§ 1. Симметрия в физике
§ 2. Переносы начала
§ 3. Вращения
§ 4. Векторы
§ 5. Векторная алгебра
§ 6. Законы Ньютона в векторной записи
§ 7. Скалярное произведение векторов
§ 1. Симметрия в физике
В этой главе мы вводим понятие, которое среди физиков известно под названием симметрия законов физики. Слово «симметрия» употребляется здесь в несколько необычном смысле, и поэтому нужно его определить. Как же определить симметрию какого-либо предмета? Когда мы говорим, что изображение симметрично, то этим мы хотим сказать, что одна его часть такая же, как другая. Профессор Герман Вейль дал такое определение симметрии: предмет симметричен, если его можно подвергнуть какой-либо операции, после которой он будет выглядеть как и вначале. Например, если мы повернем вазу на 180° вокруг вертикальной оси и она не изменит своего внешнего вида, то мы говорим, что обе стороны вазы симметричны. Мы будем понимать определение Вейля в более широком смысле и говорить о симметрии законов физики.
Предположим, что где-то мы установили сложную машину со множеством зацеплений, с какими-то маховиками, шатунами и т. п. Предположим теперь, что в каком-то другом месте мы собрали такое же устройство, все части которого являются точной копией частей прежней машины, причем сохранены все размеры и ориентация отдельных ее частей, все то же самое, только перенесено на некоторое расстояние. Затем мы запустим обе машины в одинаковых условиях и посмотрим, будут ли они работать совершенно одинаково? Будут ли движения отдельных частей одной машины повторять в точности соответствующие движения другой? Вообще говоря, ответ может быть отрицательным, потому что мы можем ведь выбрать для второй машины неудачное место, скажем поставить ее так, что какие-то ее части будут при работе ударяться о стенку, тогда машина вовсе не будет работать.
Любая физическая идея требует здравого смысла при своем осуществлении, ведь это не чисто математические или абстрактные идеи. Нужно понимать, что мы имеем в виду, когда говорим, что при перенесении какого-либо устройства в другое место наблюдаются те же явления. Под этим мы понимаем, что мы передвигаем все, что можно передвинуть. Если же при этом явление в чем-то изменяется, то мы предположим, что что-то послужило помехой, и займемся изучением причин. Если мы ничего не обнаружим, то объявим, что физические законы не обладают ожидаемой симметрией. Но если физические законы все-таки обладают симметрией, то мы найдем причину помех, во всяком случае мы надеемся найти ее. Осмотревшись, мы обнаружим, например, что работе машины мешает стена. Основной вопрос состоит в следующем: если мы достаточно хорошо изучим наши устройства, если все основные источники сил имеются внутри аппарата и если на другое место передвинуть все, что следовало передвинуть, то будут ли законы меняться? Будет ли машина на новом месте работать так, как раньше?
Ясно, что мы хотим передвинуть само устройство и источники основных влияний, а вовсе не все на свете — планеты, звезды и т. п., ибо если бы мы и совершили эту грандиозную работу, то наблюдали бы прежнее явление по той простой причине, что мы оказались бы на том же самом месте. Но мы и не можем передвинуть все на свете. Оказывается, что если передвигать наше устройство более или менее разумно, то оно будет работать одинаково. Другими словами, если мы не будем вламываться в стенку, будем знать происхождение внешних сил и постараемся, чтобы они были передвинуты вместе с машиной, то она будет работать на новом месте так же хорошо, как и прежде.
§ 2. Переносы начала
Мы ограничим наше рассмотрение законами механики, которую достаточно хорошо изучили. В предыдущих главах мы установили, что законы механики можно свести к трем справедливым для любой частицы уравнениям:
Это означает, что существует такой способ измерения расстояний х, у и z вдоль трех взаимно перпендикулярных осей и сил вдоль этих направлений, при котором определяемые уравнениями (11.1) законы верны. Расстояния должны отсчитываться от некоторого начала, но где следует расположить это начало? Ньютон сказал нам только, что такая точка, от которой можно начать отсчет, существует; может быть, это центр Вселенной, и при измерении расстояний от нее его законы верны. Но мы можем немедленно показать, что незачем искать центр Вселенной, ибо безразлично, какую точку взять за начало координат. Иными словами, предположим, что имеются два человека — Джо, который выбрал начало своей системы координат в какой-то точке, и Мик, который построил систему координат, параллельную первой, но принял за начало другую точку (фиг. 11.1), расположенную на расстоянии а по оси х в его системе.
Фиг. 11.1.Две параллельные координатные системы.
Когда Джо определяет положение произвольной точки в пространстве, он находит три ее координаты: х, у и z (обычно мы опускаем ось z, ибо ее трудно изобразить на нашем чертеже). В системе Мика эта точка будет иметь другое значение х (чтобы отличить его, введем обозначение х') и, вообще говоря, другое значение у, хотя в нашем примере они численно равны. Таким образом, мы имеем
х'=х- а, у'=y, z'=z. (11.2)
Чтобы сделать наш анализ полным, нужно знать, какие силы измеряет Мик. Если сила действует вдоль произвольной линии, то под силой вдоль направления х мы понимаем некоторую часть общей силы, которая равна произведению величины силы на косинус угла между направлением силы и осью х. Легко видеть, что Мик получит те же проекции силы, какие получил Джо, т. е. мы имеем систему уравнений
Fx '' =Fx , Fy '' =Fy , Fz ' =Fz . (11.3)
Уравнения (11.2) и (11.3) определяют соотношения между величинами, используемыми Джо и Миком.
Теперь поставим вопрос так: если Джо знает законы Ньютона, то будут ли они верны, когда их попробует использовать Мик? Имеет ли значение выбор начала координат? Другими словами, предположим, что уравнения (11.1) верны, а (11.2) и (11.3) определяют соотношения между измеряемыми величинами; верно ли, что
Чтобы проверить эти уравнения, дважды продифференцируем выражение для х по времени. Прежде всего
Предположим теперь, что начало системы координат, которой пользуется Мик, фиксировано (не движется) относительно системы координат Джо, т. е. а постоянна и da/dt=0; таким образом, получаем
dx'/dt=dx/dt и, следовательно,
d2 x'/dt2 =d2 x/dt2 Если предположить, что измеряемые Джо и Миком массы равны, то уравнение (11.4а) принимает вид
Таким образом, произведения массы на ускорение одинаковы у обоих друзей. Можно получить и формулу для FX ' . Использовав (11.1), мы обнаружим
. Fx ' =Fx .
Следовательно, законы механики, с точки зрения Мика, точно такие же: он пишет законы Ньютона в других координатах, и эти законы оказываются верными. Это означает, что центра Вселенной нет и законы движения выглядят одинаково, с какого бы места они ни наблюдались.
Верно и такое утверждение: если в каком-либо месте установить устройство с каким-то механизмом, то и в любом другом месте это устройство будет работать одинаково. Почему? Потому что любая машина, которую изучает Мик, подчиняется тем же уравнениям, которые описывают работу машины, контролируемой Джо. Поскольку уравнения, одинаковы, то и явления одни ' и те же. Таким образом, доказательство того, что аппарат в новом месте будет работать так же, как на прежнем, сводится к доказательству, что отнесенные к новой точке пространства уравнения воспроизводят себя. Поэтому мы говорим, что законы физики симметричны относительно перемещений в пространстве, симметричны в том смысле, что законы не изменяются при перемещениях начала системы координат. Конечно, каждый интуитивно знает, что это верно, но интересно и полезно обсудить математику этого явления.
§ 3. Вращения
Разобрав вопрос о перенесении начала координат, мы рассмотрели первую задачу из серии более сложных теорем о симметрии физических законов. Следующая теорема утверждает, что и направления координатных осей можно выбрать произвольно. Другими словами, если мы сооружаем где-то какое-то устройство и наблюдаем, как оно работает, а затем по соседству соорудим аналогичное устройство, но расположим его под любым углом относительно первого, то будет ли второе устройство работать так же, как и первое? Вообще говоря, нет, если это, например, старые часы-ходики, известные еще нашим дедам. Если маятник ходиков расположен отвесно, они будут великолепно идти, но если их повернуть так, чтобы маятник уперся в стенку, верного времени они уже не покажут. Значит, нашу теорему нельзя применить к маятнику, если забыть о силе, которая заставляет его качаться. Если мы все-таки верим в симметрию физических законов относительно вращений, то мы должны сделать какие-то вполне определенные предположения о работе ходиков, например что для их работы важен не только часовой механизм, но и что-то, лежащее за его пределами, что-то, что следует обнаружить. Можно также предсказать, что ходики будут идти по-разному, если они попадут куда-то в другое место по отношению к загадочному пока источнику асимметрии (может быть, это Земля). Так и есть на самом деле. Мы знаем, что ходики на искусственном спутнике, например, вообще остановятся, ибо там отсутствует эффективная сила, а на Марсе скорость их хода будет совсем иной. Маятниковые часы содержат, помимо механизма, еще нечто вне их. Осознав этот факт, мы увидим, что вместе с ходиками нам придется повернуть и Землю. Но нам, конечно, незачем беспокоиться — сделать это очень легко. Мы просто подождем минуту или две, и Земля сама повернется, а ходики затикают уже в новом положении так же весело, как и раньше. Пока мы поворачиваемся в пространстве, измеряемые нами углы изменяются тоже; эти изменения не причиняют особых беспокойств, поскольку в новых условиях мы чувствуем себя точно так же, как и в старых. Здесь может скрываться источник ошибки; верно, что в новом, повернутом относительно старого положении законы остаются прежними, но неверно то, что во вращающейся системе координат справедливы те же законы, что и в покоящейся. Если проделать достаточно тонкие опыты, то можно установить, что Земля вращается, но ни один из этих опытов не скажет нам, что Земля повернулась. Другими словами, мы не можем при помощи этих опытов установить ориентацию Земли, но можем сказать, что ориентация изменяется.
Обсудим теперь влияние ориентации системы координат на физические законы. Давайте посмотрим, не будут ли нам снова полезны Мик и Джо. Чтобы избежать ненужных сложностей, предположим, что эти молодые люди находятся в одной точке пространства (мы уже показали, что их системы координат можно перемещать). Пусть оси системы координат Мика повернуты относительно системы координат Джо на угол q, Обе системы координат изображены на фиг. 11.2, где мы ограничились двумя измерениями.
Фиг. 11.2. Две координатные системы, ориентированные по-разному.
Произвольная точка Р снабжается координатами (х, у) в системе Джо и (х', у') в системе Мика. Как и в предыдущем случае, начнем с того, что выразим координаты х' и у' через х, у и q. Для этого опустим из Р перпендикуляры на все четыре координатные оси и проведем АВ перпендикулярно PQ. Из чертежа ясно, что х' можно представить как сумму двух отрезков вдоль оси х', а у'— как разность двух отрезков вдоль АВ. Длины этих отрезков выражаются через х, у и 6; мы добавляем еще уравнение для третьей координаты:
х'=хcosq+-уsinq,
y'=ycosq -xsinq, (11.5)
z'=z.
Теперь (мы поступали так и раньше) установим соотношения между силами, измеряемыми двумя наблюдателями. Предположим, что сила F, имеющая (с точки зрения Джо) составляющие Fx и Fy , действует на расположенную в точке Р на фиг. 11.2 частицу массы m. Для простоты сдвинем обе системы координат так, что начала их переместятся в точку Р, как показано на фиг. 11.3. Мик скажет нам, что сила, по его мнению, имеет составляющие Fx ' и Fy ' вдоль его осей.
Фиг. 11.3, Составляющие сил в двух системах.
Составляющая Fx , как и Fy , имеет составляющие вдоль обеих осей х' и у'. Чтобы выразить Fx ' через Fx и Fy , сложим составляющие этих сил вдоль оси х'; точно таким же образом можно выразить и Fy ' через Fх и Fy . В результате получим
Fx .=Fx cosq+Fy smq,
Fy .=Fy cosq-Fx smq, (11.6)
Fz ' = Fz
Интересно отметить случайность, которая в дальнейшем окажется очень важной: формулы (11.5) и (11.6) для координат Р и составляющих F соответственно тождественны по форме. Как и раньше, предположим, что законы Ньютона справедливы в системе координат Джо и выражаются уравнениями (11.1). Снова возникает вопрос: может ли Мик пользоваться законами Ньютона, будут ли их предписания выполняться в повернутой системе координат? Другими словами, если предположить, что уравнения (11.5) и (11.6) дают связь между измеряемыми величинами, то верно ли, что
Чтобы проверить эти уравнения, вычислим левые и правые части независимо, а затем сравним результаты. Чтобы вычислить левые части, умножим уравнения (11.5) на mи продифференцируем их дважды по времени, считая угол 9 постоянным. Это дает
Вычислим правые части уравнений (11.7), подставив (11.1] в уравнения (11.6). Получаем
Глядите! Правые части уравнений (11.8) и (11.9) тождественны; значит, если законы Ньютона верны в одной системе координат, то ими можно пользоваться и в другой системе. Эти рассуждения заставляют нас сделать некоторые важные выводы: во-первых, никто не может утверждать, что избранная им система координат единственна, она может быть, конечно, более удобной при решении частных задач. Например, удобно, но не обязательно взять направление силы тяжести за одну из осей координат. Во-вторых, это означает, что любой механизм, если только он является самостоятельным устройством и обладает всем необходимым для создания силы, будет работать одинаково, как бы его ни повернули.
§ 4. Векторы
Насколько нам известно сейчас, не только законы Ньютона, но и все физические законы обладают двумя свойствами, которые называют инвариантностью (или симметрией) относительно перемещений и поворотов координатных осей. Эти свойства столь важны, что для учета их при изучении физических законов была разработана специальная математическая техника.
Решение поставленных в предыдущих параграфах задач потребовало довольно длинных расчетов. Чтобы свести их к минимуму, изобретен могучий математический аппарат. Эта система, называемая векторным анализом, определила название главы, хотя в ней, собственно говоря, речь идет о симметрии физических законов. Конечно, можно получить искомый результат, поступая так, как было описано раньше, но, чтобы облегчить и ускорить нашу задачу, мы применяем технику векторного анализа.
Заметим, что в физике важно знать величины двух типов (на самом деле их больше двух, но давайте начнем с двух). Величины первого типа, например число картофелин в мешке, мы будем называть обыкновенными числами, или скалярами. Еще одним примером такой величины может служить температура. Другие очень важные в физике величины имеют направление, это, например, скорость; мы должны задать не только быстроту перемещения тела, но и путь, по которому оно движется. Импульс и сила тоже имеют направление, как и смещение: когда кто-нибудь делает шаг, можно сказать не только, как далеко он шагнул, но и куда он шагает, т. е. определить направление его движения.
Все величины, имеющие направление, подобно шагу в пространстве, называются векторами.
Вектор определяется тремя числами. Чтобы описать шаг, скажем из начала координат в точку Р, определяемую координатами х, у и z, мы фактически должны задать три числа. Но мы будем использовать для этой цели один-единственный математический символ r, с которым нам чаще всего придется иметь дело в дальнейшем. Это не одно число: символ r задается тремя числами: х, у и z. Символ r означает три числа, но не только эти три числа, потому что при переходе к другой системе координат нужно заменить их числами х', у' и z'. Однако мы хотим как можно более упростить нашу математику и используем один и тот же символ в качестве представителя трех чисел х, у, z и трех чисел х', у', z'. Точнее говоря, мы используем один и тот же символ в качестве представителя первого набора чисел в одной системе координат и делаем его представителем второго набора чисел, если захотим сменить систему координат. Это удобно потому, что нам не придется изменять формы уравнений при переходе от одной системы координат к другой. Если мы записываем уравнения, используя координаты х, у и r, а затем меняем систему отсчета, то появляются координаты х', у' и z', но мы пишем просто r, условившись, что этот символ служит представителем х, у, z, если мы пользуемся первой системой отсчета, и х', у', z', если мы перешли к другой системе. Три числа, которые описывают векторную величину в заданной системе отсчета, называются составляющими (компонентами) вектора в направлении координатных осей системы отсчета. Иначе говоря, мы используем один символ для обозначения трех букв, и он соответствует наблюдению одного и того же объекта с трех разных точек зрения. Произнося слова «один и тот же объект», мы обращаемся к нашей физической интуиции, которая говорит нам, что шаг в пространстве не зависит от того, какими составляющими мы его описываем. Итак, символ r представляет один и тот же объект независимо от того, как мы ориентируем оси системы отсчета.
Предположим теперь, что существует другая направленная величина, например сила — еще одна величина, которую можно определить, задав связанные с ней три числа. Эти три числа переходят при изменении системы координат в другие три числа по строго определенным математическим правилам. Эти правила должны быть теми же самыми, которые определяли переход тройки чисел х, у, z в х' , у', z'. Другими словами, вектор — это величина, определяемая тремя числами, которые преобразуются при изменениях системы координат так же, как составляющие шага в пространстве. Уравнение типа
F = r
справедливо в любой системе координат, если оно верно хотя бы в одной из них. Оно заменяет нам три уравнения
Fx =x, Fy =y, Fz =z или соответственно
Fх ' =х' ,Fу' =у' ,Fz ' =z'.
Тот факт, что физические соотношения между какими-либо величинами можно выразить в виде векторных уравнений, говорит о том, что эти соотношения верны в любой системе координат. Вот почему понятие вектора очень удобно в физике.
Давайте теперь рассмотрим некоторые свойства векторов. В качестве примера «вектора» можно указать скорость, импульс, силу и ускорение. Часто бывает удобно изобразить вектор в виде стрелки, указывающей направление действия. Но почему же можно представить силу стрелкой? Да потому, что она преобразуется по тем же законам, что и «шаг в пространстве». Именно поэтому можно представить силу в виде чертежа, как если бы это изображалось перемещение, причем выберем такой масштаб, чтобы единица силы, например ньютон, соответствовала некоторой длине. Проделав такую процедуру однажды, мы всегда сможем изображать силы в виде отрезков, потому что уравнение типа
F=kr
(где k — некоторая постоянная) имеет вполне определенный смысл. Возможность представлять силу отрезком сулит нам большие выгоды, потому что, изобразив отрезок или стрелку, можно не заботиться о координатных осях. При этом, конечно, всегда можно быстро подсчитать, как изменяются составляющие вектора при поворотах осей, потому что дело сводится к простому геометрическому построению.
§ 5. Векторная алгебра
Теперь мы должны описать законы, или правила, 'регулирующие возможные сочетания различных векторов. Прежде всего мы изучим сумму двух векторов. Пусть векторы а и b задаются в какой-нибудь системе координат составляющими ах , ay , az и bx , by ,bz . Предположим, что кому-то пришло в голову составить три числа ах +bx , ay +by , аг +bz . Получим ли мы в результате вектор? Вы можете сказать: «Разумеется, ведь это три числа, а три числа образуют вектор». Нет, вектор образуют не любые три числа! Чтобы задать вектор, мы должны связать заданные нам три числа с координатной системой так, чтобы при повороте координатных осей эти числа «поворачивались» относительно друг друга и «перемешивались» по описанным ранее правилам. Таким образом, мы должны выяснить, во что превращаются числа ах +bх , аy +by , az +bг , если известно, что при изменении системы координат числа ах , ау , az переходят в а'х , а'у , a'z , а bх , bу , bг переходят в b'x , b'y , b'г? Получим ли мы после поворота координатных осей числа а'х +b'x , a'y +b'y , a'z +b'z ? Ответ, конечно, будет утвердительным, потому что наше основное уравнение (11:5) определяет так называемое линейное преобразование. Если мы применим это преобразование к ах и bх и вычислим ах +bx то окажется, что преобразованное ах +bх есть то же самое, что и ах +bх . «Складывая» векторы а и b по только что описанному правилу, мы получаем новый вектор c. Мы запишем это так:
с=а +b.
Вектор с обладает интересным свойством:
с=b+а;
это легко проверить, написав составляющие вектора с. Кроме того,
а+(b+с)=(а+b) + с.
Векторы можно складывать в любом порядке.
Каков геометрический смысл а+b? Как будет выглядеть вектор с, если мы, скажем, изобразим а и b с помощью стрелок? Ответ на этот вопрос дает фиг. 11.4.
Фиг.11.4. Сложение векторов.
Мы видим, что прибавить составляющие вектора b к составляющим вектора а проще всего, приложив соответствующим образом прямоугольник, определяемый составляющими b, к такому же прямоугольнику, определяемому составляющими а. Поскольку а и b хорошо подогнаны к своим прямоугольникам, то это все равно, что поставить вектор b «ногами» на «голову» вектору а. Стрелка, соединяющая «ноги» вектора а и «голову» вектора b, и будет вектором с. Можно поступить иначе: поставить «ноги» а на «голову» b. Вспомнив геометрические свойства параллелограмма, можно убедиться в том, что мы снова получим тот же вектор с. Заметим, что, ставя векторы друг на друга, мы складываем их без помощи координатных осей.
Предположим, что мы умножили вектор а на число а. Что нужно понимать под таким произведением? Договоримся понимать под этим вектор с компонентами аах , аау , aaz . Докажите сами, что это действительно вектор.
Рассмотрим теперь вычитание векторов. Можно определить вычитание тем же способом, что и сложение, но вместо того, чтобы складывать, будем вычитать составляющие. Можно также определить вычитание как сложение с отрицательным вектором -b=(-1)b. Результат будет тот же.
Вычитание векторов показано на фиг. 11.5.
Фиг.11,5. Вычитание векторов.
На этом чертеже изображено
d=а-b=а+(-b); заметим также, что, зная векторы а и b, разность а-b можно легко найти из эквивалентного соотношения а=b+d. Таким образом найти разность векторов даже легче, чем сумму: просто нужно провести вектор, соединяющий b и а, и вы получите а-b!
Перейдем теперь к скорости. Почему скорость есть вектор? Если координаты точки равны х, у, z, то скорость ее равна dx/dt, dy/dt, dz/dt. Вектор это или не вектор? Дифференцируя выражение (11.5), можно найти закон преобразования dx'ldt. Видно, что величины dx/dt, dy/dt преобразуются по тому же закону, что и х и у. Таким образом, скорость есть вектор. Выражение для скорости можно записать очень интересно:
v=dr/dt.
Постараемся нагляднее представить себе, что такое скорость и почему она вектор. Далеко ли продвинется частица за малое время Dt? Ответ: на Dr, т. е. если частица находится «здесь» в первое мгновение, а «там» — во второе, то векторная разность положений частицы равна вектору Dr=r2-r1. расположенному вдоль направления движения. Как это выглядит, показано на фиг. 11.6. Если разделить этот вектор на промежуток времени Dt = t2 -t1 , то мы получим вектор «средней скорости».
Иначе говоря, под вектором скорости мы понимаем предел разности радиус-векторов, соответствующих моментам t+Dt и t, деленной на Dt при Dt, стремящемся к нулю:
Скорость есть вектор постольку, поскольку она равна разности двух векторов. Это верно также и потому, что составляющие этого вектора равны dx/dt, dy/dt, dz/dt. Подумав над тем, что сейчас было проделано, мы придем к выводу, что, продифференцировав любой вектор по времени, мы снова получим какой-то новый вектор. Таким образом, имеется несколько способов получать новые векторы: 1) умножая вектор на постоянное число; 2) дифференцируя вектор по времени; 3) складывая два вектора или вычитая.
§ 6. Законы Ньютона в векторной записи
Чтобы записать законы Ньютона в векторной форме, мы должны поучиться еще кое-чему и определить вектор ускорения. Этот вектор равен производной по времени вектора скорости, причем легко показать, что его составляющие равны вторым производным х, у и z no t:
После этого законы Ньютона можно записать таким образом: или ma = F, (11.13)
m(d2r/dt2)=F (11.14)
Фиг. 11.6. Перемещение частиц за малое время Dt=t2-t1,.
Теперь задача о доказательстве инвариантности законов Ньютона относительно вращений сводится к следующему: нужно доказать, что а (ускорение) есть вектор; это мы уже сделали. Затем нужно доказать, что F (сила) есть вектор; это мы предполагаем. Следовательно, если сила есть вектор, то уравнение (11.13) будет выглядеть одинаково во всех системах координат, ибо нам известно, что ускорение тоже вектор. Запись уравнений в виде, не содержащем явно х, у, z, привлекательна тем, что нам нет необходимости выписывать три уравнения каждый раз, когда мы хотим написать законы Ньютона или другие законы физики. Мы записываем то, что выглядит как один закон, хотя фактически, конечно, это три закона для каждой оси системы координат, потому что любое векторное уравнение содержит в себе утверждение, что все составляющие равны.
Тот факт, что ускорение — это скорость изменения вектора скорости, помогает найти ускорение в любых, казалось бы, трудных обстоятельствах. Предположим, например, что частица, двигаясь по какой-то сложной кривой (фиг. 11.7), имеет в момент t1скорость v1, а несколько позже, в момент t2,скорость v2. Чему равно ускорение? Ответ: ускорение равно разности скоростей, деленной на малый промежуток времени; значит, нужно знать разность скоростей. Как же найти эту разность? Чтобы найти разность двух векторов, проведем вектор через концы векторов v2 и v1, иначе говоря, начертим вектор D в качестве разности этих двух векторов. Верно? Нет! Мы можем поступать так только тогда, когда начала векторов расположены в одной точке! Вычитать векторы, приложенные к разным точкам, бессмысленно. Остерегайтесь этого! Чтобы вычесть векторы, нужно начертить другую схему. На фиг. 11. 8 векторы v1 и v2 перенесены параллельно и равны их двойникам, изображенным на фиг. 11.7.
Фиг. 11 .7. Криволинейная траектория.
Фиг. 11.8, Диаграмма для вычисления ускорения.
Теперь можно поговорить об ускорении. Ускорение, конечно, просто равно Dv/Dt. Интересно заметить, что разность скоростей можно разделить на две части: можно представить себе, что ускорение состоит из двух составляющих: Dv║ — вектора, параллельного касательной к пути, и вектора Dv┴, перпендикулярного к этой касательной. Эти векторы показаны на фиг. 11.8. Касательное к пути ускорение равно, естественно, лишь изменению длины вектора, т. е. изменению величины скорости v:
a║=dv/dt. (11.15)
Другую, поперечную составляющую ускорения легко вычислить, взглянув на фиг. 11.7 и 11.8. За короткое время Dt изменение угла между v1 и v2 равно малому углу Dq. Если величина скорости равна v, то
Dv┴=vDq, а ускорение а равно
а┴=v(dq/dt).
Теперь нам нужно знать Dq/Dt. Эту величину можно найти так: если в данный момент кривую можно приблизительно заменить окружностью радиусом R, то, поскольку за время Dt частица пройдет расстояние s=vDt,изменение угла равно
Dq=v(Dt/R) или Dq/Dt=v/R.
Таким образом, как мы уже установили ранее,
a=v2/R. (11.16)
§ 7. Скалярное произведение векторов
Давайте еще немного займемся свойствами векторов. Легко понять, что длина шага в пространстве одинакова во всех координатных системах. Следовательно, если какому-то шагу r соответствуют составляющие х, у, z в одной системе координат и составляющие х', у', z' в другой системе, то расстояние r= |r| одно и то же в обеих системах. Сначала мы, конечно, должны ввести два расстояния
а затем проверить, что эти обе величины равны. Чтобы не возиться с квадратным корнем, будем сравнивать квадраты расстояний. Мы должны, таким образом, показать, что
x2 +у2 + z2 =x'2 +у'2 + г'2 . (11.17)
Подставив в это уравнение определяемые соотношением (11.5) значения ж', у', z', мы увидим, что это действительно так. Значит, кроме уже изученных нами векторных уравнений, существуют еще какие-то соотношения, верные в любой системе координат.
Незаметно мы получили новый тип величин. Мы можем построить функцию х, у и z, называемую скалярной функцией,— величину, которая не имеет направления, и одинакова в обеих системах координат. Из вектора можно построить скаляр. Хорошо бы найти общее правило для этого построения. Собственно говоря, мы уже нашли это правило: надо возвести в квадрат каждую из составляющих вектора и сложить их. Определим теперь новую величину, которую обозначим а·а. Это не вектор, а скаляр; это число, одинаковое во всех координатных системах и определяемое как сумма квадратов трех составляющих вектора:
a·a=a2x+ a2y+a2z. (11.18)
Вы спросите: «В какой системе координат?» Но раз это число не зависит от системы координат, то ответ одинаков в любой системе координат. Мы имеем дело с новым видом величины, с инвариантом, или скаляром, полученным «возведением вектора в квадрат». Если теперь определить, исходя из векторов а и b, величину
a·b=ax bx +ay by + az bz , (11.19)
то можно убедиться, что эта величина совпадает в штрихованной и нештрихованной системах координат. Чтобы доказать это, заметим, что это верно для величин а·а, b·b и с·с, где с=а+b. Сумма квадратов (ax +bx )2 +(ay +by )2 +(az +bz)2 —инвариант:
(аx +bx )2 +(аy +by )2+(аz+bг )2 = (аx'+bx')2 + (ay'+bу ' )2 +(az ,+bz')2. (11.20) Раскроем скобки в обеих сторонах этого уравнения. Перекрестные произведения дадут нам выражения типа (11.19), а суммы квадратов составляющих а и b — выражения (11.18). Инвариантность слагаемых типа (11.18) приводит к инвариантности перекрестных произведений типа (11.19).
Величина а·b называется скалярным произведением двух векторов а и b и имеет много интересных и полезных свойств. Например, легко доказать, что
а· (b+c)=а·b+а·с. (11.21)
Есть еще очень простой геометрический способ вычисления а·b, при котором не надо определять составляющих а и b; просто а·b есть произведение длин векторов а и b на косинус угла между ними. Почему? Предположим, что мы выбрали такую систему координат, в которой вектор а направлен вдоль оси х; в этом случае вектор а имеет единственную ненулевую составляющую ах , которая равна длине вектора а. Таким образом, уравнение (11.19) сводится в этом случае к a ·b =ax bx , что равно произведению длины вектора а на составляющую вектора b по направлению а, которая в свою очередь равна bcosq, т. е.
а·b=abcosq.
Таким образом, в этой частной системе координат мы доказали, что a·b равно произведению длин векторов а и b на косинус угла между ними 9. Но если это верно в одной системе координат, то это верно и во всех системах, потому что а·b не зависит от выбора системы координат.
Что хорошего может дать нам эта новая величина? Нужно ли физику скалярное произведение? Да, оно необходимо ему постоянно. Например, в гл. 4 мы назвали кинетической энергией величину 1 /2 mv2 , но если частица движется в пространстве, то нужно возвести в квадрат отдельно составляющие скорости х, у и z, так что формулу для кинетической энергии можно записать в виде
к.э.=1 /2 m(v ·v )=1 /2 m(v2 x + v2 y +v2 z ). (11.22)
Энергия не имеет направления. Импульс же направление имеет, это — вектор, и он равен произведению массы на вектор скорости.
Другим примером скалярного произведения может служить работа, произведенная силой при перемещении какого-нибудь предмета с одного места на другое. Мы еще не дали определения работы, она равна изменению энергии, прибавке в весе, после того как сила F поработает вдоль пути s:
Работа=F·s. (11.23)
Иногда целесообразно говорить о составляющей вдоль определенного направления (например, вдоль вертикали, потому что это направление силы тяжести). Для этого удобно ввести единичный вектор вдоль интересующего нас направления. Под единичным вектором мы будем понимать вектор, скалярное произведение которого на себя равно единице. Пусть это будет вектор i; тогда i·i=l. Скалярное произведение i·a равно acosq, т. е. оно равно составляющей вектора а вдоль направления i. Это наилучший способ получить составляющую вектора. Поступая так, мы можем найти все составляющие вектора и получить забавную формулу.
Предположим, что нам задана какая-то система координат х, у и z. Введем три вектора: i — единичный вектор вдоль оси х,
j — единичный вектор вдоль оси y и к — единичный вектор вдоль оси z. Ясно, что i·i=l. Чему же равно произведение i·j? Если угол между векторами прямой, то их скалярное произведение равно нулю. Таким образом,
i·i=1,
i·j = 0, j·j=1, (11.24) i·k=0, j·k=0, k·k=l.
Используя эти свойства векторов i, j, k, можно записать любой вектор а в виде
a=ax ·i + ay ·j + az ·k . (11.25)
Таким образом, можно от составляющих вектора легко перейти к самому вектору.
Мы изучили далеко не все свойства векторов. Однако, прежде чем углубиться в этот вопрос, научимся сперва применять обсужденные сейчас идеи в физике. И тогда, когда мы хорошо овладеем основным материалом, будет легче продвинуться дальше, не впадая в ошибки. Позднее мы увидим, что удобно определить еще одно произведение двух векторов, которое называется векторным произведением и записывается в виде аXb. Однако обсуждение этого вопроса лучше отложить до следующей главы.
* В книгах вектор обозначается полужирной буквой; в рукописях же используется стрелка: