§ 1. Свойства центра масс

§ 2. Положение центра масс

§ 3. Вычисление момента инерции

§ 4. Кинетическая энергия вращения

§ 1. Свойства центра масс

В предыдущей главе мы установили факт существования некоторой замечательной точки, называемой центром масс. Она замечательна тем, что если на частицы, образующие тело (неважно, будет ли оно твердым или жидким, звездным скоплением или чем-то другим), дей­ствует великое множество сил (конечно, имеют­ся в виду только внешние силы, поскольку все внутренние силы компенсируют друг друга), то результирующая сила приводит к такому уско­рению этой точки, как будто в ней сосредо­точена вся масса тела М. Давайте теперь обсу­дим свойство центра масс несколько подробнее.

Положение центра масс (сокращенно ц. м.) определяется уравнением

Это, разумеется, векторное уравнение, т. е. фактически три уравнения — по одному для каждого из трех направлений. Но мы будем рассматривать только x-направление; если вы поймете, что происходит в x-направлении, то поймете и два остальных. Что означает равен­ство Хц.м.=Smixi/Smi? Предположим на ми­нуту, что тело разделено на маленькие кусочки с одинаковой массой m, причем полная масса будет равна числу таких кусочков N, умножен­ному на массу одного кусочка, скажем 1 г, или какую-то другую единицу. Тогда наше уравне­ние просто означает, что нужно взять коорди­наты х всех кусочков, сложить их и резуль­тат разделить на число кусочков, т. е. Xц.м. =mSxi /mN=Sxi /N. Иными словами, если массы кусочков равны, то Хц. м. - будет просто средним арифметическим x-коорди­нат всех кусочков. Но предположим, что один из кусочков вдвое тяжелее, чем каждый из остальных. Тогда в нашу формулу его координата будет входить с коэффициентом 2, т. е. в суммах ее нужно учитывать дважды. Нетрудно понять, почему это про­исходит. Ведь тяжелый кусочек можно представить себе как бы состоящим из двух легких, таких же, как и все остальные, так что, когда мы вычисляем среднее, его координату х нужно учитывать дважды: ведь кусочков-то в этом месте два. Таким образом, Хц.м.равно просто среднему арифметическому х-координат всех масс, причем каждая координата считается некоторое число раз, пропорциональное массе, как будто она разделена на маленькие кусочки единичной массы. Исходя из этого, легко доказать, что Хц.м. должна находиться где-то между самой близ­кой и самой далекой частичкой. Вообще центр масс должен лежать где-то внутри многогранника, проведенного через край­ние точки тела. Однако вовсе не обязательно, чтобы центр масс находился в самом теле; ведь могут быть тела, подобные окруж­ности, например обруч, центр масс которого находится в гео­метрическом центре, а не на самом обруче.

Конечно, если объект симметричен, например прямоугольник, обладающий линией симметрии, то его центр масс должен лежать где-то на этой линии. Кстати, прямоугольник имеет еще одну линию симметрии и это однозначно определяет поло­жение его центра масс. Для просто симметричного объекта центр масс должен лежать где-то на оси симметрии: ведь отри­цательных х в этом случае ровно столько же, сколько и поло­жительных.

Существует еще один очень забавный способ нахождения центра масс. Вообразите

себе тело, состоящее из двух кусков А и В (фиг, 19.1).

Фиг. 19.1. Центр масс сложного тела лежит на линии, соеди­няющей центры масс двух составляющих его частей.

Центр масс в этом случае можно найти сле­дующим образом. Находим сначала отдельно центры масс сос­тавных частей А и В и их полные массы МА и МB . После этого находим центр масс двух точечных тел, одно из которых имеет массу МА и расположено в центре масс части А, а другое — массу МB и расположено в центре масс части В, Полученная точка и будет центром масс всего тела. Другими словами, если нам известны центры масс всех частей сложного тела, то, чтобы найти его центр масс, не нужно повторять все сначала, а дос­таточно просто найти центр масс системы точечных тел с мас­сами, равными массам каждой из частей и расположенными в их центрах масс. Посмотрим, как это получается. Пусть мы хотим определить центр масс сложного тела, одни из частиц которого принадлежат части А, а другие — части В. При этом мы можем разбить полную сумму Smixi на сумму по части А, т. е. SAmixi и сумму по части В, т. е. SBmixi. Если бы мы находили центр масс только части А, то нам потребовалась бы первая из этих сумм, которая, как вы знаете, равна МА ХА , т. е. полной массе части А на x-координату ее центра масс: это просто следствие теоремы о центре масс, применен­ной к части A. То же самое можно сказать и о части В. Сумма SB mi xi должна быть равна МВ ХВ . Сложив эти два результата, мы, конечно, должны получить MX, т. е.

МХц.м. =Smixi+Smixi=МА ХА +МВ ХВ . (19.2)

Полная же масса М, очевидно, равна МА +МB , так что выражение (19.2) представляет собой не что иное, как определение центра масс двух точек, одна из которых имеет массу МА и координату ХА , а другая — массу МB и координату ХB .

Теорема о движении центра масс интересна не только сама по себе, она еще играет очень важную роль в развитии нашего понимания физики. Если мы предположим, что законы Ньютона верны только для маленьких частей, составляющих большое те­ло, то эта теорема показывает, что они верны также и для боль­шого тела. Мы можем не знать его детального строения и нам известны лишь общая масса и полная сила, действующая на него. Другими словами, законы Ньютона имеют ту особенность, что если они справедливы в малом масштабе, то справедливы и в большом. Нет никакой нужды рассматривать футбольный мяч как ужасно сложную вещь, состоящую из мириада взаимодей­ствующих частиц, а достаточно изучить только движение его центра масс под действием внешней силы F, чтобы получить F=ma, где а — ускорение центра масс, а m — полная масса мяча. Итак, закон F=ma воспроизводит сам себя в большом масштабе. (Наверное, должно быть какое-нибудь хорошее гре­ческое слово, которым можно было бы назвать подобные вос­производящие себя в большом масштабе законы.)

Нетрудно, конечно, догадаться, что первый открытый чело­веком закон должен быть именно таким законом, воспроизво­дящим самого себя в большом масштабе. Почему? Да просто потому, что истинный размер фундаментальных «винтиков и колесиков» Вселенной есть атомный размер, который настолько меньше размеров окружающих нас вещей, что только сейчас начинает входить в обычную жизнь. Итак, первая открытая человеком закономерность не могла иметь отношения к разме­рам атомного масштаба. Если бы законы для малых частиц не воспроизводили себя в большом масштабе, то открыть их было бы не так-то легко. А что можно сказать об обратной проблеме? Должны ли законы микромира быть теми же самыми, что и для больших тел? Никакой необходимости в этом, конечно, нет.

Давайте, однако, предположим, что истинное движение атомов описывается неким странным уравнением, которое не воспроиз­водит себя при переходе к большему масштабу. Вместо этого оно обладает тем свойством, что при таком переходе его можно приближенно заменить каким-то выражением, которое при все большем и большем увеличении масштаба воспроизводит само себя. Это вполне может случиться, и в действительности так оно и происходит. Законы Ньютона являются как бы «кончиком хвоста» атомных законов, продолженных до очень больших размеров. Истинные законы движения частиц очень малых раз­меров весьма специфичны, но если мы возьмем большое число частиц и скомбинируем законы их движения, то приближенно, и только приближенно, получим законы Ньютона. После этого законы Ньютона позволяют нам двигаться ко все большим раз­мерам, оставаясь при этом теми же самыми законами. В сущ­ности, при переходе ко все большим и большим размерам они все точнее и точнее описывают природу. Так что факт самовос­производимости законов Ньютона — отнюдь не фундаменталь­ное свойство природы, а важная историческая особенность.

Основываясь на своих первых наблюдениях, мы никоим обра­зом не смогли бы открыть фундаментальные атомные законы, поскольку наблюдения эти были слишком грубыми. Действи­тельно, фундаментальные атомные законы, которые мы назы­ваем квантовой механикой, так сильно отличаются от законов Ньютона, что понять их не просто. Ведь у нас есть только опыт обращения с телами больших размеров, а крохотные атомы ведут себя совершенно невиданным для таких тел образом. Мы не можем сказать: «Электроны в атомах напоминают планеты, крутящиеся вокруг Солнца», или что-то в этом роде. Они не похожи ни на что известное нам, ибо мы не видим ничего похо­жего на них. Если мы применяем квантовую механику ко все большим и большим объектам, то законы поведения такого кол­лектива атомов не воспроизводят поведения одного атома, а дают новый закон — закон Ньютона, который уже воспроизводит сам себя, начиная с объектов весом в 1 миллионную микрограмма, содержащих еще миллиарды и миллиарды атомов, и вплоть до тел величиной с Землю и даже еще больших.

Вернемся, однако, к центру масс. Часто его называют центром тяжести, так как во многих случаях для силы тяго­тения можно провести точно такие же рассуждения, как и для масс. Если размеры достаточно малы, то силу тяжести можно считать не только пропорциональной массе, но и направленной всюду параллельно некоторой фиксированной линии.

Возьмем тело, в котором сила тяжести действует на каждую из составляющих его частей, a mi — масса одной из этих частей. Действующая на нее сила тяжести будет тогда равна произведе­нию mi на g. Возникает вопрос: в какой точке нужно приложить одну-единственную силу, чтобы сбалансировать притяже­ние всего тела так, чтобы оно (если это твердое тело) не вра­щалось? Ответ: сила должна проходить через центр масс. До­казывается это следующим образом. Чтобы тело не вращалось, сумма моментов всех сил должна быть равна нулю, ибо если нет момента сил, то нет и изменения момента количества дви­жения, а поэтому нет и вращения. Таким образом, мы должны подсчитать сумму всех моментов, действующих на все частицы, и посмотреть, какой получится полный момент относительно любой данной оси: он должен быть равен нулю, если ось про­ходит через центр масс. Направив ось х горизонтально, а ось у вертикально, мы найдем, что моменты сил равны силам, на­правленным вниз, умноженным на плечо х (т. е. сила на плечо относительно той оси, для которой измеряется момент силы). Полный же момент равен сумме

t=Smi gxi =gSmi xi . (19.3)

Чтобы полный момент отсутствовал, сумма Smi xi должна быть равна нулю. Но эта сумма равна MX — полной массе, умно­женной на расстояние от оси х до центра масс. Итак, это рас­стояние должно быть равно нулю.

Разумеется, мы провели проверку только для x-направле­ния, однако если мы действительно взяли центр масс, то тело должно быть уравновешено в любом положении, поэтому, по­вернув его на 90°, мы вместо оси х получим ось у. Другими сло­вами, если держать тело за центр масс, то параллельное грави­тационное поле не дает никакого момента сил. Если же объект настолько велик, что становится существенной непараллель­ность сил притяжения, то точку, в которой должна быть при­ложена уравновешивающая сила, описать не просто: она несколько отклоняется от центра масс. Вот почему нужно пом­нить, что центр масс и центр тяжести — разные вещи. Тот факт, что тело, поддерживаемое точно за центр масс, уравновешено в любом положении, имеет еще одно интересное следствие. Если вместо гравитационных сил взять инерционные псевдосилы, возникающие вследствие ускорения, то, чтобы найти точку, уцепившись за которую мы уравновесим все моменты этих сил, можно использовать ту же самую математическую процедуру. Предположим, что мы заключили тело внутрь ящика, который ускоряется вместе со всем его содержимым. Тогда, с точки зре­ния наблюдателя, сидящего в этом ящике, на тело вследствие инерции будет действовать некая эффективная сила. Иначе го­воря, чтобы заставить тело двигаться вместе с ящиком, нужно подталкивать и ускорять его. Эта сила «уравновешивается силой инерции», которая равна массе тела, умноженной на ускорение ящика. Наблюдателю в ящике будет казаться, будто тело на­ходится в однородном гравитационном поле, величина g кото­рого равна ускорению ящика а. Таким образом, инерционные силы, возникающие вследствие ускорения тела, не имеют мо­мента относительно центра масс.

Этот факт имеет очень интересное следствие. В инерционной системе, движущейся без ускорения, момент сил всегда равен скорости изменения момента количества движения. Однако равенство момента силы и скорости изменения момента коли­чества движения остается справедливым даже для ускоряю­щегося тела, если взять ось, проходящую через центр масс. Таким образом, теорема о равенстве момента сил скорости изменения момента количества движения верна в двух случаях: 1) ось фиксирована — в инерциальной системе; 2) ось проходит через центр масс — даже когда тело ускоряется.

§ 2. Положение центра масс

Математическая техника вычисления центра масс относится к области курсов математики; там подобные задачи служат хорошими примерами по интегральному исчислению. Но, даже умея интегрировать, полезно знать некоторые трюки для вычис­ления положения центра масс. Один из таких трюков основан на использовании так называемой теоремы Паппа, которая ра­ботает следующим образом. Если мы возьмем какую-то замк­нутую фигуру и образуем твердое тело, вращая эту фигуру в пространстве так, чтобы каждая точка двигалась перпендику­лярно к плоскости фигуры, то объем образующегося при этом тела равен произведению площади фигуры на расстояние, прой­денное ее центром тяжести! Разумеется, эта теорема верна и в том случае, когда плоская фигура движется по прямой линии, перпендикулярной к ее площади, однако если мы движем ее по окружности или какой-то другой кривой, то при этом получа­ется гораздо более интересное тело. При движении по кривому пути внутренняя часть фигуры продвигается меньше, чем внеш­няя, и эти эффекты компенсируют друг друга. Так что если мы хотим определить центр масс плоской фигуры с однородной плотностью, то нужно помнить, что объем, образуемый враще­нием его относительно оси, равен расстоянию, которое проходит

Например, если нам нужно найти центр масс прямоуголь­ного треугольника с основанием D и высотой H (фиг. 19.2), то это делается следующим образом.

Фиг. 19.2. Прямоугольный тре­угольник и прямой круговой конус, образованный вращением этого треугольника.

Вообразите себе ось, про­ходящую вдоль H, и поверните треугольник на 360° вокруг этой оси. Это дает нам конус. Расстояние, которое проходит x-координата центра масс, равно 2pх, а площадь области, кото­рая двигалась, т. е. площадь треугольника, равна 1 /2 HD. Произведение расстояния, пройденного центром масс, на пло­щадь треугольника равно объему конуса, т. е. 1 /3 pD2 H. Таким образом, (2pх)(1 /2 HD)=1 /3 pD2 H, или x=D/3. Совершенно аналогично вращением вокруг второго катета или просто по соображениям симметрии находим, что у=Н/3. Вообще центр масс любого однородного треугольника находится в точке пере­сечения трех его медиан (линий, соединяющих вершину тре­угольника с серединой противоположной стороны), которая от­стоит от основания на расстоянии, равном 1/3 длины каждой медианы.

Как это увидеть? Рассеките треугольник линиями, парал­лельными основанию, на множество полосок. Заметьте теперь, что медиана делит каждую полоску пополам, следовательно, центр масс должен лежать на медиане.

Возьмем теперь более сложную фигуру. Предположим, что требуется найти положение центра масс однородного полукруга, т. е. круга, разрезанного пополам. Где будет находиться центр масс в этом случае? Для полного круга центр масс расположен в геометрическом центре, но для полукруга найти его положе­ние труднее. Пусть r — радиус круга, а x — расстояние центра масс от прямолинейной границы полукруга. Вращая его вокруг этого края как вокруг оси, мы получаем шар. При этом центр масс проходит расстояние 2pх, а площадь полукруга равна 1/2pr2 (половине площади круга). Так как объем шара равен, конечно, 4pr3/3, то отсюда находим

или

Существует еще другая теорема Паппа, которая фактически является частным случаем сформулированной выше теоремы, а потому тоже справедлива. Предположим, что вместо твердого полукруга мы взяли полуокружность, например кусок прово­локи в виде полуокружности с однородной плотностью, и хотим найти ее центр масс. Оказывается, что площадь, которая «заме­тается» плоской кривой при ее движении, аналогичном выше­описанному, равна расстоянию, пройденному центром масс, умноженному на длину этой кривой. (Кривую можно рассмат­ривать как очень узкую полоску и применять к ней предыдущую теорему.)

§ 3. Вычисление момента инерции

Рассмотрим теперь проблему определения момента инерции различных тел. Общая формула для нахождения момента инер­ции объекта относительно оси z имеет вид

Иными словами, нужно сложить все массы, умножив каждую из них на квадрат ее расстояния до оси (z2i+y2i). Заметьте, что это верно даже для трехмерного тела, несмотря на то, что рас­стояние имеет такой «двумерный вид». Впрочем, в большинстве случаев мы будем ограничиваться двумерными телами.

В качестве простого примера рассмотрим стержень, вра­щающийся относительно оси, проходящей через его конец и перпендикулярной к нему (фиг. 19.3).

Фиг. 19.3. Прямой стержень, вращающийся вокруг оси, прохо­дящей через один из его концов.

Нам нужно просуммиро­вать теперь все массы, умноженные на квадраты расстояния х (в этом случав все у — нулевые). Под суммой, разумеется, я имею в виду интеграл от x2 , умноженный на «элементики» мас­сы. Если мы разделим стержень на кусочки длиной dx, то соот­ветствующий элемент массы будет пропорционален dx, а если бы dx составляло длину всего стержня, то его масса была бы равна М. Поэтому

Размерность момента инерции всегда равна массе, умноженной на квадрат длины, так что единственная существенная величина, которую мы вычислили, это множитель 1/3.

А чему будет равен момент инерции I, если ось вращения проходит через середину стержня? Чтобы найти его, нам снова нужно взять интеграл, но уже в пределах от -1/2L до +1/2L. Заметим, однако, одну особенность этого случая. Такой стер­жень с проходящей через центр осью можно представлять себе как два стержня с осью, проходящей через конец, причем масса каждого из них равна М/2, а длина равна L/2. Моменты инер­ции двух таких стержней равны друг другу и вычисляются по формуле (19.5). Поэтому момент инерции всего стержня равен

Таким образом, стержень гораздо легче крутить за середину, чем за конец.

Можно, конечно, продолжить вычисление моментов инер­ции других интересующих нас тел. Но поскольку такие расчеты требуют большого опыта в вычислении интегралов (что очень важно само по себе), они как таковые не представляют для нас большого интереса. Впрочем, здесь имеются некоторые очень интересные и полезные теоремы. Пусть имеется какое-то тело и мы хотим узнать его момент инерции относительно какой-то оси. Это означает, что мы хотим найти его инертность при вра­щении вокруг этой оси. Если мы будем двигать тело за стер­жень, подпирающий его центр масс так, чтобы оно не повора­чивалось при вращении вокруг оси (в этом случае на него не действуют никакие моменты сил инерции, поэтому тело не будет поворачиваться, когда мы начнем двигать его), то для того, чтобы повернуть его, понадобится точно такая же сила, как если бы вся масса была сосредоточена в центре масс и

момент инерции был бы просто равен I1 =MR2 ц.м. , где Rц.м.— расстояние от центра масс до оси вращения. Однако формула эта, разумеется, неверна. Она не дает правильного момента инер­ции тела. Ведь в действительности при повороте тело вращается. Крутится не только центр масс (что давало бы величину I1), само тело тоже должно поворачиваться относительно центра масс. Таким образом, к моменту инерции I1 нужно добавить Iц — момент инерции относительно центра масс. Правильный ответ состоит в том, что момент инерции относительно любой оси равен

I=Iц +МR2 ц.м. (19-7)

Эта теорема называется теоремой о параллельном переносе оси. Доказывается она очень легко. Момент инерции относительно любой оси равен сумме масс, умноженных на сумму квад­ратов х и у, т. е. I=Smi(x2i+y2 i ). Мы сейчас сосредоточим наше внимание на х, однако все в точности можно повторить и для у. Пусть координата х есть расстояние данной частной точки от начала координат; посмотрим, однако, как все изменится, если мы будем измерять расстояние х' от центра масс вместо х от начала координат. Чтобы это выяснить, мы должны написать

xi =x'i +Xц . м . .

Возводя это выражение в квадрат, находим

x2i=x'2i+2Xц.мх'i+Х2ц. м..

Что получится, если умножить его на mi и просуммировать по всем i? Вынося постоянные величины за знак суммирования, находим

Ix=Smi xi +2Xц. м. Smixi+X2ц. м. Smi .

Третью сумму подсчитать легко; это просто МХ2ц..м.. Второй член состоит из двух сомножителей, один из которых Smixi; он равен x'-координате центра масс. Но это должно быть равно нулю, ведь х' отсчитывается от центра масс, а в этой системе координат среднее положение всех частиц, взвешенное их мас­сами, равно нулю. Первый же член, очевидно, представляет собой часть х от Iц. Таким образом, мы и приходим к фор­муле (19.7).

Давайте проверим формулу (19.7) на одном примере. Прос­то проверим, будет ли она применима для стержня. Мы уже нашли, что момент инерции стержня относительно его конца должен быть равен ML2 /3. А центр масс стержня, разумеется, находится на расстоянии L/2. Таким образом, мы должны полу­чить, что МL2 /3=МL2 /12+М(L/2)2 . Так как одна четвертая + одна двенадцатая = одной третьей, то мы не сделали ника­кой грубой ошибки.

Кстати, чтобы найти момент инерции (19.5), вовсе не обя­зательно вычислять интеграл. Можно просто предположить, что он равен величине ML2 , умноженной на некоторый неизвестный коэффициент g. После этого можно использовать рассуждения о двух половинках и для момента инерции (19.6) получить коэф­фициент 1/4g. Используя теперь теорему о параллельном переносе оси, докажем, что g=1/4g+1/4, откуда g=1/3. Всегда можно найти какой-нибудь окольный путь!

При применении теоремы о параллельных осях важно пом­нить, что ось Iц должна быть параллельна оси, относительно которой мы хотим вычислять момент инерции.

Стоит, пожалуй, упомянуть еще об одном свойстве, которое часто бывает очень полезно при нахождении момента инерции некоторых типов тел. Оно состоит в следующем: если у нас есть плоская фигура и тройка координатных осей с началом коор­динат, расположенным в этой плоскости, и осью r, направлен­ной перпендикулярно к ней, то момент инерции этой фигуры относительно оси z равен сумме моментов инерции относительно осей х и у. Доказывается это совсем просто. Заметим, что

(поскольку все zi=0). Аналогично,

Момент инерции однородной прямоугольной пластинки, на­пример с массой М, шириной w и длиной L относительно оси, перпендикулярной к ней и проходящей через ее центр, равен просто

поскольку момент инерции относительно оси, лежащей в плос­кости пластинки и параллельной ее длине, равен Mw2/12, т. е. точно такой же, как и для стержня длиной w, а момент инерции относительно другой оси в той же плоскости равен ML2/12, такой же, как и для стержня длиной L.

Итак, перечислим свойства момента инерции относительно данной оси, которую мы назовем осью z:

1. Момент инерции равен

2. Если предмет состоит из нескольких частей, причем момент инерции каждой из них известен, то полный момент инерции равен сумме моментов инерции этих частей.

3. Момент инерции относительно любой данной оси равен моменту инерции относительно параллельной оси, про­ходящей через центр масс, плюс произведение полной массы на квадрат расстояния данной оси от центра масс.

4. Момент инерции плоской фигуры относительно оси, пер­пендикулярной к ее плоскости, равен сумме моментов инерции относительно любых двух других взаимно пер­пендикулярных осей, лежащих в плоскости фигуры и пе­ресекающихся с перпендикулярной осью.

Таблица 19,1 · простые примеры моментов инерции

В табл. 19.1 приведены моменты инерции некоторых элементарных фигур, имеющих однородную плотность масс, а

табл. 19.2 — моменты инерции некоторых фигур, которые могут быть получены из табл. 19.1 с использованием пере

численных выше свойств.

Таблица 19.2 · моменты инерции, полученные из табл. 19.1

§ 4. Кинетическая энергия вращения

Продолжим изучение динамики вращения. При обсуждении аналогии между линейным и угловым движением в гл. 18 мы использовали теорему о работе, но ничего не говорили о кинети­ческой энергии. Какова будет кинетическая энергия твердого тела, вращающегося вокруг некоторой оси с угловой скоростью w? Используя нашу аналогию, можно немедленно угадать правильный ответ. Момент инерции соответствует массе, угло­вая скорость соответствует обычной скорости, так что кине­тическая энергия должна быть равна 1/2 Iw2. Так оно и есть на самом деле, и сейчас мы покажем это. Предположим, что тело вращается вокруг некоторой оси, так что каждая точка движет­ся со скоростью wr,-, где ri — расстояние от данной точки до оси. Если масса этой точки равна mi , то полная кинетическая энергия всего тела равна просто сумме кинетических энергий всех частиц

а поскольку w — постоянная, одна и та же для всех точек, то

В конце гл. 18 мы отмечали, что существуют очень интерес­ные явления, связанные с вращением не абсолютно твердого тела, способного изменять свой момент инерции. Именно, в примере с вращающимся столом у нас был момент инерции I1 и угловая скорость w1 при вытянутых руках. Согнув руки, мы изменили момент инерции до I2, а угловую скорость — до w2. Так как у нас нет никаких моментов сил относительно оси вра­щения стола, то момент количества движения должен остаться постоянным. Это означает, что I1w1=I2w2. А что можно ска­зать об энергии? Это очень интересный вопрос. Согнув руки, мы начинаем вращаться быстрее, но момент инерции при этом умень­шается и может показаться, что кинетическая энергия должна остаться той же самой. Это, однако, неверно, потому что в дей­ствительности сохраняется Iw, а не Iw2. Сравним теперь кине­тические энергии в начале и в конце. В начале кинетическая энергия равна 1/2/Iw21=1/2Lw1, где L=I1w1=I2w2— момент количества движения. Точно таким же образом кинетическая энергия в конце равна Т=1/2Lw2,а поскольку w2>w1, то кинетическая энергия в конце оказывается большей, чем в на­чале. Итак, вначале, когда руки были вытянуты, мы вращались с какой-то кинетической энергией, затем, согнув руки, мы стали вращаться быстрее и наша кинетическая энергия возросла. А как быть с законом сохранения энергии? Ведь должен же кто-то произвести работу, чтобы увеличить энергию? Это сделали мы сами! Но когда, в какой момент? Когда мы держим гантели гори­зонтально, то никакой работы не производим. Выпрямляя руки в стороны и сгибая их, мы тоже не можем произвести никакой работы. Это, однако, верно только, пока нет никакого вращения! При вращении же на гантели действует центробежная сила. Они стремятся вырваться из наших рук, так что, сгибая во время вращения руки, мы преодолеваем противодействие центробеж­ной силы. Работа, которая на это затрачивается, и составляет разницу в кинетических энергиях вращения. Вот откуда бе­рется этот добавок.

Существует еще одно очень интересное явление, которое мы рассмотрим только описательно, чтобы просто иметь о нем представление. Хотя изучение этого явления требует несколько большего опыта, но упомянуть о нем стоит, ибо оно очень любо­пытно и дает много интересных эффектов.

Возьмем снова эксперимент с вращающимся столиком. Рас­смотрим отдельно тело и руки, с точки зрения человека, вра­щающегося на столике. Согнув руки с гантелями, мы стали вращаться быстрее, но заметьте, что тело при этом не изменило своего момента инерции; тем не менее оно стало вращаться быстрее, чем прежде. Если бы мы провели вокруг тела окруж­ность и рассмотрели только предметы внутри этой окружности, то их момент количества движения изменился бы; они закрути­лись бы быстрее. Следовательно, когда мы сгибаем руки, на тело должен действовать момент силы. Однако центробежная сала не может дать никакого момента, так как она направлена по радиусу. Это говорит о том, что среди сил, возникающих во вращающейся системе, центробежная сила не одинока: есть еще и другая сила. Эта другая сила носит название кориолисовой силы, или силы Кориолиса. Она обладает очень странным свой­ством: оказывается, что если мы во вращающейся системе дви­гаем какой-то предмет, то она толкает его вбок. Как и центро­бежная сила, эта сила кажущаяся. Но если мы живем во вра­щающейся системе и хотим что-то двигать по радиусу, то для этого мы должны тянуть его несколько вбок. Именно эта «бо­ковая» сила создает момент, который раскручивает наше тело.

Перейдем теперь к формулам и покажем, как кориолисова сила работает на практике. Пусть Мик сидит на карусели, ко­торая кажется ему неподвижной. С точки зрения Джо, который стоит на земле и знает истинные законы механики, карусель крутится. Предположим, что мы провели радиальную прямую на карусели и пусть Мик двигает прямо по этой линии какую-то массу. Я хочу показать, что для того, чтобы все было так, как мы описали, необходима боковая сила. Это можно увидеть, обратив внимание на момент количества движения вращающейся массы. Она крутится все время с одной и той же угловой ско­ростью w, поэтому ее момент количества движения равен

L=mvтавгr=mwr·г=mwг2.

Если масса расположена близко к центру, то он сравнительно мал, но если мы передвигаем ее в новое положение и если мы увеличиваем r, то масса mприобретает больший момент количества движения, т. е. во время движения по радиусу на нее должен действовать некоторый момент силы. (Чтобы на кару­сели двигаться по радиусу, нужно наклониться и толкаться вбок. Попробуйте как-нибудь сами проделать это.) Поскольку момент силы равен скорости изменения L во время движения массы mпо радиусу, то

где через fk обозначена сила Кориолиса. В действительности мы хотели узнать, какую боковую силу должен прилагать Мик, чтобы двигать массу mсо скоростью vr =dr/dt. Как видите, она равна FK=т/r=2mwvr.

Теперь, имея формулу для кориолисовой силы, давайте рас­смотрим несколько более подробно всю картину в целом. Как можно понять причину возникновения этой силы из элементар­ных соображений? Заметьте, что кориолисова сила не зависит от расстояния до оси и поэтому действует даже на оси! Оказывает­ся, что легче всего понять именно силу, действующую на оси вращения. Для этого нужно просто посмотреть на все происхо­дящее из инерциальной системы Джо, который стоит на земле. На фиг. 19.4 показаны три последовательных положения массы m, которая при t=0 проходит через ось.

Фиг. 19.4. Три последовательных положения движущейся по радиусу точки вращающегося столика.

Из-за вращения карусели масса, как мы видим, движется не по прямой линии, а по некоторому кривому пути, касающемуся диаметра в точке r=0. Но для того чтобы она двигалась по кривому пути, долж­на действовать ускоряющая сила. Это и есть кориолисова сила.

Однако с кориолисовой силой мы встречаемся не только в подобных ситуациях. Можно показать, что если предмет дви­жется с постоянной скоростью по краю диска, то на него тоже действует кориолисова сила. Почему? Мик видит предмет дви­жущимся со скоростью vм, а Джо видит его движущимся по окружности со скоростью vд=vм+wr, поскольку предмет вдо­бавок переносится каруселью. Как мы уже знаем, действующая в этом случае сила будет, в сущности, полностью центробежной силой скорости vд, равной тv2 Д /r. Но, с точки зрения Мика, она должна состоять из трех частей. Все это можно записать в сле­дующем виде:

Итак, Fr — это сила, которую измеряет Мик. Попытаемся по­нять, откуда что берется. Может ли Мик признать первый член? «Конечно,— сказал бы он,— даже если бы я не вращался, то та­кая центробежная сила должна возникнуть, если побежать по кругу со скоростью vм». Итак, это просто центробежная сила, появления которой Мик ожидает и которая не имеет ничего общего с вращением карусели. Вдобавок Мик думает, что долж­на быть еще одна центробежная сила, действующая даже на неподвижные предметы на его карусели. Это дает третий член. Однако в дополнение к ним существует еще один член — второй, который опять равен 2 mwvм. Раньше, при радиальной ско­рости, кориолисова сила fk была тангенциальна. Теперь же, при тангенциальной скорости, она радиальна. В самом деле, одно выражение отличается от другого только знаком. Сила всег­да имеет одно и то же направление по отношению к скорости независимо от того, куда направлена скорость. Она действует под прямым углом к скорости и равна по величине 2mwv.