§ 1. Импульс и сила

§ 2. Компоненты ско­рости, ускорения и силы

§ 3. Что такое сила?

§ 4. Смысл динами­ческих уравне­ний

§ 5. Численное реше­ние уравнении

§ 6. Движение планет

§ 1. Импульс и сила

Открытие законов динамики или законов движения стало одним из наиболее драмати­ческих моментов в истории науки. До Ньютона движение различных тел, например планет, представлялось загадкой для ученых, но после открытия Ньютона все вдруг сразу стало по­нятно. Смогли быть вычислены даже очень слабые отклонения от законов Кеплера, обус­ловленные влиянием других планет. Движение маятника, колебания груза, подвешенного на пружине, и другие непонятные до того явления раскрыли свои загадки благодаря законам Ньютона. То же самое можно сказать и об этой главе. До нее вы не могли рассчитать, как движется грузик, прикрепленный к пружине, не говоря уже о том, чтобы определить влияние Юпитера и Сатурна на движение Урана. Но после этой главы вам будет доступно и то и дру­гое!

Первый большой шаг в понимании движе­ния был сделан Галилеем, когда он открыл свой принцип инерции: тело, предоставленное самому себе, если на него не действует ника­кая сила, сохраняет свое прямолинейное дви­жение с постоянной скоростью, как двигалось до этого, или остается в покое, если оно до этого покоилось. Конечно, в природе такого не бывает. Попробуйте толкнуть кубик, стоящий на столе. Он остановится. Причина в том, что кубик трется о стол, он не предоставлен са­мому себе. Нужно иметь очень богатое вообра­жение, чтобы увидеть за этим принцип инер­ции.

Естественно нужно еще разрешить следую­щий вопрос: а как изменяется скорость тела, если на него что-то действует? Ответ был дан Ньютоном. Он сформулировал три закона. Первый закон представляет собой просто повторение принципа инерции Галилея. Второй закон говорит о том, как изменяется скорость тела, когда оно испы­тывает различные влияния, т. е. когда на него действуют силы. Третий закон в каком-то смысле описывает силы, но о нем мы поговорим несколько позже. Здесь будет идти речь о Втором законе, согласно которому под действием силы движение тел изменяется следующим образом: скорость изменения со временем некой величины, называемой количеством движения, или импуль­сом, пропорциональна силе. Позднее мы запишем короткую ма­тематическую формулировку этого закона, а сейчас давайте раз­беремся в его содержании.

Импульс и скорость — вещи разные. В физике употребляет­ся много слов, и каждое из них в отличие от обычного разго­ворного языка имеет точный смысл. Примером может служить слово «импульс», и мы должны определить его точно. Толкните слегка рукой какой-нибудь легкий предмет — он тотчас начнет двигаться. Если с такой же силой толкнуть гораздо более тя­желый предмет, то он будет двигаться значительно медленней. В сущности нужно говорить не о «легком» или «тяжелом» пред­мете, а о менее массивном или более массивном, так как между весом и инерцией предмета есть разница, которую нужно пони­мать. (Сколько весит тело — это одно, а насколько трудно разо­гнать его — совсем другое.) Однако на поверхности Земли вес и инерция пропорциональны друг другу и зачастую рассмат­риваются как численно равные. Это часто приводит к непони­манию разницы между ними. На Марсе, например, вес предметов будет отличаться от веса на Земле, но инертность останется той же самой, т. е. потребуется то же количество силы, чтобы пре­одолеть инерцию тела.

Количественной мерой инертности является масса. Ее мож­но измерять так: просто привязать предмет на веревочке, кру­тить его с определенной скоростью и измерять ту силу, которая необходима, чтобы удержать его. Этим способом можно из­мерять массу любых предметов. Импульс — это просто произ­ведение массы тела на его скорость. Теперь можно записать Вто­рой закон Ньютона в математической форме:

F =(d/dt)(mv). (9.1)

Давайте разберем подробнее некоторые его стороны. При напи­сании закона, подобного этому, обычно используется много интуитивных идей; что-то подразумевается, что-то предпола­гается и комбинируется в приближенный «закон». Но после этого необходимо снова вернуться назад и подробно изучить, что означает каждый член. Если же пытаться сделать это с самого начала, то можно безнадежно запутаться. Так что мы считаем некоторые положения само собой разумеющимися и но требующими никакого доказательства. Во-первых, мы считаем, что массы тел постоянны. Это, вообще говоря, неправильно, но мы начнем с ньютоновского приближения, когда масса считается постоянной и не изменяющейся с течением времени. Во-вторых, если сложить вместе два предмета, то масса образовавшегося тела равна сумме их масс. Это положение неявно предполагалось Ньютоном, когда он писал свои уравнения, в противном слу­чае они были бы бессмысленны. Пусть, например, масса изме­няется обратно пропорционально скорости, но тогда импульс никогда бы не изменялся и закон потерял бы всякое содержание, за исключением только того, что вы знаете, как изменяется масса со скоростью. Так что сначала мы считаем массу неизмен­ной.

Несколько слов о силе. В качестве первого грубого при­ближения мы рассматривали силу как некий толчок или тягу, которая может быть произведена с помощью наших мышц, но теперь, пользуясь уравнением движения, мы можем определить ее более точно. Очень важно помнить, что закон Ньютона вклю­чает не только изменение величины импульса, но и изменение его направления. Итак, если масса постоянна, то уравнение (9.1) можно записать в виде

F =m(dv/dt)=ma, (9.2)

где а — ускорение, т. е. «скорость изменения скорости». Вто­рой закон Ньютона означает не только то, что изменения, выз­ванные данной силой, обратно пропорциональны массе, но и то, что направление изменения скорости совпадает с направ­лением действия силы. Важно понимать, что термин «ускорение» имеет в физике более широкий смысл, чем в обычной разговор­ной речи. Он означает не только увеличение скорости, но и за­медление ( в этом случае мы говорим, что ускорение отрицатель­но), и перемену направления движения. В гл. 7 мы уже позна­комились с ускорением, направленным под прямым углом к скорости, и мы видели, что предмет, движущийся по окружнос­ти радиусом R со скоростью v, за малый интервал времени t уклоняется от своего прямого пути на расстояние 1/2(v2/R)t2. Так что в этом случае ускорение направлено под прямым углом к направлению движения и равно

a =v2/R. (9.3)

Таким образом, сила, действующая под прямым углом к скорос­ти, вызывает искривление пути, причем радиус кривизны можно найти, деля силу на массу тела (при этом мы получаем ускорение) и используя затем формулу (9.3).

Термин «скорость» тоже имеет в физике более широкий смысл, чем в обыденной жизни. Это не просто некоторое коли­чество метров в секунду, т. е. абсолютная величина скорости, но и направление перемещения в каждый момент времени. Мате­матически мы можем описать и величину, и направление скоро­сти, если будем задавать изменение координат тела с течением времени. Пусть, например, в некоторый момент тело движется так, как это показано на фиг. 9.1.

Фиг. 9.1. Малое перемещение тела.

Тогда за малый промежуток времени Dt оно пройдет некоторое расстояние Dх в направлении оси х, Dy в направлении оси у и Dz в направлении оси z. Ре­зультатом же этих изменений координат будет перемещение Ds вдоль диагонали параллелепипеда со сторонами Dx, Dy, Dz, которые следующим образом связаны с составляющими скорос­ти и интервалом:

Dx=vxDt, Dy=vyDt, Dz=vzDt. (9.4)

§ 2. Компоненты скорости, ускорения и силы

В уравнении (9.4) мы разложили скорость на составляющие (или компоненты), которые говорят нам, насколько быстро продвигается тело в направлениях х, у и z. Скорость будет полностью определена как в отношении ее направления, так и абсолютной величины, если задать числовые значения трех ее компонент:

При этом абсолютная величина равна

Теперь пусть под действием силы меняется не только вели­чина, но и направление скорости (фиг. 9.2). Хотя это довольно сложный случай, но с помощью подсчета изменения компонент его рассмотрение сильно упрощается. Изменение x-компоненты скорости за интервал Dt будет Dvx=axDt, где ах то, что назы­вается x-компонентой уско­рения. Совершенно аналогично Dvx =aуDt и Дvz=atDt. В такой формулировке Второй закон Ньютона фактически превращается в три закона. Действительно, мы говорим, что сила имеет то же направление, что и ускорение, так что каждая из составляющих силы в направлениях х, у и z равна массе, умноженной на изменение соответствующей ком­поненты скорости:

Подобно скорости и ускорению, сила тоже может быть разло­жена на компоненты, причем каждая из них является проекцией отрезка прямой, численно равного абсолютной величине силы и указывающего направление ее действия, на оси х, у и z:

где F — абсолютная величина силы, a (xF), (yF) и (zF)— углы между направлением силы и осями х, у и z соответственно.

Уравнения (9.7) представляют собой полную форму Второго закона Ньютона. Зная силы, действующие на тело, и разлагая их на компоненты, можно с помощью этих уравнений найти дви­жение тела. Давайте рассмотрим простой пример. Пусть в нап­равлениях х и у не действуют никакие силы, а есть сила только в направлении z (скажем, вертикально). Тогда, согласно урав­нению (9.7), изменяется только одна вертикальная составляю­щая скорости; что же касается горизонтальных, то они будут ос­таваться неизменными. Пример такого движения уже рассмат­ривался в гл. 7 (см. фиг. 7.3). Таким образом, горизонтальное движение падающего тела остается неизменным, тогда как в вертикальном направлении оно движется так, как будто ника­кого горизонтального движения вообще нет. Другими словами, если компоненты сил не связаны друг с другом, то и движения в направлениях осей х, у и z будут независимы.

§ 3. Что такое сила?

Чтобы пользоваться законами Ньютона, мы должны иметь какую-то формулу для сил; ведь эти законы говорят нам: по­думайте о силах. Если тело ускоряется, стало быть, на него что-то действует. А как найти это «что-то»? Нашей программой на будущее должно быть отыскание законов для сил. Некоторые из таких законов были найдены самим Ньютоном. Например, формула для силы тяготения. Часть сведений о силах другого рода содержится в Третьем законе, который утверждает ра­венство сил действия и противодействия, но об этом более под­робно пойдет речь в следующей главе.

Продолжим наш предыдущий пример. Что за силы действу­ют на тело вблизи поверхности Земли? Это — сила тяжести, на­правленная вертикально вниз, пропорциональная массе тела и для высот, много меньших, чем радиус Земли R, почти не зави­сящая от высоты; она равна F=GmM/R2=mg, где g=GM/R2— так называемое ускорение силы тяжести. В горизонтальном направлении тело по-прежнему будет двигаться с постоянной скоростью, однако движение в вертикальном направлении бо­лее интересно. По Второму закону Ньютона

После сокращения массы m получаем, что ускорение в направле­нии х постоянно и равно g. Это хорошо известное движение свободно падающего тела, которое описывается уравнениями

Рассмотрим другой пример. Представим, что мы смогли создать устройство (фиг. 9.3), в котором сила прямо пропор­циональна отклонению от положения равновесия и направлена противоположно ему,— это пружина с грузиком.

Фиг. 9.3. Грузик на пружинке.

Действи­тельно, поскольку сила тяжести компенсируется начальным натяжением пружины, то имеет смысл говорить только об избыточной силе. Если потянуть грузик вниз, то пружина растянется и потянет его вверх, если же толкать грузик вверх, то пружина сожмется и будет толкать его вниз. При этом все устроено таким образом, что чем больше сила и чем сильнее мы оттягиваем грузик вниз, тем больше растягивается пружина и тем сильнее она тянет его вверх, и наоборот. Наблюдая за работой этого устройства, мы видим довольно интересное движе­ние: вверх — вниз, вверх — вниз... Возникает вопрос, могут ли уравнения Ньютона правильно описать его? Если применить закон Ньютона (9.7) для такого периодического осциллятора, то получим следующее уравнение:

т. е. здесь мы встречаемся с таким положением, когда x-компонента скорости изменяется с быстротой, пропорциональной х. Нет смысла сейчас вводить многочисленные константы; в целях простоты предположим, что либо изменился масштаб времени, либо что-то произошло с другими единицами измерения, сло­вом, они выбраны так, что klm равно единице. Итак, будем пы­таться решать уравнение

Чтобы пойти дальше, нужно сначала разобраться в том, что такое vx; то, что это быстрота изменения положения, нам, разумеется, уже известно.

§ 4. Смысл динамических уравнений

Попытаемся теперь понять, что же означает уравнение (9.12). Пусть в данный момент времени t тело находится в точке х и движется со скоростью vx. Каково будет его положе­ние и скорость спустя небольшой промежуток времени, т. е. в момент t+e? Если мы сможем ответить на этот вопрос, то проблема решена, так как, исходя из начальных условий, т. е. положения и скорости в некоторый начальный момент времени, можно сказать, как они изменяются в первый момент, а зная положение и скорость в первый момент, можно найти их и в следующий и т. д. Таким образом, шаг за шагом вы­страивается вся картина движения. Для большей определен­ности предположим, что в момент t=0 положение грузика х=1, а его скорость vx=0. Почему вообще движется грузик? Да потому, что на него в любом положении, за исключением положения равновесия х=0, действует сила. Если х>0, то эта сила направлена вверх. Следовательно, скорость, кото­рая вначале была нулем, благодаря уравнениям движения начинает изменяться. Но как только скорость начинает воз­растать, грузик приходит в движение. Для любого момента времени t при очень малом е можно с достаточно хорошей точ­ностью найти положение в момент t+е через скорость и положение в момент t:

x(t+e)=x(t)+ evx(t). (9.13)

Конечно, это выражение тем точнее, чем меньше e, но оно может быть достаточно точным, даже когда интервал e не исчезающе мал. Что теперь можно сказать о скорости? Чтобы определить скорость в момент t+e, очевидно, нужно знать, как она изменяется со временем, т. е. нужно знать ускорение. А как узнать его? Вот здесь-то нам на помощь приходят уравнения динамики. Именно они позволяют определить, чему равно ускорение. В нашей задаче уравнение динамики говорит, что ускорение равно -x. Поэтому

vx(t+e)=vx(t)+ eax(t), (9.14)

= vx(t)- ex(t). (9.15)

Уравнение (9.14) еще кинематическое; оно просто говорит о том, что из-за наличия ускорения скорость изменяется. Однако уравнение (9.15) уже динамическое, потому что оно связывает ускорение с силой. Оно говорит, что в данной частной задаче для данного момента времени ускорение можно заменить на -х(t). Следовательно, если в какой-то момент времени нам известны положение х и скорость vx, то мы знаем и ускорение, которое дает возможность найти скорость в следующий момент, а скорость в свою очередь определяет новое положение и т. д. Вот каким образом действует весь этот динамический меха­низм! Действующая сила немного изменяет скорость, а скорость приводит к небольшому изменению положения.

§ 5. Численнов решение уравнений

Давайте теперь действительно решим нашу задачу. Допус­тим, что мы взяли e=0,100 сек. (Если после того, как мы про­делаем все вычисления, окажется, что этот интервал не достаточ­но мал, то необходимо повторить все сначала с меньшим интервалом времени, например 0,010 сек.) Чему будет равно х(0,1), если в начальный момент времени х (0) = 1? Оно равно старому положению х(0) плюс скорость в начальный момент (которая равна нулю), умноженная на 0,10 сек. Таким образом, х(0,1) равно 1,00, ибо грузик еще не начал двигаться. Но новая скорость в момент 0,10 сек будет равна старой скорости v (0)=0 плюс e, умноженное на ускорение. А само ускорение равно -х(0)=-1,00. Так что

v(0,1)=0,00+0,10·1,00=-0,10. В момент 0,20 сек

х(0,2)=х(0,1)+ev(0,1)=1,00-0,10·0,10=0,99

и

v(0,2)=v(0,1)+ ea(0,1) =-0,10-0,10·1,00 =-0,20.

Продолжая эту процедуру еще и еще, можно найти положение и скорость в любой момент времени, а это как раз то, что нам нужно. Однако практически мы используем нехитрый прием, который позволит увеличить точность вычислений. Если бы мы продолжали начатые нами расчеты, то они оказались бы до­вольно грубыми, поскольку интервал e=0,10 сек довольно большой. Пришлось бы уменьшить его, скажем, до 0,01 сек. Но тогда, чтобы проследить движение за какой-то разумный отрезок времени, потребовалось бы сделать множество шагов. Мы же организуем процесс таким образом, что сможем увели­чить точность, используя тот же интервал e=0,10 сек. Этого можно достичь, несколько изменив метод расчета.

Заметьте, что новое положение тела равно старому плюс интервал времени e, умноженный на скорость. Но что это за скорость? В какой момент? В начале интервала одна скорость, а в конце она совсем другая. Прием состоит в том, чтобы брать скорость в середине интервала. Если известна скорость в на­стоящий момент и известно, что она меняется, как же можно надеяться получить удовлетворительный результат, считая, что тело все время движется с той же скоростью, что и в на­стоящий момент? Более разумно использовать какую-то сред­нюю скорость между началом и концом интервала. Те же рассуждения применимы к изменению самой скорости: для под­счета ее изменений нужно использовать ускорение в средней точке между двумя моментами времени, в которых необходимо найти скорость. Таким образом, реально мы будем пользовать­ся следующими уравнениями: положение в конце интервала равно положению в начале плюс интервал e, умноженный на скорость в середине интервала. Эта скорость в свою очередь равна скорости в середине предыдущего интервала (т. е. на отрезок e меньше) плюс ускорение в начале интервала, умно­женное на e.

Таким образом, мы будем пользоваться уравнениями

Остается еще один небольшой вопрос: что такое v (e/2)? Вна­чале у нас было v (0), а не v (-e/2). Но теперь, чтобы начать наши вычисления, необходимо использовать дополнительное уравнение v(e/2)=v (0)+( e/2)а(0).

Таблица 9.1 · решение уравнения (dvx/dt)=-x Интервал e=0,10 сек

Ну, а теперь все готово для расчетов. Для удобства можно их выполнить в виде таблицы, в столбцах которой стоят время, положение, скорость и ускорение, причем скорость пишется в промежутках между строками (табл. 9.1). Такая таблица есть, конечно, просто удобный способ записи результатов, по­лученных из уравнений (9.16), и фактически полностью заме­няет их. Мы просто заполняем одно за другим свободные места в ней и получаем очень интересную картину движения: сначала грузик находится в покое, затем понемногу приобретает отри­цательную скорость (вверх), а это приводит к уменьшению его расстояния от точки равновесия. При этом хотя ускорение и становится меньше, оно все еще «подгоняет» скорость. Однако по мере приближения к положению равновесия (х=0) уско­рение становится все меньше и меньше, скорость нарастает все медленней и медленней, но все же еще нарастает вплоть до точки x=0, которая достигается примерно через 1,5 сек. Скажем по секрету, что произойдет дальше. Грузик, конечно, не остано­вится в точке х=0, а пойдет дальше, но теперь все пойдет наоборот: его положение х станет отрицательным, а ускоре­ние — положительным. Скорость начнет уменьшаться. Инте­ресно сравнить полученные нами числа с функцией cost. Результат этого сравнения представлен на фиг. 9.4.

Фиг. 9.4. График движения грузика на пружинке.

Оказы­вается, что в пределах точности наших расчетов (три знака после запятой) совпадение полное! Позднее вы узнаете, что функция cos t — точное решение нашего уравнения, так что у вас теперь есть наглядное представление о мощи численного анализа: столь простой расчет дает столь точный результат.

§ 6. Движение планет

Приведенный анализ очень подходит к движению осцилли­рующей пружинки с грузиком, но можно ли таким же путем вычислять движение планеты вокруг Солнца? Давайте посмот­рим, можно ли при некоторых приближениях получить эллип­тическую орбиту. Предположим, что Солнце бесконечно тяжелое в том смысле, что его движение не будет приниматься в расчет.

Допустим, что в известной точке планета начала свое дви­жение и имеет определенную скорость. Она движется во­круг Солнца по какой-то кривой, и мы попытаемся определить с помощью уравнений движения Ньютона и его же закона все­мирного тяготения, что это за кривая. Как это сделать? В не­который момент времени планета находится в каком-то опреде­ленном месте, на расстоянии r от Солнца; в этом случае извест­но, что на нее действует сила, направленная по прямой к Солнцу, которая, согласно закону тяготения, равна определенной по­стоянной, умноженной на произведение масс планеты и Солнца и деленной на квадрат расстояния между ними. Чтобы рассуж­дать дальше, нужно выяснить, какое ускорение вызывает эта сила.

Однако в отличие от предыдущей задачи нам потребуются теперь компоненты ускорения в двух направлениях, которые мы назовем х и у. Положение планеты в данный момент будет определяться координатами х и у, поскольку третья коорди­ната z всегда равна нулю.

Действительно, координатная плоскость ху выбрана нами таким образом, что z-компоненты как силы, так и начальной скорости равны нулю, а поэтому нет никаких причин, которые бы заставили планету выйти из этой плоскости. Сила при этом будет направлена по линии, соединяющей планету с Солнцем, как это показано на фиг. 9.5.

Фиг. 9.5. Сила притяжения, действующая на планету.

Из этого рисунка видно, что горизонтальная компонента силы так относится к полной ее величине, как координата х относится к расстоянию r. Это сразу следует из подобия тре­угольников. Кроме того, если х положительна, то Fx отрица­тельна, и наоборот.

Таким образом, FxъFъ=-x/r, или Fя=-ъFъxlr=-GM mx/r3 и соответственно Fy=-GMmy/r3. Теперь можно воспользо­ваться динамическими законами (9.7) и написать, что х- или y-компонента ускорения, умноженная на массу планеты, равна соответственно х- или y-компоненте силы:

Это именно та система уравнений, которую мы должны решить. Для того чтобы упростить вычисления, предположим, что либо единицы измерения времени или массы выбраны соответствую­щим образом, либо нам просто повезло, словом, получилось так, что GM=1. Для нашего случая предположим, что в на­чальный момент t=0 планета находилась в точке с координа­тами х=0,500 и у=0,000, а скорость ее в этот момент направ­лена параллельно оси у и равна 1,6300. Как же в этом случае делаются расчеты? Снова составляется таблица со столбцами для времени t, координаты х, x-компонент скорости vx и уско­рения ах. Затем идут отделенные чертой три колонки: для координаты y, у-компонент скорости и ускорения. Однако, для того чтобы подсчитать ускорения, мы должны воспользо­ваться уравнением (9.17), согласно которому его компоненты равны —х/r3 и —у/r3, а r=Ц(x2+y2). Так что, получив х и у, мы должны где-то в сторонке провести небольшие вы­числения — извлечь квадратный корень из суммы квадра­тов и получить расстояние. Удобно также отдельно вычис­лить и 1/r3.

После этого все готово, чтобы определить компоненты ус­корения. Всю эту работу можно сильно облегчить, если поль­зоваться таблицами квадратов, кубов и обратных величин. На нашу долю останется тогда только умножение х на 1/r3, которое легко выполняется на логарифмической линейке.

Перейдем к дальнейшему. Возьмем интервал времени e=0,100. В начальный момент t=0

x(0)=0,500,. у(0)=0,000,

vx(0) = 0,000, vy(0)=+1,630.

Отсюда находим

r(0)=0,500, 1/r3=8,000,

ax=-4,000, ау=0,000.

После этого можно вычислять компоненты vx (0,05) и vy (0,05):

vя (0,05)=0,000-4,000·0,050 = -0,200,

vy(0,05)=1,630+0,000-0,100=1,630.

А теперь начнем наш основной расчет:

и т. д.

В результате мы получим числа, приведенные в табл. 9.2, где приблизительно за 20 шагов прослежена половина пути нашей планеты вокруг Солнца. На фиг. 9.6 отложены коорди­наты планеты х и y, приведенные в табл. 9.2.

Фиг. 9.6. График движения планеты вокруг Солнца.

Точки представ­ляют собой последовательные положения планеты через каж­дую десятую долю выбранной нами единицы времени. Видно, что сначала она двигалась быстро, а затем — все медленней и медленней. Видна также и форма кривой движения планеты. Итак, вы теперь знаете, как реально можно вычислять движе­ние планет!

Давайте посмотрим теперь, как вычислить движение Непту­на, Юпитера, Урана и остальных планет. Можно ли сделать подробные расчеты со множеством планет, учитывая к тому же и движение Солнца? Разумеется, можно. Найдем сначала силу, действующую на каждую данную планету, например на ту, которую мы обозначим номером i и координаты которой хi, yi и zi (i=1 может означать Солнце, i=2 — Меркурий, i=3 — Венеру и т. д.). Наша задача — найти координаты всех планет. По закону тяготения x-компонента силы, действующая на i-ю планету со стороны планеты номер j' с координатами хj уj, zj, будет равна —Gmimj(xi-xj)/r3jj . Если же учесть силы со стороны всех планет, то получим следующую систему уравнений:

где rij — расстояние между i-й и j-й планетами:

S означает суммирование по всем остальным планетам, r. е. по всем значениям j, за исключением, конечно, j = i. Таким образом, чтобы решить это уравнение, нужно лишь зна­чительно увеличить количество столбцов в нашей таблице. Для движения Юпитера понадобится девять столбцов, для Сатур­на — тоже девять и т. д. Если нам заданы все начальные по­ложения и скорости, то из уравнения (9.18) можно подсчитать все ускорения, вычислив, конечно, предварительно по формуле (9.19) все расстояния rij,. А сколько же времени потребуется на все эти вычисления? Если вы будете делать их сами дома, то очень много! Однако сейчас уже имеются машины, неимоверно быстро выполняющие все арифметические расчеты. Сложение, например, такая машина выполняет за 1 мксек, т. е. за одну миллионную долю секунды, а умножение — за 10 мксек. Так что если один цикл расчетов состоит из 30 операций умноже­ния, то это займет всего лишь 300 мксек, или за 1 сек можно сделать 3000 циклов. Если мы хотим считать с точностью до одной миллиардной, то для того, чтобы покрыть все время об­ращения планеты вокруг Солнца, требуется 4·105 циклов. (Оказывается, что ошибка в расчетах приблизительно пропор­циональна квадрату e. Если брать интервал в тысячу раз мень­ший, то ошибка уменьшится в миллион раз. Так что для обес­печения нашей точности нужно взять интервал в 10 000 раз меньше.) На машине это займет 130 сек, или около 2 мин. Всего лишь 2 мин, для того чтобы «прогнать» Юпитер вокруг Солнца и при этом еще с точностью до одной миллиардной учесть все возмущения от других планет!

Итак, в начале этой главы для вас были загадкой движения грузика на пружинке, однако теперь вооруженные таким мощ­ным орудием, как законы Ньютона, вы можете вычислять не только такие простые явления, как качание грузика, но и неи­моверно сложные движения планет, причем с любой желаемой точностью! Нужна только машина, знающая арифметику.