Математики тоже шутят

Федин Сергей Николаевич

4. Забавные формулы, теоремы, задачи...

 

 

1. Беспредел

(Цит. по книге: Kutzler B. B. Mathematikerwitze & Mathematikwitze. 2006; перевод Ю. Фролова.)

 

2. И впрямь больше

 

3. Вот так решают уравнения блондинки!

 

4. Математика в Зазеркалье

Эта надпись, которую я сделал несколько лет назад, наверное, самое короткое доказательство того, что... 2 = 3. Приставьте к ней сверху зеркало (или посмотрите ее на просвет), и вы увидите, как «двое» превратятся в «трое».

 

5. Буквомешалка

Еще одна необычная формула:

eleven + two = twelve + one.

Оказывается, на английском равенство 11 + 2 = 12 + 1 верно, даже если его записать словами — «сумма» букв слева и справа одинакова! Это значит, что правая часть этого равенства — анаграмма от левой, то есть получается из нее перестановкой букв.

Подобные, хотя и менее интересные буквенные равенства можно получать и на русском языке:

пятнадцать + шесть = шестнадцать + пять.

 

6. Пи... или не Пи?..

С 1960 до 1970 года основной национальный напиток, называвшийся «Московская особая водка» стоил: пол-литра 2,87, а четвертинка 1,49. Эти цифры знало, наверное, почти всё взрослое население СССР. Советские математики заметили, что если цену поллитровки возвести в степень, равную цене четвертинки, то получится число «Пи»:

1,492,87≈π

(Сообщил Б. С. Горобец).

Уже после выхода первого издания книги доцент химфака МГУ Леензон И. А. прислал мне такой любопытный комментарий к этой формуле: «...много лет назад, когда не было калькуляторов, а мы на физфаке сдавали трудный зачет по логарифмической линейке (!) (сколько раз нужно двигать подвижную линейку вправо-влево?), я с помощью точнейших отцовых таблиц (он был геодезистом, экзамен по высшей геодезии ему снился всю жизнь) узнал, что рупь-сорок-девять в степени два-восемьдесят-семь равно 3,1408. Меня это не удовлетворило. Не мог наш советский Госплан действовать столь грубо. Консультации в Министерстве торговли на Кировской показали, что все расчеты цен в государственном масштабе делались с точностью до сотых долей копейки. Но назвать точные цифры мне отказались, ссылаясь на секретность (меня это тогда удивило — какая может быть секретность в десятых и сотых долях копейки). В начале 1990-х мне удалось получить в архивах точные цифры по стоимости водки, которые к тому времени были рассекречены специальным декретом. И вот что оказалось: четвертинка: 1 рубль 49,09 коп. В продаже — 1,49 руб. Поллитровка: 2 рубля 86,63 коп. В продаже — 2,87 руб. Воспользовавшись калькулятором я легко выяснил, что в таком случае четвертинка в степени пол-литра дает (после округления до 5 значащих цифр) как раз 3,1416! Остается только удивляться математическим способностям работников советского Госплана, которые (я в этом ни секунды не сомневаюсь) специально подогнали расчетную стоимость самого популярного напитка под заранее известный результат».

 

7. Ребус

Какой известный со школы математик зашифрован в этом ребусе?

Х...Й

Ответ: (Безу)

 

8. Теория и практика

Математику, физику и инженеру предложили такую задачу: «Юноша и девушка стоят у противоположных стен зала. В какой-то момент они начинают идти навстречу другу и каждые десять секунд преодолевают половину расстояния между ними. Спрашивается, через какое время они достигнут друг друга?»

Математик, не раздумывая, ответил:

— Никогда.

Физик, немного подумав, сказал:

— Через бесконечное время.

Инженер после долгих расчетов выдал:

— Примерно через две минуты они будут достаточно близки для любых практических целей.

 

9. Формула красоты от Ландау

На следующую пикантную формулу, приписываемую Ландау, большому любителю слабого пола, обратил мое внимание известный Ландаувед профессор Горобец.

Как нам сообщил доцент МГУИЭ А. И. Зюльков, он слышал, что Ландау вывел следующую формулу показателя женской привлекательности:

где K — обхват по бюсту; M — по бедрам; N — по талии, T — рост, всё в см; P — вес в кг.

Так, если принять параметры для модели (1960-х гг.) приблизительно: 80-80-60-170-60 (в указанной выше последовательности величин), то по формуле получим 5. Если же принять параметры «антимодели», например: 120-120-120-170-60, то получим 2. Вот в этом интервале школьных оценок и работает, грубо говоря, «формула Ландау».

(Цит. по книге: Горобец Б. Круг Ландау. Жизнь гения. М.: Издательство ЛКИ/URSS, 2008.)

 

10. Знать бы то расстояние...

Еще одно наукообразное рассуждение по поводу женской привлекательности, приписываемое Дау.

Определим привлекательность женщины как функцию от расстояния до нее. При бесконечном значении аргумента эта функция обращается в нуль. С другой стороны, в точке нуль она также равна нулю (речь идет о внешней привлекательности, а не об осязательной). Согласно теореме Лагранжа, неотрицательная непрерывная функция, принимающая на концах отрезка нулевые значения, имеет на этом отрезке максимум. Следовательно:

1. Существует расстояние, с которого женщина наиболее привлекательна.

2. Для каждой женщины это расстояние свое.

3. От женщин надо держаться на расстоянии.

 

11. Лошадиное доказательство

Теорема: Все лошади одного цвета.

Доказательство. Докажем утверждение теоремы по индукции.

При n = 1, то есть для множества, состоящего из одной лошади, утверждение, очевидно, выполнено.

Пусть утверждение теоремы верно при n = k. Докажем, что оно верно и при n = k + 1. Для этого рассмотрим произвольное множество из k + 1 лошадей. Если убрать из него одну лошадь, то их останется k. По предположению индукции все они одного цвета. Теперь вернем на место убранную лошадь и заберем какую-либо другую. Опять-таки по предположению индукции и эти k оставшихся лошадей одного цвета. Но тогда и все k + 1 лошадей будут одного цвета.

Отсюда, согласно принципу математической индукции, все лошади одного цвета. Теорема доказана.

 

12. Немного о крокодилах

Еще одна замечательная иллюстрация применения математических методов к зоологии.

Теорема: Крокодил более длинный, чем широкий.

Доказательство. Возьмем произвольного крокодила и докажем две вспомогательные леммы.

Лемма 1: Крокодил более длинный, чем зеленый.

Доказательство. Посмотрим на крокодила сверху — он длинный и зеленый. Посмотрим на крокодила снизу — он длинный, но не такой зеленый (на самом деле он темно-серый).

Следовательно, лемма 1 доказана.

Лемма 2: Крокодил более зеленый, чем широкий.

Доказательство. Посмотрим на крокодила еще раз сверху. Он зеленый и широкий. Посмотрим на крокодила сбоку: он зеленый, но не широкий. Это доказывает лемму 2.

Утверждение теоремы, очевидно, следует из доказанных лемм.

Обратная теорема («Крокодил более широкий, чем длинный») доказывается аналогично.

На первый взгляд, из обеих теорем следует, что крокодил — квадратный. Однако, поскольку неравенства в их формулировках строгие, то настоящий математик сделает единственно правильный вывод: КРОКОДИЛОВ НЕ СУЩЕСТВУЕТ!

 

13. Опять индукция

Теорема: Все натуральные числа равны между собой.

Доказательство. Необходимо доказать, что для любых двух натуральных чисел A и B выполнено равенство A = B. Переформулируем это в таком виде: для любого N > 0 и любых A и B, удовлетворяющих равенству max(A, B) = N, должно выполняться и равенство A = B.

Докажем это по индукции. Если N = 1, то A и B, будучи натуральными, оба равны 1. Поэтому A = B.

Предположим теперь, что утверждение доказано для некоторого значения k. Возьмем A и B такими, чтобы max(A, B) = k + 1. Тогда max(A–1, B–1) = k. По предположению индукции отсюда следует, что (A–1) = (B–1). Значит, A = B.

 

14. Все обобщения неправильны!

Любители лингвистических и математических головоломок наверняка знают про рефлексивные, или самоописывающиеся (не подумайте ничего плохого), самоотносимые слова, фразы и числа. К последним, например, относится число 2100010006, в котором первая цифра равна количеству единиц в записи этого числа, вторая — количеству двоек, третья — количеству троек, ..., десятая — количеству нулей.

К самоописывающимся словам относится, скажем, слово двадцатиоднобуквенное, придуманное мной несколько лет назад. В нем действительно 21 буква!

Самоописывающихся фраз известно великое множество. Один из первых примеров на русском придумал много лет назад знаменитый карикатурист и словесный остроумец Вагрич Бахчанян: В этом предложении тридцать две буквы. Вот несколько других, придуманных гораздо позже: 1. Семнадцать буковок. 2. В этом предложении есть ошибка, расположенная в канце. 3. Это предложение состояло бы из семи слов, если было бы на семь слов короче. 4. Вы находитесь под моим контролем, поскольку вы будете читать меня, пока не дочитаете до конца. 5. ...Это предложение начинают и заканчивают три точки.

Есть и более сложные конструкции. Полюбуйтесь, например, на вот этого монстра (см. заметку С. Табачникова «У попа была собака» в журнале «Квант», № 6, 1989): В этой фразе два раза встречается слово «в», два раза встречается слово «этой», два раза встречается слово «фразе», четырнадцать раз встречается слово «встречается», четырнадцать раз встречается слово «слово», шесть раз встречается слово «раз», девять раз встречается слово «раза», семь раз встречается слово «два», три раза встречается слово «четырнадцать», три раза встречается слово «три», два раза встречается слово «девять», два раза встречается слово «семь», два раза встречается слово «шесть».

Через год после публикации в «Кванте» И. Акулич придумал самоописывающуюся фразу, описывающую не только слова в нее входящие, но и знаки препинания: Фраза, которую Вы читаете, содержит: два слова «Фраза», два слова «которую», два слова «Вы», два слова «читаете», два слова «содержит», двадцать пять слов «слова», два слова «слов», два слова «двоеточие», два слова «запятых», два слова «по», два слова «левых», два слова «и», два слова «правых», два слова «кавычек», два слова «а», два слова «также», два слова «точку», два слова «одно», два слова «одну», двадцать два слова «два», три слова «три», два слова «четыре», три слова «пять», четыре слова «двадцать», два слова «тридцать», одно двоеточие, тридцать запятых, по двадцать пять левых и правых кавычек, а также одну точку.

Наконец, еще через несколько лет все в том же «Кванте», появилась заметка А. Ханяна, в которой приводилась фраза, скрупулезно описывающая все свои буковки: В этой фразе двенадцать В, две Э, семнадцать Т, три О, две Й, две Ф, семь Р, четырнадцать А, две 3, двенадцать Е, шестнадцать Д, семь Н, семь Ц, тринадцать Ь, восемь С, шесть М, пять И, две Ч, две Ы, три Я, три Ш, две П.

«Явно чувствуется, что не хватает еще одной фразы — которая рассказывала бы и о всех своих буквах, и о знаках препинания», написал в частном письме ко мне И. Акулич, породивший одного из приведенных ранее монстров. Возможно, эту весьма непростую задачу решит кто-либо из наших читателей.

 

15. «И гений — парадоксов друг...»

В продолжение предыдущей темы стоит упомянуть про рефлексивные парадоксы.

В уже упоминавшейся ранее книге Дж. Литлвуда «Математическая смесь» справедливо говорится, что «все рефлексивные парадоксы являются, конечно, превосходными шутками». Там же приводятся два из них, которые я позволю себе процитировать:

1. Должны существовать (положительные) целые числа, которые не могут быть заданы фразами, состоящими менее, чем из шестнадцати слов. Любое множество положительных целых чисел содержит наименьшее число, и поэтому существует число N, «наименьшее целое число, которое не может быть задано фразой, состоящей из менее, чем шестнадцати слов». Но эта фраза содержит 15 слов и определяет N.

2. В журнале Spectator был объявлен конкурс на тему «Что бы Вы с наибольшим удовольствием прочли, раскрыв утреннюю газету?» Первый приз получил ответ:

Наш второй конкурс

Первый приз во втором конкурсе этого года присужден мистеру Артуру Робинсону, остроумный ответ которого без натяжки должен быть признан наилучшим. Его ответ на вопрос: «Что бы Вы с наибольшим удовольствием прочли, раскрыв утреннюю газету?» был озаглавлен «Наш второй конкурс», но из-за лимитирования бумаги мы не можем напечатать его полностью.

 

16. Палиндроматика

Есть такие удивительные фразы, которые читаются одинаково и слева направо и справа налево. Одну наверняка знают все: А роза упала на лапу Азора. Именно ее просила написать в диктанте неуча Буратино капризная Мальвина. Называются такие взаимообратные фразы палиндромами, что в переводе с греческого означает «бегущий назад, возвращающийся». Вот еще несколько примеров: 1. Лилипут сома на мосту пилил. 2. Лезу на санузел. 3. Лег на храм, и дивен и невидим архангел. 4. Нажал кабан на баклажан. 5. Муза, ранясь шилом опыта, ты помолишься на разум. (Д. Авалиани). 6. Уж редко рукою окурок держу... (Б. Гольдштейн) 7. Учуя молоко, я около мяучу. (Г. Лукомников). 8. Он верба, но она — бревно. (С. Ф.)

А интересно, есть ли палиндромы в математике? Для ответа на этот вопрос попробуем перенести идею взаимообратного, симметричного прочтения на числа и формулы. Оказывается, это не так уж и трудно. Познакомимся лишь с несколькими характерными примерами из этой палиндромной математики, палиндроматики. Оставляя в стороне палиндромные числа — например, 1991 , 666 и т.д. — обратимся сразу к симметричным формулам.

Попытаемся для начала решить такую задачу: найти все пары таких двузначных чисел

(x1 — первая цифра, y1 — вторая цифра) и

чтобы результат их сложения не менялся в результате прочтения суммы справа налево, т.е.

Например, 42 + 35 = 53 + 24.

Задача решается тривиально: сумма первых цифр у всех таких пар чисел равна сумме их вторых цифр. Теперь можно без труда строить подобные примеры: 76 + 34 = 43 + 67, 25 + 63 = 36 + 52 и так далее.

Можно развивать эти идеи дальше — например, так: 79 + 42 = 121 = 24 + 97 (Г. Лукомников) или даже так: XI + IV = VI + IX (В. Силиванов)

Рассуждая аналогичным образом, можно легко решить такую же задачу для остальных арифметических действий.

В случае разности, т.е.

получаются следующие примеры: 41 – 32 = 23 –14, 46 – 28 = 82 – 64, ... — суммы цифр у таких чисел равны (x1 + y1 = x2 + y2 ).

В случае умножения имеем: 63 ∙ 48 = 84 ∙ 36, 82 ∙ 14 = 41 ∙ 28, ... — при этом произведение первых цифр у чисел N1 и N2 равно произведению их вторых цифр (x1 ∙ x2 = y1 ∙ y2 ).

Наконец, для деления получаем такие примеры:

— в этом случае произведение первой цифры числа N1 на вторую цифру числа N2 равно произведению двух других их цифр, т.е. x1 ∙ y2 = x2 ∙ y1 .

 

17. Антисоветская теорема

Доказательство следующей «теоремы», появившейся в эпоху «недоразвитого социализма», опирается на популярные тезисы тех лет относительно роли Коммунистической партии.

Теорема. Роль партии — отрицательна.

Доказательство. Хорошо известно, что:

1. Роль партии непрерывно возрастает.

2. При коммунизме, в бесклассовом обществе, роль партии будет нулевой.

Таким образом, имеем непрерывно возрастающую функцию, стремящуюся к 0. Следовательно, она отрицательна. Теорема доказана.

 

18. Детям до шестнадцати решать запрещается

Несмотря на кажущуюся абсурдность следующей задачи, у нее, тем не менее, есть вполне строгое решение.

Задача. Мама старше сына на 21 год. Через шесть лет она будет старше его в пять раз. Спрашивается: ГДЕ ПАПА?!

Решение. Пусть X — возраст сына, а Y — возраст мамы. Тогда условие задачи записывается в виде системы двух простых уравнений:

Подставляя Y = X+ 21 во второе уравнение, получим 5X + 30 = X + 21 + 6, откуда X = –3/4. Таким образом, сейчас сыну минус 3/4 года, т.е. минус 9 месяцев. А это значит, что папа в данный момент находится на маме!

 

19. Неожиданный вывод

Хорошо известно ироническое выражение «Если ты такой умный, то почему ты такой бедный?», применимое, увы, очень ко многим. Оказывается, у этого грустного феномена есть строгое математическое обоснование, опирающееся на столь же бесспорные истины.

А именно, начнем с двух всем известных постулатов:

Постулат 1: Знание = Сила.

Постулат 2: Время = Деньги.

Кроме того, любой школьник знает, что

Путь s = Скорость x Время = Работа : Сила,

Откуда

Работа : Время = Сила x Скорость (*)

Подставляя значения для «времени» и «силы» из обоих постулатов в (*), получим:

Работа : (Знание x Скорость) = Деньги (**)

Из полученного равенства (**) видно, что устремляя «знание» или «скорость» к нулю, мы можем получить за любую «работу» сколь угодно большие деньги.

Отсюда вывод: чем глупее и ленивее человек, тем больше денег он сможет заработать.

 

20. Математическая игра Ландау

Несколько лет назад в журнале «Наука и жизнь» (№1, 2000) была опубликована вызвавшая огромный интерес читателей заметка профессора Б. Горобца, посвященная замечательной игре-головоломке, которую придумал академик Ландау, чтобы не скучать во время поездок в машине. Поиграть в эту игру, в которой датчиком случайных чисел служили номера проносящихся мимо машин (тогда эти номера состояли из двух букв и двух пар цифр), он часто предлагал своим спутникам. Суть игры заключалась в том, чтобы с помощью знаков арифметических действий и символов элементарных функций (т.е. +, –, x, :, √, sin, cos, arcsin, arctg, lg и т.д.) привести к одному и тому же значению эти два двузначных числа из номера попутной машины. При этом допускается использование факториала (n! = 1 x 2 x ... х n), но не допускается использование секанса, косеканса и дифференцирования.

Например, для пары 75–33 искомое равенство достигается следующим образом:

а для пары 00–38 — так:

Однако не все номера решаются столь просто. Некоторые из них (например 75–65) не поддавались и автору игры, Ландау. Поэтому возникает вопрос о каком-либо универсальном подходе, некоей единой формуле, позволяющей «решать» любую пару номеров. Этот же вопрос задавал Ландау и его ученик проф. Каганов. Вот что он, в частности, пишет: «Всегда ли можно сделать равенство из автомобильного номера?» — спросил я у Ландау. — «Нет», — ответил он весьма определенно. — «Вы доказали теорему о несуществовании решения?» — удивился я. — «Нет», — убежденно сказал Лев Давидович, — «но не все номера у меня получались».

Однако такие решения были найдены, причем одно из них еще при жизни самого Ландау.

Харьковский математик Ю. Палант предложил для уравнивания пар чисел формулу

позволяющую в результате неоднократного применения выразить любую цифру через любую меньшую. «Я привел доказательство Ландау», — пишет об этом решении Каганов. — «Оно ему очень понравилось..., и мы полушутя, полусерьезно обсуждали, не опубликовать ли его в каком-нибудь научном журнале».

Однако в формуле Паланта используется «запрещенный» ныне секанс (вот уже более 20 лет он не входит в школьную программу), а посему ее нельзя считать удовлетворительной. Впрочем, мне удалось это легко исправить с помощью модифицированной формулы

Полученная формула (опять-таки при необходимости ее надо применять несколько раз) позволяет выразить любую цифру через любую большую цифру, не применяя других цифр, что, очевидно, исчерпывает задачу Ландау.

В конце концов, автор исходной заметки про игру Ландау, проф. Горобец дал еще одно, почти тривиальное общее решение: «Возьмем произвольный номер a,b—c,d и рассмотрим три случая.

1. Пусть среди цифр нет нулей. Составим из них два числа ab и cd, (это, разумеется, не произведения). Покажем, что при n ≥ 6:

sin[(ab)!]° = sin[(cd)!]° = 0.

Действительно, sin(n!)° = 0, если n ≥ 6, так как sin(6!)° = sin720° = sin(2 x 360°) = 0. Дальше любой факториал получается умножением 6! на последующие целые числа: 7! = 6! x 7, 8! = 6! x 7 x 8 и т.д., давая кратное число раз по 360° в аргументе синуса, делая его (и тангенс тоже) равным нулю.

2. Пусть в какой-то паре цифр есть ноль. Умножаем его на соседнюю цифру и приравниваем к синусу факториала в градусах, взятого от числа в другой части номера.

3. Пусть в обеих частях номера имеются нули. При умножении на соседние цифры они дают тривиальное равенство 0 = 0.

Разбиение общего решения на три пункта с умножением на ноль в пунктах 2 и 3 связано с тем, что sin(n!)° ≠ 0, если n < 6».

Разумеется, подобные общие решения лишают игру Ландау изначальной прелести, представляя лишь абстрактный интерес. Поэтому попробуйте поиграть с отдельными трудными номерами, не используя универсальных формул. Вот некоторые из них: 59–58; 47–73; 47–97; 27–37; 00–26.

 

21. Гадание по определителям

Если посчитать этот шутливый определитель, написанный по идее московского математика Ю. А. Шевченко, то получится примерно следующее: Петя любит Машу, а Маша не любит математику.

 

22. 9 знаков

Еще про определители.

Мне рассказывали, что одно время среди первокурсников мехмата была популярна игра в «определитель» на деньги. Двое игроков чертят на бумаге определитель 3 x 3 с незаполненными ячейками. Затем по очереди вставляют в пустые ячейки цифры от 1 до 9. Когда все клетки заполнены, определитель считают — ответ с учетом знака и есть выигрыш (или проигрыш) первого игрока, выраженный в рублях. То есть, если, например, получилось число –23, то первый игрок платит второму 23 рубля, а если, скажем, 34, то, наоборот, второй платит первому 34 рубля.

Хотя правила игры просты, как репка, придумать правильную стратегию выигрыша очень нелегко.

 

23. Как академики задачу решали

Эту заметку мне прислал математик и писатель А. Жуков, автор замечательной книги «Вездесущее число пи».

Профессор Борис Соломонович Горобец, преподающий математику в двух московских вузах, написал книгу о великом физике Льве Давидовиче Ландау (1908–1968) — «Круг Ландау». Вот какую любопытную историю, связанную с одной физтеховской вступительной задачей он нам рассказал.

Случилось так, что соратник Ландау и его соавтор по десятитомному курсу по теоретической физике академик Евгений Михайлович Лифшиц (1915–1985) в 1959 году помогал выпускнику школы Боре Горобцу готовиться к поступлению в один из ведущих физических вузов Москвы.

На письменном экзамене по математике в Московском физико-математическом институте предлагалась следующая задача: «В основании пирамиды SABC лежит прямоугольный равнобедренный треугольник ABC, с углом C = 90°, стороной AB = l. Боковые грани образуют с плоскостью основания двугранные углы α, β, γ. Найдите радиус вписанного в пирамиду шара».

Будущий профессор не справился тогда с задачей, но запомнил ее условие и позже сообщил Евгению Михайловичу. Тот, повозившись с задачей в присутствии ученика, не смог решить ее сходу и забрал с собой домой, а вечером позвонил и сообщил, что, не одолев ее в течение часа, предложил эту задачу Льву Давидовичу.

Ландау обожал решать задачи, вызывавшие затруднения у других. Вскоре он перезвонил Лифшицу и, довольный, сказал: «Задачу решил. Решал ровно час. Позвонил Зельдовичу, теперь решает он.» Поясним: Яков Борисович Зельдович (1914–1987) — известный ученый, считавший себя учеником Ландау, был в те годы главным физиком-теоретиком в сверхсекретном Советском Атомном проекте (о чем, конечно, тогда мало кто знал). Примерно через час Е. М. Лифшиц позвонил снова и сообщил: только что ему позвонил Зельдович и не без гордости сказал: «Решил я вашу задачу. За сорок минут решил!»

А за какое время справитесь с этой задачей вы?

 

24. Задачка

В остроумном сборнике физтеховского юмора «Занаучный юмор» (М., 2000) есть немало математических шуток. Вот только одна из них.

При испытании одного изделия произошел один отказ. Какова вероятность безотказной работы изделия?

 

25. «Интересное» доказательство

Теорема. Все натуральные числа интересны.

Доказательство. Предположим противное. Тогда должно существовать наименьшее неинтересное натуральное число. Ха, так ведь это чертовски интересно!

 

26. Высшая арифметика

1 + 1 = 3, когда значение 1 достаточно велико.

 

27. Формула Эйнштейна—Пифагора

E = m ∙ c2= m(a2 + b2).

 

28. О пользе теорвера

Эту забавную историю из моей студенческой жизни вполне можно предлагать на семинарах по теории вероятностей в качестве задачки.

Летом мы с друзьями отправились в поход в горы. Нас было четверо: Володя, два Олега и я. У нас была палатка и три спальника, из которых один двухместный — для нас с Володей. С этими самыми спальниками, точнее с их расположением в палатке, и вышла закавыка. Дело в том, что шли дожди, палатка была тесной, с боков подтекало, и лежащим с краю было не очень-то удобно. Поэтому я предложил решить эту проблему «по-честному», с помощью жребия.

— Смотрите, — сказал я Олегам, — наш с Володей двуспальник может быть либо с краю, либо в центре. Поэтому будем бросать монетку: если выпадет «орел» — наш двуспальник будет с краю, если «решка» — в центре.

Олеги согласились, однако через нескольких ночевок с краю (нетрудно посчитать по формуле полной вероятности, что для каждого из нас с Володей вероятность спать не у края палатки равна 0,75) Олеги заподозрили неладное и предложили пересмотреть договор.

— Действительно, — сказал я, — шансы были неравны. На самом деле для нашего двуспальника три возможности: с левого края, с правого и в центре. Поэтому каждый вечер мы будем тянуть одну из трех палочек — если вытянем короткую, то наш двуспальник будет в центре.

Олеги опять согласились, хотя и на этот раз наши шансы ночевать не у края (теперь вероятность равна 0,66, точнее, две третьих) были предпочтительнее, нежели у каждого из них. После двух ночевок с краю (на нашей стороне были лучшие шансы плюс везение) Олеги снова поняли, что их надули. Но тут, к счастью, кончились дожди, и проблема отпала сама собой.

А ведь на самом деле наш двуспальник должен быть всегда с краю, а мы с Володей уже с помощью монетки определяли бы каждый раз, кому повезло. То же бы делали и Олеги. В этом случае шансы спать с краю были бы у всех одинаковы и равны 0,5.