В главе 8 мы обсудили задачу о частице в ящике. Мы представили себе электрон, запертый в очень маленьком одномерном ящике, изображённом на рис. 8.1. Задача о частице в ящике полезна тем, что используемый в ней математический аппарат достаточно прост, чтобы, приложив небольшие усилия, найти квантованные энергетические уровни. Нами была получена формула, которая показывает, что энергетические состояния частицы в ящике представляют собой дискретные ступени, зависящие от квантового числа n , которое принимает целые значения, начиная с единицы. Отмечалось, однако, что это крайне искусственный пример удержания квантовой частицы. В природе не бывает по-настоящему одномерных систем. Кроме того, стенки ящика бесконечно высоки и совершенно непроницаемы. Это тоже физически неосуществимо. Как говорилось при обсуждении фотоэлектрического эффекта в главе 4, если энергии фотона хватает на преодоление энергии связи электронов с атомами в куске металла, то взаимодействие такого фотона с первоначально связанным электроном может выбить его из металла (см. рис. 4.3).
Тем не менее по ряду причин изучать частицу в ящике очень полезно. Во-первых, обнаруживается, что энергетические уровни квантуются (см. рис. 8.6). В противоположность классической механике, энергия, которой может обладать электрон, запертый в ящике размером с атом или молекулу, не является непрерывной величиной. Она может меняться только дискретными шагами. Фотон с подходящей энергией может возбудить электрон, переведя его с одного энергетического уровня на другой (см. рис. 8.7). Энергия такого фотона должна совпадать с разностью между энергией того уровня, на который он переходит, и энергией того уровня, который он покидает. Однако в отличие от реальных систем никакая энергия не способна выбить электрон из ящика, поскольку его стенки бесконечно высоки. Это способ сказать, что электрон имел бы бесконечно большую энергию за пределами ящика. Ящик представляет собой бесконечно глубокий колодец, и электрон сидит в нём как в ловушке; никакая конечная энергия не способна преодолеть бесконечную энергию связи.
Другая важная особенность частицы в ящике связана с природой волновых функций. Волновые функции — это волны амплитуды вероятности, связанные с местоположением электрона в ящике (см. рис. 8.4). Квадраты этих волновых функций (см. рис. 8.5) характеризуют вероятность обнаружения электрона в той или иной области пространства. У волн амплитуды вероятности есть узлы. С увеличением квантового числа количество этих узлов возрастает. Узлы — это места, где вероятность обнаружить частицу, например электрон, равна нулю.
Атомы, в отличие от одномерной частицы в ящике, — это реальные трёхмерные физические системы. Трёхмерность атомов приводит к существенным отличиям от одномерной частицы, но, как будет показано в главе 10, некоторые самые важные особенности квантовомеханического описания атомов качественно подобны результатам, полученным для частицы в ящике. У атомов есть квантованные энергетические уровни. Они обладают волновыми функциями с узлами, количество которых возрастает с увеличением квантового числа. Однако много в них устроено совсем по-другому. Например, квантовым состояниям атомов соответствует несколько квантовых чисел, а поскольку атомы трёхмерны, их волновые функции представляют собой трёхмерные структуры. Эти особенности атомов будут обсуждаться в главе 10 на примере простейшего атома — водорода. Но сначала давайте познакомимся с некоторыми ранними наблюдениями, показавшими, что классическая механика не способна описывать атомы.
Спектр солнечного черноте́льного излучения
Мы уже говорили о спектроскопии — экспериментальном методе, который состоит в получении спектра света, испускаемого системой или поглощаемого ею. Спектр — это просто запись интенсивности света разных цветов. Для его получения измеряется количество света каждой длины волны (цвета). Говоря о цветах, мы имеем в виду не только те цвета, которые мы способны видеть, то есть не только видимый спектр, но и более длинные инфракрасные волны (с меньшей энергией) и более короткие ультрафиолетовые (с большей энергией). Система может представлять собой контейнер, наполненный молекулярным газом, лист растения или молекулы в жидкости вроде тех, что придают вину красный цвет. Мы используем сложные молекулы красителей, чтобы придать цвет одежде, поскольку размер и строение молекул определяют, какие длины волн света будут поглощаться.
В главе 4 коротко говорилось об излучении чёрного тела. Нагретые объекты испускают свет. Очень горячий кусок металла будет светиться красным. Так происходит с нагревательными элементами электрической печи. С повышением температуры цвет будет смещаться по спектру в голубую сторону. Мы уже упоминали о том, что звёзды хорошо описываются как чёрные тела, и цвет звезды может служить для определения её температуры. Планк вывел формулу, которая описывает спектр чёрного тела при заданной температуре.
На рис. 9.1 представлен солнечный спектр, вычисленный по формуле Планка, который наилучшим образом согласуется с экспериментально измеренным спектром Солнца. Частота выражена числом волн, укладывающихся на одном сантиметре (см−1). Умножение частоты (см−1) на скорость света (3∙1010 см/сек) даёт частоту в герцах (Гц), привычных единицах измерения частоты. Сверху по оси абсцисс отложена длина волны в нанометрах (нм): 500 нм — это зелёный свет, 400 нм — ярко выраженный голубой, 666 нм — глубокий красный, 333 нм — ультрафиолетовое излучение, не видимое глазом, 1000 нм — также невидимое инфракрасное излучение. Эти длины волн можно обнаружить с помощью электронных фотодетекторов. Первоначально их регистрировали с помощью фотоплёнки. По вертикальной оси отложена интенсивность излучения. Она измеряется числом ватт (джоулей в секунду) энергии, приходящей на площадку в 1 квадратный метр в узком диапазоне частот 1 см−1. Фактически этот график показывает, сколько энергии излучения конкретного цвета падает в секунду на один квадратный метр.
Рис. 9.1. Черноте́льный спектр Солнца, вычисленный по формуле Планка для теплового излучения горячего объекта. Эта кривая хорошо соответствует солнечному спектру, за исключением некоторых тонких деталей. По нижней оси отложены частоты, выраженные числом волн на 1 см (см. текст). По верхней оси отложена длина волны в нанометрах. Зелёный свет — это 500 нм, ярко выраженный голубой — 400 нм, глубокий красный — 666 нм. По вертикальной оси отложена интенсивность излучения (см. текст)
Форма спектра, изображённого на рис. 9.1, почти совпадает с реальным солнечным спектром. Расчётный спектр получен путём подгонки температуры в формуле Планка до наилучшего соответствия экспериментальному спектру. Температура, которая даёт такое соответствие, составляет 5780 K, где K — кельвины. Кельвин — это единица температуры по абсолютной шкале, разработанной Уильямом Томсоном, первым бароном Кельвином (лорд Кельвин, 1724–1907). Шкала Кельвина используется в физике и химии, поскольку нулевая отметка на этой шкале (0 K) имеет чётко определённый физический смысл. При 0 K прекращаются все движения атомов, связанные с кинетической энергией, то есть с теплом, с энергией движения частиц. Чтобы получить температуру в градусах Цельсия (°C), следует из температуры в кельвинах вычесть 273. Таким образом, по шкале Цельсия температура Солнца составляет 5507 °C.
Тёмные линии в солнечном спектре
Поразительно, что формула Планка, выведенная с опорой на первую квантовую идею о том, что энергия электронов, «осциллирующих» в металле, не является непрерывной, оказалась применимой к температуре звёзд. Расчётный спектр, изображённый на рис. 9.1, является непрерывным, поскольку горячий объект порождает непрерывное распределение цветов (энергии квантов света). Хотя экспериментальные данные в целом соответствуют кривой на рис. 9.1, на них также совершенно отчётливо проявляются детали, которые отсутствуют на черноте́льном спектре Солнца. На рис. 9.2 изображён солнечный спектр с тёмными линиями, отражающими нехватку света некоторых частот. Спектр, изображённый на рис. 9.1, соответствует излучению, испускаемому Солнцем. Тёмные линии — это узкие диапазоны длин волн, которые не доходят до Земли. Они называются линиями, или полосами, поглощения. Те же самые линии совершенно отчётливо видны в спектрах света, приходящего от других звёзд.
Длины волн, соответствующие тёмным линиям в солнечном спектре, можно наблюдать как отдельные цвета дуговой лампы, заполненной водородом. Водородная дуговая, или газоразрядная, лампа представляет собой заполненный водородом герметичный стеклянный цилиндр с электродами на концах. Когда достаточно высокий положительный электрический потенциал подаётся на один электрод, а отрицательный — на другой, в лампе возникает электрическая дуга, подобная маленькой непрерывно бьющей молнии. Цвета, или длины волн, в диапазоне видимого света, испускаемые лампой, соответствуют длинам волн тёмных линий спектра на рис. 9.2.
Рис. 9.2. Видимая часть солнечного спектра. Непрерывная последовательность цветов — это черноте́льный спектр. Тёмные линии, или полосы, — это цвета, соответствующие длинам волн, которые не доходят до Земли, так что они выглядят отсутствующими цветами в солнечном спектре. Длины волн этих линий отложены на шкале вдоль спектра в нанометрах (1 нм = 10 −9 м)
Спектральные линии водорода
Первая попытка объяснить линейчатый спектр водорода в видимом диапазоне была предпринята в 1885 году школьным учителем и математиком Иоганном Бальмером (1825–1898). Бальмер заметил, что частоты f этих линий в видимой части спектра можно описать формулой
f ~(1/22)−(1/n 2).
Символ ~ означает пропорциональность, то есть указывает на наличие постоянного множителя, о котором говорится ниже. В этом уравнении n — целое число больше 2, то есть 3, 4, 5 и т. д.
Эти линии в видимой части спектра называются бальмеровской серией. Позднее были открыты линии в ультрафиолетовой и инфракрасной частях спектра. Их назвали сериями Лаймана и Пашена соответственно в честь их первооткрывателей — американского физика и спектроскописта Теодора Лаймана (1874–1954) и немецкого физика Луиса Карла Генриха Фридриха Пашена (1865–1947). В 1888 году шведский физик и спектроскопист Йоханнес Ридберг (1854–1919) опубликовал формулу, которая описывала все спектральные линии, видимые в излучении водородной дуговой лампы и в спектрах поглощения солнечного и звёздного света. Формула Ридберга для частоты спектральных линий водорода имеет вид
f =R H∙[(1/n 12)−(1/n 22)],
где n 1 — целые числа, начиная с 1, а n 2 — другие целые числа, которые должны быть больше n 1. Значение n 1=1 даёт лаймановскую серию, n 1=2 — бальмеровскую, n 1=3 — серию Пашена.
Константа R H называется постоянной Ридберга для атома водорода. Её значение составляет R H=109677,6 см−1 и выражено числом волн (см−1). При использовании этого значения в формуле Ридберга частоты спектральных линий, определяемые целыми числами n 1 и n 2, выражаются волновыми числами. Для перевода результата в герцы надо умножить полученное значение на скорость света, то есть на 3∙1010 см/сек. Чтобы найти длину волны спектральной линии, надо взять величину, обратную частоте, выраженной числом волн, то есть разделить единицу на частоту, выраженную числом волн. Например, если n 1=2, а n 2=3, то
f =R H∙[(1/22)−(1/32)] = R H∙[(1/4)−(1/9)] = 1,52∙104 см−1
представляет собой частоту, выраженную числом волн. Обратная величина для этого числа составляет 6,56∙10−5 см = 656∙10−9 м = = 656 нм. Таким образом, длина волны составляет 656 нм — это красная линия в серии Бальмера, изображённой на рис. 9.2.
При обсуждении рис. 8.7 уже говорилось о дискретности оптических переходов между квантовыми энергетическими уровнями для частицы в ящике. На рис. 8.7 показаны переходы между состояниями частицы в ящике, при которых n =1 превращается в n =2 и n =1 превращается в n =3. В связи с этим не должен стать большим сюрпризом тот факт, что оптические переходы в атоме водорода могут соответствовать дискретному набору частот, которые зависят от целых чисел. Однако в 1888 году, когда была получена формула Ридберга, оставалось ещё 12 лет до появления идеи квантования энергетических уровней, с помощью которой Планк объяснил черноте́льное излучение, и 37 лет до того, как в 1925 году сформировалась полноценная квантовая теория. Различные серии спектральных линий, энергии которых связаны посредством целых чисел по формуле Ридберга, можно понять как оптические переходы между дискретными энергетическими уровнями, связанные с атомом водорода.
Рис. 9.3. Схемы некоторых энергетических уровней, порождающих серии Лаймана и Бальмера линий эмиссии водорода. Стрелки, направленные вниз, показывают, как свет испускается водородом, например, в дуговой лампе. При поглощении, дающем тёмные линии на рис. 9.2, стрелки были бы направлены вверх. Интервалы между уровнями показаны условно, а не в масштабе
Некоторые энергетические уровни, благодаря которым возникают серии Лаймана и Бальмера, изображены на рис. 9.3. Здесь стрелки, направленные вниз, соответствуют эмиссионным линиям, которые наблюдаются у водородной дуговой лампы. Атом водорода, который первоначально находится на более высоком энергетическом уровне, со временем переходит на более низкий уровень. Энергия при этом сохраняется за счёт испускания фотона. Для сохранения энергии фотон должен нести энергию, равную разности между первоначальным, более высоким энергетическим уровнем и конечным уровнем с более низкой энергией. Наименьшее возможное значение n 1 в формуле Ридберга равно 1, а n 2 должно быть больше n 1. Стрелка, помеченная 2–1, соответствует излучению при переходе с уровня n =2 на уровень n =1.
Следующая по величине энергия излучения в лаймановской серии получается при переходе с уровня n =3 на уровень n =1. В формуле Ридберга следующее возможное значение для n 1 равно 2, а n 2 должно быть больше n 1. Поэтому наименьшая энергия линии излучения в серии Бальмера отмечена как 3–2. Когда атом водорода, находящийся на уровне n =3, переходит на уровень n =2, сохранение энергии обеспечивается испусканием фотона с длиной волны 656 нм. Когда свет падает на атомы водорода, происходит поглощение, которое можно было бы изобразить на той же диаграмме стрелками, направленными вверх.
Боровская теория атома водорода (не вполне совершенная)
Первое подробное описание энергетических уровней водорода было дано Нильсом Бором (1885–1962) в 1913 году. Бор получил Нобелевскую премию по физике в 1922 году
«за заслуги в изучении строения атома».
Созданная Бором теория атома водорода считается предвестницей квантовой теории. Бор добился большого прогресса — фактически он сумел точно вычислить энергетические уровни атома водорода, выведя формулу Ридберга и предсказав все спектральные линии водорода.
Бор также первым выдвинул две идеи, которыми мы уже пользовались. Он заявил, что атомная система может существовать только в некоторых состояниях, которые он называл «стационарными». Сегодня мы обычно называем их собственными состояниями энергии. Каждому из этих состояний соответствует чётко определённое значение энергии E . Переход из одного стационарного состояния в другое может произойти при поглощении и испускании света или другом способе потери или получения энергии системой, а количество этой энергии должно быть равно разности энергий данных двух состояний. Эта идея положена в основу схем, представленных на рис. 9.3 и 8.7, где стрелки изображают переходы между состояниями, происходящие при поглощении и испускании света.
Бор также выдвинул постулат, известный ныне как правило частот. Частота испускаемого или поглощаемого света при переходе от начального энергетического состояния E 1 к конечному E 2 равна разности их энергии, делённой на постоянную Планка:
ν =|E 1−E 2|/h ,
где ν — частота, а h — постоянная Планка (h =6,6∙10−34 Дж∙сек). Вертикальными линиями в формуле обозначена абсолютная величина. В случае поглощения E 1 меньше E 2, так что разность E 1−E 2 имеет отрицательное значение. Смысл абсолютной величины состоит в том, что в качестве результата берётся положительное значение, даже если разность получается отрицательной. Частота ν должна быть положительным числом. Умножив обе части формулы на h , получаем, что E — разность энергий между энергетическими уровнями (стационарными состояниями) — равна E =h∙ν , то есть даётся формулой Планка, которую использовал Эйнштейн для объяснения обсуждавшегося в главе 4 фотоэлектрического эффекта.
Что же представляет собой атом водорода и в чём недостаток метода, предложенного Бором? Атом водорода состоит из двух заряженных частиц: протона, несущего положительный заряд +1, и электрона, который имеет отрицательный заряд −1. Когда говорится о заряде, равном 1, это в действительности сокращённая запись для заряда одного протона. В стандартных физических единицах он равен 1,6∙10−19 Кл, где Кл — обозначение кулона, единицы измерения заряда. Эрнест Резерфорд (1871–1937) провёл в 1911 году эксперименты, которые показали, что атомы состоят из маленького тяжёлого положительно заряженного ядра и одного или более электронов вокруг него. Резерфорд получил Нобелевскую премию по химии в 1908 году
«за проведённые им исследования в области распада элементов в химии радиоактивных веществ».
Открытия Резерфорда в применении к атому водорода означают, что протон является ядром, а единственный электрон находится вне ядра. Даже ядро водорода, состоящее из одного протона, намного тяжелее электрона. Масса протона составляет m p=1,67∙10−27 кг, тогда как масса электрона равна всего лишь m e=9,1∙10−31 кг. То есть протон весит примерно в 1836 раз больше, чем электрон.
В боровской модели водорода электрон обращается вокруг протона, как планета вокруг Солнца. В наинизшем энергетическом состоянии атома водорода (n =1) электрон движется вокруг протона по окружности. В более высоких энергетических состояниях орбита электрона с n больше 1 может принимать различные формы. Некоторые из них остаются окружностями, но другие оказываются эллипсами. С учётом сказанного в предыдущих главах эта картина электрона, обращающегося вокруг протона, должна немедленно вызвать срабатывание «тревожной сигнализации». В главе 6 обсуждался принцип неопределённости Гейзенберга. Мы знаем, что движение абсолютно малой частицы не может описываться классической траекторией. Для описания траектории необходимо знать положение и импульс частицы на протяжении всего времени движения. Однако принцип неопределённости Гейзенберга гласит, что невозможно одновременно и точно знать положение и импульс. В соответствии с соотношением неопределённости Δx∙ Δp ≥h /4π, где h — постоянная Планка. Абсолютно малые частицы описываются волнами амплитуды вероятности, а не траекториями. Конечно, в 1913 году, когда Бор выдвинул своё математическое описание атома водорода, природа абсолютно малых частиц была ещё неизвестна.
Ошибочность боровского подхода становится очевидной, когда он применяется к системам, отличным от атома водорода. Хотя он способен очень точно предсказать энергетические уровни, а тем самым и спектр атома водорода, он не позволяет сделать это для второго по простоте атома — гелия. Не может он предсказать и свойств простейшей молекулы, а именно молекулы водорода, которая состоит из двух атомов. Метод отбора не объясняет силу химической связи, которая удерживает вместе два атома водорода в молекуле. Тем не менее Бор сделал огромный шаг в правильном направлении, а ошибки его подхода в конечном счёте привели к созданию истинной квантовой теории в 1925 году.