западном побережье Канады, прослужив всего два года. Туннель был практически завален обломками породы, падавшими из огромной разрастающейся каверны (более 20 м в поперечнике) на своде туннеля. Эта каверна сформировалась вдоль разлома, в котором мощность жильной глинки не превышала 5 см. Но по обеим сторонам от разлома в полосе шириной около метра порода стала более рыхлой в связи с тем, что она преобразовалась в хлорит — очень неплотный гидратированный минерал. Новый рыхлый материал был размыт, после чего и началось постепенное обрушение пород по обеим сторонам разлома. На удаление воды и обломков из туннеля и на укрепление свода каверны было затрачено 2 млн. долл., тогда как бетонная облицовка туннеля в зоне разлома обошлась бы гораздо дешевле, если бы с самого начала осознавали степень возможной опасности.

При сооружении туннеля Лемонтайм в Тасмании на тех участках, где имелись разломы, стенки туннеля были покрыты тонким защитным слоем бетона. Но это не помогло, всего лишь через пять месяцев после завершения строительства в 1969 г. туннель обрушился. Причиной опять были разломы. В данном случае двумя разломами, отстоящими друг от друга всего на 3 м, пересекались филлиты и кристаллические сланцы. Блок породы, зажатый между разломами, оказывал на тонкую облицовку туннеля слишком сильное давление, поэтому обрушение было неизбежным. При ремонтных работах были сооружены массивные стальные опоры, укрепившие примыкающую к разломам зону перемятых пород, но это опять-таки было сделано post factum.

Изучение геологических катастроф в туннелях позволяет привести множество самых разных примеров. Однако есть туннель, в котором наблюдалось сочетание практически всех известных типов геологических катастроф. Это — туннель Танна в Японии, строительство которого из-за сложных геологических условий продолжалось 16 лет, хотя длина его всего 8 км. В этом туннеле погибло более 70 человек.

Строительные работы начались в 1918 г., а завершились в 1934 г. В туннеле проходит главная железнодорожная магистраль от Токио к городу Кобе через гору Такиджи на полуострове Идзу. Трудности при строительстве туннеля возникли в связи с тем, что проходку необходимо было вести в сильно нарушенной и сложной в структурном отношении толще водопроницаемых вулканических пеплов. Многие разности этих пеплов были столь рыхлыми и водонасыщенными, что вели себя скорее как жидкость, а не как твердое вещество; некоторые же глины легко впитывали воду и резко увеличивались в объеме. Под воздействием давления разбухших глинистых слоев в туннеле дважды происходили обрушения, в результате одного из них погибли все находившиеся под землей люди. В 1921 г. обрушился участок туннеля протяженностью 45 м. При обвале погибло 16 рабочих, а еще 17 человек в течение недели не могли выбраться из туннеля, заваленного породой, пока их не откопали.

В 1924 г. в западный штрек туннеля Танна ворвалось огромное количество холодной воды, что было вызвано чрезвычайно высокой проницаемостью вулканических пород. В том же году в восточный штрек хлынула горячая вода, вытекавшая под большим давлением из зоны тектонических брекчей. При строительстве туннелей горячую воду обычно встречали на большой глубине; примером тому служит Симплонский туннель в Швейцарии, где температура воды на глубине 2100 м от земной поверхности составляла 56 °C. Подобной глубины туннель Танна, конечно, не достиг, однако в связи с тем что он находился в районе более активной вулканической деятельности, геотермальные потоки были обнаружены на гораздо меньшей глубине. В зоне разломов, содержащей горячую воду, отрезок туннеля протяженностью 300 м сооружался 3,5 года.

Вулканическая деятельность в Японии еще раз свидетельствует о том, что эта страна расположена в неустойчивой части земной коры. В 1930 г., когда работы в туннеле Танна близились к концу, в этом районе произошло довольно слабое землетрясение, но вибрации оказались достаточными для смещения слоев вулканического пепла, вследствие чего кровля туннеля обрушилась и погребла пятерых рабочих. Двоих удалось откопать живыми, а трое пополнили длинный список жертв туннеля.

Вулканический пепел послужил также причиной трагического обрушения туннеля Уилсон на острове Оаху — одном из Гавайских островов. Этот туннель был построен в 1954 г., по нему проходила главная магистраль, ведущая к северу от города Гонолулу. Почти по всей своей протяженности туннель был пройден в вулканической лаве, которая, как известно, является почти идеальной средой для горных выработок. Работы начались с северного конца туннеля, а с приближением к южному краю вулканическая лава неожиданно сменилась рыхлым глиноподобным вулканическим пеплом и обломочными отложениями. Однако выемка породы продолжалась по всей площади забоя, и дополнительных мер по укреплению подземной выработки принято не было.

В туннеле начались обрушения кровли; проседание происходило и на земной поверхности, в 30 м над туннелем. В июле 1954 г. случилось два обвала, но человеческих жертв, к счастью, не было. В августе, при работах по расчистке, произошел третий обвал и погибло пять рабочих. С тех пор проходку в обрушившемся грунте и в оставшейся ненарушенной глине вели несколькими небольшими параллельными штреками; благодаря применению этого метода обрушений в дальнейшем не было.

Несомненно, следовало ожидать, что кровля в таком рыхлом материале, какой встретился в туннеле Уилсон, будет весьма неустойчивой. Но определить степень прочности кровли туннеля, проектируемого в более твердых и плотных породах, не так легко. Туннель Скогн — гидротехнический канал в центральной Норвегии — был пройден в древней метаморфической породе, и тем не менее он обрушился. Впоследствии поняли причину, но, к сожалению, было уже слишком поздно. Оказалось, что обрушение было вызвано разрыхлением пород, происшедшим вследствие того, что некоторые минералы были преобразованы в монтмо-риллонитовую глину.

В некоторых случаях подвижки грунта неизбежны независимо от типа породы; более того, бороться с ними практически невозможно.

Когда породы залегают на большой глубине, они сжаты под действием огромных давлений. Если эти давления частично уменьшаются в одном направлении (например, когда ведется выемка породы при строительстве туннеля или шахты), обычно происходит смещение пород в образовавшееся пустое пространство. На небольшой глубине ослабление давления может вызвать подвижки рыхлых глин, но твердые породы, такие как гранит, остаются без изменений. Однако на глубине сотен и тысяч метров давления достаточно высоки, чтобы деформировать любую породу. Симплонский туннель в Швейцарии проходит под горным хребтом на глубине около 2 км; на одном из участков его стены медленно, но неумолимо оползают.

На золотых рудниках южной Африки, достигших еще большей глубины, стенки не деформируются постепенно, а резко опрокидываются в горные выработки. Эти так называемые горные удары обычно случаются через некоторое время после проходки штольни. Благодаря упругости породы медленное оползание идет до тех пор, пока не будет превышен предел прочности, после чего и следует горный удар.

Другой тип неизбежного смещения пород наблюдается в шахтах, где при разработке рудных месторождений остаются огромные пустоты (очистные забои), которые могут быть поддержаны целиками и крепями лишь в течение ограниченного времени. Нет необходимости, да и весьма нежелательно с экономической точки зрения оставлять в целиках слишком большое количество руды, после того как эксплуатация шахты закончена. Но если постепенное обрушение заброшенных забоев охватит также толщу перекрывающих пород, последствия могут привести к катастрофе, как это случилось на медном руднике Муфулира.

Муфулира находится в очень богатом «медном поясе» Замбии. С 1933 г. на этом руднике велась разработка мощного наклонного пласта богатой медной руды. Рудное тело круто падает на северо-восток, и мощность его достигает 36 м. Как и обычно, вход в шахту и все технические установки располагались в ненарушенном 1лежачем боку рудного тела. По мере того как извлекалась руда, заброшенные наклонные забои обрушались, и в конце концов последствия постепенного обрушения пород висячего бока достигли поверхности земли. Дробильная и рудоперерабатывающая установки на шахте давали огромное количество отходов, главным образом в виде тонкого шлама; в течение многих лет пустую породу выгружали над висячим боком шахты. Это преследовало сразу две цели: удалить пустую породу от шахтных установок и засыпать болото, грозившее малярией. По мере того как висячий бок шахты продолжал проседать, на земной поверхности образовывались озера, которые также заполнялись отходами; к 1956 г. этим мелким обломочным материалом был засыпан бассейн глубиной 12 м.

В обычных нормальных условиях помещение отходов со стороны висячего бока пласта было бы абсолютно безопасным. Поскольку породы обрушивались внутрь шахты, в ее кровле возникали трещины, направленные к поверхности земли, размер которых должен был уменьшаться с удалением от горных выработок. В том случае, когда горные выработки находятся на глубине 300 м и более, как на руднике Муфулира, любые трещины, выходящие на поверхность, будут настолько узкими, что их быстро закупорят наносы. Однако на шахте Муфулира условия не были нормальными. Непосредственно над рудным телом залегала маломощная зона кварцитов, а над ней, до самой земной поверхности, массивные доломиты.

Первые предвестники катастрофы появились в конце 1968 г., когда в покрове отходов образовалась воронка диаметром 60 м. Можно было предположить, что под ней возникла огромная полость, поглотившая исчезнувший материал. Однако этому факту не придали никакого значения, и отходы продолжали сгружать в воронку. В апреле 1970 г. из трещины в кровле шахты на глубине 525 м полилась грязь; сделали ее анализ, но никаких признаков присутствия в ней материала отвалов обнаружено не было, хотя грязь и содержала частицы почвы, что указывало на ее непосредственную связь с поверхностью. Должно быть, в разрушающихся породах кровли возникло очень много трещин и пустот, если осадки с поверхности смогли проникнуть до такой глубины. Однако и в данном случае масштабам трещинообразования и опасным последствиям этого процесса не придали должного значения. В течение лета 1970 г. в шахте неоднократно обнаруживали грязевые экструзии, а наверху, где сгружались отходы, появились новые воронки. Эти воронки по-прежнему заполняли, и горные работы внизу, в шахте, продолжались.

25 сентября 1970 г. произошла катастрофа: поток, состоявший из воды, грязи и материала отходов, прорвал кровлю пород на глубине 525 м от земной поверхности и устремился в шахту. Жидкий грязеподобный материал проник через горные выработки в нижележащие горизонты и сильно их разрушил. Самые же нижние галереи шахты, находившиеся на глубине более 800 м, были до самой кровли заполнены водой вперемешку с осадками. Погибло 89 шахтеров — одни из них утонули, другие были погребены жидкой лавиной.

На поверхности земли, там где сгружались отходы производства, образовалась огромная воронка — 300 м в поперечнике и 15 м глубиной. Размеры воронки свидетельствовали о том, что под землей исчезло 700 000 м3 вещества, однако в шахту попало всего 280 000 м3. Даже если сделать скидку на сжатие, огромное количество осадков поглотили трещины и каверны в доломите.

 

Проблемы при разработке месторождений угля

Добыча угля занимает особое место в промышленном мире, во-первых, в связи с огромными масштабами и большой экономической важностью угольной промышленности, а во-вторых, потому, что угледобытчики подвергают свою жизнь повышенной опасности. Большинство шахтеров всего мира занято в угледобывающей промышленности, поэтому вдвойне досадно, что именно этот процесс гораздо опаснее извлечения любого другого полезного ископаемого. Это объясняется отнюдь не низким уровнем методов разработки и техники безопасности, а определенными чертами геологических обстановок, в которых встречается уголь, в частности его связью со взрывными и ядовитыми газами, а также залеганием в толщах структурно слабых осадочных пород. Уголь образуется вследствие бактериального разложения отмершей растительности, и одним из многочисленных побочных продуктов являются различные газы, в том числе чрезвычайно легко воспламеняющийся метан. Во многих случаях углеобразо-вания газы выделяются и улетучиваются, однако нередко любые пористые породы — сам уголь или песчаник — могут улавливать метан, даже если он находится под высоким давлением. Выделяющийся в угольных шахтах газ может быть ядовитым, а, смешиваясь с воздухом, становится взрывоопасным. Некоторые угольные пласты содержат очень большие количества газа, тогда как в других он практически отсутствует. Легко измерить объем газа, выделяющегося из любого угольного пласта, однако обычно бывает невозможно установить, почему именно данный слой содержит газ. На основании геологических данных нельзя, к сожалению, заранее сказать, существует ли опасность появления газа в данной угольной шахте или такой опасности нет.

Добыча угля — это единственный вид подземных работ, при которых следует опасаться возникновения взрывных газов. Обычно при проходке туннелей в угленосных районах можно встретить газ, однако быстрая облицовка штрека бетоном почти полностью устраняет всякую опасность. Кроме угля газ сопутствует нефти, которая также образуется вследствие разложения органических, но уже преимущественно животных, остатков. Гидротехнический канал в Сан-Фернандо близ Лос-Анджелеса (Калифорния) был построен в 1971 г. в очень пористых песчаниках, содержащих нефть и природный газ. Сначала произошло несколько слабых взрывов газа, а затем последовал более сильный, унесший 16 человеческих жизней. Некоторые люди погибли при самом взрыве, другие — при пожаре, последовавшем за ним, третьи задохнулись в смертоносной смеси газов.

Взрываться в шахтах может и угольная пыль, находящаяся в воздухе: смешиваясь с соответствующим количеством воздуха, она становится столь же опасной, как динамит. Взрыв угольной пыли, происшедший в апреле 1942 г. на угольном руднике Хон-кейко в Китае, по праву считается самой страшной подземной катастрофой — при этом взрыве погибло 1572 шахтера. В какой-то мере опасность угольной пыли можно свести к минимуму, смешивая ее с инертной известняковой пылью; но газ, если он есть в угольном пласте, полностью удалить из выработок невозможно. Единственный путь борьбы с ним — это тщательное планирование вентиляционных систем и создание запасных выходов как для газов, так и для шахтеров. Значительные успехи, достигнутые в этом направлении, позволили заметно снизить число жертв несчастных случаев; в прошлом веке взрывы регулярно уносили множество человеческих жизней, в современных же шахтах они проявляются гораздо слабее и происходят реже.

Налаженная вентиляция позволяет легко справляться с постоянными и предсказуемыми просачиваниями газа. Но значительную опасность таят отдельные «выбросы» включений газа, находящегося под давлением, когда газ буквально взрывается, вырываясь из угольных пластов. В 1971 г. при прорыве газа в угольном руднике Синхейдр в Уэльсе погибло шесть шахтеров. Даже при ретроспективном рассмотрении оказалось, что эту катастрофу невозможно было предвидеть. Свести к минимуму воздействие газов можно было лишь при помощи огромного числа буровых скважин и вентиляционных установок, но даже в этом случае весьма сомнительно, что человеческих жертв удалось бы избежать.

Выработка крупных участков в горизонтальных или слабо наклоненных пластах неизбежно создает определенную опасность обрушения пород. Уголь обычно приурочен к толщам осадочных пород, представляющих собой переслаивание относительно рыхлых сланцев и достаточно крепких — при условии отсутствия трещин — песчаников. Такое сочетание пород весьма непрочно, и поэтому опасность существует при разработке любых угольных месторождений. Хотя крупные обрушения, как можно надеяться, стали достоянием прошлого благодаря улучшению техники безопасности, небольшие камнепады, вероятно, не прекратятся никогда, в одной только Великобритании они ежегодно уносят в среднем 13 человеческих жизней.

В 1837 г. на угольном руднике Уоркингтон на северо-западе Англии вели выемку угля в пластах, залегающих под морским дном. Кровлю выработок поддерживали целики угля, для этого около 35 % угля оставляли в шахте. В целях экономии управляющий шахты приказал свести мощность целиков к минимуму. Это вообще бывает крайне опасно, а в Уоркингтоне делать такой шаг просто было нельзя, и 28 июля произошло неизбежное. Некоторые целики угля обвалились; кровля обрушилась; из-за разрушения пород в ней образовались трещины, дошедшие до самого морского дна, и в них устремилась морская вода. . С берега был виден водоворот, возникший в море над этим участком. В этот день в шахте утонуло 27 мужчин и мальчиков. Этой катастрофы могло бы не быть, поскольку надежные размеры целиков определяются как функция прочности угля и мощности покрова пород. Теоретические достижения в области горной механики и применение современных методов добычи по существу устранили опасность больших обрушений.

Однако незначительные обрушения кровли заранее предсказать почти невозможно, даже если этот «малый масштаб» достаточен, чтобы раздавить человека. Опыт работ в Северной Америке и Европе показал, что для предвидения возможного обрушения внимание должно быть обращено как на густоту трещин отдельности, так и на характеристики пород, залегающих в кровле. Например, если под массивным песчаником залегает маломощный пласт сланца, образующий кровлю угольного пласта, этот сланец обычно обрушается. В том случае, если в песчанике имеются зоны разломов, кровля становится слабой и из рыхлых сланцев часто выпадают конкреции железняка. Что ни говори, лишь бдительный глаз шахтера, прораба или рудничного геолога может дать наиболее точную оценку ситуации в каждом конкретном случае, однако при этом правильное понимание всего множества наблюдаемых геологических факторов будет играть весьма положительную роль.

Основную опасность при добыче угля таят газ и горные породы, на третьем месте после них стоит вода. Высокая водопроницаемость многих сопряженных с угольными пластами пород, особенно песчаников, делает присутствие воды в угольной шахте практически неизбежным. Приток воды даже из наиболее пористых песчаников вряд ли может угрожать жизни, однако он может нанести урон с экономической точки зрения, поскольку необходимо прерывать работы и постоянно откачивать воду. После того как шахта заброшена и откачка прекращена, водопроницаемость песчаников ведет к быстрому затоплению старых горных выработок до уровня местного водного зеркала. Поскольку с целью выемки максимального количества угля группы шахт располагают очень близко, существует опасность при проходке нового шт, река попасть в старые выработки-.

В 1973 г. вода прорвалась в угольный рудник Лофтхауз в Йоркшире и погибло семь шахтеров. Катастрофа произошла потому, что главные выработки уперлись в затопленные галереи заброшенных шахт. Это было допущено из-за плохого знания плана старых рудников; никто и не предполагал, какая угроза нависла над Лофтхаузом. Следует отметить, что в данном случае не было соблюдено одно из основных правил любого геологического исследования — предварительно изучать имеющиеся материалы. Ознакомление с планом заброшенной шахты во время расследования катастрофы показало, что при более детальном изучении старых документов жертв можно было бы избежать.

Гораздо более ужасная трагедия разыгралась в конце 1975 г. в угольном руднике Часнала в штате Бихар (Индия), когда при затоплении погибло 372 шахтера. Угольный пласт здесь круто наклонен, и вода из огромной затопленной открытой выработки прорвалась через штрек на глубине 150 м в подземные галереи. При таких масштабах затопления у шахтеров, трудившихся в главных выработках на глубине 300 м, никаких шансов на спасение не было. В данном случае о старой открытой выработке знали и была оставлена зона угля, игравшая роль барьера между водой и действующей шахтой. Но то ли барьер был недостаточно толстым для угля с такой степенью прочности, то ли уголь оказался более выветрелым и разрушенным, чем ожидалось, то ли глубина старой открытой выработки была больше, чем предполагалось, — во всяком случае затопление было допущено прежде всего из-за недостаточного знания геологической обстановки в районе шахты. Когда дело касается затапливаемых горных выработок, подобная неграмотность может обернуться катастрофой.

Возможно, спорным является вопрос, кто именно виноват в катастрофах, происшедших в шахтах Часнала и Лофтхауз. В подобных случаях трудно указать на кого-то определенного. Видимо, в этих катастрофах повинны и геологи, и горные инженеры, и управляющие шахт, и маркшейдеры.

В 1970 г. в угольный рудник Зелёнка в Польше прорвалась вода из расположенного на поверхности водоема и утонуло пять шахтеров. Было проведено расследование, в результате которого рудничный геолог, прораб, главный инженер и управляющий шахты были осуждены. В данном случае суд, очевидно, исходил из того, что трагедии в Зелёнке могло бы не быть, если бы эти лица должным образом выполняли свои обязанности. Несомненно, катастрофы такого рода можно было избежать.

В 1938 г. разведочная буровая скважина показала, что в неразрабатываемой части угленосного бассейна Нью-Камнок на северной оконечности Южных нагорий в Шотландии залегает мощный угольный пласт. Для его разработки в 1942 г. был открыт угольный рудник Нокшиннох-Касл. Два ствола шахты находились близко один к другому, от них отходили штреки, пройденные в пустой породе и игравшие роль подземных переходов. По ним можно было проникнуть в различные выработки, где велась выемка угля. Все угольные пласты падали на север, и в дальнейшем можно было бы вести выемку угля в этом направлении на гораздо большей глубине. К западу от этого участка находилась старая, заброшенная шахта, а на востоке новые выработки были ограничены зоной разломов.

До 1950 г. выемка угля в основном велась вверх по падению пород в южном и юго-восточном направлении. Месторождение разрабатывалось камерно-столбовым способом, при этом галереи шириной 5 м были пройдены в виде решетки, центры ячеек которой отстояли друг от друга на 30 м. Таким образом, извлекалась лишь одна треть угля, а две трети оставлялись для укрепления кровли. Высота штреков была около 2 м; в кровле тоже оставляли некоторое количество угля, которым поддерживался залегавший непосредственно на угле довольно рыхлый сланец. При нормальном использовании рудничных стоек никакой угрозы обрушения кровли не существовало.

В 1950 г. выемка угля велась в основном вокруг главного подходного пути штрека 5, следовавшего наклонно вверх по падению в направлении главного разлома на юге. Выбраться из этих выработок можно было, только вернувшись вниз на уровень транспортных галерей западной шахты, а оттуда — к основанию ствола. Так же как и в других угольных бассейнах этой части Шотландии, геология шахты была непростой. На геологических картах в непосредственной близости от шахты были отмечены обнажения валунной глины, аллювия, торфа, гравия. Однако о мощности приповерхностных отложений ничего не было известно.

Угольный пласт рассекали несколько небольших разломов; пласт падал на север, причем по направлению к югу падение его становилось все более крутым. Было известно, что на юге имеется крупный разлом со значительным (более 300 м) смещением, и ожидалось, что он ограничит в этом направлении угленосный бассейн. Однако можно было лишь высказывать предположения относительно детального геологического строения участка за пределами выработок, и работы в штреке 5 продолжались, отчасти для разведки участка на юге-востоке. Предполагалось, что главный пласт на руднике Нокшиннох заканчивается у зоны дробления, протягивающейся вдоль главного разлома. В апреле 1950 г. отдел планирования при Комитете по делам угольных шахт рассчитал на основании падения угольного пласта, что это произойдет примерно на глубине 30 м от поверхности земли. Однако к югу падение пласта становилось еще более крутым, и вскоре всем работавшим в шахте стало ясно, что штрек в угольном пласте дойдет до земной поверхности, еще не достигнув зоны разлома. Руководство шахты даже полагало, что это будет весьма полезно для доступа к руднику и для его вентиляции.

13 августа 1950 г. на забое штрека 5 был произведен взрыв; он вскрыл границу коренных пород и перекрывающих их рыхлых отложений, из которых в шахту начала сочиться вода. Особой тревоги это не вызвало; были установлены дополнительные стойки для укрепления кровли шахты и работы в штреке временно прекращены; в течение недели никаких изменений не произошло. Тем временем маркшейдеры определили, что кровля в точке прорыва находилась на 11 м ниже поверхности земли. Утром 7 сентября после проливного дождя, шедшего на протяжении всей ночи, было замечено, что приток воды в шахту усилился. Основания стоек, укреплявших кровлю, покоились на обломках рыхлых пород; эти породы были быстро вымыты водой. Некоторые стойки рухнули, а вечером того же дня в штреке обрушился большой участок кровли. Одновременно наверху, над месторождением, образовалась неглубокая впадина, было решено отгородить этот участок поверхности. Шахтеры же продолжали работу.

В половине восьмого в шахте раздался «ужасный рев» и в штрек 5 обрушилась огромная масса насыщенной водой породы. По штреку потекла похожая на патоку река черного шлама, заливая все выработки. Грязь и торф заполнили проходы на северной стороне штрека и все галереи, ведшие к стволу; эта масса поднялась по главному стволу шахты и достигла глубины 8 м от его устья. В очистных выработках у верхнего края штрека 5 работали 11 человек; все они погибли в этом грязевом потоке. Еще два человека, стоявшие у конвейерных лент в нижнем конце штрека 5, были окружены жидким шламом и умерли медленной смертью. Шестерым шахтерам удалось подняться наверх по стволу шахты, но 116 человек сумели лишь пробраться к западному концу шахты, где они были впоследствии окружены шламом, заполнившим все галереи, ведущие к главному стволу. Благодаря счастливой случайности шахтеры оказались в той части шахты, которая находилась на расстоянии всего 8 м от горизонтальной выработки в заброшенной угольной копи Банк.

В течение двух суток проводились четко организованные и полные драматизма спасательные работы. Был пробит туннель, соединивший обе шахты, и все 116 шахтеров целыми и невредимыми вышли по запасному выходу из заполненных газом выработок, протягивавшихся более чем на 1,5 км. Успех спасательной операции заставил забыть о том, что это была катастрофа, в которой погибло 13 человек.

Рассматривая случай в шахте Нокшиннох, следует задавать вопрос, не как произошла эта катастрофа, а почему она произошла. Расследование показало, что основной ее причиной было отсутствие согласованности в действиях разных служб. У планировщиков имелась геологическая карта района, и они знали, что в районе месторождения есть торфяная залежь. Однако они полагали, что угольный пласт простирается до разлома, а не до земной поверхности, и дали указание продолжать работы в штреке 5. У руководства шахты геологической карты не было, но оно знало, что при проходке этого штрека шахтеры выйдут на поверхность земли, а не к разлому. Поскольку согласно указаниям отдела планирования работы в штреке 5 должны были продолжаться, руководство шахты не видело никаких оснований, чтобы их прекратить.

Обе названные группы должностных лиц ошибались в отношении геологии этого участка. Отдел планирования исходил из прогноза равномерного падения угольного пласта на протяжении 300 м в направлении ожидаемого пересечения пласта угля и зоны разлома. При этом не учитывалось, что слои горных пород изгибаются при движении против плоскости разлома; при таком крупном разломе, как тот, что существовал к югу от Нокшинноха, угольный пласт вполне мог круто подняться в южном направлении. Кроме того, не принималось во внимание, что в районе, столь сложном в структурном отношении, вполне могли встретиться другие складки или разломы. Планировщики же были абсолютно уверены в правильности своих прогнозов. С другой стороны, руководство шахты ограничилось тем, что просто следило, как штрек 5 приближается к земной поверхности. А ведь было совершенно ясно, что вблизи ее есть вероятность встретить отложения, которые, учитывая историю оледенений данного района, могут представлять определенную опасность.

В ледниковую эпоху вся территория Шотландии была покрыта ледниками. Район Нокшиннох находится на северном конце узкой ледниковой долины Глен-Афтон, где развиты валунные глины, мощность которых не была точно установлена. В этих условиях невозможно предсказать, какими именно будут приповерхностные отложения, и следовало бы тщательно проверить направление штрека 5. Фермер — владелец поля над штреком — знал о существовании торфяного слоя. Ему было известно, что земля здесь очень рыхлая и что на мокром участке растут камыши. Он видел торф и в канавах, окружавших поле, но фермера никто не спросил… Маркшейдеры, проверявшие уровень поверхности, установили, что «грунт несколько пропитан водой». Тем не менее никто не только не взглянул на геологическую карту, но даже не удосужился взять в руки лопату и сделать закопушку, чтобы посмотреть, что же там залегает.

Одна из рекомендаций, выработанных в ходе расследования катастрофы в шахте Нокшиннох, заключалась в следующем: ни одна горная выработка не должна приближаться к земной поверхности менее чем на 45 м, пока геология участка не будет изучена бурением или другими надежными методами; к этим методам может быть отнесена сейсморазведка. Кроме того, было рекомендовано еще до начала горных работ детально изучать геологию вышележащего участка.

Если бы в Нокшиннохе кто-нибудь, знавший расположение штрека 5, задумался над геологической обстановкой на этом участке, несчастья могло бы не быть. Если бы кто-нибудь хотя бы несколько минут побродил по полю, заглянул в канавы и бросил взгляд на геологическую карту или просто поболтал с фермером, тринадцать человеческих жизней были бы спасены. .

Следует еще раз подчеркнуть основные правила геологических исследований. Первым этапом при решении любой геологической проблемы являются чтение карты, проверка всех возможных источников информации, отбор проб грунта, а затем — анализ всех вероятных последствий. Понять геологию погребенных пород обычно бывает нелегко; это почти невозможно сделать, если не будут пробурены десятки скважин. Очень часто мы имеем дело с огромным количеством фрагментарной информации, по которой необходимо установить истинное положение вещей. Если неправильно подобрать факты или же упустить какой-либо из них, то составить общую картину не удастся. А при строительстве и планировании неполнота геологической картины нередко приводит к катастрофе.

 

Будущее

Катастрофы в Лётшберге и Нокшиннохе служат примерами того, к чему приводит игнорирование геологических условий. Однако эти несчастья уже в прошлом, а сооружение туннеля Сейкан — это будущее. Строительство невероятного подводного туннеля в Японии еще не завершено, поэтому пока его нельзя рассматривать как пример успешной проходки, тем более что уже возникал ряд сложностей, связанных с проблемами затопления.

С другой стороны, туннель Сейкан совершенно уникален. При его строительстве уже удалось пройти грунт гораздо более трудный, чем в Нокшиннохе и Лётшберге. Когда сооружение этого туннеля будет завершено, он станет олицетворением победы человека в борьбе с непокорными грунтами. Эта победа стала возможной только при современном уровне развития гражданского строительства.

Ход работ в туннеле Сейкан позволяет предполагать, что строительство будет завершено успешно. Это рискованное предприятие основано на результатах 25-летних геологических исследований и на анализе материалов, полученных при бурении множества скважин.

Если строительство туннеля Сейкан удастся успешно завершить, тогда практически любые другие работы под землей можно считать обычным делом при условии должного внимания к геологической обстановке. И наоборот, если при проведении любых горных работ илг; проходке туннелей в будущем произойдет катастрофа, вызванная особенностями грунтов, то причиной будет плохое знание геологии.

Но послужат ли прошлые катастрофы должным уроком или же человек по-прежнему не будет обращать внимания на геологическую обстановку и станет виновником новых бедствий?