Абсолютный минимум. Как квантовая теория объясняет наш мир

Файер Майкл

3. Кое-что о волнах

 

 

Для того чтобы разобраться в природе неустранимых возмущений, которые сопутствуют измерению, и понять, что можно, а что нельзя измерить у абсолютно малой квантовомеханической системы, необходимо сначала потратить некоторое время на обсуждение классических волн и классического описания света. В начале XX века был проведён ряд экспериментов, результаты которых не удавалось объяснить с помощью классической механики. Самый первый из них был связан со светом. Тем не менее сначала мы обсудим эксперимент, который, как может показаться, демонстрирует, что классические идеи прекрасно работают. Далее, в главе 4, мы расскажем об одном из экспериментов, показывающих, что описание с позиций классической механики не может быть корректным и, более того, что классическая реинтерпретация эксперимента, которая кажется работоспособной, на самом деле никуда не годится. И наконец, будет дан корректный анализ эксперимента со светом, основанный на квантовых идеях, что вернёт нас к котам Шрёдингера.

 

Что такое волны?

Существует много видов классических волн: волны на воде, звуковые волны, световые (электромагнитные) волны. Все волны имеют ряд общих характеристик, таких как амплитуда, длина волны, скорость и направление распространения (направление, в котором движется волна). На рис. 3.1 показана волна, движущаяся в направлении x . Амплитуда волны — это «расстояние» между её положительным и отрицательным пиками по направлению сверху вниз. Длина волны — это расстояние вдоль направления её распространения между двумя положительными или отрицательными пиками, то есть это расстояние, через которое волна повторяет саму себя. Если, оседлав волну, вы сместитесь на любое целое число длин волн вперёд или назад вдоль неё, то для вас ничего не изменится. Любая волна движется с определённой скоростью V .

 

Волны характеризуются скоростью и частотой

Скорость волны зависит от её типа, и эта характеристика требует небольшого обсуждения. Представьте себе, что стоите рядом с волной, изображённой на рис. 3.1, но волна эта настолько протяжённая, что её начало и конец вам не видны. Тем не менее вы всё равно можете определить её скорость с помощью секундомера. Засеките время, когда мимо вас пройдёт положительный пик, и остановите отсчёт, когда с вами поравняется следующий положительный пик. Теперь у вас достаточно информации для определения скорости волны. Волна проходит расстояние d , равное одной длине волны, за время t . Это расстояние можно получить, умножив скорость на время: d =V ∙t . (Если вы едете в автомобиле со скоростью V = 60 км/ч и ваша поездка занимает время t =1 час, то вы покроете расстояние d =60 км.) Если взять расстояние, равное одной длине волны, и разделить его на время, которое требуется на прохождение этого расстояния, то получится скорость: V =d /t . Наблюдение за проходящей мимо волной подобно наблюдению за движением очень длинного поезда. Вы видите, как один за другим следуют товарные вагоны. Если знать длину вагона и время, за которое он вагон проходит мимо вас, то можно определить скорость поезда.

Рис. 3.1. Волна, движущаяся в направлении x . Прямая представляет нулевую амплитуду волны. Волна испытывает положительные и отрицательные колебания относительно нуля. Расстояние между пиками — это длина волны. Волна движется вдоль оси x со скоростью V

Другая важная характеристика волн, связанная с их скоростью и длиной, — это частота. Учёные любят использовать греческие буквы для обозначения величин, поскольку латинские буквы в основном уже имеют общепринятое применение. Нет особых причин обозначать скорость буквой V , расстояние — d , а время — t , но обычно используются именно эти буквы. Поэтому мы обращаемся к греческому алфавиту. Обычно для обозначения длины волны используется буква λ (лямбда), а для частоты волны — ν (ню). Для понимания смысла частоты вновь рассмотрим идущий мимо товарный поезд. Если подсчитать, сколько вагонов проходит мимо за определённый отрезок времени, вы определите частоту вагонов. Если в минуту проходит 10 вагонов, то их частота составляет 10 в минуту, что часто записывается в виде 10 мин−1. Частота волны определяется по числу циклов (пиков), отмечаемых в месте наблюдения за секунду. Если за секунду (сек) отмечено 1000 циклов, частота составляет ν =1000 сек−1 = 1000 Гц. Для числа событий в секунду есть собственная единица — герц (Гц), названная в честь Густава Людвига Герца (1887–1975), который в 1925 году разделил с Джеймсом Франком Нобелевскую премию по физике

«за открытие законов соударения электрона с атомом».

Длина, скорость и частота волны связаны между собой уравнением λ ∙ν =V .

 

Океанские волны

Когда волны распространяются по глубокой океанской воде, их гребни поднимаются выше среднего уровня моря, а впадины опускаются ниже. Типичная океанская волна имеет длину λ =160 м и движется со скоростью 60 км/ч. Период волны, то есть время между двумя её гребнями, составляет 10 сек, а частота, таким образом, равна ν =0,1 Гц. Амплитуда — это просто расстояние между гребнем и впадиной, так что зрительно представить себе амплитуду совсем несложно. (Волны разбиваются о берег, поскольку на мелкой воде их впадины доходят до дна и это их замедляет. Гребни движутся быстрее впадин и опрокидываются, отчего волна обрушивается на берег. У волн, движущихся в океане, гребни не обрушиваются.)

 

Звуковые волны

Звуковые волны — это волны плотности в воздухе. Стандартный камертон для ноты ля первой октавы имеет частоту 440 Гц. После удара его зубцы вибрируют с частотой 440 Гц. Эта вибрация порождает звуковые волны. Зубцы движутся взад и вперёд, «толкая» в соответствующих направлениях воздух с частотой 440 Гц и порождая волны с частотой ν =440 Гц. При температуре 21 °C скорость звука составляет 1239 км/ч, или 345 м/сек. Поскольку λ ∙ν =V , длина звуковой волны с частотой 440 Гц составляет λ =0,78 м. Звуковые волны представляют собой чередование уплотнений воздуха выше средней плотности и разрежений воздуха ниже средней плотности, то есть воздуха становится то больше, то меньше. Плотность воздуха — это его масса, приходящаяся на единицу объёма, например число граммов в кубическом сантиметре (г/см3). Увеличение плотности обычно связано с ростом давления, так что можно представлять себе звуковые волны как волны давления, в которых давление воздуха возрастает и убывает с частотой 440 Гц. Когда звуковая волна достигает уха, периодические подъёмы и спады давления заставляют барабанную перепонку двигаться взад-вперёд с частотой звуковой волны, в данном случае равной 440 Гц. Движение барабанной перепонки передаёт звук во внутреннюю часть уха, где крошечные волоски покачиваются в соответствии с частотой звука. Движение этих волосков возбуждает нервы, а мозг расшифровывает нервные импульсы, и мы слышим звук.

Амплитуда звуковой волны — это разница между максимальной и минимальной плотностью (максимальным и минимальным давлением). В отличие от амплитуды океанских волн амплитуду звуковой волны увидеть нельзя, но, конечно, можно определить на слух разницу в амплитудах звуковых волн. Относительно просто превратить звуковые волны в электрические сигналы, что делается с помощью микрофона. Как только из звуковой волны получен электрический сигнал, её амплитуду можно узнать, измеряя величину электрического сигнала. Как и все классические волны, звуковые волны распространяются в определённом направлении и характеризуются амплитудой, длиной волны и скоростью.

 

Классические световые волны

Обсуждение океанских и звуковых волн подготовило нас к классическому волновому описанию света. В этом описании, которое во всех деталях определяется уравнениями Максвелла (Джеймс Клерк Максвелл, 1831–1879), свет представляется как электромагнитная волна. Эта волна обладает электрическим и магнитным полями, которые оба колеблются с одинаковой частотой. Если вы видели, как магнит притягивает небольшие предметы, то знакомы с действием магнитного поля. Магнитное поле магнита является статическим, а не колеблющимся, как в случае света. Вы также могли наблюдать проявления электрических полей. Если в очень сухой день причёсываться пластмассовой расчёской, то можно заметить, что волосы к ней притягиваются. К ней также могут прилипать оказавшиеся рядом маленькие кусочки бумаги. Эти эффекты обусловлены статическим электрическим полем. Электромагнитная волна состоит из электрического и магнитного полей, которые испытывают колебания.

В отличие от океанских волн, которые движутся по воде, и звуковых волн, которые распространяются в воздухе, световые волны могут распространяться в вакууме. Скорость света в вакууме обозначается буквой c и составляет c =3∙108 м/сек. Скорость света примерно в миллион раз больше скорости звука. По этой причине при далёком грозовом разряде молния видна задолго до того, как слышен гром. Звуку требуется около трёх секунд, чтобы пройти километр. У света на это уходит около 0,000003 сек, или 3 мкс (микросекунды). Скорость света уменьшается, когда он движется в среде, отличной от вакуума. В воздухе свет имеет почти такую же скорость, как в вакууме, но в стекле она составляет лишь около двух третей c .

Что представляет собой электромагнитная волна, которая является классическим описанием света? В случае океанских волн колеблется уровень воды, который поднимается выше уровня моря или опускается ниже. В случае звуковой волны плотность воздуха (его давление) колеблется, поднимаясь выше или опускаясь ниже нормальных значений. Если взять небольшой объём, то количество воздуха (число молекул, составляющих воздух, — в основном кислорода и азота) становится больше или меньше среднего значения для воздуха, взятого в данном объёме. В электромагнитной волне колебания испытывают две сущности — электрическое поле и магнитное поле. Обычно говорят об электрическом поле, поскольку его легче измерить, чем магнитное. Колеблющееся электрическое поле — это электрическая волна.

Допустим, вы слушаете радио. Его антенна представляет собой отрезок провода, который детектирует радиоволны. Радиоволны — это просто низкочастотные электромагнитные волны. Это то же самое, что световые волны, но частота их значительно ниже. Электрическое поле в электромагнитной волне колеблется от максимального положительного значения амплитуды до максимального отрицательного значения. Металл радиоантенны содержит множество электронов, которые могут двигаться под действием электрического поля. (В дальнейшем нам предстоит подробный разговор об электронах, а электрическая проводимость будет обсуждаться в главе 19.) Колеблющееся электрическое поле радиоволны заставляет колебаться электроны в антенне. Электроника приёмника усиливает эти колебания электронов и превращает их в электрический сигнал, заставляющий аудиоколонки производить звуковые волны, которые мы слышим. Таким образом, в соответствии с классическими представлениями можно думать о свете как о колеблющихся электрическом и магнитном полях. Оба поля колеблются с одинаковой частотой и движутся вместе с одинаковой скоростью в одном направлении. Вот почему они называются электромагнитными волнами.

 

Видимый свет

При распространении света в вакууме выполняется соотношение λ ∙ν =c . Видимые длины волн, то есть те, которые воспринимаются нашими глазами, лежат в диапазоне от 700 нм (красный) до 400 нм (синий). (Сокращение нм обозначает нанометр, то есть 10−9 метра, или 0,000000001 метра.) Длины волн видимого диапазона очень малы; скорость света очень велика, поэтому частоты этих волн очень велики. Частота ν красного света составляет 4,34∙1014 Гц, а синего света — 7,5∙1014 Гц (1014 — это сто триллионов). Эти значения сильно контрастируют с частотой звуковых волн (440 Гц) и океанских волн (0,1 Гц). Измерить амплитуду световых волн в отличие от океанских и звуковых волн довольно сложно.

Частота света настолько велика, что даже самая современная электроника не может различить их колебания. Вместо измерения амплитуды волны, определённой как амплитуда колебаний электрического поля, измеряется интенсивность света. Интенсивность I пропорциональна квадрату абсолютной величины электрического поля E , что записывается в виде I ~|E |2. Смысл абсолютной величины (обозначается двумя вертикальными линиями ||) состоит в том, что мы игнорируем знак величины — положительный или отрицательный — и делаем все значения положительными. Детектор света, такой как ПЗС-матрица в цифровой камере (ПЗС-матрица — это прибор с зарядовой связью, выдающий электрический сигнал, когда на него падает свет), измеряет количество света и его интенсивность, а не амплитуду световой волны. Глаза не измеряют непосредственно частоту световых волн в отличие от ушей, которые определяют частоту звуковых волн.

 

Сложение волн — интерференция

Волны одного типа, в том числе световые, могут складываться и порождать новые волны. Слева на рис. 3.2 показаны две одинаковые волны (с одинаковыми длиной и амплитудой, распространяющейся в одном направлении), которые находятся в фазе друг с другом. (Эти волны в действительности наложены друг на друга, но они смещены на рисунке так, чтобы можно было видеть их по отдельности.) «В фазе» означает, что положительные пики одной волны располагаются строго напротив положительных пиков другой волны, и, следовательно, отрицательные пики выровнены так же. Штриховая вертикальная линия на рисунке показывает, как выровнены эти пики. Когда волны находятся в фазе, говорят, что разность их фаз составляет 0° (ноль градусов). Один цикл волны соответствует фазе 360°. Начав с любой точки волны и пройдя вдоль неё 360°, вы попадёте в исходное положение, как если бы прошли 360° по окружности. Когда две одинаковые волны складываются в фазе, результирующая волна имеет удвоенную амплитуду. Это называется конструктивной интерференцией и показано в правой части рис. 3.2.

Волны, у которых сдвиг по фазе составляет 180°, тоже могут складываться друг с другом. Как показано в левой части рис. 3.3, у таких волн положительные пики верхней волны в точности совпадают с отрицательными пиками нижней волны, и наоборот. (И вновь подчеркнём: для того чтобы имела место интерференция, волны должны в действительности накладываться одна на другую, но на рисунке они сдвинуты по вертикали одна относительно другой, чтобы их можно было разглядеть.) Штриховая вертикальная линия на рисунке показывает, что положительный пик одной волны в точности выровнен относительно отрицательного пика другой. Когда две одинаковые волны, находящиеся в противофазе, складываются, положительные и отрицательные пики в точности гасят друг друга. Пусть, например, максимальное положительное значение — +1, а максимальное отрицательное значение составляет −1. Складывая +1 и −1, получаем ноль.

Рис. 3.2. Две одинаковые волны, находящиеся в фазе друг с другом. Эти волны испытывают положительные и отрицательные колебания относительно нуля (горизонтальная линия). Положительные пики выровнены друг относительно друга, как и отрицательные пики. Волны испытывают конструктивную интерференцию (складываются друг с другом) и порождают волну с удвоенной амплитудой

Рис. 3.3. Две одинаковые волны, сдвинутые на 180° по фазе. Эти волны испытывают положительные и отрицательные колебания относительно нуля (горизонтальная линия). Положительные пики верхней волны строго выровнены с отрицательными пиками нижней волны, а отрицательные пики верхней волны строго выровнены с положительными пиками нижней волны. Волны испытывают деструктивную интерференцию, когда складываются друг с другом и дают нулевую амплитуду

На рис. 3.3 каждой точке верхней волны, имеющей положительное значение, строго соответствует точка нижней волны, имеющая такое же по абсолютной величине отрицательное значение, а каждой точке верхней волны, имеющей отрицательное значение, соответствует точка нижней волны, имеющая такое же по абсолютной величине положительное значение. Таким образом, волны в точности гасят друг друга, давая нулевую амплитуду, как показано в правой части рисунка. Это взаимное гашение называется деструктивной интерференцией.

 

Интерференционные картины и оптический интерферометр

Для интерференции волнам не обязательно строго накладываться друг на друга и идти в одном направлении. Они могут просто перекрываться в некоторой области пространства, и тогда интерференция происходит в этой области. Когда в 1980 году в Сан-Франциско открылся симфонический концертный зал Дэвиса, в нём обнаружились акустические проблемы. Хотя они оказались крайне сложными, нетрудно понять, как они возникли.

Представьте, что вы сидите в зале достаточно далеко от оркестра. Когда звучит ля первой октавы (440 Гц), акустические волны приходят прямо к вам, но они также отражаются от стен с обеих сторон от вас. При наличии отражения от стены справа от вас и отражения от стены слева от вас отражённые акустические (звуковые) волны от каждой стены приходят к вашему ряду кресел, скажем, под углом 30° и порождают вдоль него интерференционную картину. Будут места, где отражённые волны интерферируют конструктивно, делая звук громче, и места, где волны интерферируют деструктивно, делая звук тише. Интервалы между пиками и нулями интерференционной картины составляют 0,73 м (см. ниже формулу для интервалов). Таким образом, в зависимости от расположения вашего кресла ля первой октавы будет звучать громче или тише. Конечно, к вам приходит множество акустических волн разной частоты с разных направлений. Совокупность интерференционных эффектов искажает звук, который должен был приходить к вам прямо от оркестра. Проблемы в концертном зале Дэвиса были устранены в 1992 году путём установки 88 тщательно спроектированных панелей, свисающих с потолка вдоль двух боковых стен. Там нет двух одинаковых панелей. Они заполнены песком и весят 3850 кг. Эти панели мешают отражениям от стен доходить до аудитории.

Свет также может демонстрировать явление интерференции. Классическое представление об оптических интерференционных картинах позволяет объяснить экспериментальные результаты, которые мы сейчас рассмотрим. Однако, как будет показано в главах 4 и 5, классическое описание в итоге оказывается несостоятельным, когда в расчёт принимаются другие эксперименты. Для корректного описания потребуется ввести квантовомеханический принцип суперпозиции, что вновь приведёт нас к котам Шрёдингера.

Рис. 3.4. Входящая световая волна падает на полупрозрачное зеркало. Половина света проходит сквозь зеркало, а половина отражается от него. В каждом плече интерферометра свет отражается от стоящего в конце зеркала. Части каждого пучка сходятся под небольшим углом в области перекрытия. Справа от обведённой кружком области перекрытия в увеличенном масштабе в разрезе по x показано, что видно там при пересечении двух пучков. Именно в этом месте возникает интерференционная картина, в которой интенсивность периодически меняется вдоль оси x от максимального значения до нуля

На рис. 3.4 представлена схема интерферометра, использованного Майкельсоном (Альберт Абрахам Майкельсон, 1853–1931) в его исследованиях природы световых волн. Майкельсон получил в 1907 году Нобелевскую премию по физике

«за создание точных оптических инструментов, а также спектроскопические и метрологические исследования, выполненные с их помощью».

Майкельсон со своим коллегой Морли использовали интерферометр в попытке выяснить природу среды, в которой распространяются световые волны. Водяные волны движутся по воде. Звуковые волны — в воздухе. Эксперимент Майкельсона-Морли показал, что световые волны для своего распространения не нуждаются в среде, которую называли эфиром. Свет распространяется в вакууме. Не существует никакого эфира, заполняющего пространство. Световые волны, приходящие к нам от звёзд, не нуждаются в какой-либо среде, подобно океанским и звуковым волнам, которые представляют собой колебания воды и воздуха соответственно. Это был важный шаг в понимании того, что световые волны не являются волнами в том же самом смысле, что звуковые волны. Здесь же мы хотим лишь понять классическое описание того, что наблюдается с помощью интерферометра.

На рис. 3.4 луч света, рассматриваемый как световая волна, входит в прибор слева. Свет падает на полупрозрачное зеркало, расщепляющее пучок, которое отражает 50 % света и пропускает оставшиеся 50 %. При волновом описании света нетрудно направить часть волны одним путём, а часть — другим. Отражённый свет идёт вертикально в плоскости страницы, отражается от концевого зеркала 1, которое слегка наклонено так, чтобы отражённый луч не вернулся строго назад по первоначальному пути. Отражённый луч идёт вниз по странице и частично проходит сквозь зеркало-расщепитель. (Часть пучка отражается от расщепителя, но нас эта часть не интересует.) Данный маршрут представляет собой первое плечо интерферометра. 50 % исходного пучка проходит сквозь расщепитель и попадает на концевое зеркало 2, которое также наклонено под небольшим углом. Отразившись от него, луч вновь возвращается налево, почти повторяя свой первоначальный путь. Он отражается от расщепителя. (Часть, которая проходит сквозь расщепитель, нас не интересует.) Отражённая часть направляется вниз по странице. Этот маршрут представляет собой второе плечо интерферометра. В результате лучи, прошедшие один по первому плечу, а другой — по второму, сходятся вместе, пройдя одно и то же расстояние, и пересекаются под малым углом в «области перекрытия», которая обведена на рисунке кружком. Это наложение световых волн подобно наложению звуковых волн в симфоническом концертном зале Дэвиса, которое вызвало проблемы с интерференцией.

На рис. 3.4 световые лучи изображены прямыми линиями, но в любом реальном эксперименте лучи обладают некоторой шириной. Ось x на рисунке перпендикулярна биссектрисе угла (прямой, которая делит угол пополам), образованного пересекающимися лучами. Поскольку этот угол мал, ось x фактически перпендикулярна направлению распространения лучей и на данном рисунке имеет горизонтальное направление. На фрагменте, представленном в правой нижней части рисунка в увеличенном масштабе, показано, что видно вдоль оси x в области перекрытия. На графике по вертикальной оси отложена интенсивность света I , а по горизонтальной — положение вдоль оси x . Поскольку лучи пересекаются под небольшим углом, фазовое отношение между ними меняется вдоль оси x , и появляются чередующиеся области конструктивной и деструктивной интерференции. Интенсивность света меняется от максимального значения до нуля, снова до максимума и опять до нуля и так далее, и пересекающиеся световые волны порождают области конструктивной и деструктивной интерференции. Вблизи максимумов интенсивности световые волны приходят в фазе (0°, см. рис. 3.2) и складываются конструктивно, давая увеличение амплитуды. В точки нулевой интенсивности световые волны приходят со сдвигом по фазе на 180° (см. рис. 3.3) и складываются деструктивно — в точности гасят друг друга. Эту картину можно наблюдать, поместив в область перекрытия фотоплёнку или цифровую камеру и измерив интенсивность света в различных точках вдоль оси x .

При малом угле ширина интерференционных полос, то есть расстояние d между соседними пиками интенсивности или нулями, задаётся формулой d =λ ∙θ, где λ — длина волны света, а θ — угол между пучками в радианах (1 радиан = 57,3°). Если используется красный свет с длиной волны 700 нм, а угол между пучками составляет 1°, то ширина интерференционных полос составит 40 мкм и на одном сантиметре их уместится 250. Такие полосы можно увидеть на плёнке или с помощью хорошей цифровой камеры. Если угол составит 0,1°, то интервал между полосами будет 0,4 мм, что можно увидеть невооружённым глазом. Если же угол будет 0,01° (это очень маленький угол), расстояние между интерференционными полосами составит 4 мм, то есть будет хорошо различимым. Чтобы получить такие 4-миллиметровые полосы, диаметр пересекающихся лучей должен быть намного больше 4 мм.

Как уже было сказано, в классическом представлении свет является электромагнитной волной, а его интенсивность пропорциональна квадрату амплитуды электрического поля (величины волны на рис. 3.1). В последующих рассуждениях мы не будем беспокоиться о единицах измерения. Задействовав множество констант, можно вывести все эти единицы, но этого не требуется для наших целей.

Пусть электрическое поле в пучке, прошедшем по одному из плеч интерферометра, имеет амплитуду 10. Тогда интенсивность составит 100 (102=100=10∙10). Другой луч также имеет I =100. Это значения интенсивности в том случае, когда мы не наблюдаем лучи в области перекрытия. Когда лучи разделены, сумма значений их интенсивности составляет 200. Что происходит в области перекрытия? Волны интерферируют — конструктивно в одних местах и деструктивно в других (см. рис. 3.4, справа внизу). Таким образом, для определения значений интенсивности в области перекрытия необходимо сложить амплитуды электрических полей, а затем возвести результат в квадрат. В точках максимальной интенсивности в области перекрытия волны идеально совпадают по фазе и складываются конструктивно. Электрическое поле первого луча добавляется к электрическому полю второго луча: E =10+10=20. В таком случае интенсивность на пике интерференционной картины составляет I =E 2=202=400. Интенсивность составляет 400, что вдвое больше интенсивности простой суммы двух лучей самих по себе, когда они не испытывают конструктивной интерференции. В нулях интерференционной картины волны взаимодействуют идеально деструктивно. Электрическое поле +10 складывается с электрическим полем −10 и даёт ноль. Электрическое поле равно нулю, и I =0. Таким образом, интерференционная картина создаётся чередующимися областями конструктивной и деструктивной интерференции электромагнитных волн. В некоторых местах волны складываются, и мы видим пик. В других местах они вычитаются и дают ноль. Интерференция — это хорошо известное свойство волн, а картина, которую она даёт в интерферометре, — прекрасный пример волнового явления.

Интерферометр и интерференционную картину, изображённые на рис. 3.4, можно во всех подробностях описать в рамках классической электромагнитной теории. Детали интерференционной картины можно вычислить из уравнений Максвелла. Этот и многие другие эксперименты, включая передачу радиоволн, можно описать классической теорией. Поэтому классическая теория, которая рассматривает свет как волны, считалась корректной вплоть до начала XX века. Однако в главе 4 рассказывается, как эйнштейновское объяснение одного явления — фотоэлектрического эффекта — потребовало фундаментального переосмысления всего элегантного и, казалось бы, непогрешимого построения классической электромагнитной теории.