Абсолютный минимум. Как квантовая теория объясняет наш мир

Файер Майкл

15. Пиво и мыло

 

 

В этой главе мы рассмотрим несколько типов молекул, чтобы увидеть, как различия в их природе влияют на химические процессы. Прежде всего, мы займёмся спиртами. Спирт — это органическая молекула, которая содержит химическую группу определённого типа. Молекула спирта может быть относительно маленькой, как, например, у этилового спирта, который химики обычно называют этанолом. Этанол — это спирт, содержащийся в пиве, вине и водке. Однако крупные и важные биологические молекулы, например холестерин, также являются спиртами. Такими крупными молекулами мы займёмся в главе 16. А сейчас разберёмся, почему этанол растворяется в воде, как он превращается в уксус и какие химические реакции в вашем теле делают метанол (древесный спирт) ядовитым, в то время как этанол безопасен, по крайней мере в умеренных количествах. Опираясь на механизм, который позволяет некоторым молекулам растворяться в воде, мы рассмотрим строение молекул мыла и масла, чтобы понять, почему для того, чтобы удалить загрязнения с посуды и смыть их в канализацию, нужно мыло.

 

Спирты

 

Этанол — это этан (см. рис. 14.10), в котором один из атомов водорода заменён OH-группой, называемой также гидроксильной группой. Химическая формула этанола H3CH2COH. На рис. 15.1 изображены диаграмма и шаростержневая модель этанола. В этаноле, как и в этане, атомы углерода используют четыре гибридные sp3-орбитали для образования тетраэдрической конфигурации связей. Кислород также использует четыре sp3-гибридизированные орбитали. Одна из них служит для того, чтобы соединиться с атомом углерода, ещё одна используется для связи с водородом, а остальные две содержат неподелённые электронные пары. Эти неподелённые пары не показаны на схеме и в шаростержневой модели на рис. 15.1. (На рис. 14.2 изображены неподелённые пары кислорода в молекуле воды.)

Рис. 15.1. Схема молекулы этанола (этилового спирта), демонстрирующая, как в этой молекуле соединены атомы (вверху), и её шаростержневая модель (внизу). Атомы водорода показаны светло-серым тоном, углерод — серым, а кислород — чёрным

Обратите внимание, что в шаростержневой модели этанола атом водорода, соединённый с кислородом, заметно меньше атомов водорода, соединённых с атомами углерода. Обратившись к Периодической таблице (см. главу 11), мы узнаём, что кислород в действительности стремится захватить электроны, чтобы получить замкнутую, как у неона, конфигурацию оболочки. Однако совместное использование электронов в химической связи кислорода и углерода не вполне равноправное. Кислород очень сильно притягивает электроны и перетаскивает к себе часть электронной плотности от водорода. Дополнительная электронная плотность придаёт кислороду частичный отрицательный заряд, а водород из-за потери электронной плотности приобретает частичный положительный заряд. Эта потеря электронной плотности приводит к уменьшению размера электронного облака атома водорода, что и отражено на рисунке относительно малым размером сферы, соответствующей атому водорода, связанному с кислородом. Углерод и водород, образующие ковалентную связь, почти одинаково притягивают электроны. Поэтому они делят электроны почти поровну. Таким образом, в среднем электронная плотность у водорода, связанного с углеродом, больше, чем у водорода, связанного с кислородом. В общем случае спирт — это молекула, в которой есть атом углерода с присоединённой к нему OH-группой, и кроме неё данный атом углерода связан только с водородом или другими атомами углерода.

 

При комнатной температуре этанол жидкий, а не газообразный

При комнатной температуре этан является газом, а этанол — жидкостью. Для сжижения этана его надо охладить до −89 °C, а этанол надо нагреть до 78 °C, прежде чем он закипит и превратится из жидкости в газ. Этан и более крупные углеводороды, входящие в состав нефти, нерастворимы в воде, тогда как этанол и более крупные спирты в воде растворяются. Этан и этанол имеют почти одинаковые размеры и похожие формы. Так почему же этанол, в отличие от этана, растворяется в воде и находится в жидком состоянии при комнатной температуре?

Как уже было кратко отмечено, имеющаяся у этанола гидроксильная группа (OH) привносит два небольших изменения. Атом кислорода несёт частичный отрицательный заряд, а атом водорода — частичный положительный. Схематически это обозначается так: Oδ−−Hδ+ (греческая буква δ «дельта» используется здесь в значении «частичный»). За дельтой следует знак электрического заряда атома. Величина электронной плотности, передаваемая от атома H к атому O, очень мала — много меньше заряда одного электрона, который передаётся в такой соли, как NaCl, где ионы обозначаются Na+ и Cl−. Связь между кислородом и водородом в основном ковалентная, а не ионная, как в NaCl. Однако частичные заряды на атомах O и H невероятно важны. Они возникают из-за особенностей молекулярных орбиталей, отвечающих за ковалентную связь кислорода и водорода. Эти частичные заряды приводят к тому, что этанол оказывается жидкостью. Если позволить себе лёгкое преувеличение, то можно сказать, что без того же рода частичных зарядов на атомах кислорода и водорода в молекулах воды жизнь не могла бы существовать.

Этанол является жидким, поскольку описанные небольшие изменения приводят к появлению своего рода химических взаимодействий между молекулами, которые называются водородными связями. Водородные связи намного — примерно в десять раз или более — уступают по силе настоящим ковалентным химическим связям. Чтобы точно описать образование водородных связей, необходима квантовая теория, однако получить представление на качественном уровне можно, рассматривая электростатическое взаимодействие между частичными зарядами. Водородная связь образуется, когда частично положительный атом водорода в одной молекуле притягивается к частично отрицательному атому кислорода в другой молекуле. За счёт этого притяжения атом водорода одной молекулы этанола тяготеет к строго определённому положению относительно атома кислорода другой молекулы этанола. Это притяжение удерживает молекулы этанола вместе и делает вещество жидким при комнатной температуре. В этане такого относительно сильного межмолекулярного взаимодействия нет.

Тепло — это форма кинетической энергии. При повышении температуры беспорядочное движение молекул усиливается. В этане молекулы не испытывают сильного притяжения друг к другу. При комнатной температуре тепловые движения не позволяют молекулам этана соединяться, и поэтому этан является газом. Представьте себе, что вы, держа за руки другого человека, побежали с ним в противоположных направлениях. Если ваше рукопожатие слабое, оно разорвётся, и вы разбежитесь, как молекулы этана. Если же вы держитесь очень крепко, то останетесь вместе и станете двигаться, будто связаны друг с другом, как молекулы этанола.

Рис. 15.2. Четыре молекулы этанола связаны в цепочку. Атомы кислорода на этом рисунке изображены тёмно-серыми. Кислород, помимо связанных с ним атомов водорода и углерода, имеет две неподелённые пары. Штриховые линии показывают водородные связи, которые идут от атома H гидроксильной группы одной молекулы этанола к неподелённым парам кислорода другой молекулы этанола

На рис. 15.2 изображены четыре молекулы этанола, соединённые в цепочку водородными связями. Штриховые линии идут от водорода в OH-группе одной молекулы этанола к неподелённой паре на атоме кислорода другой молекулы этанола. Неподелённая пара имеет высокую электронную плотность, так что частично положительный атом H притягивается к электронам неподелённой пары кислорода. Это продолжается от одной молекулы этанола к другой, и так образуется цепочка. Жидкий этанол состоит из цепочек молекул, которые соединяются водородными связями. Водородные связи делают этанол жидким при комнатной температуре, но они относительно слабые. Эти связи постоянно разрушаются и реорганизуются, но в среднем каждая молекула этанола имеет водородную связь (H-связь) с одной или несколькими другими молекулами этанола. Однако если достаточно сильно нагреть этанол, тепловые движения начнут разрушать H-связи, и молекулы будут разлетаться. Температура, при которой тепловой энергии достаточно для разделения молекул этанола, — это и есть точка кипения, равная 78 °C. При этой и более высокой температуре этанол становится газом.

 

Вода образует водородные связи

Вернёмся к вопросу о том, почему водородные связи необходимы для жизни. Вода (H2O) имеет очень маленькую молекулу. По молекулярной массе она сравнима с кислородом O2, азотом N2 и метаном CH4, которые при комнатной температуре являются газами. Вода содержит один атом кислорода, связанный с двумя атомами водорода. Как и в случае с этанолом, кислород создаёт ковалентные связи с атомами водорода, но в ковалентной связи O−H электроны делятся не идеально поровну. В молекуле воды кислород перетягивает часть электронной плотности от атомов H. Демонстрирующая это схема молекулы воды выглядит так: Hδ+−Oδ−−Hδ+. Частично положительные атомы водорода одной молекулы воды притягиваются к частично отрицательным атомам кислорода другой молекулы. Одна молекула воды может создать до четырёх водородных связей.

Схематическая иллюстрация водородных связей воды представлена на рис. 15.3. Центральная молекула воды имеет четыре водородные связи с окружающими четырьмя молекулами. Две гидроксильные группы этой центральной молекулы воды связаны водородными связями с двумя атомами кислорода других молекул воды. При этом гидроксильные группы двух других молекул воды образуют водородные связи с атомом кислорода центральной молекулы. В отличие от модели молекулы, представленной на рис. 15.3, водородные связи не ограничиваются этими пятью молекулами. Каждая из четырёх внешних молекул сама создаёт около четырёх связей с другими молекулами воды. В результате получается сеть водородных связей.

Рис. 15.3. Центральная молекула воды связана водородными связями с четырьмя окружающими молекулами воды. Атомы водорода из двух гидроксильных групп центральной молекулы воды связаны с двумя атомами кислорода других молекул, а атом кислорода центральной молекулы воды притягивает две гидроксильные связи двух других молекул воды

Тепла при комнатной температуре довольно много, так что водородные связи между одними молекулами воды постоянно разрушаются и вместо них образуются водородные связи с другими молекулами воды. Поэтому сеть водородных связей не является статичной. Она постоянно трансформируется и реорганизуется. Характерный временной масштаб этой реорганизации водородных связей был измерен при помощи сверхскоростной инфракрасной спектроскопии и составляет примерно 3 пс (1 пс = 10−12 сек).

Жизнь основана на химических реакциях, которые протекают в воде. Космический аппарат, отправленный недавно на Марс, ищет не столько непосредственные свидетельства существования в прошлом жизни, сколько признаки существования в прошлом жидкой воды. Жидкая вода имеет настолько фундаментальное значение для существования жизни, что её присутствие является необходимым и, возможно, достаточным для этого условием. Удивительные свойства воды, которые чрезвычайно важны для протекания биохимических реакций, являются следствием строения этой сети водородных связей и её способности к реорганизации. Свойства воды позволяют протекать огромному числу химических процессов, необходимых для жизни. Например, именно в воде происходит фолдинг белков.

Белки — это очень большие и чрезвычайно сложные молекулы, ответственные за большинство химических процессов в наших телах. Когда белки химически производятся другими белками, то первоначально они не обладают правильной конфигурацией для выполнения своих функций. Они находятся в развёрнутом состоянии. У белков есть участки, которые вскоре образуют водородные связи с водой, и участки, которые больше похожи на углеводороды и не хотят смешиваться с водой. Белок меняет своё строение, складываясь таким образом, чтобы гидрофильные (любящие воду) участки находились снаружи и контактировали с водой, образуя с ней водородные связи, а гидрофобные (избегающие воды) участки располагались внутри, вдали от воды. Такое избирательное взаимодействие с водой — важная движущая сила, помогающая белкам принимать правильную форму, необходимую для выполнения их функций. Именно благодаря тому, что вода может легко реорганизовывать свою сетевую структуру, создавая и разрушая водородные связи, она легко поддерживает структурные преобразования белков и огромное число других химических процессов, которые протекают в живых организмах.

 

Вода — великий растворитель

Одно из свойств воды — её способность растворять очень широкий набор химических соединений. Мы уже обсуждали, что соль NaCl растворяется в воде с образованием ионов Na+ и Cl−. Положительные ионы окружены частично отрицательными атомами кислорода воды, а отрицательные ионы — частично положительными атомами водорода воды. Соль растворяется благодаря способности воды хорошо взаимодействовать как с катионами, так и с анионами. Вода также может растворять очень широкий набор органических веществ. Вода не растворяет углеводороды вроде этана, но она растворяет такие органические молекулы, как этанол, содержащий гидроксильную группу (−OH) или другие группы, имеющие слабо или сильно заряженные участки. Вода растворяет этанол, образуя водородные связи с гидроксильной группой этанола. В чистом этаноле водородные связи между молекулами этанола образуют цепочки, изображённые на рис. 15.2. Когда этанол попадает в воду, вода может образовывать водородные связи с гидроксильными группами этанола, включая молекулы этанола в единую сеть водородных связей. Водка, по сути, представляет собой этанол в воде. Вино — это вода с меньшим количеством этанола, чем в водке. Вино также содержит большие органические молекулы, придающие красному вину его цвет, а всем винам — характерные для каждого из них аромат и оттенки вкуса.

 

Этанол участвует в химических реакциях с кислородом

Если вино слишком долго находится на воздухе, оно портится, превращаясь в уксус. Уксус можно целенаправленно получить путём сбраживания вина. Химические реакции, превращающие вино в уксус, в действительности осуществляются уксуснокислыми бактериями (Acetobacteraceae), которые в присутствии кислорода способны превращать этанол в уксусную кислоту. Этот процесс протекает как последовательность двух химических реакций:

CH3CH2OH → CH3CHO + H2,

2CH3CHO + O2 → 2CH3COOH.

Сначала этанол (CH3CH2OH) превращается в ацетальдегид и газообразный водород (верхняя строка), а затем две молекулы ацетальдегида и одна молекула кислорода (два атома кислорода) превращаются в две молекулы уксусной кислоты, которая и есть уксус. Строение этанола изображено на рис. 15.1, а на рис. 15.4 показано строение ацетальдегида (вверху) и уксусной кислоты (внизу). В ацетальдегиде и уксусной кислоте атом углерода, обозначенный C1, образует метильную группу. C1 связан с тремя атомами водорода и атомом углерода C2. В ацетальдегиде атом C2 также связан с одним атомом водорода и двойной связью с кислородом.

Рис. 15.4. Ацетальдегид (вверху) и уксусная кислота (внизу). Атомы кислорода изображены в виде тёмно-серых сфер. Атом углерода C 2 в ацетальдегиде связан с C 1 , с водородом и двойной связью с кислородом. Атом C 2 в уксусной кислоте связан с C 1 , двойной связью с кислородом и одиночной связью с другим атомом кислорода, входящим в состав гидроксильной группы

В общем случае в альдегиде есть атом углерода, соединённый двойной связью с кислородом и одиночными связями с водородом и другим углеродом. Так, в формальдегиде (см. рис. 14.3) вместо связи с другим атомом углерода атом C2 связан со вторым атомом водорода. Атом C2 использует три гибридные sp2-орбитали для образования трёх σ-связей и дополнительную 2p-орбиталь для объединения с 2p-орбиталью кислорода и формирования π-связи в составе двойной связи. Как видно из верхнего уравнения химической реакции и строения этанола, показанного на рис. 15.1, этанол превращается в ацетальдегид, избавляясь от двух атомов водорода, что приводит к образованию ацетальдегида и молекулы H2. Две молекулы ацетальдегида присоединяют каждая по одному атому кислорода из молекулы O2, и получаются две молекулы уксусной кислоты (внизу на рис. 15.4). В уксусной кислоте атом C2 связан с двумя атомами кислорода. С одним из них он связан двойной связью, а с кислородом из гидроксильной группы −OH — одиночной.

Уксусная кислота — это органическая кислота, относящаяся к классу карбоновых кислот. Группа −COOH является кислотной. Простейшее определение кислоты — это вещество, которые при попадании в воду приводит к появлению ионов водорода H+. Соляная кислота имеет формулу HCl. Как и молекула NaCl, в воде молекула HCl распадается на ионы H+ и Cl−. Молекула соляной кислоты HCl полностью диссоциирует на ионы. Она классифицируется как сильная кислота, поскольку на каждую молекулу HCl, попавшую в воду, появляется один ион H+. H+ связывается (через сольватирование) с молекулами воды. Частично отрицательные атомы кислорода в молекулах воды окружают ион H+. Реакцию кислотной диссоциации уксусной кислоты в воде можно записать следующим образом:

Группа −COOH — это органическая кислотная группа. Такая группа ионизируется с образованием, как показано, ионов −COO− и H+. Согласно схеме, отрицательный заряд привязан к одному из атомов кислорода. В действительности он поровну распределён между обоими атомами кислорода. Это равное распределение изображают на схеме следующим образом:

Пунктирная кривая указывает, что молекулярная орбиталь, содержащая электрон, придающий отрицательный заряд, распределена по обоим атомам кислорода. Каждый из них может рассматриваться как носитель половины отрицательного заряда. Органические кислоты очень хорошо растворяются в воде. Этанол растворим, поскольку кислород из гидроксильных групп имеет небольшой отрицательный заряд, который приводит к образованию водородных связей с молекулами воды. Недиссоциированная уксусная кислота имеет два атома кислорода с частичными зарядами, которые могут образовывать водородные связи с водой. Диссоциированная уксусная кислота имеет два атома кислорода с половинным отрицательным зарядом, что приводит к эффективному образованию водородных связей с водой.

Органические кислоты, такие как уксусная кислота, являются слабыми. В воде лишь небольшая часть молекул уксусной кислоты ионизируется с образованием иона H+ и уксусного аниона. При растворении в литре воды 60 граммов уксусной кислоты ионами становится лишь около 0,4 % молекул. Эта концентрация примерно соответствует обычному столовому уксусу. Именно уксусная кислота придаёт уксусу его характерный вкус. Органические кислоты очень широко распространены в химии и биологии. Все белки состоят из комбинаций 20 аминокислот. До вступления в реакцию образования белка каждая аминокислота относится к определённому виду органических кислот и содержит органическую кислотную группу −COOH.

 

Метанол крайне ядовит

Метанол — это самая маленькая спиртовая молекула. Этанол — это этан, в котором один атом водорода заменён гидроксильной группой −OH. Метанол — это метан, в котором водород заменён гидроксилом. Если этанол можно употреблять внутрь в разумных количествах без тяжёлых последствий, то метанол крайне токсичен. Его также называют древесным спиртом, и он нередко встречается в качестве примеси в самогоне. Его смертельная доза составляет всего 20 мл (миллилитров), а доза 15 мл может вызвать слепоту. Пятнадцать миллилитров — это одна столовая ложка. Стакан вина содержит около двух столовых ложек этанола. Так что замена этанола на метанол в одном стакане вина может вызвать слепоту и смерть. Это поразительно, поскольку этанол отличается от метанола лишь одной дополнительной метильной группой (−CH3).

Ядовит не сам по себе метанол, а продукты его метаболизма. У человека и других живых организмов спирты превращаются в другие вещества посредством энзимов (белков, отвечающих за химические реакции), которые называются алкогольдегидрогеназами. У человека эти энзимы содержатся в печени и слизистой оболочке желудка. По-видимому, эти энзимы в пищеварительном тракте появились в ходе эволюционного развития для разложения спиртов, которые вырабатываются бактериями или являются естественными составляющими некоторых видов пищи. Этанол сначала превращается в ацетальдегид, а затем в уксусную кислоту, как это обсуждалось выше в связи с рис. 15.4, на котором показана структура этих двух молекул. Ацетальдегид и уксусная кислота безопасны для организма, который легко от них избавляется. Более крупные спиртовые молекулы также превращаются сначала в альдегиды, а затем в органические кислоты, которые легко удаляются из тела, не причиняя ему вреда. Однако метанол превращается алкогольдегидрогеназами в формальдегид, а затем в муравьиную кислоту.

Строение формальдегида представлено на рис. 14.3. Формальдегид подобен ацетальдегиду, за исключением того, что атом углерода C2 в ацетальдегиде (см. рис. 15.4, вверху) связан с одним атомом водорода, а не с метильной группой (C1 на рис. 15.4). Муравьиная кислота подобна уксусной кислоте (рис. 15.4, внизу), но вновь атом C2 связан с водородом, а не с метильной группой. Муравьиная кислота и особенно — формальдегид являются высокотоксичными веществами. Они повреждают сетчатку и зрительный нерв, приводя к неизлечимым поражениям зрения и слепоте. Однако муравьиная кислота также вызывает серьёзную кислотную интоксикацию, которая включает нарушение работы энзимов, расщепляющих углеводороды. Относительно небольшие концентрации формальдегида и муравьиной кислоты, а также других производных от них метаболитов могут привести к смерти.

 

Мыло

 

Как мы выяснили, этанол и органические кислоты вроде уксусной кислоты очень хорошо растворяются в воде, поскольку органические группы, содержащие кислород, могут создавать водородные связи с молекулами воды. Напротив, этан, хотя и очень похож на этанол, не растворяется в воде, поскольку не имеет кислородсодержащей группы, способной образовывать водородные связи. Этан — это углеводород, то есть он состоит только из атомов водорода и углерода. Метан и этан — газы. Более крупные углеводороды, начиная с пентана (пять атомов углерода), являются жидкостями при комнатной температуре. Наименьшие из этих жидких углеводородов, такие как пентан и октан (входящий в состав бензина), — очень текучие жидкости, то есть у них низкая вязкость.

 

Крупные углеводороды — это масло и жир

С увеличением числа атомов углерода жидкие углеводороды становятся всё более вязкими. Мазут, используемый для отопления во многих американских домах, состоит из смеси углеводородов, имеющих обычно от 14 до 20 атомов углерода. При комнатной температуре масло вполне текуче, но его вязкость намного больше, чем у бензина. Жир состоит из по-настоящему крупных углеводородов. Они очень вязкие и при комнатной температуре не текут.

Рис. 15.5. Модели н-тетрадекана C 14 H 30 : шаростержневая (вверху) и объёмная (внизу). Молекула содержит 14 атомов углерода, соединённых друг с другом без ветвления

Углеводороды, составляющие мазут, при комнатной температуре являются жидкими, но они нерастворимы в воде. Молекулы с 14 атомами углерода — это самые лёгкие компоненты мазута. На рис. 15.5 изображена молекула н-тетрадекана. Декан содержит десять (дека) атомов углерода. В тетрадекане на четыре (тетра) атома углерода больше. Буква «н» (нормальный) означает, что все атомы углерода выстроены друг за другом без ветвления, то есть каждый атом углерода связан не более чем с двумя другими. В верхней части рисунка приведена шаростержневая модель н-тетрадекана. Однако важно помнить, что электронная плотность заполняет всё окружающее атомы пространство. В нижней части рисунка представлена объёмная модель н-тетрадекана.

 

Крупные углеводороды могут иметь много разных структур

Многие другие углеводороды содержат по 14 атомов углерода. Они являются ветвящимися. На рис. 15.6 представлены шаростержневая (вверху) и объёмная (внизу) модели одного из них — 2,8-диметилдодекана. Додекан содержит 12 атомов углерода. Две дополнительные метильные группы ответвляются от основной цепочки у второго и восьмого слева атомов углерода. И н-тетрадекан, и 2,8-диметилдодекан являются структурными изомерами. У них одинаковое число атомов водорода и углерода, но никакие повороты вокруг связей не могут преобразовать один в другой. И н-тетрадекан, и 2,8-диметилдодекан имеют множество конформеров, то есть, поворачивая молекулы вокруг одиночных углерод-углеродных связей, можно получить различные формы молекул без изменения схемы соединения атомов углерода. Структурные изомеры и конформеры уже обсуждались на примере бутана (см. рис. 14.12 и 14.13).

Рис. 15.6. 2,8-диметилдодекан C 14 H 30 : шаростержневая модель (вверху) и объёмная модель (внизу). Молекула содержит 14 атомов углерода. Имеется цепочка из 12 атомов углерода с двумя метильными группами, ответвляющимися от неё у второго и восьмого слева атомов углерода

 

Нефтепродукты и вода не смешиваются

Мазут является относительно вязкой жидкостью, хотя молекулы углеводородов относительно слабо притягиваются друг к другу. Большое число размеров, структурных изомеров и конформеров приводит к тому, что молекулы запутываются, и в результате возрастает вязкость. При попадании нефтепродуктов в воду они всплывают на поверхность. Если всё хорошенько взболтать, то кажется, что они на время смешиваются. Однако если дать смеси отстояться, нефтепродукты вновь отделяются от воды и всплывают на поверхность. С подобным эффектом знаком каждый, кто делал заправку для салата из уксуса и растительного масла. Вы смешиваете оливковое масло, уксус и, возможно, немного воды и встряхиваете смесь. Если оставить её постоять, то оливковое масло всплывёт наверх. В магазинные салатные заправки из масла и уксуса добавляют эмульгаторы, которые предотвращают разделение масла и уксуса.

Эмульгаторы очень похожи на мыло, с которым мы скоро познакомимся ближе. Мы уже знаем, что атом кислорода в молекуле воды частично отрицательный и притягивается к атомам, заряженным положительно или, по крайней мере, имеющим частичный положительный заряд. Атомы водорода в молекулах воды частично положительны и притягиваются к отрицательно заряженным или частично отрицательно заряженным атомам. Углеводороды состоят из атомов углерода и водорода, которые по заряду являются практически нейтральными. Поэтому молекулы воды притягиваются друг к другу значительно сильнее, чем к маслу. Как результат — масло не растворяется в воде.

 

Строение молекул мыла

Мыло делает масло растворимым в воде. В мыле и моющих средствах используется много разных молекул. Более строгое название для молекул мыла — поверхностно активные вещества (ПАВ). Хотя химическая природа и строение ПАВ очень сильно варьируются, все ПАВ обладают некоторыми общими свойствами. Часть молекулы ПАВ, если взять её отдельно, была бы очень хорошо растворимой в воде, а другая часть, взятая сама по себе, прекрасно растворялась бы в масле и жирах.

Одна из таких молекул — н-гептадеканацетат натрия; её шаростержневая и объёмная модели изображены на рис. 15.7. Углеводород н-гептадекан — это неветвящаяся 17-атомная цепочка. Эта углеводородная часть молекулы изображена в виде конкретного конформера с парой поворотов вокруг углерод-углеродных связей, что приводит к изогнутой форме. Тетрадекан, изображённый на рис. 15.5, весь находится в транс-конформации. У него нет никаких поворотов, привносящих элементы гош-конформации. У больших углеводородов много разных конформеров, между которыми они могут переходить. Сам по себе гептадекан может быть одним из компонентов мазута.

Рис. 15.7.Гептадеканацетат натрия C18H37COO−Na+: шаростержневая модель (вверху) и объёмная модель (внизу). Диссоциированный ион натрия не показан. Молекула содержит 19 атомов углерода. В ней есть цепочка из 17 атомов углерода и на её конце ацетатная группа. Обозначение δ− указывает, что каждый из атомов кислорода (самые тёмные сферы) несёт примерно половинный отрицательный заряд

Углеводород н-гептадекан присоединяется к ацетатной группе или ацетатному аниону. Ацетатная группа состоит из двух последних атомов углерода и двух атомов кислорода в правой части молекулы на рис. 15.7. Ацетатный анион изображён на с. 269 на химической диаграмме, описывающей диссоциацию уксусной кислоты. Там катионом при диссоциации был ион H+. Здесь же катион — это ион натрия Na+, который на рис. 15.7 не показан. Ацетат натрия представляется следующей диаграммой:

Ацетат натрия — это натриевая соль, подобно поваренной соли NaCl. В данном случае анион является органическим в отличие от элементарного аниона Cl−. Ацетат натрия полностью растворяется в воде, как и соль NaCl.

 

В воде мыло образует мицеллы

Таким образом, молекула н-гептадеканацетата натрия состоит из длинной углеводородной цепочки, которая не будет растворяться в воде, и ацетата натрия, который в воде легко растворяется.

Рис. 15.8. Схематическое изображение сферической мицеллы. Шарики символизируют ацетатные группы либо другие заряженные или гидрофильные части молекул ПАВ. Гидрофильную часть молекулы ПАВ нередко называют головной группой. Волнистыми линиями показаны гидрофобные углеводородные хвосты ПАВ. Головные группы очень хорошо растворимы в воде и образуют внешнюю оболочку. Углеводородные хвосты избегают контакта с водой и группируются друг с другом, образуя нанокапельку масла, называемую ядром мицеллы. Образование мицелл позволяет мылу легко растворяться в воде

Что случится, если поместить значительное количество мыла (в данном случае н-гептадеканацетата натрия) в воду, не содержащую масла и жира? Углеводородные части молекул не любят воду, так что они будут её избегать. Чистый углеводород н-гептадекан полностью отделился бы от воды и всплыл на поверхность. Однако части с ацетатом натрия вода нравится. Эта часть будет диссоциировать на ацетат-анион и натриевый катион, и оба они будут активно взаимодействовать с молекулами воды. Мицеллы — это наномасштабные образования, то есть имеющие размеры порядка нескольких нанометров. Обычная форма мицеллы сферическая или близкая к сферической, хотя есть и другие разновидности в зависимости от ПАВ и его концентрации в воде. Обычно они имеют размеры около 10 нанометров (10 триллионных долей метра) в диаметре. Размеры мицелл определяются размерами и строением молекул ПАВ.

 

Мыло растворяет жирные загрязнения

Теперь рассмотрим, что происходит, когда посуда или руки, испачканные жиром или маслом, попадают в мыльную воду. Чистую воду углеводороды на их поверхности отталкивали бы. Однако наличие в воде мыльных мицелл всё меняет. Заряженные головные группы мицелл приходят в контакт с жирной поверхностью. Они стремятся избежать жира, который заставляет мицеллы открываться, выставляя к жиру углеводородные хвосты ПАВ. Эти хвосты ПАВ с удовольствием погружаются в жирные загрязнения и запутываются в них. За счёт механических движений эти маслянистые углеводороды отрываются от остальной жирной поверхности. Головные группы ПАВ смыкаются вокруг ядра, приводя к реорганизации мицеллы. Однако некоторые углеводороды, составлявшие жирное загрязнение, оказываются захваченными в ядре мицеллы.

Удержание углеводородов внутри мицеллы схематически изображено на рис. 15.9. Углеводородные хвосты ПАВ обозначены двойными линиями, а жирные углеводороды — одиночными линиями с точками. Молекулы жирных загрязнений остаются в ядре мицеллы в качестве части масляной нанокапли. Эти дополнительные углеводороды в её ядре делают мицеллу крупнее. Чтобы полностью покрыть увеличившуюся нанокаплю, к мицелле добавляются новые молекулы ПАВ, содержащиеся в воде. Заряженные главные группы одной мицеллы отталкивают другие, предотвращая тем самым слияние содержащихся в них загрязнений с образованием нерастворимых в воде комков.

Рис 15.9. Схематическое изображение маслянистых углеводородных загрязнений (одиночные узорчатые линии), захваченных мыльной мицеллой

Первые свидетельства о производстве мылоподобных веществ относятся ещё к 2800 году до нашей эры. Настоящее мыло — практически такое же, каким мы пользуемся сегодня, — было изготовлено химиками исламского мира в VII веке. Мы часто слышим о наступлении эпохи нанотехнологий, в которых нанометрового размера конструкции из молекул и атомов могут выполнять различные очень тонкие задачи. В этом смысле весьма примечательно, что мыло в воде является наноматериалом. ПАВ образует нанометрового размеры мицеллы, которые захватывают жировые загрязнения. Эти мицеллы, содержащие углеводороды, растворимы в воде, что позволяет нам отмывать самостоятельно нерастворимые в воде молекулы.