Том 1. Механика, излучение и теплота

Фейнман Ричард

Лейтон Роберт

Сэндс Мэттью

Выпуск 4. Кинетика. Теплота. Звук

 

 

Глава 39 КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ

 

§ 1. Свойства вещества

С этой главы мы начнем изучение новой темы, которая займет у нас довольно много времени. Мы начнем анализ свойств вещества с физической точки зрения. Зная, что вещество построено из большого числа атомов или каких-то других элементарных частей, взаимодействующих электрически и подчиняющихся законам механики, мы постараемся понять, почему скопления атомов ведут себя именно так, а не иначе.

Нечего и говорить, что это трудная задача. И будет лучше, если мы с самого начала подчеркнем, что это чрезвычайно трудная задача и что решать ее нам придется совсем иными способами, чем раньше. Когда мы изучали механику и оптику, то могли начинать с точных формулировок некоторых законов, например законов Ньютона или формулы для поля, порождаемого ускоренным зарядом. Узнав их, мы сразу же могли объяснить бездну всяких явлений, а потом эти законы становились для нас прочной основой, опираясь на которую, мы совершенствовались и в механике, и в оптике. Мы можем продолжать изучение и дальше, но мы не обнаружим при этом какую-то новую физику, мы просто будем решать старые задачи более точными математическими методами.

Такой способ непригоден для изучения свойств вещества. Мы можем сказать о свойствах вещества лишь самые простые вещи. Предмет этот слишком сложен, чтобы можно было начать с самых основных законов. Мы по-прежнему будем пользоваться законами механики и электричества. Но законы эти слишком далеки от тех свойств, которые мы собираемся изучать. От законов Ньютона до свойств вещества очень много шагов и каждый шаг очень труден. Сейчас мы сделаем несколько таких шагов, но мне хочется предупредить вас, что если в предыдущих главах мы анализировали явления более или менее строго, то теперь с каждым шагом мы все больше будем терять строгость. Свойства вещества мы сможем понять лишь весьма приближенно.

Происходит это по нескольким причинам. Во-первых, наш анализ не может быть полным потому, что для этого нужно глубокое знание теории вероятностей; мы ведь не собираемся следить за движением каждого атома, а хотим узнать о среднем числе атомов, движущихся в том или ином направлении, и прикинуть, к чему приведет разница в этих средних. Таким образом, теория вероятностей органически входит в нашу тему, а в математике мы еще не очень сильны и многого от нас не потребуешь.

Вторая и более серьезная причина — чисто физическая. Поведение атомов подчиняется законам не классической, а квантовой механики, и пока мы не изучим квантовую механику, нельзя серьезно говорить об изучении свойств вещества. Речь идет не просто о переходе от больших предметов к маленьким, например от автомобилей к биллиардным шарам, разница между законами классической и квантовой механики гораздо глубже и существенней, и многие объяснения, если исходить из классической механики, будут просто неверными. Так что многих вещей мы пока никак не в состоянии понять, однако мы будем подчеркивать каждый раз, когда объяснения приведут нас в тупик, чтобы по крайней мере хоть предупредить, где он находится. Для этого и говорилось о квантовой механике в предыдущих главах: надо было понять, в каких случаях отказывает механика классическая.

Почему же мы вообще изучаем свойства вещества? Не лучше ли было бы подождать с полгода или год, пока мы не подучим теорию вероятностей и квантовую механику, а потом уж и взяться за свойства вещества поосновательней? На это следует ответить, что трудные вещи лучше изучать не спеша! Сначала мы — плохо ли, хорошо ли — познакомимся с общими идеями, подумаем, что может произойти в тех или иных обстоятельствах, а потом, когда лучше узнаем основные законы, сформулируем все это поточнее.

Каждый, кто хочет всерьез анализировать свойства вещества, должен сначала написать основные уравнения и попытаться решить их. Но каждого, кто начинал с этого, ждала неудача. Успех приходил лишь к тем, кто подходил к делу как физик: у этих людей сначала не было ничего, кроме грубой идеи, а затем они находили верное приближение, соображая, что в этой трудной ситуации можно считать большим, а что малым. Задачи в этой области столь сложны, что даже не очень четкая и половинчатая идея оправдывает затраченное на нее время, и можно то и дело возвращаться к одной и той же задаче, приближаясь понемногу к ее точному решению. Так мы и поступаем в нашем курсе.

И еще одна причина, по которой мы приступаем сейчас к изучению свойств веществ: нам уже приходилось встречать похожие идеи, например в химии. Некоторые из них известны нам со школы. Было бы интересно понять их с точки зрения физика.

Вот один из самых увлекательных примеров: известно, что равные объемы газов содержат при одинаковом давлении и температуре равное число молекул. Авогадро первым понял закон кратных отношений: из того, что в химической реакции между двумя газами объемы реагирующих газов относятся как целые числа, следует, что равные объемы содержат равное число атомов. Но почему в равных объемах содержится равное число атомов? Можно ли объяснить это, исходя из законов Ньютона? Для этого вам придется изучить эту главу. Мы еще будем впоследствии много говорить о давлениях, объемах, температуре и теплоте.

Мы обнаружим при этом, что многие соотношения между свойствами вещества можно понять, ни слова не говоря об атомах. Например, если какое-нибудь тело сжать, оно нагреется; если тело нагревать, оно начнет расширяться. Связь между этими явлениями можно понять, не изучая строения тела. Занимающаяся такими вещами наука называется термодинамикой. Конечно, глубокое понимание термодинамики возможно лишь после подробного изучения механизма, лежащего в основе того или иного процесса. Вот этим мы и займемся: мы примем с самого начала тот факт, что все вещества состоят из атомов, и постараемся понять свойства вещества и законы термодинамики.

Итак, начнем изучение свойств газов, исходя из законов Ньютона.

 

§ 2. Давление газа

Каждый знает, что газ оказывает давление. Но отчего? В этом надо разобраться как следует. Если бы наши уши были намного чувствительнее, чем они есть на самом деле, мы бы все время слышали страшный шум. Но природа позаботилась, чтобы наши уши не были столь восприимчивы, ведь они оказались бы для нас совершенно бесполезными — в них постоянно стоял бы дикий гул, похожий на шум от стартующей ракеты. Дело в том, что барабанные перепонки наших ушей соприкасаются с воздухом, а воздух состоит из великого множества беспорядочно движущихся молекул, которые, ударяясь о барабанные перепонки, создают такой шум, как будто сразу очень много барабанщиков отбивают беспорядочную дробь — бум, бум, бум... Однако мы не слышим этих звуков, потому что атомы очень малы, а уши наши недостаточно чувствительны. Беспорядочные удары молекул должны были бы собственно продавить барабанную перепонку, но ее непрестанно бомбардируют и с внутренней стороны, и в результате полная сила, действующая на перепонку, оказывается равной нулю. Если бы откачать воздух с одной стороны или хотя бы сделать разным его относительное количество с обеих сторон, то перепонка продавилась бы в ту или иную сторону, потому что бомбардировка с одной стороны оказалась бы гораздо сильнее. Мы иногда испытываем это неприятное ощущение, когда очень быстро поднимаемся в лифте или на самолете, а хуже всего, если мы еще при этом простужены (в этом случае распухшая слизистая оболочка закрывает каналы, соединяющие через носоглотку внутреннюю полость уха с внешним пространством, и таким образом оба давления не могут быстро уравняться.)

Чтобы проанализировать это явление количественно, предположим, что газ находится в ящике, одна стенка которого представляет собой поршень, способный перемещаться (фиг. 39.1).

Фиг. 39.1. Атомы газа в ящике, в котором движется поршень без трения.

Найдем силу, с которой действуют на поршень находящиеся внутри ящика атомы. О поршень ударяются атомы, движущиеся внутри объема V со всевозможными скоростями. Предположим, что вне ящика ничего нет — сплошной вакуум. Что же произойдет? Если предоставить поршень самому себе и не придерживать его, то с каждым ударом молекулы он будет приобретать небольшой импульс и постепенно будет вытолкнут совсем из ящика. Чтобы удержать его в ящике, придется приложить силу F. Какова должна быть эта сила? Говоря о силе, мы будем относить ее к единице площади: если площадь поршня равна А, то действующая на него сила будет пропорциональна площади. Определим давление как величину, равную отношению приложенной к поршню силы к площади поршня:

(39.1)

Чтобы лучше понять, для чего это делается, подсчитаем бесконечно малую работу dW, которую надо затратить, чтобы протолкнуть поршень на бесконечно малое расстояние —dx (позднее это понадобится нам и для других целей); эта работа равна произведению силы на расстояние или, согласно (39.1), произведению давления, площади поршня и расстояния. Все это равно произведению давления на изменение объема, взятого с обратным знаком:

(39.2)

(Произведение площади А на изменение высоты dx равно изменению объема.) Знак минус в этом выражении возникает из-за того, что при сжатии объем уменьшается; если принять это во внимание, то мы получим правильный результат: чтобы сжать газ, надо затратить работу.

Итак, с какой силой надо давить на поршень, чтобы уравновесить удары молекул? При каждом ударе поршню сообщается некий импульс. В каждую секунду поршень получает определенный импульс и начинает двигаться. Чтобы предотвратить это, приложенная нами сила за секунду должна сообщить поршню точно такой же импульс. Таким образом, сила равна импульсу, сообщенному поршню за 1 сек. Можно об этом сказать и иначе: если предоставить поршень самому себе, то он за счет бомбардировки наберет скорость и с каждым ударом будет подталкиваться и двигаться с ускорением. Быстрота изменения скорости поршня, или ускорение, пропорциональна действующей силе. Таким образом, сила, которую мы определили как произведение давления на площадь, равна импульсу, сообщенному поршню за 1 сек всеми молекулами внутри ящика.

Подсчитать импульс, передаваемый поршню за 1 сек, легко; мы сделаем это в два этапа: сначала определим импульс, переданный одним атомом при столкновении с поршнем, а потом умножим эту величину на число соударений атомов с поршнем за 1 сек. Сила и будет произведением этих двух величин.

Займемся теперь этими величинами: предположим сначала, что поршень — это идеальный «отражатель» атомов. Если это не так, то вся наша теория рухнет — поршень начнет нагреваться и произойдет много всяких событий, предсказать которые мы не в состоянии. Однако, когда снова установится равновесие, в результате окажется, что каждое столкновение будет эффективно упругим. В среднем энергия приходящих и уходящих частиц не изменяется. Таким образом, предположим, что газ находится в равновесии и поршень, будучи неподвижным, энергии не поглощает. В этом случае частица, подлетевшая к поршню с определенной скоростью, улетит от него с той же скоростью, причем масса частицы не изменится.

Если v есть скорость атома, а vx — составляющая скорости вдоль оси х, то импульс «к поршню» равен mvx , но раз частица «отражается», то импульс «от поршня» равен той же величине; значит, за одно соударение поршню сообщается импульс 2mvx .

Нужно теперь подсчитать число соударений атома за 1 сек; для этого можно взять любой промежуток времени dt, а потом разделить число соударений на dt. Много ли атомов попадает за это время в цель? Предположим, что в объеме V заключено N атомов, т. е. в каждом единичном объеме имеется n=N/V атомов. Теперь заметим, что за время t достигнут поршня не все частицы, движущиеся к поршню с заданной скоростью, а только те, которые оказались достаточно близко от него. Если частицы были очень далеко, то, хотя они и стремятся к поршню, к сроку они не успеют. Таким образом, за время t о поршень ударятся лишь те частицы, которые в начальный момент были не дальше чем на расстоянии vx t от него. Следовательно, число соударений за время t равно числу атомов, находящихся на расстоянии, не превышающем vx t, а поскольку площадь поршня равна А, то атомы, которые со временем попадут в цель, занимают объем Avx t. А число атомов, попавших в цель, равно произведению объема на число атомов в единичном объеме nvx At. Но нас, конечно, интересует не число соударений за время t, а мы хотим знать число соударений за 1 сек, поэтому мы делим на t и получаем nvx A. (Время t может быть взято очень малым, для красоты можно писать dt и затем дифференцировать, но это все одно и то же.)

Итак, мы нашли, что сила равна

(39.3)

Обратите внимание, что если фиксировать плотность частиц, то сила оказывается пропорциональной площади! После этого давление найти очень просто:

(39.4)

Теперь надо исправить кое-какие неточности: прежде всего не все молекулы имеют одну и ту же скорость и не все они движутся в одном направлении, так что нам приходится иметь дело с разными v2x ! Каждая молекула, ударяясь о поршень, вносит свой вклад, поэтому надо взять среднее по всем молекулам. Сделав это, мы получим

(39.5)

А не забыли ли мы множитель 2? Нет, потому что лишь половина атомов движется к поршню. Другие летят в противоположную сторону, а усредняя по v2x, мы усредняем как по положительным, так и по отрицательным составляющим vx . Если просто усреднить по v2x, получится вдвое больший результат. Среднее v2x для положительных vx равно половине среднего v2x для всех vx .

Но атомы прыгают в ящике как хотят, и поэтому ясно, что «x-направление» для них ничем не отличается от любого другого; они движутся куда угодно: вправо — влево, вверх — вниз, взад — вперед. Поэтому (средний квадрат скорости движения в одном направлении) равен среднему квадрату скорости в любом другом направлении

(39.6)

Используем это обстоятельство для небольшого математического трюка и обнаружим, что каждый из членов в (39.6) равен их сумме, деленной на три, а сумма — это квадрат величины скорости:

(39.7)

Это очень хорошо, потому что теперь уже не надо заботиться о координатных осях, и формулу для давления можно записать в виде

(39.8)

Мы выделили множитель , потому что это кинетическая энергия движения молекулы как целого. Итак, мы нашли

(39.9)

Если мы будем знать скорость молекул, то очень быстро подсчитаем давление.

В качестве простого примера можно описать такие газы, как гелий, пары ртути или калия при достаточно высокой температуре или аргон; это одноатомные газы, для которых можно считать, что их атомы не имеют внутренних степеней свободы. Если нам попадется сложная молекула, то в ней могут быть всевозможные внутренние движения, всякого рода колебания и т. д. Мы предполагаем, что можно не принимать их в расчет; но можно ли это делать — вопрос сложный и мы к нему вернемся; в действительности для нашего случая это окажется допустимым. Итак, предположим, что внутреннее движение атомов можно не рассматривать, и поэтому кинетическая энергия движения молекулы как целого восполняет всю энергию. Для одноатомного газа кинетическая энергия — действительно полная энергия. Будем обозначать полную энергию буквой U (иногда ее называют полной внутренней энергией, как-будто у газа может быть какая-то внешняя энергия), т. е. всю энергию всех молекул газа или любого другого объекта.

В случае одноатомного газа мы предположим, что полная энергия U равна произведению числа атомов на среднюю кинетическую энергию каждого из них, потому что мы пренебрегли возможным возбуждением атомов или какими-то внутриатомными движениями. Тогда

(39.10)

Немного задержимся и ответим на такой вопрос: предположим, что мы медленно сжимаем газ; каким должно быть давление, чтобы сжать газ до заданного объема? Определить это легко, так как давление есть энергия, деленная на объем. Но когда газ сжимается, производится работа и поэтому энергия газа U возрастает. Процесс сжатия описывается неким дифференциальным уравнением. В начальный момент газ занимает определенный объем и обладает определенной энергией, поэтому нам известно и давление. Как только мы начинаем сжимать газ, энергия U возрастает, объем V уменьшается, а как изменяется давление, нам еще предстоит узнать.

Итак, нам предстоит решить дифференциальное уравнение. Сейчас мы это сделаем. Однако подчеркнем сначала, что, сжимая газ, мы предполагаем, что вся работа уходит на увеличение энергии атомов газа. Вы спросите: «А необходимо ли на этом останавливаться? Куда же еще она может уйти?» Но оказывается, что затраченная работа может уйти и в другое место. Энергия может «вытечь» из ящика сквозь стенки: горячие (т. е. очень быстрые) атомы при бомбардировке будут нагревать стенки ящика и энергия выйдет наружу. Но мы предполагаем, что в нашем случае этого не происходит.

Сделаем небольшое обобщение, хотя и в этом случае мы будем рассматривать лишь очень частный случай: запишем вместо PV=2/3U

(39.11)

Энергия U умножается на (γ-1) для удобства, потому что в дальнейшем нам придется иметь дело с газами, для которых множитель перед U равен не 2/3, а какому-то другому числу. Чтобы можно было описывать и такие случаи, запишем этот множитель так, как его обозначают почти сто лет. Тогда в нашем случае одноатомного газа, такого, как гелий, γ=5/3, потому что 5/3-1=2/3.

Мы уже говорили, что совершаемая при сжатии газа работа равна -PdV. Сжатие, при котором тепло не поглощается и не выделяется, называется адиабатическим сжатием; это слово образовано из трех греческих слов: а(не)+dia(сквозь)+bainein(проходить). (Слово адиабатический употребляется в физике в разных смыслах, так что не всегда можно понять, что между ними общего.) При адиабатическом сжатии вся затраченная работа уходит на изменение внутренней энергии. Вот в этом и смысл, что нет потерь энергии и, значит, PdV=-dU. Но поскольку U=PV/γ-1, то можно записать

(39.12)

Итак, PdV=-(PdV+VdP)/(γ-1) или, приводя подобные члены, получаем γPdV=-VdP, или

(39.1З)

Если мы примем, что γ постоянна, а это так в случае одноатомных газов, то уравнение интегрируется и мы получаем γlnV+lnP=lnC, где С — постоянная интегрирования. Переходя к степеням, мы получаем такой закон:

(39.14)

Иначе говоря, если выполнены условия адиабатичности, т. е. потерь энергии нет и газ при сжатии нагревается, то в случае одноатомного газа произведение объема на давление в степени 5/3 есть величина постоянная! Этот результат мы получили чисто теоретически, но опыт показывает, что и в действительности все происходит именно так.

 

§ 3. Сжимаемость излучения

Приведем еще один пример из кинетической теории газов; он не особенно интересует химиков, но очень важен для астрономов. Внутри нагретого до высокой температуры ящика имеется огромное число фотонов. (В качестве такого ящика надо взять очень горячую звезду. Солнце недостаточно горячо для этих целей. В звезде, правда, слишком много атомов, но если ее температура очень высока, то атомами можно пренебречь и считать, что внутренность звезды целиком заполнена фотонами.) Вспомним теперь, что фотон обладает импульсом р. (При изучении кинетической теории газов мы всегда будем испытывать страшные неудобства: P — это давление, но р — еще и импульс; V — это объем, но это и скорость одновременно, а Т — это и температура, и кинетическая энергия, и время, и момент силы; тут нужен глаз да глаз.) Сейчас буква р — это импульс, вектор. Поступим так же, как и в предыдущем параграфе, за удары фотонов о стенку ответственна x-составляющая импульса, а удвоенная x-составляющая импульса — это импульс, полученный стенкой после каждого удара. Итак, вместо 2mvx пишем 2рx , а при вычислении числа столкновений нужно по-прежнему подставлять vx ; проделав все это, формулу (39.4) для давления мы уже записываем в виде

(39.15)

После усреднения мы получим произведение n на среднее значение px vx (вспомните, что мы говорили о множителе 2), а после того как на помощь будут призваны два других измерения, мы найдем

(39.16)

Эта формула почти совпадает с (39.9), потому что импульс равен mv, просто это более общая формула, вот и все. Произведение давления на объем равно произведению полного числа атомов на среднее значение 1/3(p·v).

Чему равно p·v для фотонов? Импульс и скорость направлены одинаково, а скорость равна скорости света, поэтому интересующее нас произведение — это импульс фотона, умноженный на скорость света. Произведение импульса фотона на скорость света — это энергия фотона: Е=рс. Мы имеем дело с энергией каждого фотона и должны умножить среднюю энергию фотона на число фотонов. Получается одна треть полной энергии:

(39.17)

Для фотонов, следовательно, поскольку впереди стоит 1/3, множитель (γ-1) в (39.11) равен 1/3, т. е. γ=4/3, значит, излучение в ящике подчиняется закону

(39.18)

Таким образом, мы знаем сжимаемость излучения! Можно использовать эту формулу при анализе вклада излучения в давление внутри звезды, подсчитать давление и оценить, как оно изменяется при сжатии звезды. Просто удивительно, как много мы уже умеем!

 

§ 4. Температура и кинетическая энергия

До сих пор мы не имели дела с температурой; мы сознательно избегали разговоров на эту тему. Мы знаем, что если сжимать газ, энергия молекул возрастает, и мы обычно говорим, что газ при этом нагревается. Теперь надо понять, какое это имеет отношение к температуре. Нам известно, что такое адиабатическое сжатие, а как поставить опыт, чтобы можно было сказать, что он был проведен при постоянной температуре? Если взять два одинаковых ящика с газом, приставить их один к другому и подержать так довольно долго, то даже если вначале эти ящики обладали тем, что мы назвали различной температурой, то в конце концов температуры их станут одинаковыми. Что это означает? Только то, что ящики достигли того состояния, которого они в конце концов достигли бы, если бы их надолго предоставили самим себе! Состояние, в котором температуры двух тел равны — это как раз то окончательное состояние, которого достигают после длительного соприкосновения друг с другом.

Давайте посмотрим, что случится, если ящик разделен на две части движущимся поршнем и каждое отделение заполнено разным газом, как это показано на фиг. 39.2 (для простоты предположим, что имеются два одноатомных газа, скажем, гелий и неон).

Фиг. 39.2. Атомы двух разных одноатомных газов, разделенных подвижным поршнем.

В отделении 1 атомы массы m1 движутся со скоростью v1, а в единице объема их насчитывается n1 штук, в отделении 2 эти числа соответственно равны m2, v2 и n2. При каких же условиях достигается равновесие?

Разумеется, бомбардировка слева заставляет поршень двигаться вправо и сжимает газ во втором отделении, затем то же самое происходит справа и поршень ходит так взад и вперед, пока давление с обеих сторон не сравняется, и тогда поршень остановится. Мы можем устроить так, чтобы давление с обеих сторон было одинаковым, для этого нужно, чтобы внутренние энергии, приходящиеся на единичный объем, были одинаковыми или чтобы произведения числа частиц n в единице объема на среднюю кинетическую энергию было одинаковым в обоих отделениях. Сейчас мы попытаемся доказать, что при равновесии должны быть одинаковы и отдельные сомножители. Пока мы знаем только, что равны между собой произведения чисел частиц в единичных объемах на средние кинетические энергии

это следует из условия равенства давлений и из (39.8). Нам предстоит установить, что по мере постепенного приближения к равновесию, когда температуры газов сравниваются, выполняется не только это условие, а происходит и еще кое-что.

Чтобы было яснее, предположим, что нужное давление слева в ящике достигается за счет очень большой плотности, но малых скоростей. При больших n и малых v можно получить то же самое давление, что и при малых n и больших v. Атомы, если они плотно упакованы, могут двигаться медленно, или атомов может быть совсем немного, но ударяют они о поршень с большей силой. Установится ли равновесие навсегда? Сначала кажется, что поршень никуда не сдвинется и так будет всегда, но если продумать все еще раз, то станет ясно, что мы упустили одну очень важную вещь. Дело в том, что давление на поршень вовсе не равномерное, поршень-то раскачивается точно так же, как барабанная перепонка, о которой мы говорили в начале главы, ведь каждый новый удар не похож на предыдущий. Получается не постоянное равномерное давление, а скорее нечто вроде барабанной дроби — давление непрерывно меняется, и наш поршень как бы постоянно дрожит. Предположим, что атомы правого отделения ударяют о поршень более или менее равномерно, а слева атомов меньше, и удары их редки, но очень энергичны. Тогда поршень то и дело будет получать очень сильный импульс слева и отходить вправо, в сторону более медленных атомов, причем скорость этих атомов будет возрастать. (При столкновении с поршнем каждый атом приобретает или теряет энергию в зависимости от того, в какую сторону движется поршень в момент столкновения.) После нескольких столкновений поршень качнется, потом еще, еще и еще..., газ в правом отделении будет время от времени встряхиваться, а это приведет к увеличению энергии его атомов, и движение их ускорится. Так будет продолжаться до тех пор, пока не уравновесятся качания поршня. А равновесие установится тогда, когда скорость поршня станет такой, что он будет отбирать у атомов энергию так же быстро, как и отдавать. Итак, поршень движется с какой-то средней скоростью, и нам предстоит найти ее. Если нам это удастся, мы подойдем к решению задачи поближе, потому что атомы должны подогнать свои скорости так, чтобы каждый газ получал через поршень ровно столько энергии, сколько теряет.

Очень трудно рассчитать движение поршня во всех деталях; хотя все это очень легко понять, оказывается, что проанализировать это несколько труднее. Прежде чем приступить к такому анализу, решим другую задачу: пусть ящик заполнен молекулами двух сортов с массами m1 и m2, скоростями v1 и v2 и т. д.; теперь молекулы смогут познакомиться поближе. Если сначала все молекулы № 2 покоятся, то долго это продолжаться не может, потому что о них будут ударять молекулы № 1 и сообщать им какую-то скорость. Если молекулы № 2 могут двигаться значительно быстрее, чем молекулы № 1, то все равно рано или поздно им придется отдать часть своей энергии более медленным молекулам. Таким образом, если ящик заполнен смесью двух газов, то проблема состоит в определении относительной скорости молекул обоих сортов.

Это тоже очень трудная задача, но мы все-таки решим ее. Сначала нам придется решить «подзадачу» (опять это один из тех случаев, когда, независимо от того как решается задача, окончательный результат запоминается легко, а вывод требует большого искусства). Предположим, что перед нами две сталкивающиеся молекулы, обладающие разными массами; во избежание осложнений мы наблюдаем за столкновением из системы их центра масс (ц. м.), откуда легче уследить за ударом молекул. По законам столкновений, выведенным из законов сохранения импульса и энергии, после столкновения молекулы могут двигаться только так, что каждая сохраняет величину своей первоначальной скорости, и изменить они могут только направление движения. Типичное столкновение выглядит так, как его изобразили на фиг. 39.3.

Фиг. 39.3. Столкновение двух неодинаковых молекул, если смотреть из системы центра масс.

Предположим на минутку, что мы наблюдаем столкновения, системы центра масс которых покоятся. Кроме того, надо предположить, что все молекулы движутся горизонтально. Конечно, после первого же столкновения часть молекул будет двигаться уже под каким-то углом к исходному направлению. Иначе говоря, если вначале все молекулы двигались горизонтально, то спустя некоторое время мы обнаружим уже вертикально движущиеся молекулы. После ряда других столкновений они снова изменят направление и повернутся еще на какой-то угол. Таким образом, если кому-нибудь и удастся сначала навести порядок среди молекул, то все равно они очень скоро разбредутся по разным направлениям и с каждым разом будут все больше и больше распыляться. К чему же это в конце концов приведет? Ответ: Любая пара молекул будет двигаться в произвольно выбранном направлении столь же охотно, как и в любом другом. После этого дальнейшие столкновения уже не смогут изменить распределения молекул.

Что имеется в виду, когда говорят о равновероятном движении в любом направлении? Конечно, нельзя говорить о вероятности движения вдоль заданной прямой — прямая слишком тонка, чтобы к ней можно было относить вероятность, а следует взять единицу «чего-нибудь». Идея заключается в том, что через заданный участок сферы с центром в точке столкновения проходит столько же молекул, сколько через любой другой участок сферы. В результате столкновений молекулы распределяются по направлениям так, что любым двум равным по площади участкам сферы будут соответствовать равные вероятности (т. е. одинаковое число прошедших через эти участки молекул).

Между прочим, если мы будем сравнивать первоначальное направление и направление, образующее с ним какой-то угол θ, то интересно, что элементарная площадь на сфере единичного радиуса равна произведению 2π на sinθdθ, или, что то же самое, на дифференциал cosθ. Это означает, что косинус угла θ между двумя направлениями с равной вероятностью принимает любое значение между -1 и +1.

Теперь нам надо вспомнить о том, что имеется на самом деле; ведь у нас нет столкновений в системе центра масс, а сталкиваются два атома с произвольными векторными скоростями v1 и v2. Что происходит с ними? Мы поступим так: снова перейдем к системе центра масс, только теперь она движется с «усредненной по массам» скоростью vц.м . =(m1v1+m2v2)/(m1+m2). Если следить за столкновением из системы центра масс, то оно будет выглядеть так, как это изображено на фиг. 39.3, только надо подумать об относительной скорости столкновения w. Относительная скорость равна v1-v2. Дело, следовательно, обстоит так: движется система центра масс, а в системе центра масс молекулы сближаются с относительной скоростью w; столкнувшись, они движутся по новым направлениям. Пока все это происходит, центр масс все время движется с одной и той же скоростью без изменений.

Ну и что же получится в конце концов? Из предыдущих рассуждений делаем следующий вывод: при равновесии все направления w равновероятны относительно направления движения центра масс. Это означает, что в конце концов не будет никакой корреляции между направлением относительной скорости и движением центра масс. Если бы даже такая корреляция существовала вначале, то столкновения ее бы разрушили и она в конце концов исчезла бы полностью. Поэтому среднее значение косинуса угла между w и vц.м. равно нулю. Это значит, что

(39.19)

Скалярное произведение w·vц.м. легко выразить через v1 и v2:

(39.20)

Займемся сначала v1·v2; чему равно среднее v1·v2? Иначе говоря, чему равно среднее проекции скорости одной молекулы на направление скорости другой молекулы? Ясно, что вероятности движения молекулы как в одну сторону, так и в противоположную одинаковы. Среднее значение скорости v2 в любом направлении равно нулю. Поэтому и в направлении v1 среднее значение v2 тоже равно нулю. Итак, среднее значение v1·v2 равно нулю! Следовательно, мы пришли к выводу, что среднее m1v21 должно быть равно m2v22. Это значит, что средние кинетические энергии обеих молекул должны быть равны:

(39.21)

Если газ состоит из атомов двух сортов, то можно показать (и мы даже считаем, что нам удалось это сделать), что средние кинетические энергии атомов каждого сорта равны, когда газ находится в состоянии равновесия. Это означает, что тяжелые атомы движутся медленнее, чем легкие; это легко проверить, поставив эксперимент с «атомами» различных масс в воздушном желобе.

Теперь сделаем следующий шаг и покажем, что если в ящике имеются два газа, разделенные перегородкой, то по мере достижения равновесия средние кинетические энергии атомов разных газов будут одинаковы, хотя атомы и заключены в разные ящики. Рассуждение можно построить по-разному. Например, можно представить, что в перегородке проделана маленькая дырочка (фиг. 39.4), так что молекулы одного газа проходят сквозь нее, а молекулы второго слишком велики и не пролезают.

Фиг. 39.4. Два газа в ящике, разделенном полупроницаемой перегородкой.

Когда установится равновесие, то в том отделении, где находится смесь газов, средние кинетические энергии молекул каждого сорта сравняются. Но ведь в числе проникших сквозь дырочку молекул есть и такие, которые не потеряли при этом энергии, поэтому средняя кинетическая энергия молекул чистого газа должна быть равна средней кинетической энергии молекул смеси. Это не очень удовлетворительное доказательство, потому что ведь могло и не быть такой дырочки, сквозь которую пройдут молекулы одного газа и не смогут пройти молекулы другого.

Давайте вернемся к задаче о поршне. Можно показать, что кинетическая энергия поршня тоже должна быть равна 1/2m2v22. Фактически кинетическая энергия поршня связана только с его горизонтальным движением. Пренебрегая возможным движением поршня вверх и вниз, мы найдем, что горизонтальному движению соответствует кинетическая энергия 1/2m2v2 x 2. Но точно так же, исходя из равновесия на другой стороне, можно показать, что кинетическая энергия поршня должна быть равна 1/2m1v1 x 2. Хотя мы повторяем предыдущее рассуждение, возникают некоторые дополнительные трудности в связи с тем, что в результате столкновений средние кинетические энергии поршня и молекулы газа сравниваются, потому что поршень находится не внутри газа, а смещен в одну сторону.

Если вас не удовлетворит и это доказательство, то можно придумать искусственный пример, когда равновесие обеспечивается устройством, по которому молекулы каждого газа бьют с обеих сторон. Предположим, что сквозь поршень проходит короткий стержень, на концах которого насажено по шару. Стержень может двигаться сквозь поршень без трения. По каждому из шаров со всех сторон бьют молекулы одного сорта. Пусть масса нашего устройства равна m, а массы молекул газа, как и раньше, равны m1 и m2. В результате столкновений с молекулами первого сорта кинетическая энергия тела массы m равна среднему значению 1/2 mt v12 (мы уже доказали это). Точно так же, столкновения с молекулами второго сорта заставляют тело иметь кинетическую энергию, равную среднему значению 1/2m2v22. Если газы находятся в тепловом равновесии, то кинетические энергии обоих шаров должны быть равны. Таким образом, результат, доказанный для случая смеси газов, можно немедленно обобщить на случай двух разных газов при одинаковой температуре.

Итак, если два газа имеют одинаковую температуру, то средние кинетические энергии молекул этих газов в системе центра масс равны.

Средняя кинетическая энергия молекул — это свойство только «температуры». А будучи свойством «температуры», а не газа, она может служить определением температуры. Средняя кинетическая энергия молекулы, таким образом, есть некоторая функция температуры. Но кто нам подскажет, по какой шкале отсчитывать температуру? Мы можем сами определить шкалу температуры так, что средняя энергия будет пропорциональна температуре. Лучше всего для этого назвать «температурой» саму среднюю энергию. Это была бы самая простая функция, но, к несчастью, эту шкалу уже выбрали иначе и вместо того, чтобы назвать энергию молекулы просто «температурой», используют постоянный множитель, связывающий среднюю энергию молекулы и градус абсолютной температуры, или градус Кельвина. Этот множитель: k=1,38·10-23 дж на каждый градус Кельвина. Таким образом, если абсолютная температура газа равна Т, то средняя кинетическая энергия молекулы равна 3/2kT (множитель 3/2 введен только для удобства, благодаря чему исчезнут множители в других формулах).

Заметим, что кинетическая энергия, связанная с составляющей движения в любом направлении, равна только 1/2kТ. Три независимых направления движения доводят ее до 3/2kT.

 

§ 5. Закон идеального газа

Теперь можно подставить наше определение температуры в уравнение (39.9) и найти закон зависимости давления газа от температуры: произведение давления на объем равно произведению полного числа атомов на универсальную постоянную k и температуру:

(39.22)

Следовательно, при одинаковых температуре, давлении и объеме число атомов строго определено — это тоже универсальная постоянная! Таким образом, из законов Ньютона следует, что в равных объемах любых газов при одинаковых температуре и давлении содержится равное число молекул. Вот какой неожиданный вывод!

На практике, когда имеешь дело с молекулами, приходится оперировать большими числами, поэтому химики произвольно выбрали число, очень большое число, и придумали ему специальное название. Они назвали его моль. Моль — это очень искусственное число. Почему химики не приняли за единицу 1024, чтобы вышло круглое число,— это вопрос исторический.

Случилось так, что они для удобства выбрали стандартное число N0=6,02·1023 объектов и назвали это число молем объектов. После этого, вместо того чтобы измерять число молекул в штуках, они измеряют их в молях. Можно написать число молей (выражая их через N0) и умножить его на число атомов в моле, потом умножить на kT, а затем, если захотим, выделить произведение числа атомов в моле на k, тогда получится молярное значение k; для этой величины выделим особую букву R. Молярное значение k равно 8,317 дж: R=N0k=8,317дж/моль·К-1. Таким образом мы нашли газовый закон, выраженный в виде произведения числа молей (его обозначают буквой N) на RT, или в виде произведения числа атомов на kT:

(39.23)

Смысл тот же самый, только единицы измерения разные. В качестве единицы мы используем 1, а химики используют 6·1023!

Сделаем еще одно замечание по поводу газового закона; оно касается вещей более сложных, чем одноатомные молекулы. Пока мы имели дело только с движением одноатомного газа в центре масс. А что если при этом учесть действие сил? Рассмотрим сначала случай, когда поршень удерживается горизонтально расположенной пружинкой, на которую действует сила. Взаимная встряска атомов и поршня в каждый данный момент, конечно, не зависит от положения поршня. Условия равновесия остаются прежними. Независимо от того, где находится поршень, от него требуется только, чтобы скорость его движения была такой, чтобы он получал от молекул столько же энергии, сколько отдавал им. Наличие пружинки не меняет дела. Скорость, с которой движется поршень, в среднем та же. Таким образом, наша теорема о том, что средняя кинетическая энергия в одном направлении равна 1/2kT, справедлива независимо от того, есть силы или их нет.

Рассмотрим, например, двухатомную молекулу, составленную из атомов с массами mА и mB . Нам удалось доказать, что движение в центре масс части А и части В таково, что <1/2mAvA2>=<1/2mBvB2>=3/2kT. Но как это может быть, если отдельные части связаны друг с другом? Хотя они и связаны между собой, но обмен энергией при взаимных вращениях, изменении расстояния и соударениях с другими молекулами зависит только от того, как быстро они движутся. Только этим определяется обмен энергией при соударениях. Сила в каждый отдельный момент не имеет никакого значения. Следовательно, даже если между отдельными частями молекулы действуют силы, верен тот же принцип.

Докажем, наконец, что газовый закон справедлив и в том случае, когда внутреннее движение не учитывается. До сих пор нам не надо было включать внутреннее движение. Мы просто рассматривали одноатомный газ. Но теперь мы покажем, что скорость центра масс любого объекта, который можно рассматривать как тело массы М, равна

(39.24)

Иначе говоря, можно рассматривать как отдельные части, так и всю молекулу в целом! Посмотрим, почему это можно делать: масса двухатомной молекулы равна М=mА +mB , а скорость центра масс равна vц.м.=(mA vA +mB vB )/M. Нам нужно теперь определить . Если возвести в квадрат vц.м., то получится

Умножив это на 1/2M и усреднив, получим

[Мы воспользовались тем, что (mA+mB)/М=1.] А чему равно ? (Хорошо бы, чтобы это было равно нулю!) Чтобы найти это среднее, используем наше предположение, что относительная скорость w=vA-vB не предпочитает какое-то одно определенное направление остальным, т. е. средняя составляющая вдоль любого направления равна нулю. Мы предполагаем, следовательно, что

Но что такое w·vц.м.? Это скалярное произведение, равное

Далее, поскольку =, то первый и последний члены взаимно уничтожаются, и мы получаем

Итак, если mА ≠mB , то =0, а это означает, что жесткому движению всей молекулы, рассматриваемой как одна частица массы М, соответствует средняя кинетическая энергия, равная 3/2kT.

Одновременно мы доказали, что средняя кинетическая энергия внутреннего движения двухатомной молекулы, если не учитывать движения центра масс, равна 3/2kT! Ведь полная кинетическая энергия отдельных частей молекулы равна 1/2mAvA2+1/2mBvB2, а среднее ее значение — это 3/2kT+3/2kT, или 3kT. Кинетическая энергия движения центра масс равна 3/2kT, так что средняя кинетическая энергия вращательного и колебательного движений двух атомов внутри молекулы — это разность этих величин, 3/2kT.

Теорема о средней энергии центра масс — это весьма общая теорема: для каждого объекта, рассматриваемого как единое целое, независимо от того, действуют на этот объект силы или нет, средняя кинетическая энергия каждого независимого движения равна 1/2kT. Эти «независимые направления движения» иногда называют степенями свободы системы. Число степеней свободы молекулы, составленной из r атомов, равно 3r, потому что для определения положения каждого атома нужны три координаты. Полную кинетическую энергию молекулы можно представить либо как сумму кинетических энергий отдельных атомов, либо как сумму кинетической энергии движения Центра масс и кинетической энергии внутренних движений. Последнюю иногда можно представить как сумму кинетической энергии вращений и кинетической энергии колебаний, но это можно сделать только приближенно. Наша теорема, если применить ее к r-атомной молекуле, гласит, что средняя кинетическая энергия молекулы равна 3/2rkT дж, из которых 3/2kT — кинетическая энергия движения молекулы как целого, а остаток 3/2(r-1)kT — это внутренняя кинетическая энергия вращений и колебаний.

 

Глава 40 ПРИНЦИПЫ СТАТИСТИЧЕСКОЙ МЕХАНИКИ

 

§ 1. Экспоненциальная атмосфера

Мы уже изучали некоторые свойства большого числа сталкивающихся атомов. Наука, которая занимается этим, называется кинетической теорией, и она описывает свойства вещества, рассматривая, как сталкиваются атомы. Мы утверждаем, что все свойства вещества в целом можно объяснить, рассматривая движение отдельных его частей.

Пока мы ограничимся случаем теплового равновесия, т. е. всего лишь подклассом всех явлений природы. Законы механики, применяемые в условиях теплового равновесия, получили название статистической механики, и в этой главе вы немного познакомитесь с некоторыми основными теоремами этой науки.

Одна теорема статистической механики вам уже известна. Согласно этой теореме, для любого движения при абсолютной температуре Т средняя кинетическая энергия каждого независимого движения (каждой степени свободы) равна 1/2kT. После этого нам становится кое-что известно о среднем квадрате скорости атомов. Теперь нам необходимо узнать чуть побольше о координатах атомов, чтобы выяснить, много ли их находится при тепловом равновесии в той или иной точке пространства, а также немного подробнее изучить распределение атомов по скоростям. Хотя мы знаем, чему равен средний квадрат скорости, мы все же не можем ответить на вопрос, сколько атомов обладают скоростью, в три раза большей, чем корень из среднего квадрата скорости, или скоростью, равной одной четверти корня из среднего квадрата скорости. А вдруг все атомы имеют одинаковую скорость?

Итак, вот два вопроса, на которые мы попытаемся дать ответ: 1) Как атомы располагаются в пространстве, когда на них действуют силы? 2) Каково распределение атомов по скоростям?

Заметим, что это два совершенно независимых вопроса и что распределение по скоростям всегда одинаково. Этого можно было ожидать после того, как мы выяснили, что средняя кинетическая энергия степени свободы всегда равна 1/2kT, независимо от того, какие силы действуют на молекулы. Распределение по скоростям молекул не зависит от сил, потому что силы не влияют на частоту столкновений.

Давайте начнем с примера распределения молекул в атмосфере, подобной той, в которой мы живем, но без ветра или других каких-либо возмущений.

Предположим, что мы имеем дело с довольно высоким столбом газа, находящегося в тепловом равновесии (не так, как в настоящей атмосфере; в ней, как известно, по мере подъема вверх становится холоднее). Укажем здесь, что нарушение равновесия в случае разницы температур на разных высотах можно продемонстрировать, поместив в столб газа металлический стержень так, что его концы соприкасаются с маленькими шариками (фиг. 40.1).

Фиг. 40.1. Равновесие в атмосфере с постоянной температурой. Давление на высоте h должно превосходить давление на высоте h+dh на вес заключенного между этими уровнями газа. Стержень и шарики выравнивают температуру.

Нижние шарики, получая от молекул газа энергию 1/2kT, передают ее через стержень верхним шарикам и встряхивают их; верхние шарики в свою очередь будут встряхивать соприкасающиеся с ними наверху молекулы. В конце концов, конечно, температура на разных высотах гравитационного поля станет одинаковой.

Нам предстоит найти закон, по которому происходит разрежение атмосферы по мере подъема вверх, когда температура на всех высотах одинакова. Если N — полное число молекул в объеме V газа с давлением Р, то PV=NkT, или Р=nkT, где n — число молекул в единичном объеме. Иначе говоря, если известно число молекул в единичном объеме, то известно и давление, и наоборот: давление и плотность пропорциональны друг другу, ведь температура в нашем случае постоянна. Но давление не может быть постоянным: с уменьшением высоты оно должно возрастать, потому что нижнему слою приходится, так сказать, выдерживать вес всех расположенных сверху атомов. Теперь можно определить, как давление меняется с высотой. Если на высоте h выделить площадку единичной площади, то на эту площадку снизу будет действовать сила, равная давлению Р. Если бы не было силы тяжести, то на площадку на высоте h+dh действовала бы сверху вниз точно такая же сила. Но в нашем случае это не так: действующая снизу сила должна превосходить силу, действующую сверху, на величину, равную весу газа, заключенного между слоями h и h+dh. На каждую молекулу действует сила тяжести mg, где g — ускорение силы тяжести. В интересующем нас слое находится ndh молекул. Это приводит к такому дифференциальному уравнению: Ph + dh -Ph =dP=-mgndh. Поскольку Р=nkT, а Т — постоянная, то можно избавиться или от Р, или от n. Исключим из уравнений Р; тогда получим

Это дифференциальное уравнение говорит нам, как убывает плотность по мере увеличения высоты.

Мы располагаем теперь дифференциальным уравнением для плотности частиц n, которая меняется с высотой, но меняется так, что производная плотности пропорциональна себе самой. Функция, производная которой пропорциональна себе самой,— это экспоненциальная функция и, значит, решение дифференциального уравнения имеет вид

(40.1)

Здесь постоянная интегрирования n0— плотность на высоте h=0 (которую можно задать произвольно); с высотой плотность экспоненциально убывает.

Заметим, что если имеется несколько сортов молекул с разными массами, то число их убывает по разным экспонентам. Число более тяжелых молекул убывает с высотой быстрее, чем число легких молекул. Поэтому можно ожидать, что раз кислород тяжелее азота, то по мере подъема вверх относительное содержание азота в атмосфере (смеси азота и кислорода) будет возрастать. В нашей атмосфере, во всяком случае на доступных высотах, этого фактически не происходит, ибо вследствие воздушных возмущений газы вновь перемешиваются. Ведь это же не изотермическая атмосфера. Тем не менее на больших высотах преобладают очень легкие газы, например водород, так как молекулы легких газов способны забраться на такую высоту, где все остальные экспоненты уже вымрут (фиг. 40.2).

Фиг. 40.2. Нормированная плотность как функция высоты в гравитационном поле Земли для кислорода и водорода при постоянной температуре.

 

§ 2. Закон Больцмана

Отметим здесь тот факт, что числитель показателя экспоненты в равенстве (40.1) — это потенциальная энергия атома. Поэтому можно в нашем случае сформулировать закон следующим образом: плотность в каждой точке пропорциональна

где п.э. — потенциальная энергия отдельного атома.

Возможно, что это случайность и этот закон справедлив только в частном случае однородного гравитационного поля. Однако можно показать, что это весьма общее утверждение. Предположим, что на молекулы газа действуют какие-то иные, не гравитационные, силы. Например, молекулы обладают электрическим зарядом, а тогда они реагируют на электрическое поле или на другой заряд, притягивающий их. А может быть, в результате взаимного притяжения атомов друг к другу или к стенкам, или к какому-нибудь твердому телу, или еще к чему-то существуют какие-то силы притяжения, которые зависят от взаимного расположения молекул и действуют на все молекулы. Предположим теперь для простоты, что все молекулы одинаковы и что сила действует на каждую отдельную молекулу, так что полная сила, действующая на произвольно выделяемую часть газа, равна просто произведению числа молекул на силу, действующую на одну молекулу. Дело совсем упростится, если выбрать систему координат так, что сила F будет действовать вдоль оси х.

Так же, как и раньше, рассечем газ двумя параллельными плоскостями, промежуток между которыми равен dx. Тогда сила, действующая на каждый атом, умноженная на число атомов в 1 см3 (обобщение прежнего nmg) и умноженная на dx, должна сбалансировать изменение давления: Fndx=dP=kTdn. Или, придав этому закону другую форму, которая пригодится позднее, запишем:

(40.2)

Теперь заметим, что —Fdx — это работа, которую надо совершить для переноса молекулы из х в х+dx, и если сила F произошла из потенциала, т. е. работу можно описывать с помощью потенциальной энергии, то нужную нам величину можно считать изменением потенциальной энергии (п. э.). Отрицательное изменение потенциальной энергии — это произведенная работа Fdx, так что d(lnn)=-d(п. э.)/kT, или после интегрирования

(40.3)

Таким образом, то, что нам удалось заметить в частном случае, справедливо вообще. (А что если F не происходит из потенциала? Тогда (40.2) просто-напросто не имеет решения. В этом случае, после того как какой-нибудь атом опишет замкнутый путь, вдоль которого полная работа не равна нулю, энергия либо прибавится, либо убавится и равновесие никогда не установится. Температурное равновесие невозможно, если внешние силы, действующие на газ, не консервативны.) Уравнение (40.3) известно под названием закона Больцмана. Это еще один из принципов статистической механики: вероятность найти молекулу в заданной точке заданной пространственной конфигурации изменяется экспоненциально, причем показатель экспоненты состоит из потенциальной энергии в заданной пространственной конфигурации, взятой с обратным знаком и деленной на kT.

Таким образом, мы знаем кое-что о распределении молекул. Предположим, что в нашем распоряжении имеется плавающий в жидкости положительный ион; он притягивает окружающие его отрицательные ионы. Много ли их окажется на разных расстояниях от положительного иона? Если нам известно, как зависит от расстояния потенциальная энергия, то отношение чисел ионов на разных расстояниях определяется полученным нами законом. Этому закону можно найти еще много других применений.

 

§ 3. Испарение жидкости

В менее элементарной статистической механике пытаются решить следующую важную задачу. Предположим, что имеется совокупность притягивающихся друг к другу молекул и сила между любыми двумя молекулами, скажем i-й и j-й, зависит только от расстояния между ними rij и может быть представлена в виде производной от потенциальной энергии V(rij). На фиг. 40.3 показан возможный вид такой функции.

Фиг. 40.3. Кривая потенциальной энергии для двух молекул. Потенциальная энергия зависит только от расстояний.

Если r>r0, то при сближении молекул энергия уменьшается, поэтому молекулы притягиваются; если же молекулы сближаются еще теснее, энергия очень резко возрастает, значит, на малых расстояниях молекулы сильно отталкиваются. Таково в общих чертах поведение молекул.

Предположим теперь, что мы заполнили этими молекулами какой-то ящик и хотим знать, как они там уместятся в среднем. На это даст ответ выражение ехр(-п. э./kT). В этом случае полная потенциальная энергия, если предположить, что молекулы взаимодействуют только попарно, равна сумме всех парных энергий (в более сложных случаях могут встретиться и тройные силы, но электрические силы, например, парные). Поэтому вероятность того, что молекулы образуют конфигурацию, характеризуемую заданными комбинациями расстояний rij , пропорциональна

Если температура очень высока, так что kT≫|V(r0)|, то экспонента почти всюду мала, и вероятность найти молекулу в том или ином месте почти не зависит от расстояния до других молекул. Рассмотрим случай двух молекул; в этом случае ехр (—п.э./kT) будет вероятностью найти молекулы на расстоянии r друг от друга. Ясно, что вероятность максимальна тогда, когда потенциал наиболее отрицателен, а когда потенциал стремится к бесконечности, вероятность почти равна нулю (это происходит на очень малых расстояниях). Это означает, что у атомов газа нет шансов столкнуться друг с другом, уж очень сильно они отталкиваются. Но очень велики шансы найти эти молекулы (если отнести вероятность к единичному объему) вблизи точки r0. Здесь вероятность больше, чем в других точках, но насколько больше — это зависит от температуры. Если температура очень велика по сравнению с разностью энергий в точках r=r0 и r=∞, то экспонента всегда почти равна единице. Это случай, когда средняя кинетическая энергия (она порядка kT) значительно превосходит потенциальную энергию. Силы тогда мало что значат. Но с падением температуры вероятность найти молекулы на расстоянии, близком к r0, резко возрастает по сравнению с вероятностью найти молекулы в любом другом месте; и в самом деле, если kT много меньше |V(r0)|, то около r0 экспонента имеет довольно большой положительный показатель. Другими словами, при заданном объеме молекулы предпочитают быть на расстоянии минимальной энергии, а не очень далеко друг от друга. По мере падения температуры атомы сближаются, сбиваются в кучу, объединяются в жидкости, в твердые тела и молекулы, а если их подогреть, то они испаряются.

Если бывает необходимо точно описать, как происходит испарение, или вообще уточнить, как молекулы ведут себя в данных обстоятельствах, то поступать следует так. Прежде всего нужно как можно точнее узнать закон взаимодействия молекул V(r). Как это сделать — безразлично: можно вычислить потенциал с помощью квантовой механики или установить закон взаимодействия экспериментально. Но если даже закон взаимодействия молекул известен, нужно все же учесть, что дело идет о миллионах молекул и нам еще придется хватить горя при изучении функции ехр(—∑Vij /kT). Все же удивительно, что функция так проста и все как будто ясно, поскольку известен точный потенциал взаимодействия, а дело это оказывается невероятно сложным: трудность заключается в ужасающе большом числе переменных.

Но вопрос захватывающе интересен. Это один из примеров того, что называют «задачей многих тел», и он содержит много поистине увлекательных вещей. Одна-единственная формула, которую мы получим, решив задачу, должна содержать все детали, например переход газа в твердое состояние или возможные кристаллические строения твердого тела. Многие пытались ее сосчитать, но математические трудности уж очень велики, и дело не в трудности вывода общего закона, а просто в том, чтобы справиться с огромным числом переменных.

Вот и все, что касается распределения частиц в пространстве. На этом, собственно, и кончается классическая статистическая механика, ибо если нам известны силы, то в принципе мы можем найти пространственное распределение, а распределение скоростей находится сразу на все случаи жизни, оно не будет меняться от случая к случаю. Основная задача состоит в получении более конкретной информации из нашего формального решения: это и является основным занятием классической статистической механики.

 

§ 4. Распределение молекул по скоростям

Обсудим теперь распределение молекул по скоростям, потому что интересно, а иногда и полезно знать, какая часть молекул движется с той или иной скоростью. Чтобы выяснить это, можно использовать те знания, которые мы приобрели, когда изучали распределение газа в атмосфере. Мы считаем газ идеальным; мы предполагали это, пренебрегая взаимным притяжением атомов при расчете потенциальной энергии. В наш первый пример мы включили лишь потенциальную энергию силы тяжести. Если бы между атомами существовали взаимные силы, то нам, конечно, пришлось бы написать что-нибудь более сложное. Но мы по-прежнему будем предполагать, что между атомами никаких сил нет, и на момент даже забудем о столкновениях; потом мы попытаемся найти этому оправдание. Мы видим, что на высоте h находится гораздо меньше молекул, чем на высоте 0 (фиг. 40.4); согласно формуле (40.1), число их экспоненциально убывает с высотой.

Фиг. 40.4. Высоты h достигают только те молекулы, скорость которых на высоте h=0 достаточно велика.

Но почему же на большей высоте меньше молекул? Разве не все молекулы, живущие на высоте 0, появляются на высоте h? Нет! Потому что на высоте 0 есть молекулы, движущиеся слишком медленно, и они не способны взобраться на потенциальную гору до высоты h. Вот и ключ к решению задачи о распределении молекул по скоростям; ведь, зная равенство (40.1), мы знаем число молекул, скорость которых слишком мала для достижения высоты h. Их ровно столько, чтобы создать нужное падение плотности при увеличении h.

Давайте сформулируем все поточнее: подсчитаем, сколько молекул проходит снизу вверх через плоскость h=0 (называя заданный уровень нулевой высотой, мы вовсе не считаем, что здесь пол, просто это удобнее нам для начала отсчета, и на отрицательной высоте может находиться газ). Эти молекулы газа движутся во всех направлениях, и некоторые из них проходят через нашу плоскость; таким образом, в любой момент сквозь плоскость снизу вверх проходит известное число молекул в секунду с заданной скоростью. Затем отметим следующее: если через u обозначить скорость, необходимую для того, чтобы подняться на высоту h (кинетическая энергия mu2/2=mgh), то число молекул в секунду, поднимающихся с нижней плоскости строго вверх и имеющих составляющую скорости, большую чем u, в точности равно числу молекул, пересекающих верхнюю плоскость с любой вертикальной составляющей скорости. Те молекулы, вертикальная скорость которых не превышает u, не достигают верхней плоскости. Таким образом,

Но число молекул, пересекающих h с любой скоростью, большей нуля, меньше числа молекул, пересекающих нижний уровень с любой скоростью, большей нуля, хотя бы потому, что внизу больше атомов. Вот и все, что нам нужно. Мы уже знаем, что распределение молекул по скоростям на всех высотах одинаково, ведь мы уже выяснили, что температура во всей атмосфере одинакова. Но поскольку распределение скоростей всюду одинаково и число атомов, пересекающих нижний уровень, больше, то ясно, что отношение n>0(h) (числа атомов, пересекающих высоту h с положительной скоростью) и n>0(0) (числа атомов, пересекающих с положительной скоростью высоту 0) равно отношению плотностей на этих высотах, т. е. ехр(—mgh/kT). Но n>0(h)=h> u (0), поэтому

поскольку 1/2mu2=mgh. Теперь скажем это своими словами: число молекул, пересекающих за 1 сек единичную площадь на высоте 0 с вертикальной составляющей скорости, превышающей u, равно произведению числа молекул, пересекающих эту площадку со скоростью, большей нуля, на ехр(-mu2/2kT).

Это верно не только для произвольной высоты 0, но и для любой другой высоты, поэтому распределение по скоростям одинаково повсюду! (Окончательный результат не включает высоты h, она появляется только в промежуточных рассуждениях.) Это общая теорема о распределении по скоростям. В ней утверждается, что если в столбе газа просверлить крохотную дырочку, ну совсем малюсенькую, так что столкновения там будут редки и длина пробега молекул между столкновениями будет много больше диаметра дырочки, то молекулы будут вылетать из нее с разными скоростями, но доля частиц, вылетающих со скоростью, превышающей и, равна ехр(-mu2/2kT).

Теперь вернемся к вопросу о том, можно ли пренебрегать столкновениями. Почему это не имеет значения? Мы могли бы повторить все наши доводы, используя не конечную высоту h, а бесконечно малую высоту h, столь малую, что для столкновений между высотами 0 и h было бы слишком мало места. Но это не обязательно: наши доводы, очевидно, основаны лишь на анализе значений энергий и на сохранении энергии; при столкновениях же происходит обмен энергиями среди молекул. Но нам довольно безразлично, следим ли мы за одной и той же молекулой, раз происходит лишь обмен энергиями с другой молекулой. И получается, что если мы даже сделаем это достаточно тщательно (а такую работу тщательно проделать, конечно, труднее), то результат будет тот же.

Интересно, что найденное нами распределение по скоростям имеет вид

(40.4)

Этот способ описания распределения по скоростям —когда подсчитывается число молекул, проходящих через выделенную площадку с заданной минимальной z-составляющей скорости,— отнюдь не самый удобный. Например, чаще хотят знать, сколько молекул в заданном объеме газа движется, имея z-составляющую скорости между двумя заданными значениями, а это, конечно, из (40.4) сразу не получишь. Поэтому придадим нашей формуле удобную форму, хотя то, что мы получили, — это весьма общий результат. Заметим, что невозможно утверждать, что любая молекула в точности обладает той или иной наперед заданной скоростью; ни одна из них не движется со скоростью, в точности равной 1,7962899173 м/сек. Итак, чтобы придать нашему утверждению какой-то смысл, мы должны спросить, сколько молекул можно найти в заданном интервале скоростей. Нам придется говорить о том, как часто встречаются скорости в интервале между 1,796 и 1,797 и т. п. Выражаясь математически, пусть f(u)du будет долей всех молекул, чьи скорости заключены в промежутке u и u+du, или, что то же самое (если du бесконечно мало), долей всех молекул, имеющих скорость и с точностью до du. На фиг. 40.5 представлена возможная форма функции f(u), а заштрихованная часть ширины du и средней высоты f(u) — это доля молекул f(u)du.

Таким образом, отношение площади заштрихованного участка ко всей площади под кривой равно относительному числу молекул со скоростью и внутри отрезка du.

Фиг. 40.5. Функция, распределения скоростей. Заштрихованная площадь равна f(u)du — это относительное число частиц, скорости которых заключены внутри отрезка du около точки u.

Если определить f(u) так, что относительное число молекул будет просто равно площади заштрихованного участка, то полная площадь под кривой — это все 100% молекул, т. е.

(40.5)

Теперь остается только найти это распределение, сравнив его с результатом доказанной ранее теоремы. Сначала надо выяснить, как выразить через f(u) число молекул, проходящих за 1 сек через заданную площадку со скоростью, превышающей u?

Это число не равно интегралу u∫∞f(u)du (хотя это первое, что приходит в голову), ведь нас интересует число молекул, проходящих через площадку за секунду. Более быстрые молекулы будут пересекать площадку, так сказать, чаще, чем более медленные, поэтому, чтобы найти число проходящих молекул, надо умножить плотность молекул на скорость. (Мы уже обсуждали это в предыдущей главе, когда подсчитывали число столкновений.)

Полное число молекул, проходящих через поверхность за время t, равно числу молекул, способных достигнуть поверхности, а это молекулы, проходящие к поверхности с расстояния ut. Таким образом, число молекул, достигающих площадки, определяется не просто числом молекул, движущихся с данной скоростью, а равно этому числу, отнесенному к единице объема, и умноженному на расстояние, которое они пройдут, прежде чем достигнут площадки, сквозь которую они, по-видимому, должны пройти, а это расстояние пропорционально u. Значит, нам предстоит вычислить интеграл от произведения и на f(u)du, взятый от u до бесконечности, причем мы уже знаем, что этот интеграл обязательно должен быть пропорционален ехр(-mu2/2kT), а постоянную пропорциональности еще надо определить:

(40.6)

Если теперь продифференцировать интеграл по u, то мы получим подынтегральное выражение (со знаком минус, потому что u — это нижний предел интегрирования), а дифференцируя правую часть равенства, мы получим произведение u на экспоненту (и на некоторую постоянную). Сократим в обеих частях и, и тогда

(40.7)

Мы оставили в обеих частях равенства du, чтобы помнить, что это распределение; оно говорит нам об относительном числе молекул, имеющих скорость между u и u+du.

Постоянная С должна определиться из условия равенства интеграла единице в согласии с уравнением (40.5). Можно доказать, что

Используя это обстоятельство, легко найти С=√(m/2πkT).

Поскольку скорость и импульс пропорциональны, можно утверждать, что распределение молекул по импульсам, отнесенное к единице импульсной шкалы, также пропорционально ехр(-к.э./kT). Оказывается, что эта теорема верна также в теории относительности, если только формулировать ее в терминах импульсов, тогда как в терминах скоростей это уже не так; поэтому сформулируем все в терминах импульсов:

(40.8)

Это значит, что мы установили, что вероятности, определяемые энергиями разного происхождения (и кинетической и потенциальной), в обоих случаях выражаются одинаково: ехр(-энергия/kT); таким образом, наша замечательная теорема приобрела форму, весьма удобную для запоминания.

Однако пока мы говорили только о «вертикальном» распределении скоростей. Но мы можем спросить, какова вероятность того, что молекула движется в другую сторону? Конечно, эти распределения связаны друг с другом и можно получить полное распределение, исходя из какого-то одного, ведь полное распределение зависит только от квадрата величины скорости, а не от ее z-составляющей. Распределение по скоростям не должно зависеть от направления и определяться только функцией u2 — вероятностью величины скорости. Нам известно распределение z-составляющей, и мы хотим получить отсюда распределение других составляющих. В результате полное распределение по-прежнему пропорционально ехр(-к.э./kT), только теперь кинетическая энергия состоит из трех частей: mvx 2/2, mvy 2/2 и mvz 2/2, суммируемых в показателе экспоненты. А можно записать это и в виде произведения:

(40.9)

Вы можете убедиться в том, что эта формула верна, ибо, во-первых, распределение зависит только от v2 и, во-вторых, вероятности данных vz получаются после интегрирования по всем vx и vy и это должно привести к (40.7). Но обоим этим требованиям удовлетворяет только функция (40.9).

 

§ 5. Удельные теплоемкости газов

Посмотрим теперь, как можно проверить теорию и оценить, насколько хороша классическая теория газов. Мы уже говорили, что если U—внутренняя энергия N молекул, то формула pV=NkT=(γ-1)U иногда и для некоторых газов может оказаться правильной. Мы знаем, что для одноатомного газа правая часть равна 2/3 кинетической энергии движения центров масс атомов. В случае одноатомного газа кинетическая энергия равна внутренней энергии, поэтому γ-1==2/3.

Но предположим, что мы столкнулись с более сложной молекулой, которая может вращаться и колебаться, и предположим (в классической механике это так), что энергии внутренних движений также пропорциональны kT. Поэтому при заданной температуре молекула, кроме кинетической энергии kT, имеет внутреннюю энергию колебания и вращения. Тогда полная энергия U включает не только кинетическую энергию, но и вращательную энергию и мы получаем другие значения у. Наилучший способ измерения γ — это измерение удельной теплоемкости, характеризующей изменение энергии при изменении температуры. К этому способу мы еще вернемся, а пока предположим, что нам удалось экспериментально определить γ с помощью кривой PVγ, соответствующей адиабатическому сжатию.

Попробуем вычислить γ для ряда частных случаев. Прежде всего для одноатомных газов полная энергия U есть не что иное, как кинетическая энергия, и в этом случае, как мы уже знаем, γ равно 5/3. В качестве примера двухатомных газов рассмотрим кислород, водород, пары иода и т. д. и предположим, что двухатомный газ можно представить как собрание пар атомов, между которыми действуют силы, похожие на те, что изображены на фиг. 40.3. Можно также предположить, и оказывается, что это вполне законно, что при температурах, обычных для диатомных газов, пары атомов стремятся удалиться друг от друга на расстояние r0 (расстояние минимума потенциальной энергии). Если бы это было не так, и вероятность не очень сильно зависела от удаления от равновесной конфигурации, то мы обнаружили бы, что кислород есть смесь сравнимых количеств O2 и одиночных атомов кислорода. А мы знаем, что в кислороде присутствует очень мало одиночных атомов кислорода, а это означает, что глубина потенциальной ямы значительно больше kT, и это как раз мы и предполагали. Но раз атомы, составляющие молекулу, прочно закреплены на расстоянии r0, то нам понадобится лишь часть потенциальной кривой вблизи минимума, которую в этом случае можно приближенно заменить параболой. Параболический потенциал соответствует гармоническому осциллятору, и, в самом деле, отличной моделью молекулы кислорода могут служить два соединенных пружинкой атома.

Но чему же равна полная энергия молекулы при температуре Т? Мы знаем, что кинетическая энергия каждого из атомов равна 3/2 kT, так что кинетическая энергия обоих атомов равна 3/2kT+3/2kT. Можно распределить эту энергию иначе: тогда те же самые 3/2 плюс 3/2 будут выглядеть как кинетическая энергия центра масс (3/2), кинетическая энергия вращения (2/2) и кинетическая энергия колебаний (1/2). Известно, что на долю кинетической энергии колебаний приходится 1/2, потому что это одномерное движение, а каждой степени свободы соответствует 1/2kT. Обращаясь к вращениям, мы можем выделить две оси вращения, что соответствует двум независимым движениям. Мы представляем себе атомы в виде точек, которые не могут вращаться вокруг соединяющей их линии. Но на всякий случай запомним о таком предположении, потому что если мы упремся где-то в тупик, то, может быть, здесь обнаружится корень зла. Нас должен интересовать еще и другой вопрос: чему равна потенциальная энергия колебаний, велика ли она? Средняя потенциальная энергия гармонического осциллятора равна средней кинетической энергии, т.е. также 1/2kT. Полная энергия молекулы U=7/2kT, или kT=2/7U на атом. Это означает, что γ равно 9/7, а не 5/3, т. е. γ=1,286.

Можно сравнить эти числа с действительно измеренными значениями γ, приведенными в табл. 40.1. Взгляните сначала на гелий; это одноатомный газ, и значение γ очень близко к 5/3; отклонение от этого значения, вероятно, есть просто следствие экспериментальных неточностей, хотя при столь низких температурах между атомами могут появиться силы взаимодействия. Криптон и аргон — еще два одноатомных газа — также дают согласующиеся значения в пределах ошибки эксперимента.

Таблица 40.1 ИЗМЕРЕННЫЕ ЗНАЧЕНИЯ γ ДЛЯ РАЗЛИЧНЫХ ГАЗОВ

Перейдем к двухатомным газам. Тут же обнаружится, что значение γ для водорода, равное 1,404, не согласуется с теоретическим значением 1,286. Очень близкое значение дает и кислород, 1,399, но с теоретическим это снова не согласуется. Для йодистого водорода γ равно просто 1,40. Начинает казаться, что мы нашли общий закон: для двухатомных молекул γ равно 1,40. Но нет, поглядите дальше. Для брома мы получаем 1,32, а для иода 1,30. Поскольку 1,30 довольно близко к 1,286, то можно считать, что экспериментальное значение γ для иода согласуется с теоретическим, а кислород представляет собой исключение. Это уже неприятно. То, что верно для одной молекулы, неверно для другой, и нам, по-видимому, надо проявить хитроумие, чтобы объяснить это.

Давайте рассмотрим еще более сложные молекулы, состоящие из большого числа частей, например С2Н6 — этан. Молекула атома состоит из восьми разных атомов, и все они качаются и вращаются в самых разных комбинациях, так что полная величина внутренней энергии должна складываться из огромного числа kT, по крайней мере 12kT только для одной кинетической энергии, поэтому γ-1 должно быть очень близко к нулю, а γ почти в точности равно единице. И действительно, значение γ для этана меньше, чем в предыдущих случаях, но 1,22— не так уж мало, во всяком случае, больше 11/12, чему должно быть равно γ, если учесть только кинетическую энергию. Этого вообще нельзя понять!

Ну а дальше совсем плохо, ибо двухатомную молекулу нельзя рассматривать как абсолютно жесткую, даже в пределе. Даже если связь между атомами так сильна, что они не могут и пошевелиться, все равно нужно считать, что они колеблются. Колебательная энергия всегда равна kT, поскольку она не зависит от силы связи. Но если представить себе двухатомную молекулу абсолютно жесткой, остановить колебания и выбросить эту степень свободы, то мы получим U=5/2 kT и γ=1,40 для двухатомных газов. Казалось бы, это подходит и для Н2, и для O2. Но вопрос по-прежнему остается открытым, потому что γ и для кислорода, и для водорода зависит от температуры! На фиг. 40.6 показаны результаты нескольких измерений. Для Н2 значение γ изменяется от 1,6 при -185°С до 1,3 при 2000°С. В случае водорода изменения γ еще больше, но и в случае кислорода γ явно стремится возрасти при падении температуры.

Фиг. 40.6. Экспериментальные значения γ как функция температуры для водорода и кислорода. Классическая теория предсказывает не зависящее от температуры значение γ=1,286.

 

§ 6. Поражение классической физики

Итак, приходится сказать, что мы натолкнулись на трудности. Можно соединить атомы не пружинкой, а чем-нибудь другим, но оказывается, что это только увеличит значение γ. Если пустить в ход другие виды энергии, то вопреки фактам γ очень приблизится к единице. Все известное нам из классической теоретической физики только ухудшает положение. Нам известно, например, что каждый атом содержит электроны, и атомные спектры обязаны своим существованием внутренним движениям электронов; каждый электрон должен иметь по крайней мере 1/2kT кинетической энергии и еще кое-что из потенциальной, а когда все это складывается, то γ становится еще меньше. Просто смешно. И явно что-то не так.

Первая замечательная работа по динамической теории газов была сделана Максвеллом в 1859 г. Исходя из идей, с которыми мы только что познакомились, он сумел точно объяснить очень много известных явлений, таких, как закон Бойля, теорию диффузии, вязкость газов и другие вещи, о которых мы еще будем говорить в следующей главе. Подводя итог всем этим великим достижениям, он писал: «Наконец, установив необходимое соотношение между поступательным и вращательным движением несферических частиц (он имел в виду теорему о 1/2kT), мы доказали, что в системе из таких частиц не может выполняться известное соотношение между двумя теплоемкостями». Он говорит здесь о γ (позднее мы увидим, что эта величина связана с двумя разными способами измерения удельной теплоемкости) и замечает, что никто не в состоянии дать верного ответа.

В прочитанной десять лет спустя лекции он сказал: «Я должен изложить Вам то, что я считаю наибольшей трудностью, стоящей перед молекулярной теорией». Это было первое указание на ложность законов классической физики, первое предчувствие того, что существует нечто, необъясненное с самого начала, ибо опыту противоречила строго доказанная теорема.

Примерно в 1890 г. Джинс заговорил вновь об этой загадке. Часто приходится слышать, что физики конца девятнадцатого столетия были уверены в том, что им известны все существенные законы природы и дело стоит лишь за тем, чтобы получить нужные числа с максимальным числом десятичных знаков. Кто-то это сказал, а остальные повторяют. Но если покопаться в физических журналах тех лет, то станет ясно, что почти каждый из них в чем-нибудь да сомневался. Джинс говорил об этой проблеме как о загадочном явлении, из которого как будто бы следует, что по мере падения температуры некоторые виды движения «замерзают».

Если бы мы могли предположить, что колебаний при низких температурах нет и возникают они только при высоких температурах, то можно было бы представить существование такого газа, у которого при очень низкой температуре колебательного движения нет совсем, так что γ=1,40, а при высоких температурах возникают колебания и, следовательно, γ убывает. То же самое можно предположить и о вращениях. Если бы можно было избавиться от вращений, скажем, «заморозить» их, понизив достаточно температуру, то стало бы понятно, почему при низких температурах для водорода γ приближается к 1,66. Но как же понять все это? Конечно, оставаясь в рамках классической механики, «замерзающих» движений нельзя объяснить. Все стало на свои места лишь после открытия квантовой механики.

Мы сформулируем без доказательства основные результаты статистической механики, построенной на основе квантовой механики. Напомним, что, согласно квантовой механике, связанная потенциалом система, например осциллятор, имеет дискретный набор уровней энергии, т. е. состояний с различной энергией. Возникает вопрос: как модифицировать статистическую механику, чтобы привести ее в согласие с квантовой механикой? Обратите внимание на интересную деталь: хотя большинство задач квантовой механики сложнее соответствующих задач классической физики, проблемы статистической механики решаются с помощью квантовой теории много проще!

Простенький результат классической механики, что n=n0ехр(-энергия/kT), становится в квантовой теории весьма важной теоремой: если набор молекулярных состояний характеризуется энергиями E0, E1, E2, ..., Ei , ..., то в случае теплового равновесия вероятность найти молекулу в состоянии с энергией Еi пропорциональна ехр(-Ei /kT). Так определяется вероятность пребывания в различных состояниях. Иначе говоря, относительный шанс — вероятность нахождения в состоянии Е1 по сравнению с вероятностью нахождения в состоянии Е0 равен

(40.10)

это, конечно, то же самое, что и

(40.11)

потому что Р1=n1/N, а Р0=n0/N. Таким образом, состояния с большей энергией менее вероятны, чем состояние с меньшей энергией. Отношение числа атомов в верхнем состоянии к числу атомов в нижнем состоянии равно е в степени (разность энергий, деленная на kT, с обратным знаком) — очень простая теорема.

Обратим внимание на то, что уровни энергии гармонического осциллятора отстоят друг от друга на равных расстояниях. Припишем низшему уровню энергию Е0=0 (на самом деле эта энергия немного отличается от нуля, но сдвиг всех уровней на одну и ту же величину не имеет значения), тогда энергия следующего уровня E1=ℏω, затем следует 2ℏω, 3ℏω) и т. д.

А теперь посмотрим, что из этого получится. Предположим, что мы изучаем колебания двухатомной молекулы, которую можно сейчас считать гармоническим осциллятором. Каковы относительные шансы найти молекулу в состоянии Е1, а не в состоянии Е0? Ответ: Отношение шанса найти молекулу в состоянии Е1 к шансу найти эту молекулу в состоянии Е0 равно ехр(-ℏω/kT}. Предположим, что kT много меньше ℏω, т. е. мы находимся в области низких температур. Тогда вероятность обнаружить состояние E1 чрезвычайно мала. Практически все молекулы находятся в состоянии Е0. Если изменить температуру, но по-прежнему поддерживать ее очень малой, то шанс найти молекулу в состоянии Е1=ℏω по-прежнему бесконечно мал — энергия осциллятора все еще почти равна нулю; она не изменяется с температурой, пока температура остается много меньше ℏω. Все осцилляторы находятся в низшем состоянии, их движение эффективно «заморожено», и они не дают вклада в теплоемкость. С помощью данных табл. 40.1 можно установить, что при 100°С, а это равно 373°К (абсолютной температуры), kT много меньше колебательной энергии молекул кислорода и водорода, но сравнимо с колебательной энергией иода. Причина такой разницы в том, что атомы иода гораздо тяжелее атомов водорода и, хотя силы, действующие между атомами иода и водорода, сравнимы, молекула иода столь тяжела, что собственная частота ее колебаний чрезвычайно мала по сравнению с собственной частотой водорода. При комнатной температуре kT таково, что ℏω водорода больше kT, а ℏω иода — меньше. Поэтому классическую колебательную энергию можно обнаружить только у иода.

Если увеличивать температуру газа, начав с очень малых значений Т, когда почти все молекулы находятся в их низшем состоянии, то появляется ощутимая вероятность найти молекулу во втором состоянии, затем в следующем за ним и т. д. Когда много состояний получают заметную вероятность, газ ведет себя более или менее так, как того требует классическая физика, ведь в этом случае систему квантовых состояний трудно отличить от непрерывного распределения энергии, и система может обладать почти любой энергией. Таким образом, при повышении температуры мы снова попадаем в область классической физики, как это видно из фиг. 40.6. Аналогично можно показать, что точно так же квантуются и вращательные состояния атомов, но эти состояния размещены так тесно, что обычно kT больше расстояния между уровнями. В этом случае возбуждено сразу много уровней и вращательная кинетическая энергия системы ведет себя классически. Лишь водород при комнатных температурах ведет себя иначе.

Это первый случай, когда из сравнения с экспериментом обнаружилось, что с классической физикой что-то неблагополучно, мы искали способы уладить все трудности в квантовой механике тем самым путем, каким это происходило на самом деле. Прошло примерно лет 30 или 40, пока не была обнаружена еще одна трудность, и снова в статистической механике, но на этот раз в механике фотонного газа. Новая задача была решена Планком в первые годы нашего столетия.

 

Глава 41 БРОУНОВСКОЕ ДВИЖЕНИЕ

 

§ 1. Равнораспределение энергии

Броуновское движение открыл в 1827 г. ботаник Роберт Броун. Изучая жизнь под микроскопом, он заметил, что мельчайшие частицы цветочной пыльцы пляшут в его поле зрения; в то же время он был достаточно сведущ, чтобы понимать, что перед ним не живые существа, а просто плавающие в воде соринки. Чтобы окончательно доказать, что это не живые существа, Броун разыскал обломок кварца, внутри которого была заполненная водой полость. Вода попала туда много миллионов лет назад, но и в такой воде соринки все продолжали свою пляску. Казалось, что очень мелкие частицы пляшут непрерывно. Позднее было доказано, что это один из эффектов молекулярного движения и понять его качественно можно, представив себе, что мы откуда-то издалека следим за игрой в пушбол. Мы знаем, что под большим мячом движется толпа людей и каждый толкает мяч, куда хочет. Мы не видим отдельных игроков, потому что поле очень далеко от нас, но мяч мы видим и замечаем, что перемещается он очень беспорядочно. Мы уже знаем из разобранных в предыдущих главах теорем, что средняя кинетическая энергия взвешенной в газе или жидкости маленькой частицы равна 3/2kT, даже если эта частица гораздо тяжелее молекул газа. Если она очень тяжела, то и движется она сравнительно медленно, но на самом деле оказывается, что скорость частицы не так уж мала. Конечно, заметить движение частицы не очень легко, потому что средняя кинетическая энергия 3/2kT соответствует скорости около 1 мм/сек, если диаметр частицы равен 1 —2 мк. Такое движение трудно заметить даже под микроскопом, потому что частица постоянно меняет направление своего движения и пойти в какую-нибудь определенную сторону не желает. В конце главы мы посмотрим, далеко ли она может уйти. Этот вопрос впервые был разрешен Эйнштейном в начале нашего столетия.

Между прочим, когда говорят, что средняя кинетическая энергия частицы равна 3/2 kT, то требуют, чтобы этот результат был выведен из кинетической теории, т. е. из законов Ньютона. Мы уже можем получать разные удивительные вещи с помощью кинетической теории, самое интересное — что удается получить так много из столь малого. Конечно, мы не хотим сказать, что законы Ньютона — это «малое», они на самом деле дают все необходимое для решения задачи, просто нам пришлось потрудиться совсем немного. Как же нам удалось так много получить? Просто мы постоянно исходили из очень важного предположения, что если заданная система находится при некоторой температуре в тепловом равновесии, то при той же температуре она будет в равновесии с чем угодно. Скажем, нам хочется посмотреть, как движется частица, если она сталкивается с водой.

Для этого представим, что, кроме воды и частицы, есть еще и газ, состоящий из частиц еще одного сорта —маленьких дробинок, которые, как мы предполагаем, с водой не взаимодействуют и только сильно ударяют по нашей частице. Предположим, что частица ощетинилась острыми шипами и все дробинки наталкиваются на них. Об этом воображаемом газе из дробинок при температуре Т нам известно все — это идеальный газ. Вода — дело сложное, а идеальный газ — он попроще. И вот наша частица находится в равновесии с газом из дробинок. Следовательно, среднее движение частицы должно быть таким, каким ему следует быть вследствие столкновений с атомами, потому что если бы частица двигалась относительно воды с большей скоростью, чем положено, то дробинки, отняв у частицы часть ее энергии, нагрелись бы больше, чем вода. Но ведь мы начали с равных температур и предполагаем, что если равновесие однажды наступило, то оно таким и останется; не может вдруг одна часть системы нагреться, а другая остыть.

Это предположение справедливо и его можно доказать, используя законы механики, но доказательство очень сложно и понять его можно, только хорошо зная механику. С помощью квантовой механики доказать это гораздо легче, чем с помощью классической. Впервые эту теорему доказал Больцман, а мы, приняв, что она верна, можем утверждать, что если частица сталкивается с воображаемыми дробинками, то ее энергия равна 3/2kT. Но этой же самой энергией она должна обладать, если мы удалим дробинки и оставим частицу наедине с водой при такой же температуре. Это странная, но правильная цепь рассуждений.

Кроме движения коллоидных частиц, на которых и было впервые открыто броуновское движение, имеется еще целый ряд других явлений, и не только в лабораторных, но и в других условиях, позволяющих обнаружить броуновское движение. Если бы мы смогли соорудить чрезвычайно тонкое измерительное устройство, скажем, крохотное зеркальце, прикрепленное к тонкой кварцевой нити очень чувствительного баллистического гальванометра (фиг. 41.1), то зеркальце не стояло бы на месте, а непрерывно плясало бы, поэтому если бы мы осветили это зеркальце лучом света и проследили за отраженным пятном, то потеряли бы надежду создать совершенный измерительный инструмент, так как зеркальце все время пляшет. Почему? Потому что средняя кинетическая энергия вращения зеркальца равна 1/2kT.

Фиг. 41.1. Чувствительный зеркальный гальванометр и образец записи шкалы как функция времени. Пучок света из источника L отражается от маленького зеркальца на шкале.

Чему равен средний квадратичный угол качаний зеркальца? Предположим, что мы определили период собственных колебаний зеркальца, стукнув слегка по одной его стороне и наблюдая, как долго будет оно качаться взад и вперед, и пусть нам также известен момент инерции I. Формулу для кинетической энергии вращения мы знаем, это равенство (19.8): Т=1/2Iω2. А потенциальная энергия пропорциональна квадрату угла отклонения, т. е. V=1/2αθ2. Но если мы знаем период колебаний t0 и можем вычислить собственную частоту ω0=2π/t0, то можно и потенциальную энергию записать в виде V=1/2/Iω02θ2. Мы знаем, что средняя кинетическая энергия равна 1/2 kT, но поскольку перед нами гармонический осциллятор, то средняя потенциальная энергия также равна 1/2kT. Следовательно,

(41.1)

Таким образом мы можем рассчитать колебания зеркальца гальванометра и тем самым найти предел точности нашего инструмента. Если нам нужно уменьшить колебания, то следует охладить зеркальце. Но здесь возникает интересный вопрос — в каком месте его охладить? Все зависит от того, откуда оно получает больше «пинков». Если в колебаниях повинна кварцевая нить, то охлаждать нужно ее верхний конец, если же зеркальце находится в газовой среде и раскачивается в основном за счет соударений с молекулами газа, то лучше охладить газ. Итак, практически, если известно, почему происходит затухание колебаний, то оказывается, что имеется всегда какой-то источник флуктуации; к этому вопросу мы еще вернемся.

Те же флуктуации работают, и довольно удивительным образом, в электрических цепях. Предположим, что мы построили очень чувствительный, точный усилитель для какой-нибудь определенной частоты и к его входу подключили резонансную цепь (фиг. 41.2), настроенную на эту же частоту, наподобие радиоприемника, только получше.

Фиг. 41.2. Резонансная цепь с большим Q. а — реальная цепь при температуре T; б — искусственная цепь с идеальным (бесшумным) сопротивлением и «генератором шума».

Предположим, что мы захотели как можно точнее изучить флуктуации, для этого мы сняли напряжение, скажем, с индуктивности и подали его на усилитель. Конечно, во всякой цепи такого рода имеются некоторые потери. Это не идеальная резонансная цепь, но все же очень хорошая цепь, и обладает она малым сопротивлением (на схеме сопротивление показано, надо только помнить, что оно очень мало). А теперь мы хотим узнать, как велики флуктуации падения напряжения на индуктивности? Ответ: Нам известно, что «кинетическая энергия», запасенная катушкой резонансной цепи, равна 1/2LI2 (см. гл. 25). Поэтому среднее значение 1/2 LI2 равно 1/2kT, это дает нам среднее квадратичное значение тока, а отсюда можно определить и среднее квадратичное значение напряжения. Если мы хотим знать падение напряжения на индуктивности, нам пригодится формула VL =iωLI, тогда средний квадрат модуля падения напряжения на индуктивности равен =L2ω02, а полагая 1/2L=1/2kT, получаем

(41.2)

Итак, теперь мы можем рассчитать контур и предсказать, каким в нем будет так называемый шум Джонсона, т. е. шум, связанный с тепловыми флуктуациями!

Но откуда же эти флуктуации берутся? А все из-за сопротивления, точнее говоря, в результате пляски электронов в сопротивлении. Ведь они находятся в тепловом равновесии с остальным материалом сопротивления, а это приводит к флуктуациям плотности электронов. Таким образом они порождают крошечные электрические поля, управляющие резонансной цепью.

Инженеры-электрики объясняют все это иначе. Физически источником шумов служит сопротивление. Однако можно заменить реальную цепь с честным сопротивлением, вызывающим шумы, фиктивной цепью, содержащей маленький генератор, который якобы порождает шумы, а сопротивление теперь будет идеальным — оно уже не шумит. Все шумы теперь исходят от фиктивного генератора. Итак, если нам известны характеристики шума, порождаемого сопротивлением, и у нас для этого имеется подходящая формула, то можно рассчитать, как цепь реагирует на этот шум. Следовательно, нам нужна формула для шумовых флуктуаций. Сопротивление одинаково хорошо порождает шумы всех частот, поскольку оно само отнюдь не резонатор. Резонансная цепь, конечно, «слышит» лишь часть этого шума вблизи определенной частоты, а в сопротивлении заключено много и других частот. Силу генератора можно описать таким образом: выделяемая на сопротивлении средняя мощность, если оно непосредственно соединено с генератором шума, равна /R, где Е — снимаемое с генератора напряжение. Но теперь мы хотим знать подробнее о распределении мощности по частотам. Каждой определенной частоте соответствует очень малая мощность. Пусть P(ω)dω — мощность, которую генератор посылает сопротивлению в интервале частот dω. Тогда можно доказать (мы докажем это для другого случая, но математика и там и тут одинакова), что выделяемая мощность равна

(41.3)

и, таким образом, не зависит от сопротивления.

 

§ 2. Тепловое равновесие излучения

Мы приступаем к обсуждению более сложной и интересной теоремы, суть которой состоит в следующем. Предположим, что у нас имеется заряженный осциллятор, вроде того, о котором мы говорили, когда речь шла о свете. Пусть это будет электрон, колеблющийся в атоме вверх и вниз. А раз он колеблется, то излучает свет. Предположим теперь, что этот осциллятор попал в сильно разреженный газ, состоящий из других атомов, и время от времени эти атомы с ним сталкиваются. Когда в конце концов наступит равновесие, осциллятор приобретает такую энергию, что кинетическая энергия колебаний будет равна 1/2kT, а поскольку это гармонический осциллятор, то полная энергия движения станет равной kT.

Это, конечно, неверно, потому что осциллятор несет электрический заряд, а поскольку он обладает энергией kТ, то, качаясь вверх и вниз, он излучает свет. Поэтому невозможно получить равновесие только самого вещества без того, чтобы заряды не излучали свет, а когда свет излучается, утекает энергия, осциллятор со временем растрачивает энергию kT, а окружающий газ, сталкивающийся с осциллятором, постепенно остывает. Именно таким образом остывает за ночь натопленная с вечера печка, выпуская все тепло на воздух. Прыгающие в ее кирпичах атомы заряжены и непрерывно излучают, а в результате этого излучения танец атомов постепенно замедляется.

Но если заключить все атомы и осцилляторы в ящик, так чтобы свет не смог уйти в бесконечность, тепловое равновесие может наступить. Мы можем поместить газ в ящик, в стенках которого есть и другие излучатели, испускающие свет внутрь ящика, а еще лучше соорудить ящик с зеркальными стенками. Этот пример поможет лучше понять, что произойдет. Итак, мы предполагаем, что все излучение от осциллятора остается внутри ящика. Осциллятор и в этом случае начинает излучать, но довольно скоро он все же соберет свое значение kT кинетической энергии. Происходит это потому, что сам осциллятор будет освещаться, так сказать, собственным светом, отраженным от стенок ящика. Вскоре в ящике будет много света и, хотя осциллятор продолжает излучать, часть света будет возвращаться и возмещать осциллятору потерянную им энергию.

А теперь подсчитаем, насколько должен быть освещен ящик при температуре Т, чтобы рассеяние света на осцилляторе обеспечивало его как раз такой энергией, какая нужна для поддержания излучения. Пусть атомов в ящике совсем немного и находятся они далеко друг от друга, так что наш осциллятор идеальный, не имеющий иного трения, кроме радиационного. Теперь заметим, что при тепловом равновесии осциллятор делает сразу два дела. Во-первых, он излучает, и мы можем подсчитать энергию излучения. Во-вторых, он в возмещение получает точно такое же количество энергии в результате рассеяния на нем света. Поскольку энергия ниоткуда больше притечь не может, то эффективное излучение — это как раз та часть «общего света», которая рассеялась на осцилляторе.

Таким образом, прежде всего мы вычисляем энергию, излучаемую в 1 сек осциллятором с заданной энергией. (Мы позаимствуем для этого в гл. 32, посвященной радиационному трению, несколько равенств и не будем здесь приводить их выводы.) Отношение энергии, излученной за радиан, к энергии осциллятора называется 1/Q [см. уравнение (32.8)] : 1/Q=(dW/dt)/ω0W. Используя величину γ (постоянную затухания), можно записать это в виде 1/Q=γ/ω0, где ω0— собственная частота осциллятора, если γ очень мала, а Q очень велико. Излученная за 1 сек энергия равна

(41.4)

Излученная за 1 сек энергия просто равна произведению γ на энергию осциллятора. Средняя энергия нашего осциллятора равна kT, поэтому произведение γ на kT — это среднее значение излученной за 1 сек энергии:

(41.5)

Теперь нам нужно только узнать, что такое γ. Эту величину легко найти из уравнения (32.12):

(41.6)

где r0=e2/mc2— классический радиус электрона, и мы положили λ=2πс/ω0.

Окончательный результат для средней скорости излучения света вблизи частоты ω0 таков:

(41.7)

Теперь надо выяснить, сильно ли должен быть освещен осциллятор. Освещение должно быть таким, чтобы поглощенная осциллятором энергия (и впоследствии рассеянная) была в точности равна предыдущей величине. Иначе говоря, излученный свет — это свет, рассеянный при освещении осциллятором в полости. Итак, нам остается рассчитать, сколько света рассеивается осциллятором, если на него падает какая-то — неизвестная — доза излучения. Пусть I(ω)dω— энергия света частоты ω в интервале частот dω (ведь у нас нет света точно заданной частоты; излучение распределено по спектру). Таким образом, I(ω) — это спектральное распределение, которое нам надо найти. Это тот цвет огня, который мы увидим внутри печи при температуре Т, если откроем дверцу и заглянем внутрь. Сколько же все-таки света поглотится? Мы уже определяли количество излучения, поглощаемого из заданного падающего пучка света, и выразили его через эффективное сечение. Это соответствует тому, как если бы мы предполагали, что весь свет, падающий на площадку определенной площади, поглощается. Таким образом, полная переизлученная (рассеянная) интенсивность равна произведению интенсивности падающего света I(ω)dω на эффективное сечение σ.

Мы вывели формулу для эффективного сечения [см. уравнение (31.19)], не включающую затухания. Нетрудно повторить этот вывод снова и учесть трение, которым мы тогда пренебрегли. Если это сделать, то, вычисляя эффективное сечение по прежнему образцу, мы получим

(41.8)

Пойдем дальше; σs как функция частоты имеет более или менее заметную величину только для ω около собственной частоты ω0. (Вспомним, что для излучающего осциллятора Q — порядка 108.) Когда ω равна ω0, осциллятор рассеивает очень сильно, а при других значениях ω он почти не рассеивает совсем. Поэтому можно заменить ω на ω0, а ω2-ω02 на 2ω0(ω-ω0); тогда

(41.9)

Теперь почти вся кривая загнана в область около ω=ω0. (Фактически мы не должны делать никаких приближений, но легче иметь дело с интегралом, в котором подынтегральное выражение несколько проще.) Если умножить интенсивность в данном интервале частот на эффективное сечение рассеяния, то получится энергия, рассеянная в интервале dω. Полная рассеянная энергия — это интеграл по всем ω. Таким образом,

(41.10)

Теперь мы положим dWs /dt=3γkT. Но почему здесь стоит 3? Потому что в гл. 32 мы предполагали, что свет поляризован так, что может раскачивать осциллятор. Если бы мы использовали осциллятор, способный раскачиваться только в одном направлении, а свет был бы, скажем, поляризован неверно, то он не рассеивался бы совсем. Поэтому мы должны либо усреднить эффективное сечение рассеяния на осцилляторе, способном раскачиваться только в одном направлении, по всем направлениям падающих пучков и поляризации света в пучке, либо, что легче сделать, представить себе, что наш осциллятор послушно следует за полем, каким бы оно ни было там, где он находится. Такой осциллятор, который одинаково легко раскачивается в любом из трех направлений, имеет среднюю энергию 3kT, потому что у него 3 степени свободы. А раз 3 степени свободы, то надо писать 3γkT.

Займемся теперь интегралом. Предположим, что неизвестное спектральное распределение света I(ω) — это плавная кривая, которая в той узкой области частот, где σs имеет острый максимум, меняется не слишком сильно (фиг. 41.3).

Фиг. 41.3. Сомножители подынтегрального выражения (41.10). Пик — это резонансная кривая 1/[(ω-ω0 )2 +(γ2 /4)]. Множитель I(ω) можно с хорошим приближением заменить на I(ω0 ).

Тогда сколько-нибудь существенный вклад в интеграл дают только частоты, близкие к ω0 и отстоящие от нее на очень малую величину γ. Поэтому, хотя I(ω) неизвестная и, может быть, сложная функция, важно только ее поведение около ω=ω0 и можно заменить плавную кривую еще более ровной — «постоянной» — всюду одной высоты. Иначе говоря, мы просто вынесем I(ω) из-под знака интеграла и назовем это I(ω0). Вынесем за интеграл и остальные постоянные и тогда получим

(41.11)

Интеграл берется от 0 до ∞, но 0 отстоит так далеко от ω0, что кривая за это время идет почти вдоль оси абсцисс, поэтому заменим 0 на -∞, разница небольшая, а интеграл взять легче. Интеграл вида ∫dx/(x2+а2) приводит к арктангенсу. Если взглянуть в справочник, то мы увидим, что он равен π/α. Итак, для нашего случая это 2π/γ. После небольших манипуляций мы получаем

(41.12)

Затем мы подставим сюда формулу (41.6) для γ (мы уже не будем стараться писать ω0; раз это верно для любой ω0, то можно назвать ее просто ω), и формула для I(ω) примет вид

(41.13)

Она и определяет распределение света в горячей печке. Это так называемое излучение абсолютно черного тела. Черного потому, что, если заглянуть в топку печки при абсолютном нуле, она будет черной.

Формула (41.13) задает распределение энергии излучения внутри ящика при температуре Т согласно классической теории. Отметим сначала замечательную особенность этого выражения. Заряд осциллятора, масса осциллятора, все частные его свойства выпали из формулы; ведь если мы достигли равновесия с одним осциллятором, мы должны позаботиться о равновесии и с любым другим осциллятором другой массы, иначе будут неприятности. Таким образом, это важный способ проверки нашей теоремы о том, что равновесие зависит только от температуры, а не от того, что приводит к равновесию. Теперь можно начертить кривую I(ω) (фиг. 41.4).

Фиг. 41.4. Распределение интенсивности излучения черного тела при двух температурах. Сплошные кривые — согласно классической теории; пунктирные — настоящее распределение, 1— paдuo ; 2 — инфракрасное; 3 — видимое; 4 — ультрафиолетовое; 5 — рентгеновские лучи.

Она покажет нам, какова освещенность при разных частотах.

В выражение для интенсивности в ящике на единицу частоты входит, как видно, квадрат частоты; это значит, что если взять ящик при любой температуре, то в нем обнаружится бездна рентгеновских лучей!

Мы знаем, конечно, что это неверно. Когда мы открываем печку и заглядываем в нее, мы не портим глаз рентгеновскими лучами. Дальше — хуже, полная энергия ящика, полная интенсивность, просуммированная по всем частотам, должна быть площадью под этой уходящей в бесконечность кривой. Итак, здесь что-то совсем неверно в самой основе.

Это значит, что классическая теория совершенно непригодна для правильного описания распределения излучения черного тела, так же как и для описания теплоемкостей газов. Физики ходили вокруг этого вывода, рассматривали его с различных точек зрения и не нашли выхода. Это предсказание классической физики. Уравнение (41.13) называется законом Рэлея, предсказано оно классической физикой и до очевидности абсурдно.

 

§ 3. Равномерное распределение и квантовый осциллятор

Только что отмеченная трудность — это еще одна сторона проблемы непрерывности в классической физике, она началась с непорядка в теплоемкостях газов, а потом эта проблема сконцентрировалась на распределении света в черном теле. Конечно, пока теоретики обсуждали эти вещи, производились еще и измерения настоящих кривых. И было установлено, что правильная кривая выглядит так, как пунктирные кривые на фиг. 41.4. Никаких рентгеновских лучей там нет. Если понижать температуру, то кривые приближаются к оси абсцисс примерно так, как того требует классическая теория, но и при низкой температуре опытные кривые тоже в конце обрываются.

Таким образом, начало кривой распределения правильно описывает опыт, а ее высокочастотный конец сбивается с верного пути. Почему же так? Когда Джеймс Джинс размышлял о теплоемкостях газов, он заметил, что движение, совершаемое с большой частотой, «замерзает» при понижении температуры. Значит осциллятор не может обладать средней энергией kT, если температура слишком мала или если частота колебаний слишком велика. А теперь вспомним, как мы выводили (41.13). Все зависело от энергии осциллятора при тепловом равновесии. Когда мы подставляли kT в (41.5), это было то же kT, что и в (41.13), т. е. средняя энергия гармонического осциллятора частоты ω при температуре Т. Классическая физика говорит, что она равна kT, а эксперимент отвечает: Нет! При очень низких температурах или при очень высоких частотах это не так. Таким образом, кривая падает по той же причине, что и теплоемкости газов. Кривую черного тела изучать легче, чем теплоемкости газов, где много сложностей, и мы сконцентрируем внимание на определении правильной кривой излучения черного тела, потому что эта кривая будет той кривой, которая расскажет нам, как средняя энергия гармонического осциллятора при любой его частоте зависит от температуры.

За изучение этой кривой взялся Планк. Сначала он нашел чисто эмпирический ответ, сравнивая опытную кривую с известными функциями, которые лучше всего эту кривую подгоняли. Таким образом, он получил эмпирическую формулу для средней энергии гармонического осциллятора как функцию температуры. Иначе говоря, он заменил kT правильной формулой, а потом нашел простой вывод этой формулы, правда, при очень странном предположении. Это предположение состоит в том, что гармонический осциллятор может поглотить за один прием только энергию ℏω. После этого нельзя и подумать, что осциллятор может обладать любой энергией. Конечно, это было началом конца классической физики.

Сейчас мы выведем первую правильную формулу квантовой механики. Предположим, что дозволенные уровни энергии гармонического осциллятора лежат на равном расстоянии ℏω0 друг от друга, поэтому осциллятор может обладать только одной из этих энергий (фиг. 41.5).

Фиг. 41.5. Уровни энергии гармонического осциллятора. Отстоят друг от друга но равных расстояниям En =nℏω.

Аргументы Планка выглядят немного сложнее наших, ведь это было самым началом квантовой механики, и ему приходилось кое-что доказывать. Ну, а мы просто примем как факт (который Планк и установил), что вероятность того, что занят уровень энергии Е, равна Р(Е)=αехр(-E/kT). Исходя из этого, мы получим правильный результат.

Предположим, что у нас есть много осцилляторов и каждый колеблется с частотой ω0. Некоторые из них находятся в низшем квантовом состоянии, другие забрались на уровень выше и т. д. Нам нужно знать среднюю энергию этих осцилляторов. Чтобы найти ее, давайте вычислим полную энергию всех осцилляторов и поделим результат на их число. Тогда мы получим среднюю энергию на осциллятор при тепловом равновесии, а это то же самое, что и энергия при равновесии с излучением черного тела, и ее надо подставить в уравнение (41.13) вместо kT.

Пусть N0 — число осцилляторов в основном состоянии (состоянии с наименьшей энергией), N1— число осцилляторов в состоянии Е1, N2— число осцилляторов в состоянии E2 и т. д. Согласно гипотезе (которую мы не доказали), классические выражения для вероятности ехр(-п. э./kT) или ехр(-к. э./kT) заменяются в квантовой механике на ехр(-ΔE/kT), где ΔE — разность энергий. Можно утверждать, что число осцилляторов в первом состоянии N1 равно произведению числа молекул в основном состоянии N0 на ехр(-ℏω/kT). Аналогично, N2(число молекул во втором состоянии) равно N2=N0 exp(-2ℏω/kT). Чтобы упростить алгебру, введем х=ехр(-ℏω/kT). Тогда все выглядит очень просто:

Сначала найдем полную энергию всех осцилляторов. Если осциллятор находится в основном состоянии, его энергия нуль. Если он находится в первом состоянии, то его энергия равна ℏω0, а таких осцилляторов N1. Значит, в этом состоянии запасена энергия N1ℏω, или ℏωN0x. Энергия осциллятора во втором состоянии 2ℏω0, а осцилляторов N2, поэтому мы получаем такую энергию: N22ℏω=2ℏω0N0x2 и т. д. Сложив все это, найдем полную энергию Eполн =N0ℏω (0+х+2х2+Зx3+...).

А сколько всего осцилляторов? В основном состоянии, конечно, N0, в первом состоянии N1 и т. д.; снова все сложим и получим Nвcе=N0(1+x+x2+x3+...). Поэтому средняя энергия равна

(41.14)

Читателям представляется возможность позабавиться этими суммами и получить от этого удовольствие. Когда вы покончите с суммированием и подставите в окончательный результат значение х, то получите, если не ошиблись

(41.15)

Эта формула была не только самой первой формулой, но и самой первой мыслью квантовой механики, и она явилась великолепным ответом на все недоумения предшествующих десятилетий. Максвелл уже понимал, что что-то неверно, но вопрос был в том, что же правильно? Здесь содержится количественный ответ — что же надо взять вместо kT. Выражение для энергии, конечно, стремится к kT при ω→0 или при Т→∞. Попробуйте это доказать — здесь надо поступить так, как этому учит математика.

Выражение для средней энергии содержит знаменитый обрезающий множитель, который предвидел Джинс, и если использовать его вместо kT в (41.13), то мы получим распределение света в черном ящике:

(41.16)

Итак, мы видим, что при больших ω кривая резко идет вниз; хотя в числителе стоит ω3, знаменатель содержит е в чрезвычайно высокой степени; на кривой нет никакого намека на подъем, и там, где мы того не ждем, не появляется ни ультрафиолетовых, ни рентгеновских лучей!

Может возникнуть недовольство в связи с тем, что при выводе (41.16) мы пользовались квантовой теорией для уровней энергии гармонического осциллятора, а при определении эффективного сечения σs мы оставались верны классической теории. Но квантовая теория взаимодействия света с гармоническим осциллятором приводит точно к тем же результатам, что и классическая. Это обстоятельство оправдывает то время, которое мы затратили на изучение показателя преломления и рассеяние света, основанное на представлении об атоме как о маленьком осцилляторе, — квантовые формулы получаются точно такими же.

Теперь вернемся к шумам Джонсона в сопротивлении. Мы уже отмечали, что теория мощности шума, по существу, — та же самая, классическая теория излучения черного тела. На самом деле, как мы уже говорили, сопротивление в цепи — это не настоящее сопротивление, а похоже скорее на антенну (антенна ведь тоже похожа на сопротивление, она излучает энергию). Это радиационное сопротивление, и легко подсчитать излучаемую им мощность. Эта мощность равна той мощности, которую антенна получает от окружающего ее света, и мы должны прийти к тому же самому распределению с точностью до одного, двух множителей. Мы можем предположить, что сопротивление — это генератор с неизвестным спектром мощности Р(ω). Найти распределение поможет то обстоятельство, что этот генератор, включенный в резонансную цепь произвольной частоты (как на фиг. 41.2, б), порождает на индуктивности падение напряжения, определяемое равенством (41.2). Это приведет нас к тому же интегралу, что и (41.10), а продолжая работать тем же методом, мы получим уравнение (41.3). Для низких температур kT в (41.3), конечно, надо заменить выражением (41.15). Две теории (излучения черного тела и шумов Джонсона) физически тесно связаны, так как мы можем связать резонансную цепь с антенной, тогда сопротивление R будет радиационным сопротивлением в чистом виде. Поскольку (41.2) не зависит от физических свойств сопротивления, генератор G для настоящего сопротивления и для радиационного сопротивления будет одинаковым. А что же будет источником генерируемой мощности Р(ω), если сопротивление R — теперь просто-напросто идеальная антенна, находящаяся в равновесии с ее окружением при температуре Т? Это излучение в пространстве при температуре Т, которое обрушивается на антенну в качестве «принятого сигнала» и служит эффективным генератором. Следовательно, двигаясь от (41.13) к (41.3), можно найти прямое соответствие между P(ω) и I(ω).

Объяснение явлений, о которых мы сейчас говорим (так называемый шум Джонсона, распределение Планка и теория броуновского движения, о которой мы собираемся говорить),— это достижения первого десятилетия нашего века. Узнав об этом и заглянув в историю, вернемся к броуновскому движению.

 

§ 4. Случайные блуждания

Попробуем понять, насколько меняется положение танцующей частицы за время, во много раз большее, чем промежуток между двумя ударами. Посмотрим на маленькую частицу, которая вовлеклась в броуновское движение и пляшет под непрерывно и беспорядочно сыплющимися на нее ударами молекул воды. Вопрос: Далеко ли отойдет частица от первоначального положения, когда истечет заданное время? Эту задачу решили Эйнштейн и Смолуховский. Представим себе, что мы разделили выделенное нам время на малые промежутки, скажем, по одной сотой доле секунды, так что после первой сотой доли секунды частица оказалась в одном месте, в течение второй сотой секунды она продвинулась еще, в конце следующей сотой секунды — еще и т. д. При той скорости бомбардировки, которой подвергается частица, одна сотая секунды — огромное время.

Читатель легко может проверить, что число столкновений, которые испытывает одна плавающая в воде молекула, порядка 1014 в секунду, так что на одну сотую долю секунды приходится примерно 1012 столкновений, а это очень много! Естественно, что по прошествии одной сотой доли секунды частица не «помнит», что с ней было до этого. Иначе говоря, все столкновения случайны, так что каждый последующий «шаг» частицы совершенно не зависит от предыдущего. Это напоминает знаменитую задачу о пьяном моряке, который выходит из бара и делает несколько шагов, но плохо держится на ногах, и каждый шаг делает куда-то в сторону, случайно (фиг. 41.6).

Фиг. 41.6. Зигзагообразный путь из 36 случайных шагов длиной L. Как далеко расположена точка S36 от В? В среднем на 6L.

Так где же окажется наш матрос спустя некоторое время? Конечно, мы этого не знаем! И предсказать это невозможно. Все, что можно сказать, — это то, что он где-то наверняка находится, но это совершенно неопределенно. Ну хорошо, а далеко ли он все-таки уйдет? Каково будет то среднее расстояние от бара, на котором окажется матрос? На этот вопрос мы уже ответили, потому что мы однажды уже обсуждали суперпозицию света от огромного числа различных источников с различными фазами, а это значит, что мы складывали огромное число стрелок, направленных по произвольным направлениям (см. гл. 32) Тогда мы обнаружили, что средний квадрат расстояния от одного конца цепи беспорядочных шагов до другого (т. е. интенсивность света) равен сумме интенсивностей отдельных источников. Совершенно аналогично, используя ту же математику, можно немедленно показать, что если RN— векторное расстояние от начала через N шагов, то средний квадрат расстояния от начала пропорционален числу шагов N.

Это значит, что =NL2, где L — длина каждого шага. Поскольку число шагов пропорционально выделенному нам условиями задачи времени, то средний квадрат расстояния пропорционален времени:

(41.17)

Это не означает, что среднее расстояние пропорционально времени. Если бы среднее расстояние было пропорционально времени, то частица двигалась бы с вполне определенной постоянной скоростью. Матрос, несомненно, идет вперед, но движение его таково, что квадрат среднего расстояния пропорционален времени. Это и есть характерная особенность случайных блужданий.

Мы легко докажем, что каждый шаг увеличивает квадрат расстояния в среднем на L2. Если записать RN=RN-1+L, то окажется, что RN2 равно

а усредняя по многим попыткам, получим =+L2, потому что =0. Таким образом, по индукции

(41.18)

Теперь хорошо бы вычислить коэффициент a в уравнении (41.17); для этого нужно еще кое-что добавить. Предположим, что если к частице приложена сила (она не имеет никакого отношения к броуновскому движению, просто мы подыскиваем выражение для импульса), то частица будет противодействовать силе следующим образом. Прежде всего должна проявиться инерция. Пусть m — коэффициент инерции, эффективная масса частицы (не обязательно настоящая масса настоящей частицы, потому что если протаскивать частицу сквозь воду, то движется и вода). Поэтому если мы рассматриваем движение в одном направлении, то нужно обзавестись с одной стороны слагаемым m(d2x/dt2). Далее подчеркнем, что, если мы толкаем частицу равномерно, она должна тормозиться жидкостью с силой, пропорциональной скорости. Кроме инерции жидкости, существует еще сопротивление течению, вызванное вязкостью и сложным строением жидкости. Для возникновения флуктуации абсолютно необходимо существование необратимых потерь, нечто вроде сопротивления. Пока таких потерь нет, нет способа получить kT. Причина флуктуации тесно связана с такими потерями. Мы еще обсудим, каков механизм такого трения, мы поговорим о силах, пропорциональных скорости, и выясним, откуда они берутся. А пока давайте просто предположим, что такое сопротивление существует. Тогда формула для движения под действием внешней силы, если она толкает частицу самым обычным способом, выглядит так:

(41.19)

Величину μ можно определить экспериментально. Например, мы можем изучить падение капли под действием силы тяжести. Тогда известно, что сила равна mg, а μ — это mg, деленное на окончательно установившуюся скорость падения капли. Или можно поместить каплю в центрифугу и следить за скоростью осаждения. А если она заряжена, то можно приложить электрическое поле. Таким образом, μ — это измеряемая величина, а не какая-нибудь искусственная вещь, и ее значение известно для коллоидных частиц многих типов.

Применим эту формулу также в том случае, когда сила не внешняя, а равна беспорядочным силам броуновского движения. Попробуем определить средний квадрат пройденного телом пути. Будем рассматривать расстояния не в трех, а в одном измерении и определим среднее значение х2, чтобы подготовить себя к решению задачи. (Разумеется, среднее значение х2 равно среднему y2 и среднему z2, поэтому средний квадрат расстояния будет втрое больше того, что мы получим.)

Конечно, x-составляющая беспорядочной силы так же беспорядочна, как и остальные компоненты. Чему же равна скорость изменения x2? Она равна (d/dt)(x2)=2x(dx/dt), поэтому скорость изменения среднего x2 можно найти, усреднив произведение скорости на координату. Покажем, что это постоянная величина, т. е. средний квадрат радиуса возрастает пропорционально времени, и найдем скорость возрастания. Если умножить уравнение (41.19) на х, то получим mx(d2x/dt2)+μx(dx/dt)=xFx . Нас интересует среднее по времени x(dx/dt), поэтому усредним по времени все уравнение целиком и изучим все три слагаемых. Что можно сказать о произведении х на силу? Хоть частица и добралась до точки х, последующие толчки могут быть направлены в любом направлении по отношению к х, ведь случайная сила полностью случайна и ей нет дела, откуда частица начала двигаться. Если кордината х положительна, у средней силы нет никаких оснований направиться в этом же направлении. Для нее оно столь же вероятно, как и любое другое. Случайные силы не могут отправить частицу в определенном направлении. Поэтому среднее произведения х на Fx равно нулю. С другой стороны, слагаемому mx(d2x/dt2) можно, немного повозившись, придать вид

Мы разбили первоначальное слагаемое на два и должны усреднить их оба. Посмотрим, чему же равно произведение х на скорость. Это произведение не изменяется со временем, потому что, когда частица попадает в заданную точку, она уже не помнит, где она была раньше, и характеризующие такие ситуации величины не должны зависеть от времени. Поэтому среднее значение этой величины равно нулю. У нас осталось лишь mv2, а об этой величине нам кое-что известно: среднее значение mv2/2 равно 1/2 kT. Следовательно, мы установили, что

влечет за собой

или

(41.20)

Это значит, что средний квадрат радиус-вектора частицы к моменту t равен

(41.21)

Таким образом, мы и в самом деле можем выяснить, как далеко уйдут частицы! Сначала нужно изучить реакцию частицы на постоянную силу, выяснить скорость дрейфа частицы под действием известной силы (чтобы определить μ), а тогда мы сможем узнать, далеко ли расползутся беспорядочно движущиеся частицы. Полученное нами уравнение имеет большую историческую ценность, потому что на нем основан один из первых способов определения постоянной k. Ведь в конце концов можно измерить величину μ, и время, определить расстояние, на которое удалится частица, и получить средние значения. Почему так важно определить точное значение k? Потому что по закону PV=RT для моля можно измерить R, которое равно произведению числа атомов в моле на k. Моль когда-то определялся как столько-то граммов кислорода 16 (теперь для этой цели используют углерод), поэтому числа атомов в моле сначала не знали. Это, конечно, интересный и важный вопрос. Каковы размеры атомов? Много ли их? Таким образом, одно из самых ранних определений числа атомов свелось к определению того, далеко ли уйдут мельчайшие соринки, пока мы будем терпеливо разглядывать их в микроскоп в течение строго определенного времени. После этого можно было найти и постоянную Больцмана k, и число Авогадро N0, потому что R к этому времени было уже измерено.

 

Глава 42 ПРИМЕНЕНИЯ КИНЕТИЧЕСКОЙ ТЕОРИИ

 

§ 1. Испарение

Эта глава посвящена дальнейшим применениям кинетической теории. В предыдущей главе мы подчеркнули один из выводов этой теории, что средняя кинетическая энергия каждой степени свободы молекулы или любого другого объекта равна 1/2 kT. Сейчас центральным пунктом нашего изложения будет утверждение о том, что отнесенная к единице объема вероятность обнаружить частицу в том или ином месте пропорциональна ехр(-п.э./kT). (Это утверждение мы используем в ряде задач.)

Явления, которые мы собираемся изучить, довольно сложны: испарение жидкости, вылет электронов с поверхности металла или химическая реакция, в которой участвует много атомов. В таких случаях кинетическая теория не дает простых и точных предписаний, ситуация слишком сложна для этого. Поэтому выводы этой главы, за исключением особо оговоренных, весьма неточны. Мы только подчеркнем, что, исходя из кинетической теории, можно более или менее хорошо понять эти явления. Но гораздо более точное представление о них дают термодинамические аргументы или некоторые измерения отдельных критических величин.

Однако полезно знать, хотя бы очень приблизительно, почему то, что происходит, происходит именно так. Тогда, натолкнувшись на явление, которое содержит в себе нечто, чего мы еще не видели, или то, что проанализировать мы еще не собрались, мы, может быть, сможем более или менее точно сказать, что произошло. Такой анализ будет в высшей степени неточным, но в общих чертах верным — верным по сути, но чуть-чуть упрощенным, скажем, в некоторых тонких деталях.

Разберем первый пример — испарение жидкости. Предположим, что большой ящик при заданной температуре заполнен жидкостью и паром поровну. Будем считать, что средние расстояния между молекулами пара довольно велики, а вот в жидкости они упакованы плотно. Задача состоит в том, чтобы определить число молекул, находящихся в газовой фазе, по сравнению с числом молекул, находящихся в жидкости. Какова плотность пара при заданной температуре и как она зависит от температуры?

Пусть n — число молекул пара в единице объема. Это число, естественно, меняется с температурой. С притоком тепла испарение увеличивается. Добавим еще одну величину 1/Va , равную числу атомов в единице объема, содержащихся в жидкости; мы предполагаем, что в жидкости каждой молекуле отведен вполне определенный объем, поэтому чем больше в жидкости молекул, тем больший объем они занимают. Если Va — объем, отведенный одной молекуле, то число молекул в единичном объеме равно единичному объему, деленному на объем, занимаемый молекулой. Далее, предположим, что между молекулами действуют силы притяжения, удерживающие их внутри жидкости. Иначе нельзя понять, почему происходит конденсация. Итак, предположим, что имеется сила притяжения и существует энергия связи молекулы в жидкости, которая теряется при переходе молекул в пар. Это наводит на мысль, что для перевода какой-нибудь молекулы из жидкости в пар, нужно совершить работу W. Существует определенная разность W между энергией молекулы в жидкости и ее энергией в паре, потому что для переноса молекул в пар мы должны оторвать ее от всех молекул, к которым она притягивается.

Теперь обратимся к общему принципу, по которому отношение числа атомов в единице объема в разных областях равно n2/n1=ехр[-(Е2-E1/kT)]. Значит, n —число молекул в единичном объеме пара, деленное на 1/Va (число молекул в единичном объеме жидкости), равно

(42.1)

Таково общее правило. Это очень похоже на равновесную атмосферу в поле тяжести, когда низшие слои газа плотнее верхних, потому что для подъема молекулы на высоту h нужна энергия mgh. В жидкости молекулы размещены плотнее, чем в газе, так как их заставляет потесниться энергия «подъема» W, и отношение плотностей равно ехр(-W/kT).

Это как раз то, что мы хотели вывести — плотность пара изменяется как е в некоторой степени. Показателем служит взятая со знаком минус похожая на энергию величина, деленная на kT. Множители перед экспонентой не особенно интересны, потому что в большинстве случаев плотность пара гораздо меньше плотности жидкости. При этих обстоятельствах, когда мы далеки от критической точки, где плотности почти одинаковы, соотношение плотностей, при котором n много меньше 1/Va, обеспечивается тем, что W много больше kT. Поэтому формулы типа (42.1) интересны только тогда, когда W действительно гораздо больше kT; в этом случае е возводится в громадную отрицательную степень и если немного изменить Т, то изменится слегка и громадная степень, а это изменение повлечет за собой такие изменения экспоненты, которые будут гораздо важнее возможных изменений предэкспоненциальных множителей. Но отчего бы изменяться таким множителям, как 1/Va? Да оттого, что наше описание приблизительно. Ведь в действительности каждая молекула не имеет определенного объема; при изменении температуры объем Vа не остается постоянным — жидкости сжимаются и расширяются. Есть еще и другие мелочи вроде этой, так что действительная ситуация гораздо сложнее. Почти всюду стоят медленно изменяющиеся с температурой множители. В действительности само W медленно изменяется с температурой, потому что при разных температурах молекулам отведены разные объемы, и притяжение должно быть разным, и т. д. Итак, можно прийти к выводу, что поскольку у нас получилась формула, в которой все неизвестным образом изменяется с температурой, то на самом деле формулы никакой и нет. Но если мы знаем, что показатель у экспоненты W/kT заведомо велик, то можно убедиться, что наибольшие изменения кривой плотности пара как функции температуры обусловлены экспоненциальным множителем. Поэтому если мы будем считать W постоянной величиной, а коэффициент 1/Va — почти постоянной, то это будет хорошим приближением вдоль небольшого интервала нашей кривой. Иначе говоря, основные изменения определяются видом функции ехр(-W/kT),

Выходит, что в природе есть много, очень много процессов, для которых характерно взятие энергии взаймы; основным свойством таких процессов является экспоненциальная температурная зависимость: е возводится в отношение взятой с отрицательным знаком энергии к kT. Это полезный факт, но только в тех случаях, когда энергия велика по сравнению с kT, поскольку главная часть изменений с температурой определяется изменением kT, а не величиной постоянных и других сомножителей.

Давайте рассмотрим сейчас немного подробнее другой способ получения почти аналогичного результата для испарения. Чтобы получить (42.1), мы просто применили всегда справедливое при равновесии правило, но мало что поняли в существе явления. Поэтому невредно попытаться посмотреть детальнее, как происходит испарение. Можно описать его примерно так: молекулы пара непрерывно бомбардируют поверхность жидкости; при ударе они могут либо отскочить от поверхности, либо пробить ее. Что случается чаще, нам неизвестно, может быть, отношение этих исходов равно 50 к 50, а может быть и 10 к 90. Предположим, что поверхность пробивается всегда, потом мы посмотрим, к чему приводит предположение о более прочной поверхности. Тогда в каждый момент будет иметься определенное число атомов, сконденсировавшихся на поверхности жидкости. Число сконденсировавшихся молекул (число молекул, прошедших через площадку единичной площади) равно числу молекул в единице объема n, умноженному на скорость v. Эта скорость молекул связана с температурой; ведь известно, что в среднем 1/2mv2 равно 3/2 kT. Поэтому v —какая-то средняя скорость. Конечно, нужно еще проинтегрировать по углам и сделать всякого рода усреднения, но результат прямо пропорционален корню из среднего квадрата скорости. Таким образом,

(42.2)

т. е. числу молекул, достигших единичной площадки и сконденсировавшихся.

Но атомы жидкости непрерывно пляшут, и время от времени отдельные атомы выскакивают наружу. Теперь нам нужно выяснить, часто ли это происходит. При равновесии число молекул, выскочивших за 1 сек из жидкости, равно числу молекул, поступивших за это же время на ее поверхность.

Ну, а много ли молекул выскакивает? Чтобы выскочить наружу, молекула должна как-то умудриться приобрести некоторую добавочную энергию, которая окажется больше, чем энергия ее соседок. И этот избыток энергии должен быть довольно большим, ведь наша молекула очень сильно притягивается к остальным молекулам жидкости. Обычно ей так и не удается преодолеть этого сильного притяжения, но иногда при столкновениях на ее долю выпадает излишек энергии. Шансы получить необходимую в нашем случае избыточную энергию W невелики, если W≫kT. Действительно, вероятность того, что атом приобретает энергию, большую чем W, равна ехр(-W/kT). Это общий принцип кинетической теории: шансы призанять энергию W сверх средней энергии равны е, возведенному в степень, показатель которой равен отношению W к kT со знаком минус. Предположим, что некоторым молекулам удалось получить эту энергию. Теперь можно установить, сколько молекул покидает поверхность жидкости за 1 сек. Конечно, получение молекулой нужной энергии еще не означает, что испарение обеспечено. Ведь эта молекула может находиться слишком глубоко в жидкости, а если она даже и находится у поверхности, то может двигаться не туда. Число молекул, покидающих единичную площадку за 1 сек, — это примерно число молекул на единице площади вблизи поверхности, деленное на время, которое требуется молекуле для побега, и умноженное на вероятность ехр(-W/kT) готовности молекул к побегу, в том смысле, что они уже получили достаточное количество энергии.

Предположим, что каждая молекула на поверхности жидкости занимает определенную площадку площади А. Тогда число молекул на единице поверхности жидкости равно 1/А. А много ли молекуле нужно времени, чтобы совершить свой побег? Если молекулы движутся с определенной средней скоростью v и должны пройти расстояние, равное, скажем, диаметру молекулы D (толщине наружного слоя), то время, нужное для преодоления этого расстояния, и есть время побега, если только молекула обладает достаточной энергией. Это время равно D/v. Таким образом, число испаряющихся молекул приблизительно равно

(42.3)

Заметим, что произведение площади каждой молекулы на толщину слоя приблизительно равно объему Va , отведенному каждой молекуле. Итак, для получения равновесия мы должны иметь Nc =Ne , или

(42.4)

Можно выкинуть из этого равенства скорости, потому что они равны; если даже специально отметить, что одна из них — скорость молекулы пара, а другая — скорость испаряющейся молекулы, — все равно они одинаковы, ведь мы знаем, что средняя кинетическая энергия обеих молекул (в одном направлении) равна 1/2kT. Но можно сказать: «Нет! Нет! Ведь испаряются только особо быстрые молекулы. Только они приобрели достаточный избыток энергии». Не совсем так, потому что в тот момент, когда эти молекулы выскакивают из жидкости, они теряют этот избыток, преодолевая потенциальную энергию. Поэтому при подходе к поверхности они уже движутся с замедленной скоростью v! Точно так же обстояло дело с распределением молекулярных скоростей в атмосфере — в нижних слоях молекулы были определенным образом распределены по энергиям. Те из них, которые достигали более высоких слоев, распределялись по энергиям точно так же, потому что медленные молекулы вверх совсем не поднимались, а быстрые, поднявшись, двигались медленнее. Испаряющиеся молекулы распределены по скоростям так же, как молекулы, движущиеся в глубине жидкости — поистине поразительный факт. Во всяком случае, нет смысла пытаться столь строго обсуждать нашу формулу, потому что в ней есть и другие неточности; например, мы рассматривали вероятность отражения молекул от поверхности, а не их конденсации и т. д. Мы имеем дело лишь с грубым описанием скорости испарения и конденсации и видим, естественно, что плотность пара n изменяется так же, как и раньше, но теперь мы понимаем этот процесс много лучше, а раньше писали почти произвольную формулу.

Более глубокое понимание позволит нам выяснить еще кое-что. Например, предположим, что мы откачиваем пар, причем так быстро, что пар удаляется практически с той же быстротой, с какой образуется (если наш насос очень хороший, а испарение происходит медленно). С какой скоростью будет происходить испарение, если температура жидкости Т будет поддерживаться постоянной? Предположим, что мы экспериментально уже измерили равновесную плотность пара и нам известно, сколько молекул в единице объема может быть в равновесии с жидкостью при заданной температуре. Теперь мы хотим узнать скорость испарения жидкости. Хотя мы ограничились лишь грубым анализом испарения, он все же дал нам сведения о числе прибывающих молекул пара, правда, с точностью до неизвестного коэффициента отражения. Поэтому мы можем использовать то обстоятельство, что при равновесии число покидающих пар молекул равно числу прибывающих молекул. Правда, пар откачивается и молекулы могут только покидать жидкость, но если оставить пар в покое, то установится равновесная плотность, при которой число прибывающих в жидкость молекул равно числу испаряющихся. Следовательно, легко видеть, что в этом случае число молекул, покидающих поверхность жидкости за 1 сек, равно произведению неизвестного коэффициента отражения R на число молекул, которые ежесекундно возвращались бы в жидкость, если бы пар не откачивался, потому что именно это число входит в уравнение баланса для испарения при равновесии:

(42.5)

Конечно, легче подсчитать число молекул, переходящих из пара в жидкость, потому что в этом случае не надо ничего предполагать о силах, как это приходилось делать при подсчете числа покидающих жидкость молекул. Проще изменить путь рассуждений.

 

§ 2. Термоиониая эмиссия

Можно привести еще один пример часто встречающегося процесса, столь похожего на испарение жидкости, что его даже не придется анализировать отдельно. В сущности, это та же самая задача. В любой радиолампе есть источник электронов — вольфрамовая нить накаливания и положительно заряженная пластинка, притягивающая электроны. Оторвавшийся с поверхности вольфрама электрон немедленно улетает к пластинке. Это — «идеальный» насос, который непрерывно «откачивает» электроны. Возникает вопрос: сколько электронов ежесекундно покидает вольфрамовую проволоку и как их число зависит от температуры? Решение задачи дается той же формулой (42.5), потому что электроны, находящиеся в куске металла, притягиваются ионами или атомами металла. Они, грубо говоря, притягиваются металлом. Чтобы оторвать электрон от металла, надо сообщить ему определенное количество энергии, т. е. затратить для этого работу. Эта работа для разных металлов различна. Фактически она изменяется даже в зависимости от вида поверхности у одного и того же металла, но в целом она составляет несколько электронвольт,—величину, вообще типичную для энергии химических реакций. При этом полезно вспомнить, что разность потенциалов химических элементов, например батареи для магниевой вспышки, которая порождается химическими реакциями, порядка 1 в.

Как определить число электронов, покидающих металл за 1 сек? Очень трудно перечислить все, что может повлиять на выход электрона: легче решить задачу по-другому. Представим, что мы не удаляем вылетевшие электроны, а электроны образуют нечто вроде газа и могут вернуться в металл. В этом случае существует вполне определенная равновесная плотность электронов, которая определяется такой же формулой, как (42.1), где Va , грубо говоря, — объем, отведенный в металле одному электрону, а W=qe φ (φ —так называемая работа выхода, или разность потенциалов, необходимая для того, чтобы вырвать электрон с поверхности металла). Эта формула подскажет нам, сколько электронов должно находиться в окружающем пространстве и проникать в металл, чтобы скомпенсировать потерю тех электронов, которые покинули металл. Теперь легко подсчитать, сколько электронов уйдет из металла, если мы будем непрерывно откачивать их, потому что число ушедших электронов в точности равно числу электронов, которые должны были бы вернуться в металл, если существовал электронный «пар», плотность которого определяется формулой (42.1). Иначе говоря, электрический ток через единичную площадку равен произведению заряда электрона на число электронов, проходящих за 1 сек через площадку единичной площади; последнее равно произведению числа электронов в единичном объеме на скорость: поэтому, как мы уже много раз видели,

(42.6)

Мы знаем, что 1 эв соответствует kT при температуре, достигающей 11 600 град. Нить накаливания радиолампы работает примерно при температуре 1100 град, поэтому экспоненциальный множитель равен примерно е-10; когда мы слегка изменяем температуру, экспоненциальный множитель изменяется очень сильно. Это опять основное свойство формул, содержащих ехр(-qe φ/kT). Предэкспоненциальный множитель на самом деле совершенно неверен; оказывается, что поведение электронов в металле правильно описывает квантовая, а не классическая механика, но правильный множитель лишь немного отличается от нашего. Фактически до сих пор никто еще не смог точно вычислить этот множитель, хотя многие при расчетах пользовались квантовыми формулами высшего класса. Основная задача состоит в том, чтобы выяснить, не меняется ли W хотя бы медленно с температурой? Если да, то медленно изменяющуюся с температурой величину W нельзя отделить от предэкспоненциальных коэффициентов. Если, например, W зависит от температуры линейно, так что W=W0+αkT, то

Такая линейная зависимость W от температуры эквивалентна измененной «постоянной». Попытка точного вычисления предэкспоненциального множителя очень трудна и обычно бесплодна.

 

§ 3. Тепловая ионизация

Перейдем теперь к еще одному применению все той же идеи. Теперь речь пойдет об ионизации. Предположим, что газ состоит из великого множества атомов, которые обычно нейтральны, но если газ нагреть, то атомы могут оказаться ионизованными. Нам нужно знать, сколько существует ионов при тех или иных обстоятельствах, т. е. при заданной плотности атомов в единичном объеме и при определенной температуре. Снова придется представить себе ящик, в котором находится N атомов, содержащих в себе электроны. (Если электрон покидает атом, то атому присваивается наименование ион, а если атом нейтрален, то говорят просто—атом.) Таким образом, предположим, что в заданный момент в единичном объеме число нейтральных атомов равно nа , число ионов равно ni, а число электронов равно nе . Нужно определить, как связаны эти три числа между собой?

Прежде всего эти числа подчиняются двум условиям или связям. Например, можно как угодно менять различные условия, температуру и т. д., но сумма na +ni всегда останется одной и той же, потому что это просто-напросто N — число атомных ядер в ящике. Если в единице объема число ядер сохраняется постоянным, а изменяется, скажем, температура, то, хотя в результате ионизации некоторые атомы превращаются в ионы, общее число атомов и ионов не изменяется. Значит, na+ni=N. Другое условие вытекает из того, что если газ в целом электрически нейтрален (и если мы пренебрегаем двойной или тройной ионизацией), то число ионов всегда равно числу электронов, или ne=ni. Эти дополнительные условия просто выражают сохранение заряда и сохранение атомов.

Эти равенства верны, и мы в конце концов всегда используем их при решении реальных задач. Но нам нужно получить другое соотношение между этими величинами. Сделать это можно так. Обратимся снова к идее о том, что для отрыва электрона от атома требуется какое-то количество энергии, которую мы будем называть энергией ионизации и обозначать буквой W (чтобы новые формулы выглядели так же, как и раньше). Итак, W равна энергии, потребной для того, чтобы оторвать электрон от атома и получить ион. Мы снова убеждаемся, что число свободных электронов в единичном объеме «пара» равно произведению числа электронов в единичном объеме, связанных в атомах, на е в степени минус разность энергий связанного и свободного электронов, деленная на kT. Опять основное уравнение. Но как это записать? Число свободных электронов в единичном объеме, конечно, ne , потому что это определение nе. Ну, а что можно сказать о числе связанных в атоме электронов в единичном объеме? Общее число мест, отданных электронам, равно nа +ni ;, и мы предположим, что когда все электроны связаны, то каждому отводится некоторый объем Va . Таким образом, полный атомный объем, занимаемый связанными электронами, равен (na +ni )Va , и нашу формулу теперь можно записать в виде

Но формула эта неверна. Мы упустили из вида одно существенное обстоятельство: когда один электрон попал в атом, другой электрон уже не может проникнуть в этот же объем! Иначе говоря, не все объемы из числа возможных доступны электрону, который раздумывает, куда бы ему отправиться — в пар или в конденсированное состояние. Здесь возникают непредвиденные осложнения, в силу которых электрон не может подойти близко к тому месту, где уже находится другой электрон — они отталкиваются. По этой причине мы должны считать только ту часть объема, в которой электрон может разместиться. Ведь те объемы, которые уже заняты, нельзя причислять к числу возможных, и только те объемы, которые предоставлены ионам, можно рассматривать как места, вакантные для электронов. Тогда, учтя это обстоятельство, мы найдем, что более точная формула записывается в виде

(42.7)

Эту формулу называют уравнением ионизации, или уравнением Саха. Теперь посмотрим, можем ли мы качественно понять, почему получается формула, подобная этой, если следить за кинетикой процесса.

Прежде всего время от времени, когда электрон сталкивается с ионом, они объединяются в атом. Точно так же время от времени атом испытывает столкновение и разваливается на ион и электрон. Скорости обоих процессов должны быть равны. А долго ли электрону и иону искать друг друга? Встречи, конечно, учащаются, если возрастает число электронов в единичном объеме. К этому же приводит и увеличение числа ионов в единичном объеме. Следовательно, полная скорость рекомбинации пропорциональна произведению числа электронов на число ионов. Далее, полная скорость ионизации в результате столкновений должна линейно зависеть от числа способных к ионизации атомов. Таким образом, скорости обоих процессов сбалансируются тогда, когда установится определенное соотношение между произведением ne ni и числом атомов na . Тот факт, что это соотношение выражается особой формулой, куда входит энергия ионизации W, дает, конечно, несколько большую информацию, но мы можем легко сообразить, что такая формула обязательно должна содержать концентрации электронов, ионов и атомов в комбинации ne ni /na , которая приводит к постоянной, не зависящей больше от чисел n, а только от температуры, атомных размеров и других постоянных.

Заметим также, что поскольку уравнение содержит числа в единичном объеме и если мы поставим два опыта с одним и тем же полным числом N атомов и ионов, т. е. со строго определенным числом ядер, но заключим их в ящики разных объемов, то числа n будут меньше для больших ящиков. Однако отношение neni/na должно оставаться постоянным, поэтому полное число электронов и ионов должно быть больше в большем ящике. Чтобы убедиться в этом, предположим, что в ящик объема V помещено N ядер и их f-я часть ионизована. Тогда ne =fN/V=ni и na=(1-f)N/V. В этом случае наше уравнение принимает вид

(42.8)

Иначе говоря, если мы берем все меньшую и меньшую плотность атомов или непрерывно увеличиваем объем ящика, относительное число электронов и ионов должно возрасти. То, что ионизация может быть вызвана просто «расширением», при котором плотность уменьшается, объясняет нам, почему при очень малых плотностях (какие встречаются в холодном межзвездном пространстве) много ионов, хотя это трудно понять, учитывая имеющуюся в нашем распоряжении энергию. Энергия во много-много раз больше kT, но ионы все равно есть.

Почему же ионы могут существовать лишь при условии, что вокруг них имеется много места, тогда как при увеличении плотности они стремятся исчезнуть? Ответ: Все дело в атомах. Время от времени свет или другой атом, или ион, или еще что-то, что поддерживает тепловое равновесие, разрушает атомы. Очень редко, потому что для этого требуются огромные количества избыточной энергии, электрон отрывается и происходит превращение атома в ион. Если пространства огромны, то электрон слоняется очень долго, быть может много лет и ничего не встречает. Но однажды он находит ион, и тогда они объединяются в атом. Скорость, с которой электроны покидают атомы, очень мала. Но если объем огромен, то сбежавший электрон так долго ищет ион, с которым он мог бы рекомбинировать, что вероятность рекомбинации совсем ничтожна; поэтому, несмотря на то, что для ионизации нужны большие излишки энергии, число электронов может быть вполне ощутимым.

 

§ 4. Химическая кинетика.

При химических реакциях происходит нечто похожее на «ионизацию». Например, два вещества А и В комбинируют в основном веществе АВ; тогда, подумав немного, мы можем АВ назвать атомом (В — то, что мы называем электроном, а А — то, что мы называем ионом). После такой замены, как и раньше, можно написать уравнение равновесия

(42.9)

Эта формула, конечно, неточна, потому что «постоянная» с зависит от того, в каком объеме позволено объединяться А и В и т. п., но, обратясь к термодинамическим аргументам, можно придать смысл величине W в экспоненциальном множителе, и тогда окажется, что она тесно связана с энергией, необходимой для реакции.

Попробуем понять эту формулу как результат столкновений, приблизительно так же, как мы постигали формулу испарения, подсчитывая электроны, вырывающиеся в пространство, и те, которые возвращаются назад за единицу времени. Предположим, что при столкновениях А и В иногда образуют соединение АВ. И предположим еще, что АВ — это сложная молекула, которая участвует в общей пляске и по которой ударяют другие молекулы, причем время от времени она получает энергию, достаточную для того, чтобы взорваться и снова развалиться на части А и В.

Заметим, что в химических реакциях дело обстоит так, что если сближающиеся атомы имеют слишком малую энергию, то, хотя этой энергии и достаточно для реакции А+В→АВ, факт соударения атомов А и В еще не обязательно означает начало реакции. Обычно требуется, чтобы соударение было более «жестким», «мягкого» соударения между А и В может оказаться недостаточно для начала реакции, даже если в процессе освобождается достаточное для реакции количество энергии. Предположим, что общей чертой химических реакций является требование, по которому для объединения А и В в АВ недостаточно простого соударения, а нужно, чтобы они столкнулись, имея определенное количество энергии. Эта энергия называется энергией активации, т. е. энергия, нужная для «активации» реакции. Пусть А*— тот избыток энергии, который необходим, чтобы столкновения могли вызвать реакцию. Тогда скорость Rf , с которой А и В порождают АВ, должна содержать произведение числа атомов А и B, умноженное на скорость, с которой отдельный атом ударяется о некоторую площадку величиной σAB , и на величину ехр(-A*/kT) (вероятность того, что атомы обладают достаточной энергией):

(42.10)

Теперь надо найти скорость обратного процесса Rr . Есть некоторая вероятность, что А и В снова разойдутся. Чтобы разойтись, им недостаточно энергии W, которая обеспечит их раздельное существование. Но раз молекулам нелегко соединиться, должен существовать некий барьер, через который А и В должны перевалить, чтобы разлететься. Они должны запастись не только нужной для их существования энергией, но и взять кое-что про запас. Получается что-то вроде подъема на холм перед спуском в долину; сначала приходится вскарабкаться на высоту, потом спуститься, и только после этого разойтись (фиг. 42.1).

Фиг. 42.1. Соотношение энергий в реакции А+В→АВ.

Таким образом, скорость перехода АВ в А и В пропорциональна произведению nАВ — начальному числу молекул АВ на ехр[-(W+A*)/kT]:

(42.11)

Постоянная с' складывается из объема атомов и частоты столкновений; ее можно получить, как и в случае испарения, перемножая площадь и толщину слоя, но сейчас мы этого делать не будем. Сейчас нас больше интересует тот факт, что, когда эти скорости равны, их отношение равно единице. Это говорит о том, что, как и раньше, (nA nB /nAB )=cехр(-W/kT), где с содержит сечения, скорости и другие множители, не зависящие от чисел n. Интересно, что скорость реакции по-прежнему изменяется как ехр(-const/kT), хотя эта постоянная уже не имеет никакого отношения к той, с которой мы встречались в задаче о концентрациях; энергия активации А* сильно отличается от энергии W. Энергия W регулирует пропорции А, В и АВ, при которых устанавливается равновесие, но если нам захочется узнать, быстро ли А+В переходит в АВ, то это уже к равновесию отношения не имеет, и появляется уже другая энергия, энергия активации, которая с помощью экспоненты управляет скоростью реакции.

Кроме того, A* не является фундаментальной постоянной, как W. Предположим, что реакция происходит на поверхности стены, или на какой-нибудь другой поверхности, тогда А и В могут растечься по ней так, что объединение в АВ будет для них более легким делом. Иначе говоря, сквозь гору можно прорыть «туннель» или срыть вершину горы. В силу сохранения энергии, по какому бы пути мы ни шли, результат будет один: из А и В получится АВ, так что разность энергий W не зависит от пути, по которому идет реакция, однако энергия активации А* очень сильно зависит от этого пути. Вот почему скорости химических реакций столь чувствительны к внешним условиям. Можно изменить скорость реакции, изменив поверхность, с которой соприкасаются реактивы, можно изготовить «набор бочонков» и подбирать с его помощью любые скорости, если они зависят от свойств поверхности. Можно внести в среду, в которой происходит реакция, третий предмет; это также может сильно изменить скорость реакции, такие вещества при незначительном изменении А* иногда чрезвычайно влияют на скорость реакции; их называют катализаторами. Реакции может практически не быть совсем, потому что А* слишком велика для заданной температуры, но если добавить это специальное вещество — катализатор, то реакция протекает очень быстро, потому что А* уменьшается.

Между прочим, эта реакция А плюс В, дающая АВ, доставляет немало волнений. Ведь невозможно сохранить сразу и энергию, и импульс, пытаясь подогнать два предмета друг к другу, чтобы сделать из них один более устойчивый. Следовательно, необходим по крайней мере третий предмет С и реальная реакция выглядит гораздо сложнее. Скорость прямого процесса должна содержать произведение nA nB nC , и можно подумать, что наша формула становится неверной, но это не так! Если мы начнем искать скорость развала АВ, то выясним, что этой молекуле еще надо столкнуться с С, поэтому скорость обратной реакции пропорциональна nAB nC и из формулы для равновесных концентраций nC выпадает. Правильность закона равновесия (42.9), который мы написали прежде всего, абсолютно гарантирована независимо от любого возможного механизма реакции!

 

§ 5. Законы излучения Эйнштейна

Обратимся теперь к интересной задаче, похожей на только что описанную и связанную с законом излучения черного тела. В предыдущей главе мы разбирали вывод закона распределения излучения в полости по способу Планка, рассматривая излучение осциллятора. Осциллятор обладает определенной средней энергией, а раз он осциллирует, то должен и излучать и накачивать излучение в полость, пока она не заполнится как раз таким количеством излучения, которое нужно для поддержания равновесия между излучением и поглощением. Рассуждая таким образом, мы нашли, что интенсивность излучения частоты ω задается формулой

(42.12)

Этот вывод содержит предположение, что генерирующий излучение осциллятор обладает определенными уровнями энергии, отстоящими друг от друга на равном расстоянии. Мы не говорили о том, что свет состоит из фотонов или чего-то вроде этого. Мы даже не задавали вопроса, каким способом при переходе атома с одного уровня энергии на другой переносится единичная энергия ℏω в виде света. Первоначальная идея Планка состояла в том, что вещество квантовано, а свет — нет: осциллятор не может получать любую энергию, а должен принимать ее порциями. Вызывает еще беспокойство то, что способ вывода — полуклассический. Мы вычислили скорость излучения осциллятора, исходя из законов классической физики, а потом забыли об этом и сказали: «Нет, этот осциллятор имеет много уровней энергии». Но для последовательно строгого вывода этой чисто квантовой формулы пришлось пройти длинный путь, завершившийся в 1927 г. созданием квантовой механики. А тем временем Эйнштейн попытался заменить точку зрения Планка, что квантованы только материальные осцилляторы, идеей о том, что свет в действительности состоит из фотонов и его следует в определенном смысле понимать как газ из частиц с энергией ℏω. Далее, Бор обратил внимание на то, что любая система атомов имеет уровни энергии, но расстояния между ними не обязательно постоянны, как у осцилляторов Планка. Поэтому возникла необходимость пересмотреть вывод или хотя бы более точно исследовать закон излучения, исходя из более последовательной квантовомеханической точки зрения.

Эйнштейн предположил, что окончательная формула Планка правильна и использовал ее для получения новой, ранее неизвестной информации о взаимодействии излучения с веществом. Он рассуждал так: надо рассмотреть любые два из возможных уровней энергии атома, скажем, m-й и n-й уровни (фиг. 42.2).

Фиг. 42.2. Переход между двумя уровнями энергии атома.

Затем Эйнштейн предположил, что, когда атом освещается светом подходящей частоты, он может поглотить фотон, перейдя из состояния n в состояние m, и вероятность такого перехода за 1 сек пропорциональна интенсивности освещающего атом света и еще зависит от того, какие уровни мы возьмем.

Назовем постоянную пропорциональности Bnm , чтобы помнить, что это не универсальная постоянная природы и зависит она от того, какую пару уровней мы выберем: некоторые уровни возбудить легко, а другие возбуждаются с большим трудом. Теперь надо найти формулу, описывающую скорость перехода из m в n. Эйнштейн предположил, что она складывается из двух частей. Даже если внешнего излучения нет, существует вероятность того, что атом, излучив фотон, перейдет из возбужденного состояния в состояние с меньшей энергией. Это так называемое спонтанное излучение.

Это предположение аналогично идее о том, что даже классический осциллятор, обладая определенной энергией, не может ее сохранить; излучение неизбежно вызывает потерю энергии. Таким образом, по аналогии со спонтанным излучением классических систем существует определенная вероятность Amn (она опять зависит от уровней), с которой атом переходит из состояния m в состояние n, и эта вероятность не зависит от того, освещается атом светом или нет. Но Эйнштейн пошел еще дальше и, сравнив с классической физикой и используя другие аргументы, пришел к заключению, что излучение зависит от наличия света вокруг. Когда атом освещается светом подходящей частоты, то вероятность излучения фотона возрастает пропорционально интенсивности света с постоянной пропорциональности Bmn . Если бы нам удалось выяснить, что этот коэффициент равен нулю, то мы уличили бы Эйнштейна в ошибке. Но, конечно, мы увидим, что он был прав.

Итак, Эйнштейн предположил, что существует три сорта процессов: поглощение, пропорциональное интенсивности света, излучение, пропорциональное интенсивности света (его называют индуцированным излучением, или вынужденным излучением), и спонтанное излучение, не зависящее от интенсивности света.

Предположим теперь, что при температуре Т установилось равновесие, и в состоянии n находится некоторое количество атомов Nn , а в состоянии m — некоторое количество атомов Nm . Тогда полное число атомов, переходящих из n в m, равно произведению числа атомов в состоянии n на скорость перехода одного атома из состояния n в состояние m. Таким образом, мы получили формулу для числа атомов, переходящих за 1 сек из n в m:

(42.13)

Число атомов, переходящих из m в n, получается точно таким же способом: надо умножить число атомов в состоянии m на скорость перехода одного атома. На этот раз получаемое выражение выглядит так:

(42.14)

Теперь предположим, что при тепловом равновесии число атомов, поднимающихся на верхний уровень, должно быть равно числу атомов, спускающихся вниз. Это по крайней мере один из способов удержать число атомов на каждом уровне постоянным. Следовательно, при равновесии мы считаем обе скорости равными. Но у нас в запасе есть еще кое-какая информация: мы знаем, насколько велико Nm по сравнению с Nn ; отношение этих чисел равно ехр[—(Em -En )/kT]. После этого Эйнштейн предположил, что частота света, который вовлекается в игру при переходах из m в n, соответствует разности энергий, так что во всех наших формулах Еm -Еn =ℏω. Итак,

(42.15)

Таким образом, если приравнять две скорости: Nn Bmn I(ω)=Nm [Amn +BmnI(ω)] и поделить на Nm , то мы получим

(42.16)

Из этого выражения можно найти I(ω). Это просто:

(42.17)

Но Планк уже сказал нам, что формула должна иметь вид (42.12). Следовательно, мы можем сделать кое-какие выводы: прежде всего Bmn должно быть равно Bnm , потому что иначе ехр(ℏω/kT)-1 не получить. Таким образом, Эйнштейн открыл некоторые соотношения, прямого вывода которых он не знал, например, что вероятности вынужденного излучения и поглощения должны быть равны. Это интересно. Кроме того, чтобы (42.17) и (42.12) согласовались,

(42.18)

Значит, если известна, скажем, скорость поглощения для заданного уровня, то можно получить скорость спонтанного излучения и скорость вынужденного излучения или какую-нибудь комбинацию этих величин.

Больше этого на основании столь общих предположений ни Эйнштейн, ни вообще кто-либо получить не сможет. Чтобы действительно вычислить абсолютную скорость спонтанного излучения или вообще любую скорость специфически атомного перехода, нужно знать все скрытые механизмы атома. Этому учит так называемая квантовая электродинамика, открытая лишь одиннадцать лет спустя. А Эйнштейн предсказал все это в 1916 г.

Возможность вынужденного излучения в наши дни нашла интересное применение. Если есть свет, то он стремится вызвать переход сверху вниз. Тогда этот переход может увеличить энергию света на ℏω, если найдутся такие атомы, у которых занят верхний уровень. Можно разработать нетепловой метод приготовления газа, в котором число состояний m гораздо больше числа состояний n. Газ будет очень далек от равновесия, и формулу ехр(-ℏω/kT), верную для равновесия, к нему применить нельзя. Можно добиться даже, чтобы число занятых верхних состояний было очень большим, тогда как число атомов в нижнем состоянии практически будет равно нулю. Тогда свет с частотой, соответствующей разности энергий Em -Еn , будет поглощаться очень слабо, потому что атомов, находящихся в состоянии n и способных поглотить его, очень мало. С другой стороны, когда газ из таких атомов освещен, то свет вызывает излучение из верхнего состояния! Таким образом, если в верхнем состоянии находится много атомов, то начинается что-то вроде цепной реакции, когда атомы вдруг начинают излучать; более того, они вынуждены излучать и все разом проваливаются в нижнее состояние. Так работает лазер, а если излучаются инфракрасные волны, то их источник называют мазером.

Чтобы загнать атомы в состояние m, прибегают к разным ухищрениям. Может существовать более высокий уровень, на который атомы можно поднять сильным пучком света высокой частоты. С этого высокого уровня атомы падают вниз, испуская самые различные фотоны, пока не соберутся на уровне m. Если атомы стремятся задержаться на уровне m, не излучая фотонов, то этот уровень называют метастабильным. А потом атомы разом спрыгивают с уровня m, сопровождая прыжок вынужденным излучением. Еще одна техническая деталь — если поместить нашу систему в обычный ящик, то она может спонтанно излучать во многих направлениях, что наносит ущерб вынужденному излучению. Но можно усилить эффект вынуждения и увеличить его значение, поставив у каждой стенки ящика почти полностью отражающие зеркала; тогда излученный свет получает шанс вызвать дополнительное излучение, следующее отражение добавит еще один такой шанс, а потом еще, еще и еще. Хотя зеркала отражают почти весь свет, существует небольшая вероятность прохождения части света сквозь зеркало и выхода наружу. В конце концов весь свет, подчиняясь закону сохранения энергии, выйдет наружу в виде тонкого, сильного пучка. Так и получают мощные пучки света в лазерах

Фиг. 42.3. При возбуждении голубым светом атом поднимается на высший уровень h и, быстро испустив фотон, сваливается с него на уровень m. Когда число атомов в состоянии m становится достаточно большим, возникает действие лазера.

 

Глава 43 ДИФФУЗИЯ

 

§ 1. Столкновения молекул

До сих пор мы изучали движение молекул только при тепловом равновесии. А теперь нужно обсудить, как движутся молекулы газа, когда он близок к равновесию, но еще не достиг его полностью. Если газ слишком неравновесен, все становится чрезвычайно сложным и разобраться в том, что там происходит, очень трудно, а вот если отклонения от равновесия незначительны, то задачи решаются легко. Однако, чтобы рассмотреть, что происходит в таком газе, надо снова вернуться к кинетической теории. Статистическая механика и термодинамика пригодны, когда имеется равновесие, а чтобы проанализировать то, что происходит при отклонении от равновесия, приходится, так сказать, перебирать атом за атомом.

В качестве простого примера неравновесной задачи рассмотрим диффузию ионов в газе. Предположим, что в газе содержится немного ионов — электрически заряженных молекул. Если к газу приложить электрическое поле, то на каждый ион будет действовать сила, отличающаяся от сил, действующих на нейтральные молекулы. Если бы других молекул не было, то ион двигался бы с постоянным ускорением, пока не наткнулся бы на стенку ящика. Но наличие других молекул меняет дело: скорость иона возрастает лишь до тех пор, пока он не ударится о молекулу и не потеряет своего импульса. После этого он снова начинает ускоряться, но вновь теряет импульс. В результате ион вынужден двигаться по ломаному пути, хотя все же в конце концов он движется в направлении электрического поля. Мы замечаем, таким образом, что ион «дрейфует» со средней скоростью, пропорциональной электрическому полю; чем сильнее поле, тем быстрее движется ион. Конечно, пока существует поле и пока ион продолжает двигаться, не может быть и речи о тепловом равновесии. Система стремится прийти к равновесию, но для этого нужно, чтобы все ионы приклеились к стенке ящика. С помощью кинетической теории возможно вычислить скорость дрейфа ионов.

Наших математических познаний еще недостаточно, чтобы точно вычислить все, что произойдет, но мы можем получить приближенное решение, которое правильно передаст все существенные особенности явления. Мы можем определить зависимость эффекта от давления, температуры и т. п., но не в наших силах вычислить точно все коэффициенты, стоящие перед этими сомножителями. Поэтому не будем мучить себя заботой о точных значениях таких коэффициентов. Получить их можно только после очень тонкого математического анализа.

Прежде чем рассуждать о том, что происходит в отсутствие равновесия, посмотрим повнимательнее на равновесный газ. Необходимо, например, знать среднее время между двумя последовательными столкновениями молекулы.

Каждая молекула непрерывно сталкивается с другими молекулами. Происходят все эти столкновения, конечно, случайно. Если выбрать какую-нибудь молекулу, то за достаточно долгое время Т она получит определенное число N ударов. Если увеличить промежуток времени вдвое, то и число ударов возрастет вдвое. Таким образом, число столкновений пропорционально времени Т. Это можно выразить следующим образом:

(43.1)

Мы записали постоянную пропорциональности в виде 1/τ, где τ имеет размерность времени. Постоянная τ — это среднее время между столкновениями. Предположим для примера, что за час происходит 60 столкновений; тогда τ равно одной минуте. Мы будем говорить, что τ (одна минута) это среднее время между столкновениями.

Часто нам придется искать ответ на такой вопрос: Какова вероятность того, что молекула испытает столкновение в течение малого промежутка времени dt? Мы догадываемся, что эта вероятность равна dt/τ. Попытаемся, однако, привести более убедительные аргументы. Предположим, что в нашем распоряжении имеется очень большое число N молекул. Сколько молекул из этого числа столкнется в течение интервала времени dt? Если молекулы находятся в равновесном состоянии, то ничего не будет меняться в среднем со временем. Таким образом, N молекул, пробывших в ящике в течение интервала dt, испытают столько же соударений, сколько одна молекула за время Ndt. Число соударений одной молекулы за большое время Ndt известно — это Ndt/τ. А если число соударений между N молекулами за время dt равно Ndt/τ, то вероятность удара для одной молекулы равна 1/N части этой величины, или (1/N)(Ndt/τ)=dt/τ (как мы и говорили с самого начала). Таким образом, относительное число молекул, сталкивающихся за время dt, грубо говоря, равно dt/τ. Если, например, τ равно одной минуте, то за секунду столкнется 1/60 часть всех молекул.

Это означает, конечно, что если в данный момент 1/60 часть молекул подошла достаточно близко к тем, с кем они должны столкнуться, то их столкновение произойдет в течение следующей минуты.

Когда мы говорим, что τ (среднее время между столкновениями) равно одной минуте, то мы вовсе не считаем, что все столкновения разделены в точности минутными интервалами. Частица, столкнувшись, совсем не выжидает потом еще минуту, чтобы нанести следующий удар. Промежутки между последовательными столкновениями весьма различны. В дальнейшем, правда, нам это не понадобится, но можно задать такой вопрос: А чему все же равно время между столкновениями? Мы уже знаем, что в приведенном выше примере среднее время равно одной минуте, но нам, быть может, нужно знать, какова вероятность того, что молекула не столкнется ни с кем в течение двух минут?

Ответим на более общий вопрос: Какова вероятность того, что молекула не испытает ни одного столкновения за время t? Начнем в какой-то произвольный момент времени, который мы назовем t=0, следить за определенной молекулой. Какова вероятность того, что до момента встречи ее с другой молекулой пройдет время t? Чтобы вычислить вероятность, посмотрим, что случится со всеми N0 молекулами, находящимися в ящике. Пока мы ждем в течение времени t, некоторые молекулы испытают столкновения. Пусть N(t) — число молекул, не испытавших столкновений за время t. Мы можем определить N(t), ибо нам известно, как это число меняется со временем. Это число N(t), естественно, меньше общего числа молекул N0. Если мы знаем, что за время t избежать столкновений удалось N(t) молекулам, то N(t+dt) (число молекул, которым удалось сделать это за время t+dt) меньше N(t) на число молекул, все-таки столкнувшихся за время dt. Мы уже раньше научились определять число молекул, которым не удалось избежать столкновений за время dt, с помощью среднего времени τ: dN=N(t)dt/τ. Мы получаем уравнение

(43.2)

Величину, стоящую в левой части уравнения, N(t+dt), можно в согласии с общими правилами дифференциального исчисления записать в виде N(t)+(dN/dt)(dt). Сделав эту подстановку, мы приведем уравнение (43.2) к виду

(43.3)

Число молекул, выбывших из игры за промежуток dt, пропорционально числу наличных молекул и обратно пропорционально среднему времени жизни τ. Уравнение (43.3) легко проинтегрировать, если переписать его в виде

(43.4)

Поскольку в каждой части стоит полный дифференциал, то интеграл уравнения таков:

(43.5)

или, что то же самое,

(43.6)

Мы знаем, что постоянная должна быть равна N0 — полному числу молекул, потому что в начальный момент t=0 все молекулы ждут «следующего» удара. Мы можем записать наш результат в виде

(43.7)

Если мы хотим определить вероятность P(t) того, что молекула не испытает столкновений, нужно величину N(t) поделить на N0; тогда получим

(43.8)

Вот наш результат: вероятность того, что какая-то молекула сможет прожить время t, не столкнувшись, равна ехр(-t/τ), где τ — среднее время между столкновениями. Вероятность эта начинается с 1 (очевидности) при t=0 и уменьшается по мере того, как t становится все больше и больше. Вероятность того, что молекула избежит столкновений за время τ, равна е-1=0,37... Шансов выдержать дольше, чем среднее время между столкновениями, меньше половины. В этом нет ничего странного, потому что существует достаточно много молекул, которые избегают столкновений значительно дольше среднего времени между столкновениями, так что среднее время между столкновениями по-прежнему равно τ.

Первоначально мы определили τ как среднее время между столкновениями. Сформулированный в виде уравнения (43.7) результат говорит нам, что среднее время, отсчитываемое от произвольно взятого момента до следующего столкновения, также равно τ. Этот несколько удивительный факт можно продемонстрировать следующим образом. Число молекул, которые испытают их следующее столкновение в промежутке dt, отсчитанного от времени t после произвольно взятого начального времени, равно N(t)dt/τ. Их «промежуток времени до следующего столкновения» равен, конечно, t. «Среднее время до следующего столкновения» получается обычным образом:

Используя полученное из (43.7) число N(t) и вычисляя интеграл, найдем, что τ — это среднее время, отсчитанное от любого момента до следующего столкновения.

 

§ 2. Средняя длина свободного пробега

Есть еще возможность описать столкновения молекул, не вводя для этого времени между столкновениями. Можно определить, далеко ли успеет уйти частица между столкновениями. Если мы знаем, что среднее время между столкновениями равно τ, а средняя скорость молекул равна v, то очевидно, что среднее расстояние между столкновениями, которое мы обозначим буквой l, равно произведению τ и v. Это расстояние между столкновениями обычно называют длиной свободного пробега:

(43.9)

В этой главе мы не будем уточнять, какого рода среднее мы имеем в виду в каждом случае. Существующие разные средние — среднее, корень из среднего квадрата и т. д.— приблизительно равны и отличаются только множителями, близкими к единице. Поскольку для получения правильных множителей необходим подробный анализ, нам нет смысла очень уж стараться уточнять, какое именно среднее используется в том или ином случае. Мы хотим еще предупредить читателей, что используемые для обозначения физических величин алгебраические символы (например, l для длины свободного пробега) не являются общепринятыми просто потому, что об этом никто еще специально не договаривался.

Вероятность того, что молекула испытает столкновение, пройдя расстояние dx, равна dx/l, как вероятность столкновения за короткий промежуток времени dt равна dt/τ. Призвав на помощь те же аргументы, что и раньше, читатель сможет показать, что вероятность того, что молекула пройдет по крайней мере расстояние х, прежде чем испытает следующее столкновение, равна е- x / l .

Среднее расстояние, которое молекула проходит между столкновениями (длина свободного пробега l), зависит от количества молекул, ее окружающих, и от того, какого «размера» эти молекулы, т. е. от того, насколько уязвимую мишень представляют они собой. «Размеры» мишени при столкновениях обычно описывают при помощи «эффективного сечения столкновений»; эта же идея используется и в ядерной физике или в задачах о рассеянии света.

Рассмотрим движущуюся частицу, которая проходит расстояние dx внутри газа, содержащего n0 рассеивателей (молекул) в единичном объеме (фиг. 43.1).

Фиг. 43.1. Эффективное сечение столкновения.

На каждой площадке единичной площади, перпендикулярной к направлению движения выбранной нами частицы, имеется n0dx молекул. Если каждая может быть представлена эффективной площадью столкновения, или, как обычно говорят, «эффективным сечением столкновения» σс , то полная площадь, покрываемая рассеивателями, равна σc n0dx.

Под «эффективным сечением столкновения» понимается площадь, в которую должен попасть центр частицы, если она должна столкнуться с заданной молекулой. Если молекулы выглядят как маленькие шарики (классическая картина), то следует ожидать, что σс =π(r1+r2)2, где r1 и r2— радиусы двух сталкивающихся молекул. Вероятность того, что наша частица столкнется с какой-нибудь молекулой, равна отношению площади, покрываемой рассеивающими молекулами, к полной площади, принятой нами за единицу. Таким образом, вероятность столкновения на пути dx равна σс n0dx:

(43.10)

Мы уже отметили раньше, что вероятность столкновения на пути dx может быть записана в терминах длины свободного пробега l как dx/l. Сравнивая это с (43.10), можно связать длину свободного пробега с эффективным сечением столкновения:

(43.11)

Это равенство легче запомнить, если записать его так:

(43.12)

Эта формула говорит, что если частица проходит путь l внутрь рассеивателя, в котором молекулы могут как раз покрыть всю площадь, то в среднем происходит одно столкновение. В цилиндре высотой l, поставленном на основание единичной площади, содержится n0l рассеивателей; если каждый из них занимает площадь σс, то полная площадь, покрытая ими, равна n0lσc , а это как раз единичая площадь. Конечно, молекулы не покрывают всей площади целиком, потому что часть молекул прячется за соседние молекулы. Поэтому некоторые молекулы пройдут между столкновениями большее, чем l, расстояние. Ведь это только в среднем молекулам между столкновениями дается ровно столько времени, чтобы они смогли пройти расстояние l. Измеряя длину свободного пробега l, можно определить эффективное сечение рассеяния σc и сравнить этот результат с расчетами, основанными на детальной теории строения атомов. Но это уже совсем другая тема! А пока вернемся к проблеме неравновесных состояний.

 

§ 3. Скорость дрейфа

Мы хотим описать поведение одной или нескольких молекул, которые чем-то отличаются от огромного большинства остальных молекул газа. Будем называть «большинство» молекул молекулами «фона», а отличающиеся от них молекулы получат название «особых» молекул, или (для краткости) S-молекул. Молекула может быть особой по целому ряду причин: она может быть, скажем, тяжелее молекул фона. Может она отличаться от них также химическим составом. А, может быть, особые молекулы несут электрический заряд — тогда это будет ион на фоне нейтральных молекул. Из-за необычности масс или зарядов на S-молекулы действуют силы, отличающиеся от сил между молекулами фона. Изучая поведение S-молекул, можно понять основные эффекты, которые вступают в игру во многих разнообразных явлениях. Перечислим некоторые из них: диффузия газов, электрический ток в батарее, осаждение, разделение при помощи центрифуги и т. д.

Начнем с изучения основного процесса: на S-молекулу в газе из молекул фона действуют какая-то особая сила F (это может быть сила тяжести или электрическая сила) и, кроме того, более обычные силы, обусловленные столкновениями с молекулами фона. Нас интересует общий характер поведения S-молекулы. Детальное описание ее поведения — это непрерывные стремительные удары и следующие одно за другим столкновения с другими молекулами. Но если проследить внимательно, то станет ясно, что молекула неуклонно движется по направлению силы F. Мы говорим, что дрейф накладывается на беспорядочное движение. Но нам хотелось бы знать, как зависит скорость дрейфа от силы F.

Если в какой-то произвольный момент времени начать наблюдать за S-молекулой, то можно надеяться, что попали мы как раз где-то между двумя столкновениями. Это время молекула употребит на то, чтобы в дополнение к скорости, оставшейся у нее после всех столкновений, увеличить составляющую скорости вдоль силы F. Немного погодя (в среднем через время τ) она снова испытает столкновение и начнет двигаться по новому отрезку своей траектории. Стартовая скорость, конечно, будет другой, а ускорение от силы F останется неизменным.

Чтобы упростить сейчас дело, предположим, что после каждого столкновения наша S-молекула выходит на совершенно «свободный» старт. Это значит, что у нее не осталось никаких воспоминаний о прежних ускорениях под действием силы F. Такое предположение было бы разумным, если бы наша S-молекула была намного легче молекул фона, но это, конечно, не так. Позднее мы обсудим более разумное предположение.

А пока предположим, что все направления скорости S-молекулы после каждого столкновения равновероятны. Стартовая скорость имеет любое направление и не может дать никакого вклада в результирующее движение, поэтому мы не будем принимать во внимание начальную скорость после каждого столкновения. Но, кроме случайного движения, каждая S-молекула в любой момент имеет дополнительную скорость в направлении силы F, которая увеличивается со времени последнего столкновения. Чему равно среднее значение этой части скорости? Оно равно произведению ускорения F/m (где m — масса S-молекулы) на среднее время, прошедшее с момента последнего столкновения. Но среднее время, протекшее после последнего столкновения, должно быть равно среднему времени перед следующим столкновением, которое мы уже обозначили буквой τ. Средняя скорость, порождаемая силой F,— это как раз скорость дрейфа; таким образом, мы пришли к соотношению

(43.13)

Это наше основное соотношение, главное во всей главе. При нахождении τ могут появиться всякого рода усложнения, но основной процесс определяется уравнением (43.13).

Обратите внимание, что скорость дрейфа пропорциональна силе. К сожалению, о названии для постоянной пропорциональности еще не договорились. Коэффициент перед силой каждого сорта имеет свое название. В задачах, связанных с электричеством, силу можно представить как произведение заряда на электрическое поле: F=qE; в этом случае постоянную пропорциональности между скоростью и электрическим полем Е называют «подвижностью». Несмотря на возможные недоразумения, мы будем применять термин подвижность для отношения скорости дрейфа к силе любого сорта. Будем писать

(43.14)

и называть μ подвижностью. Из уравнения (43.13) следует

(43.15)

Подвижность пропорциональна среднему времени между столкновениями (редкие столкновения слабо тормозят S-молекулу) и обратно пропорциональна массе (чем больше инерция, тем медленнее набирается скорость между столкновениями).

Чтобы получить правильный численный коэффициент в уравнении (43.13) (а у нас он верен), нужна известная осторожность. Во избежание недоразумений нужно помнить, что мы используем коварные аргументы, и употреблять их можно только после осторожного и детального изучения. Чтобы показать, какие бывают трудности, хотя по виду вроде все благополучно, мы снова вернемся к тем аргументам, которые привели к выводу уравнения (43.13), но эти аргументы, которые выглядят вполне убедительно, приведут теперь к неверному результату (к сожалению, такого рода рассуждения можно найти во многих учебниках!).

Можно рассуждать так: среднее время между столкновениями равно τ. После столкновения частица, начав двигаться со случайной скоростью, набирает перед следующим столкновением дополнительную скорость, которая равна произведению времени на ускорение. Поскольку до следующего столкновения пройдет время τ, то частица наберет скорость (F/m)τ. В момент столкновения эта скорость равна нулю. Поэтому средняя скорость между двумя столкновениями равна половине окончательной скорости, а средняя скорость дрейфа равна 1/2Fτ/m. (Неверно!) Этот вывод неверен, а уравнение (43.13) правильно, хотя, казалось бы, в обоих случаях мы рассуждали одинаково убедительно. Во второй результат вкралась довольно коварная ошибка: при его выводе мы фактически предположили, что все столкновения отстоят друг от друга на время τ. На самом деле некоторые из них наступают раньше, а другие позже этого времени. Более короткие времена встречаются чаще, но их вклад в скорость дрейфа невелик, потому что слишком мала в этом случае вероятность «реального подталкивания вперед». Если принять во внимание существование распределения свободного времени между столкновениями, то мы увидим, что множителю 1/2, полученному во втором случае, неоткуда взяться. Ошибка произошла из-за того, что мы, обманувшись простотой аргументов, попытались слишком просто связать среднюю скорость со средней конечной скоростью. Связь между ними не столь уж проста, поэтому лучше подчеркнуть, что нам нужна средняя скорость сама по себе. В первом случае мы с самого начала искали среднюю скорость и нашли ее верное значение! Быть может, теперь вам понятно, почему мы не пытались найти точного значения всех численных коэффициентов в наших элементарных уравнениях?

Вернемся к нашему предположению о том, что каждое столкновение полностью стирает из памяти молекулы все о былом ее движении и что после каждого столкновения для молекулы начинается новый старт. Предположим, что наша S-молекула — это тяжелый объект на фоне более легких молекул. Тогда уже недостаточно одного столкновения, чтобы отобрать у S-молекулы ее направленный «вперед» импульс. Только несколько последовательных столкновений вносят в ее движение «беспорядок». Итак, вместо нашего первоначального рассуждения предположим теперь, что после каждого столкновения (в среднем через время τ) S-молекула теряет определенную часть своего импульса. Мы не будем исследовать детально, к чему приведет такое предположение. Ясно, что это эквивалентно замене времени τ (среднего времени между столкновениями) другим, более длинным τ, соответствующим среднему «времени забывания», т. е. среднему времени, за которое S-молекула забудет о том, что у нее когда-то был импульс, направленный вперед. Если понимать τ так, то можно использовать нашу формулу (43.15) для случаев, не столь простых, как первоначальный.

 

§ 4. Ионная проводимость

Применим наши результаты к частному случаю. Предположим, что в сосуде, заполненном газом, содержатся также ионы — атомы или молекулы с избыточным электрическим зарядом. Схематически это выглядит так, как на фиг. 43.2.

Фиг. 43.2. Электрический ток в ионизованном газе.

Если две противоположные стенки сосуда сделаны из металлических пластин, то их можно подсоединить к полюсам батареи и создать таким образом в газе электрическое поле.

Электрическое поле будет с некоторой силой воздействовать на ионы, и они начнут свой дрейф к одной из пластин. В результате возникнет электрический ток, и газ со своими ионами будет работать как сопротивление. Выразив через скорость дрейфа ионный поток, можно рассчитать величину сопротивления. Больше всего нас интересует зависимость ионного потока от приложенной к пластинам разности потенциалов V.

В нашем случае сосуд — это прямоугольный ящик, длина которого b, а площадь поперечного сечения А (см. фиг. 43.2). Если к пластинам приложена разность потенциалов V, то электрическое поле Е между пластинами равно V/b. (Электрический потенциал — это работа, совершаемая при переносе единичного заряда от одной пластины к другой. Сила, действующая на единичный заряд, равна Е. Если значение Е одинаково всюду между пластинами, что можно с достаточным основанием предположить в нашем случае, то затраченная на единичный заряд работа равна Eb, т. е. V=Eb.) В нашем случае на ионы действует сила qЕ, где q — заряд иона. Скорость дрейфа иона равна произведению силы на μ:

(43.16)

Электрический ток I равен потоку заряда за 1 сек. Электрический ток через одну из пластин равен, таким образом, полному заряду ионов, достигающих пластины за 1 сек. Если ионы движутся к пластине со скоростью vдр, то за время Т пластины достигнут те ионы, которые находились не дальше, чем на расстоянии vдрT от нее. Если в единичном объеме содержится ni ионов, то за время Т на пластине высадится ni AvдрT ионов.

Каждый ион несет заряд q, поэтому

(43.17)

Ток I — это отношение собранного за время Т заряда к времени Т:

(43.18)

Подставляя сюда скорость дрейфа vдр из (43.16), получаем

(43.19)

Мы выяснили, что ток пропорционален разности потенциалов, это и есть закон Ома, а сопротивление R равно обратной постоянной пропорциональности:

(43.20)

Мы нашли связь сопротивления со свойствами молекул ni q и μ, которое в свою очередь зависит от τ и m. Если мы при помощи атомных измерений определим ni и q, то, измеряя R, можно определить μ, а потом и τ.

 

§ 5. Молекулярная диффузия

Перейдем к другой задаче, для которой нам придется несколько изменить метод анализа, — к задаче о диффузии. Предположим, что мы взяли ящик, заполненный газом, находящимся в тепловом равновесии, а потом в любое место внутри ящика вспрыснули небольшое количество другого газа. Назовем первоначальный газ газом «фона», а новый газ — «особым» газом. Особый газ начинает распространяться по всему ящику, но распространение это замедляется наличием молекул фона. Явление такого замедленного распространения называется диффузией. Диффузия в основном определяется столкновениями молекул особого газа с молекулами фона. После многих столкновений особые молекулы более или менее равномерно распределятся по всему ящику. Важно не спутать диффузию газа с переносом больших количеств вещества в результате конвекционных токов. Обычно смешение двух газов происходит именно в результате комбинации конвекции и диффузии. Сейчас нас интересует только такое перемешивание, которое не сопровождается «порывами ветра». Газ распространяется только благодаря молекулярному движению, т. е. происходит диффузия. Давайте выясним, быстро ли происходит диффузия.

Итак, мы приступаем к вычислению общего потока молекул особого газа, порождаемого молекулярным движением. Общий поток не равен нулю только тогда, когда распределение молекул отличается от равновесного, иначе усреднение молекулярного движения сводит общий поток к нулю. Рассмотрим сначала поток в направлении оси х. Чтобы определить, чему этот поток равен, мы должны вообразить площадку, перпендикулярную к оси, и подсчитать число молекул, пересекающих эту площадку. Чтобы определить общий поток, мы должны считать положительными те молекулы, которые движутся в направлении положительных x, и вычесть из этого числа те молекулы, которые движутся в противоположном направлении. Как мы неоднократно убеждались, число молекул, пересекающих площадку в течение времени ΔT, равно числу молекул, находящихся к началу интервала ΔT внутри объема, заключенного между нашей площадкой и площадкой, расположенной от нее на расстоянии vΔT. (Заметим, что здесь v — настоящая скорость молекулы, а отнюдь не скорость дрейфа.)

Мы упростим наши выкладки, если возьмем площадку единичной площади. Тогда число особых молекул, пересекающих площадку слева направо (справа от площадки лежат положительные x-направления), равно n-vΔT, где n- — число особых молекул в единичном объеме слева от площадки (с точностью до множителя ~1/6, но мы такими множителями пренебрежем!). Аналогично, число особых молекул, движущихся справа налево, равно n+vΔT, где n+ — плотность особых молекул справа от площадки. Если мы обозначим молекулярный поток буквой J, под которой мы будем понимать общий поток молекул через единичную площадку за единицу времени, то получим

(43.21)

или

(43.22)

А что понимать под n- и n+? Когда мы говорим «плотность слева от площадки», то как далеко налево? Мы должны измерить плотность в том месте, откуда молекула отправляется в свой «свободный полет», потому что число стартующих молекул определяется числом молекул, находящихся в этом месте. Таким образом, n- — это плотность молекул на расстоянии длины свободного пробега l слева от нашей воображаемой площадки, а n+ — плотность молекул на расстоянии длины свободного пробега справа от нее.

Распределение особых молекул в ящике удобно описывать с помощью непрерывной функции x, y и z, которую мы обозначим na. Под na(x, y, z) нужно понимать плотность особых молекул в маленьком объеме вокруг точки (x, y, z). Тогда разность (n+-n-) можно представить в виде

(43.23)

Подставляя этот результат в (43.22) и пренебрегая множителем 2, получаем

(43.24)

Мы выяснили, что поток особых молекул пропорционален производной плотности, или, как иногда говорят, «градиенту плотности».

Ясно, что мы сделали несколько грубых приближений. Не говоря уже о том, что мы постоянно забывали о множителях, мы использовали v, когда нужно было ставить vx , а разместив объемы, содержащие молекулы n+ и n-, на концах перпендикуляров к площадке, взяли перпендикуляры длиной l. Между тем для тех молекул, которые движутся не перпендикулярно к поверхности, l соответствует длине наклонного пути. Можно исправить эти недоделки; более тщательный анализ показал бы, что правую часть уравнения (43.24) нужно умножить на 1/3. Итак, более правильный ответ выглядит следующим образом:

(43.25)

Аналогичные уравнения можно написать для токов вдоль y- и z-направлений.

С помощью макроскопических наблюдений можно измерить ток Jx и градиент плотности dna /dx. Их отношение, найденное экспериментально, называется «коэффициентом диффузии» D. Это значит, что

(43.26)

Мы смогли показать, что ожидаемое значение коэффициента D для газа равно

(43.27)

Пока мы изучили в этой главе два разных процесса: подвижность (дрейф молекул под действием «внешней» силы) и диффузию (разбегание молекул, определяемое только внутренними силами, случайными столкновениями). Однако эти процессы связаны друг с другом, потому что в основе обоих явлений лежит тепловое движение, и оба раза в расчетах появлялась длина свободного пробега l.

Если в уравнение (43.25) подставить l=vτ и τ=μm, то получится

(43.28)

Ho mv2 зависит только от температуры. Мы еще помним, что

(43.29)

так что

(43.30)

Таким образом, D, коэффициент диффузии, равен произведению kT на μ, коэффициент подвижности:

(43.31)

Оказывается, что (43.31) — это точное соотношение между коэффициентами. Хотя мы исходили из очень грубых предположений, не нужно к нему добавлять никаких дополнительных множителей. Можно показать, что (43.31) в самом деле всегда удовлетворяется точно. Это верно даже в очень сложных случаях (например, для случая взвешенных в жидкости мелких частиц), когда наши простые вычисления явно отказываются служить.

Чтобы показать, что (43.31) верно в самых общих случаях, мы выведем его иначе, используя только основные принципы статистической механики. Представьте себе, что почему-то существует градиент «особых» молекул и возник ток диффузии, пропорциональный, согласно (43.26), градиенту плотности. Тогда мы создадим в направлении оси х силовое поле так, что на каждую особую молекулу будет действовать сила F. По определению подвижности μ скорость дрейфа дается соотношением

(43.32)

Используя обычные аргументы, можно найти ток дрейфа (общее число молекул, пересекающих единичную площадку за единицу времени):

(43.33)

или

(43.34)

А теперь можно так распорядиться силой F, что ток дрейфа, вызываемый силой F, скомпенсирует диффузию, тогда полный ток особых молекул будет равен нулю. В этом случае мы имеем Jx+Jдр=0, или

(43.35)

В этом случае «компенсации» существует постоянный (во времени) градиент плотности, равный

(43.36)

Теперь уже легко соображать дальше! Ведь мы добились равновесия и можем теперь применять наши равновесные законы статистической механики. По этим законам вероятность найти молекулу около точки х пропорциональна ехр(-U/kT), где U — потенциальная энергия. Если говорить о плотности молекул nа , то это значит:

(43.37)

Дифференцируя (43.37) по х, получаем

(43.38)

или

(43.39)

В нашем случае сила F направлена вдоль оси х и потенциальная энергия U равна -Fx, а -dU/dx=F. Уравнение (43.39) принимает вид

(43.40)

[Это в точности уравнение (40.2), из которого мы и вывели ехр(-U/kT); круг замкнулся.] Сравнивая (43.40) и (43.36), мы получаем уравнение (43.31). Мы показали, что в уравнении (43.31), которое выражает ток диффузии через подвижность, все коэффициенты правильны, а само уравнение правильно всегда. Подвижность и диффузия тесно связаны. Эту связь открыл Эйнштейн.

 

§ 6. Теплопроводность

Методы кинетической теории, которую мы так успешно применяли, позволяют также рассчитать и теплопроводность газа. Если газ в верхней части ящика горячее, чем внизу, то тепло перетечет сверху вниз. (Мы предполагаем, что теплее верхняя часть ящика, потому что в противном случае возникнут поднимающиеся вверх конвекционные токи, а этот случай уже не имеет отношения к теплопроводности.) Перенос тепла от горячего газа к холодному вызывается диффузией «горячих» молекул (т. е. молекул с большой энергией) вниз и диффузией «холодных» молекул вверх. Чтобы вычислить поток тепловой энергии, мы должны узнать сначала об энергии, переносимой через выделенную площадку сверху вниз (ее переносят движущиеся вниз молекулы), потом об энергии, переносимой через эту же площадку снизу вверх (за это уже отвечают молекулы, поднимающиеся вверх). Разность этих потоков энергии даст нам полный поток энергии сверху вниз.

Теплопроводность ϰ определяется как отношение скорости переноса тепловой энергии через единичную площадку к градиенту температуры:

(43.41)

Поскольку ход вычислений теплопроводности очень похож на вычисление потока заряженных частиц в ионизованном газе, то мы предлагаем читателю в виде упражнения доказать, что

(43.42)

при этом (γ-1)kT —средняя энергия молекулы при температуре Т.

Если вспомнить о соотношении nlσc =1, то теплопроводность можно записать в виде

(43.43)

Мы получили поистине удивительный результат. Известно, что средняя скорость молекул газа зависит от температуры и не зависит от плотности. Можно думать, что σс зависит только от размеров молекул. Таким образом, наш очень простой вывод сводится к тому, что теплопроводность ϰ (а следовательно, и скорость потока тепла в каждом частном случае) не зависит от плотности газа! Изменение числа «носителей» энергии при изменениях плотности в точности компенсируется изменением расстояния, которое пробегает «носитель» между столкновениями.

А теперь можно спросить: Действительно ли поток тепла всегда не зависит от плотности газа? Ну а если плотность стремится к нулю и в ящике совсем не остается газа? Конечно, нет! Формула (43.43), как и другие формулы этой главы, выведена в предположении, что средняя длина свободного пробега между столкновениями гораздо меньше любых размеров ящика. Если плотность газа столь мала, что молекула имеет неплохие шансы пробежаться от одной стенки ящика к другой, ни разу не столкнувшись, то все вычисления этой главы рухнут. В этих случаях следует вернуться к кинетической теории и заново все детально рассчитать.

 

Глава 44 ЗАКОНЫ ТЕРМОДИНАМИКИ

 

§ 1. Тепловые машины; первый закон

До сих пор мы рассматривали свойства вещества с атомной точки зрения, причем мы пытались, хотя бы в общих чертах, понять, что произойдет, если принять, что вещество состоит из атомов, подчиняющихся тем или иным законам. Однако вещество обладает и такими свойствами, которые можно понять, не изучая подробно его строения. Поисками соотношений между различными свойствами вещества, не углубляясь в изучение внутреннего его строения, занимается термодинамика. Исторически термодинамика стала наукой еще до того, как более или менее точно узнали о внутреннем строении вещества.

Приведем пример: согласно кинетической теории, давление газа вызывается молекулярной бомбардировкой, и нам известно, что при нагревании газа бомбардировка усиливается и давление должно повыситься. И наоборот, если внутрь ящика с газом вдвигается поршень, преодолевающий сопротивление бомбардирующих его молекул, то энергия этих молекул возрастает, а соответственно повышается и температура. Итак, повышая температуру внутри заданного объема, мы увеличиваем давление. Если же мы сжимаем газ, то повышается его температура. Используя кинетическую теорию, можно найти количественные соотношения между этими двумя эффектами, однако каждому понятно, что между давлением и температурой обязательно должна существовать некоторая связь, не зависящая от деталей столкновений.

Рассмотрим еще один пример. Многим, наверное, известно интересное свойство резины — если растянуть ее, она нагреется. Если вы зажмете губами резиновую полоску и, потянув рукой, растянете ее, то отчетливо почувствуете, что она нагрелась. Это нагревание обратимо, т. е. если вы, продолжая держать полоску губами, быстро отпустите ее, то возникнет столь же отчетливое ощущение холода. Это означает, что при растяжении резина нагревается, а при ослаблении натяжения она охлаждается. Наш инстинкт может нам подсказать, что нагретая резина тянет лучше: если растяжение нагревает резину, то нагревание заставит ее сжаться. Действительно, если поднести к растягиваемой грузиком резиновой полоске газовую горелку, то мы заметим, что полоска резко сократится (фиг. 44.1).

Фиг. 44.1. Нагретая резина.

Таким образом, при нагревании натяжение в резине возрастет, и это вполне согласуется с тем, что при уменьшении натяжения она остывает.

Скрытые в резине механизмы, управляющие этими эффектами, очень сложны. Мы опишем их с молекулярной точки зрения, хотя главная задача этой главы — научиться понимать связь между такими эффектами независимо от молекулярной модели. Тем не менее, именно исходя из молекулярной модели, мы можем показать, что оба эти явления тесно связаны. Поведение резины можно объяснить так. Представьте себе, что резина, по существу, огромный клубок, состоящий из очень длинных молекул, что-то вроде «молекулярных макарон», но с небольшим дополнительным усложнением: между этими молекулярными цепочками имеются соединительные цепочки. Таким образом, моделью куска резины могут служить слипшиеся во время варки макароны, образующие огромный ком. Когда мы растягиваем такой клубок, некоторые молекулярные цепи стремятся вытянуться в линию вдоль направления растяжения. В то же время все цепи участвуют в тепловом движении и непрерывно сталкиваются друг с другом. Поэтому такая цепь, когда ее растягивают, не остается в натянутом виде, так как об нее ударяют со всех сторон другие цепи и другие молекулы, и она будет вынуждена запутаться снова. Поэтому истинная причина того, почему резина все время стремится сократиться, заключается в следующем: при растяжении цепи действительно вытягиваются вдоль одной линии, но тепловые движения цепей стремятся запутать их снова и сократить их длину. Поэтому если растянуть цепи и увеличить температуру, то усилится и бомбардировка цепей, что приведет к увеличению натяжения. Этим объясняется способность нагретой резины поднять более тяжелый груз. Если растянутую в течение некоторого времени резину отпустить, то каждая цепь становится мягче, ударяющиеся о расслабленные цепи молекулы теряют энергию, и температура падает.

Итак, мы видели, как кинетическая теория устанавливает связь между сокращением при нагревании и остыванием при расслаблении, но было бы чересчур сложно пытаться вывести методами кинетической теории точные соотношения между этими эффектами. Нам пришлось бы для этого выяснить, сколько столкновений происходит ежесекундно и как выглядят молекулярные цепи. И вообще всех трудностей просто не перечислить. Детали механизма столь сложны, что кинетическая теория не в состоянии описать в точности все происходящее. Однако можно вывести некоторые соотношения между этими эффектами, практически ничего не зная о внутреннем механизме!

Вся термодинамика сводится примерно к таким рассуждениям: раз резина при высокой температуре «сильнее», чем при низкой, то с помощью тепла можно совершать самые разнообразные работы, скажем подымать грузы и передвигать их на новое место. И действительно, мы уже убедились, что нагретая резина способна поднимать тяжести. С изучения возможности использования тепла для совершения работы и начинается термодинамика. Можно ли построить машину, в которой используются тепловые свойства резины? Да, только выглядеть она будет глуповато. Для этого можно немного усовершенствовать велосипедное колесо, вставив туда резиновые спицы (фиг. 44.2).

Фиг. 44.2. Тепловая машина с резиновыми спицами.

Если с помощью двух ламп накаливания нагреть резину на одной стороне колеса, то она станет «сильнее», чем ненагретая резина на другой стороне. Центр тяжести колеса сдвинется и отойдет от точки опоры. Колесо повернется. После поворота холодные резиновые спицы пододвинутся поближе к теплу, а нагретые уступят им свое теплое место и остынут. И колесо будет медленно вращаться, пока будут гореть лампы. Коэффициент полезного действия такой машины чрезвычайно мал. Для вращения колеса едва хватает содержащейся в двух лампах мощности около 400 вт, а способно оно поднять лишь блоху! Однако тут же возникает интересный вопрос: нельзя ли более эффективно перевести тепло в работу?

Собственно говоря, термодинамика ведет свое начало с работ знаменитого инженера Сади Карно, который желал построить наилучшую и наиболее экономичную машину. Это один из немногих замечательных случаев, когда инженер заложил основы физической теории. На память приходит еще один пример, но уже сравнительно недавний — это анализ теории информации, сделанный Клодом Шенноном. Кстати, эти вопросы тесно связаны.

В паровой машине тепло используется для кипячения воды. Образующийся пар, расширяясь, толкает поршень, а поршень крутит маховик. Итак, пар вытолкнул поршень до отказа — что дальше? Эта порция пара свою работу выполнила, однако самое неразумное было бы закончить цикл выпуском пара в атмосферу, тогда к паровому котлу придется вновь подводить воду. Дешевле, а значит, и эффективнее отводить пар в другой сосуд, где он будет конденсироваться холодной водой, и образующуюся при этом воду можно будет снова вернуть в паровой котел, обеспечив непрерывную циркуляцию. Таким образом, паровая машина поглощает тепло и превращает его в работу. А может быть, лучше залить котел спиртом? Какими свойствами должно обладать вещество, чтобы обеспечить наилучшую работу машины? Этот вопрос задавал себе Карно и, размышляя таким образом, как мы уже сказали, попутно открыл соотношение очень общего типа.

Все результаты термодинамики содержатся в нескольких предельно простых утверждениях, называемых законами термодинамики. Во времена Карно первый закон термодинамики — закон сохранения энергии —был еще не известен. Однако аргументы были сформулированы Карно так точно, что они оказались правильными, хотя первый закон тогда не был еще открыт! Немного позже Клаузиус привел более простой вывод, который понять оказалось легче, чем очень тонкие рассуждения Карно. Но Клаузиус исходил из предположения, что сохраняется не полная энергия, а теплота; так считала в то время калорическая теория, которая впоследствии была вообще отвергнута как неверная. Поэтому часто говорят, что аргументы Карно были ложными. На самом же деле логика Карно безукоризненна. Неверно только упрощенное толкование этих аргументов Клаузиусом, а именно с ним все обычно знакомятся.

Так случилось, что так называемый второй закон термодинамики был открыт Карно раньше первого закона! Было бы очень интересно привести здесь аргументы Карно, не опирающиеся на первый закон. Но придется отказаться от этого, потому что мы изучаем физику, а не историю. С самого начала будем пользоваться первым законом, хотя многое можно было бы сделать и без него.

Сначала сформулируем первый закон, закон сохранения энергии: если нам дана система и мы подводим к ней тепло и производим над ней какую-то работу, то приращение энергии системы равно подведенному теплу и затраченной работе. Мы запишем все это так: к системе подводится тепло Q и над ней производится работа W, тогда энергия системы U возрастает; эту энергию иногда называют внутренней энергией. Связаны эти величины следующим соотношением:

(44.1)

Изменение U можно получить, добавляя небольшое количество тепла ΔQ и небольшую работу ΔW:

(44.2)

Это — дифференциальная форма того же закона. Все это мы уже хорошо знаем из предыдущей главы.

 

§ 2. Второй закон

А что такое второй закон термодинамики? Мы знаем, что если при работе приходится преодолевать трение, то потерянная работа равна выделившемуся теплу. Если мы преодолеваем трение в комнате при температуре Т и делаем это достаточно медленно, то температура в комнате изменится ненамного. Мы превращаем работу в тепло при постоянной температуре. Ну, а можно ли поступить наоборот? Сумеем ли мы каким-то способом превратить тепло в работу при постоянной температуре? Второй закон термодинамики утверждает, что это невозможно. Было бы очень хорошо научиться превращать тепло в работу, изменив лишь направление процесса, похожего на трение. Если исходить только из закона сохранения энергии, можно считать, что тепловая энергия, например колебательная энергия молекул, способна служить удобным источником полезной энергии. Но Карно утверждал, что при постоянной температуре тепловую энергию нельзя извлечь из ее источника. Иначе говоря, если бы весь мир имел повсюду одинаковую температуру, то оказалось бы невозможным превратить тепловую энергию в работу. Хотя процессы, при которых работа переходит в тепло, могут идти при постоянной температуре, невозможно обратить их и вернуть работу обратно. Если говорить точно, Карно утверждал, что при постоянной температуре нельзя извлечь тепло из его источника и превратить в работу, не производя больше никаких изменений в заданной нам системе или в окружающем пространстве.

Последняя фаза очень важна. Предположим, что в запаянном контейнере находится сжатый воздух при постоянной температуре; мы позволили ему расшириться. Такое устройство может совершать работу; оно может привести в движение пневматический молоток. При расширении, например, воздух чуть-чуть охлаждается, но если в нашем распоряжении очень большое море, огромный тепловой резервуар, то мы снова сможем нагреть его. Итак, мы взяли из моря (резервуара) тепло и произвели работу при помощи сжатого воздуха. Однако Карно не ошибся. Ведь мы не сумели оставить все в системе без изменения. Чтобы сжать снова воздух, которому мы позволили расшириться, нам понадобится произвести дополнительную работу. Покончив с этим, мы обнаружим, что не только не смогли заставить систему работать при заданной температуре Т, но еще и сами вложили некую работу. Мы должны говорить только о таких случаях, когда полный результат всего процесса сводится к изъятию тепла и превращению его в работу, точно так же, как при преодолении трения конечный результат есть превращение работы в тепло. Если процесс сводится к движению по окружности, то систему можно вернуть точно в исходное положение, но конечным результатом этого процесса будет переход в тепло затраченной на преодоление трения работы. А можно ли обратить этот процесс? Повернуть, скажем, какую-нибудь ручку, чтобы все повернулось вспять, трение производило полезную работу, а моря остыли? Карно сказал, что этого не может быть. Давайте и мы предположим, что это невозможно.

Если бы это стало вдруг возможным, то это означало бы, что, помимо многих других полезных вещей, мы смогли бы, например, без всяких затрат отнять тепло у холодного тела и отдать его горячему. Между тем каждый знает, что тепло переходит от горячего тела к холодному.

Если мы просто приложим нагретое тело к холодному и больше ничего делать не будем, то, насколько известно, горячее тело никогда не станет горячее, а холодное — холоднее! Но если бы мы смогли произвести работу, отобрав тепло, скажем, у океана или от чего-нибудь еще, не изменив его температуры, то эту работу можно было бы, призвав на помощь трение, снова превратить в тепло, но уже при другой температуре. Например, второе плечо нашей воображаемой машины может тереться обо что-то, что и так уже нагрелось. Полный результат процесса в этом случае сводится к охлаждению «холодного» тела, в нашем случае океана, и нагреванию горячих трущихся частей машины. Гипотезу Карно, второй закон термодинамики, иногда формулируют так: тепло не может перетечь само собой от холодного тела к горячему. Но мы только что убедились в эквивалентности этих утверждений. Повторим их снова. Первое: нельзя осуществить процесс, единственным результатом которого является превращение тепла в работу при постоянной температуре. Второе: тепло не может перетечь само собой от холодного тела к горячему. Мы будем чаще пользоваться первой формулировкой.

Анализ работы тепловой машины, проделанный Карно, весьма похож на то, что мы делали в гл. 4 (вып. 1), когда изучали подъемные машины и рассуждали о законе сохранения энергии. Более того, приведенные там аргументы подсказаны аргументами Карно о работе тепловых машин. Поэтому некоторые рассуждения в этой главе покажутся вам уже знакомыми.

Предположим, что «котел» построенной нами тепловой машины поддерживается при температуре Т1. За счет отнятого у котла тепла Q1 пар совершил работу W и выделил в «конденсоре» тепло Q2 [температура конденсора равна Т2 (фиг. 44.3)].

Фиг. 44.3. Схема тепловой машины.

Карно не уточнил, чему равно это тепло, потому что не знал первого закона и не предполагал, что Q2 равно Q1 потому что не верил этому. Многие считали, что Q1 и Q2 одинаковы, так предписывала калорическая теория. Но Карно этого не предполагал, в этом одна из тонкостей его аргументов. Если же использовать первый закон, то мы найдем, что выделенное тепло Q2 равно теплу Q1 за вычетом совершенной работы:

(44.3)

(Если бы наш процесс был циклическим и сконденсированная вода поступала бы снова в котел, то после каждого цикла при заданном количестве участвующей в цикле воды поглощалось бы тепло Q1 и производилась бы работа W.)

А теперь построим другую машину и посмотрим, не сможем ли мы совершить большую работу при том же количестве тепла, выделяемого при температуре T1. В конденсоре будет поддерживаться та же температура Т2. Мы используем то же тепло Q1 из котла и попытаемся совершать большую работу, чем та, которая была произведена старой паровой машиной. Для этого, быть может, придется использовать другую жидкость, скажем спирт.

 

§ 3. Обратимые машины

Давайте разберемся в наших машинах получше. Одно из свойств всех машин нам уже известно. Если в машине есть трение, то неизбежны потери энергии. Наилучшей машиной была бы машина вообще без трения. Предположим, что мы имеем дело с теми же идеальными машинами, что и при изучении закона сохранения энергии, т. е. машинами, которым совсем не надо преодолевать трения.

А теперь обсудим аналог движения без трения — «лишенный трения» перенос тепла. Если мы приложим горячее тело к телу, обладающему более низкой температурой, то возникнет тепловой поток. Тепло течет от горячего тела к холодному, и, чтобы повернуть поток вспять, нужно слегка изменить температуру какого-нибудь одного тела. Но машина, лишенная трения, будет под действием сколь угодно малой силы послушно двигаться туда, куда ей приказывают, а когда сила будет действовать в другую сторону, охотно последует за ней. Аналогом машины без трения может служить устройство, в котором бесконечно малые изменения температуры могут повернуть тепловой поток вспять. Если разность температур конечна, то это невозможно. Но если тепло течет между двумя телами практически при одинаковой температуре и достаточно бесконечно малого изменения температуры, чтобы поток повернул в любом направлении, то поток считается обратимым (фиг. 44.4).

Фиг. 44.4. Обратимый перенос тепла.

Если нагреть слегка левую половину тела, тепло потечет вправо; если чуть-чуть охладить левую половину, тепло устремится влево. Итак, оказалось, что идеальной машиной является так называемая обратимая машина, в которой любой процесс обратим в том смысле, что малейшие изменения условий работы могут заставить машину работать в обратном направлении. Это означает, что машина не должна ни в каком месте иметь трения; в такой машине не должно быть также места, где тепло резервуара или пар котла прямо соприкасались бы с какими-то более холодными или более горячими частями.

Займемся идеальной машиной, в которой обратимы все процессы. Чтобы показать, что создание такой машины в принципе возможно, мы просто приведем пример рабочего цикла, причем нас не интересует возможность его практической реализации, достаточно того, что с точки зрения Карно он обратим.

Предположим, что в цилиндре, оборудованном поршнем без трения, имеется газ. Это не обязательно идеальный газ. Содержимое цилиндра вообще не обязано быть газом. Но для определенности будем считать, что в цилиндре идеальный газ. Предположим еще, что имеются две тепловые подушки Т1 и Т2— два очень больших тела, поддерживаемых при определенных температурах T1 и Т2 (фиг. 44.5).

Фиг. 44.5. Шаги цикла Карно. а — шаг 1. Изотермическое расширения при T1 , поглощается тепло Q1 ; 6 — шаг 2. Адиабатическое расширение; температура падает от T1 , до Т2 ; в —шаг 3. Изотермическое сжатие при Т2 ; выделяется тепло Q2 ; г —шаг 4. Адиабатическое сжатие; температура поднимается от Т2 , до T1 .

Будем считать, что Т1 больше Т2. Для начала нагреем газ и, положив цилиндр на подушку T1, позволим газу расшириться. Пусть по мере притока тепла в газ поршень очень медленно выдвигается из цилиндра. Тогда можно поручиться, что температура газа не будет сильно отклоняться от Т1. Если выдернуть поршень очень быстро, температура в цилиндре может упасть значительно ниже Т1 и процесс уже нельзя будет считать полностью обратимым. Если же мы будем медленно вытаскивать поршень, температура газа останется близкой к температуре Т1. С другой стороны, если поршень медленно вдвигать обратно в цилиндр, температура станет лишь чуть-чуть повыше температуры Т1 и тепло потечет вспять. Вы видите, что такое изотермическое (при постоянной температуре) расширение может быть обратимым процессом, если только производить его медленно и осторожно.

Чтобы лучше понять, что происходит, нарисуем кривую зависимости давления газа от его объема (фиг. 44.6).

Фиг. 44.6. Цикл Карно.

Когда газ расширяется, его давление падает. Кривая 1 показывает, как изменяются объем и давление, если в цилиндре поддерживается постоянная температура Т1. Для идеального газа эта кривая описывается уравнением PV=NkT1. Во время изотермического расширения по мере увеличения объема давление падает, пока мы не остановимся в точке b. За это время газ заберет из резервуара тепло Q1; ведь мы уже знаем, что если бы газ расширялся, не соприкасаясь с резервуаром, он бы остыл. Итак, мы закончили расширение в точке b. Давайте теперь снимем цилиндр с резервуара и продолжим расширение. Но теперь теплу уже неоткуда взяться. И снова мы медленно выдвигаем поршень, так что нет причины, почему бы процесс мог быть необратимым. Конечно, мы опять предполагаем, что трения нет. Газ продолжает расширяться, и температура падает, потому что связь с источниками тепла прервана.

Будем расширять газ так, чтобы расширение описывалось кривой 2 до тех пор, пока мы не достигнем точки с, где температура упадет до T2. Такое расширение без притока тепла называется адиабатическим. Мы уже знаем, что в случае идеального газа кривая 2 имеет вид PVγ=const, где γ — постоянная, большая единицы; поэтому адиабатическая кривая падает круче изотермической. Если температура газа в цилиндре достигла Т2, то, положив цилиндр на вторую тепловую подушку, мы не рискуем вызвать температурных изменений.

Теперь можно медленно сжать газ, продвигаясь по кривой 3, причем цилиндр соприкасается с резервуаром при температуре T2 (см. фиг. 44.5, шаг 2). Поскольку цилиндр соприкасается с резервуаром, его температура не может повыситься, но газу придется отдать резервуару тепло Q2 при температуре T2. Продвинувшись по кривой 3 до точки d, мы снова снимем цилиндр с тепловой подушки при температуре Т2 и продолжаем сжимать газ. На этот раз мы не станем отбирать у газа тепло. При этом поднимется температура, а давление пойдет по кривой 4. Если мы тщательно проделаем все этапы, то вернемся к исходной точке а при температуре Т1 и можем повторить цикл.

По этой диаграмме судя, газ совершил полный цикл, отняв за это время тепло Q1 при температуре T1 и отдав тепло Q2 при температуре T2. Этот цикл обратим, и поэтому мы можем шаг за шагом проделать весь путь в обратном направлении. Мы могли бы пойти назад, а не вперед, могли бы начать движение из точки а при температуре T1, двигаться по кривой 4, затем поглотить тепло Q2 при температуре T2 (для этого надо все время выдвигать поршень) и т. д., пока цикл не будет завершен. Если мы совершали цикл в одном направлении, то заставили газ работать, если же нам захотелось повернуть назад, то придется поработать самим.

Между прочим, легко сосчитать полную работу. Полная работа, совершаемая при расширении, равна произведению давления на изменение объема: ∫PdV. На нашей диаграмме мы откладывали Р вертикально, а V горизонтально. Если обозначать вертикальное расстояние буквой у, а горизонтальное буквой х, то мы получим интеграл ∫ydx, а это — площадь под кривой. Таким образом, площадь под каждой из пронумерованных кривых измеряет работу, совершенную либо газом, либо нами за соответствующий этап цикла. Легко понять, что чистый выход работы равен площади внутри кривых.

Раз уж мы привели пример одной обратимой машины, то можно предположить, что возможно существование и других таких же устройств. Пусть обратимая машина А забирает Q1 при T1 совершает работу W и возвращает какое-то количество тепла при температуре Т2. Предположим, что у нас есть еще одна машина В — творение рук человека, уже сконструированная, а может быть, еще и не изобретенная. Можно взять паровую машину, колесо с резиновыми спицами — словом, что угодно. Мы даже не интересуемся, обратима ли эта машина. Важно только, чтобы она забирала тепло Q1 при температуре Т1 и возвращала часть этого тепла при более низкой температуре Т2. Предположим, что машина В совершает некую работу W'. Теперь покажем, что W' не может быть больше W; нет такой машины, которая работала бы лучше, чем обратимая. Но почему? Предположим, что W' больше W. Тогда мы можем забрать тепло Q1 при температуре Т1 и отдать его машине В. Эта машина совершит работу W' и отдаст какое-то количество тепла (неважно какое) резервуару с температурой Т2. После этого мы можем распорядиться какой-то частью работы W', которую мы считаем больше W. Прибережем пока часть работы W, а остаток W'-W употребим с пользой для себя (фиг. 44.7).

Фиг. 44.7. Машина В заставляет работать обратимую машину А в обратном направлении.

Обладая работой W, можно запустить машину А в обратном направлении, ведь это — обратимая машина. При этом она поглотит какое-то количество тепла из резервуара с температурой Т2, но зато вернет тепло Q1 резервуару при температуре Т1. Каков чистый результат этого двойного цикла? Мы вернули все к исходному состоянию и совершили дополнительную работу W'-W. Дело свелось к тому, что мы извлекли энергию из резервуара с температурой Т2! Тепло Q1, взятое из резервуара с температурой T1, было аккуратно возвращено. Раз это тепло все равно возвращается, то в качестве резервуара с температурой Т1 можно взять что-нибудь поменьше океана и заключить это устройство внутрь составной машины А+В. Чистым результатом цикла такой машины будет изъятие из резервуара при температуре Т2 тепла W'-W и превращение его в работу. Но извлечение полезной работы из резервуара при неизменной температуре без других изменений запрещается постулатом Карно. Этого нельзя сделать. Таким образом, не существует таких машин, которые извлекли бы некоторое количество тепла из резервуара при температуре Т1, возвратили бы какую-то его часть при температуре Т2 и совершили большую работу, чем обратимая машина, работающая при тех же самых температурных условиях.

Предположим теперь, что машина В тоже обратима. Тогда, конечно, не только W' не больше W, но и W не больше W'. Чтобы доказать это, надо просто обратить предыдущие аргументы. Итак, если обе машины обратимы, то они должны производить одинаковую работу, и мы пришли к блестящему выводу Карно: если машина обратима, то безразлично, как она умудряется превращать тепло в работу. Произведенная машиной работа, если только машина поглощает определенное количество тепла при температуре Т1 и возвращает какую-то его часть при температуре Т2, не зависит от устройства машины. Так уж устроен мир, и от частных свойств машины это не зависит.

Если бы мы нашли закон, определяющий работу, совершаемую при изъятии тепла Q1 при температуре Т1 и возвращении части этого тепла при температуре T2, то эта величина была бы универсальной постоянной, не зависящей от свойств вещества. Конечно, если нам известны свойства какого-нибудь вещества, мы можем вычислить интересующую нас величину. После этого мы будем вправе заявить, что все остальные вещества, если с их помощью построить обратимую машину, произведут точно такую же работу. Такова основная идея, ключ, с помощью которого мы можем найти последующие соотношения. Например, мы хотим узнать, насколько резина сжимается при нагревании и насколько она остывает, когда мы позволяем ей сжаться. Предположим, что мы взяли резину в качестве рабочего вещества обратимой машины и совершили обратимый цикл. Чистый результат, полная произведенная работа,— это универсальная функция, великая функция, не зависящая от свойств вещества. Таким образом, мы убеждаемся, что есть нечто, ограничивающее в известном роде разнообразие свойств вещества. Мы не можем сделать эти свойства какими захотим, не можем изобрести вещество, которое, будучи использованным в тепловой машине, произвело бы за обратимый цикл работу больше допустимой. Этот принцип, это ограничение,— единственное реальное правило, которое можно вывести из термодинамики.

 

§ 4. Коэффициент полезного действия идеальной машины

А сейчас попробуем найти закон, определяющий работу W как функцию Q1, Т1 и Т2. Ясно, что W пропорционально Q1, ибо если две обратимые машины работают в параллель, то такая сдвоенная машина тоже будет обратимой машиной. Если каждая из этих машин поглощает тепло Q1, то обе сразу поглощают 2Q1, а работа, которую они совершают, равна 2W и т. д. Поэтому пропорциональность W затраченному теплу Q1 вполне естественна.

После этого сделаем еще один важный шаг к универсальному закону. В качестве рабочего вещества машины можно взять одно вещество с хорошо известными нам свойствами. Воспользуемся этим и выберем идеальный газ. Можно и не делать этого, а вывести интересующее нас правило чисто логически, совсем не используя для этого какого-то вещества. Это одно из самых блестящих теоретических доказательств в физике, но пока мы используем менее абстрактный и более простой метод прямого вычисления.

Нам нужно лишь получить формулы для Q1 и Q2 (ведь W=Q1-Q2) — тепла, которым машина обменивается с резервуарами во время изотермического расширения и сжатия. Для примера вычислим Q1— тепло, полученное от резервуара при температуре T1 во время изотермического расширения (кривая 1 на фиг. 44.6) от точки а, где давление равно pa , объем Va , температура Т1, до точки b, где давление равно рb , объем Vb , а температура та же самая T1. Энергия каждой молекулы идеального газа зависит только от температуры, а поскольку в точках а и b одинаковы и температура, и число молекул, то и внутренняя энергия тоже одинакова. Энергия U не изменяется; полная работа газа в период расширения

совершается за счет энергии Q1, полученной из резервуара. Во время расширения pV=NkT1 или

значит,

(44.4)

т. е.

Вот то тепло, которое взято из резервуара при температуре Т1. Точно так же можно вычислить и тепло, отданное при сжатии (кривая 3 на фиг. 44.6) резервуару при температуре T2:

(44.5)

Чтобы закончить анализ, нужно еще найти соотношение между Vc /Vd и Vb /Va . Для этого взглянем сначала на кривую 2, которая описывает адиабатическое расширение от b до c. В это время pVγ остается постоянным. Поскольку pV=NkT, то формулу для адиабатического расширения в конечных точках пути можно записать в виде (pV)Vγ-1=const, или TVγ-1=const, т. е.

(44.6)

Так как кривая 4 описывает адиабатическое сжатие от d до а, то

(44.6а)

Если поделить эти равенства одно на другое, то мы выясним, что отношения Vb /Va и Vc /Vd равны, поэтому равны и логарифмы в (44.4) и (44.5). Значит,

(44.7)

Это и есть то соотношение, которое мы искали. Хотя оно доказано для машины с идеальным газом, мы уже знаем, что оно справедливо для любой обратимой машины.

А теперь посмотрим, как можно вывести этот универсальный закон на основании только логических аргументов, не интересуясь частными свойствами веществ. Предположим, что у нас есть три машины и три температуры Т1, Т2 и Т3. Одна машина поглощает тепло Q1 при температуре T1, производит работу W13 и отдает тепло Q3 при температуре T3 (фиг. 44.8).

Фиг. 44.8. Спаренные машины 1 и 2 эквивалентны машине 3.

Другая машина работает при перепаде температур T2 и Т3. Предположим, что эта машина устроена так, что она поглощает то же тепло Q3 при температуре Т3 и отдает тепло Q2. Тогда нам придется затратить работу W32, ведь мы заставили машину работать в обратном направлении. Цикл первой машины заключается в поглощении тепла Q1 и выделении тепла Q3 при температуре Т3. Вторая машина в это время забирает из резервуара то же самое тепло Q3 при температуре T3 и отдает его в резервуар с температурой Т2. Таким образом, чистый результат цикла этих спаренных машин состоит в изъятии тепла Q1 при температуре Т1 и выделении тепла Q2 при температуре T2. Эти машины эквивалентны третьей, которая поглощает тепло Q1 при температуре Т1, совершает работу W12 и выделяет тепло Q2 при температуре Т2. Действительно, исходя из первого закона, можно сразу же показать, что W12=W13-W32:

(44.8)

Теперь можно получить закон, связывающий коэффициенты полезного действия машин. Ведь ясно, что между эффективностями машин, работающих при перепаде температур Т2-T3, T2-Т3 и Т1-Т2, должны существовать определенные соотношения.

Сформулируем пояснее наши аргументы. Мы убедились, что всегда можем связать тепло, поглощенное при температуре T1 и тепло, выделенное при температуре T2, определив тепло, выделенное при какой-то другой температуре T3. Это значит, что мы можем описать все свойства машины, если введем стандартную температуру и будем анализировать все процессы с помощью именно такой стандартной температуры. Иначе говоря, если мы знаем коэффициент полезного действия машины, работающей между температурой Т и какой-то стандартной температурой, то сможем вычислить коэффициент полезного действия машины, работающей при любом перепаде температур. Ведь мы рассматриваем только обратимые машины, поэтому ничто не мешает нам спуститься от начальной температуры к стандартной, а потом снова вернуться к конечной температуре. Примем температуру в один градус за стандартную. Для обозначения выделяемого при стандартной температуре тепла используем особый символ QS . Это значит, что если машина поглощает при температуре Т тепло Q, то при температуре в один градус она выделяет тепло QS . Если какая-то машина, поглощая тепло Q1 при T1, выделяет тепло QS при температуре в один градус, а другая машина, поглотив тепло Q2 при Т2, выделяет то же самое тепло QS при температуре в один градус, то машина, поглощающая Q1 при Т1, должна при температуре Т2 выделять тепло Q2. Мы уже доказали это, рассмотрев три машины, работающие при трех температурах. Таким образом, для полного описания работы машин нам остается узнать совсем немного. Мы должны выяснить, сколько тепла Q1 должна поглотить машина при температуре T1, чтобы выделить при единичной температуре тепло QS . Конечно, между теплом Q и температурой Т существует зависимость. Легко понять, что тепло должно возрастать при возрастании температуры, ведь мы знаем, что если заставить работать машину в обратном направлении, то при более высокой температуре она отдает тепло. Легко также понять, что тепло Q1 должно быть пропорционально QS . Таким образом, наш великий закон выглядит примерно так: Каждому количеству тепла QS , выделенного при температуре в один градус, соответствует количество тепла, поглощенного машиной при температуре Т, равное QS , умноженному на некоторую возрастающую функцию Q температуры:

(44.9)

 

§ 5. Термодинамическая температура

Пока мы не будем делать попыток выразить эту возрастающую функцию в терминах делений знакомого нам ртутного градусника, а взамен определим новую температурную шкалу. Когда-то «температура» определялась столь же произвольно. Мерой температуры служили метки, нанесенные на равных расстояниях на стенках трубочки, в которой при нагревании расширялась вода. Потом решили измерить температуру ртутным термометром и обнаружили, что градусные расстояния уже не одинаковы. Сейчас мы можем дать определение температуры, не зависящее от каких-либо частных свойств вещества. Для этого мы используем функцию f(T), которая не зависит ни от одного устройства, потому что эффективность обратимых машин не зависит от их рабочего вещества. Поскольку найденная нами функция возрастает с температурой, то мы можем считать, что она сама по себе измеряет температуру, начиная со стандартной температуры в один градус. Для этого надо только договориться, что

(44.10)

а

(44.11)

Это означает, что теперь мы можем найти температуру тела, определив количество тепла, которое поглощается обратимой машиной, работающей в интервале между температурой тела и температурой в один градус (фиг. 44.9)

Фиг. 44.9. Абсолютная термодинамическая температура.

Если машина забирает из котла в семь раз больше тепла, нежели поступает в одноградусный конденсор, то температура котла равна семи градусам и т. д. Таким образом, измеряя количество тепла, поглощаемого при разных температурах, мы определяем температуру. Полученная таким образом температура называется абсолютной термодинамической температурой и не зависит от свойств вещества. Теперь мы будем пользоваться исключительно этим определением температуры.

Теперь нам ясно, что если у нас имеются две машины, из коих одна работает при перепаде температур Т1 и один градус, а другая — T2 и один градус, и обе они выделяют при единичной температуре одинаковое количество тепла, то поглощаемое ими тепло должно удовлетворять соотношению

(44.12)

Но это означает, что если какая-нибудь обратимая машина поглощает тепло Q1 при температуре Т1, а выделяет тепло Q2 при температуре Т2, то отношение Q1 к T1 равно отношению Q2 к T2. Это справедливо для любой обратимой машины. Все, что будет дальше, содержится в этом соотношении: это центр термодинамической науки.

Но если это все, что есть в термодинамике, то почему же ее считают такой трудной наукой? А попробуйте описать поведение какого-нибудь вещества, если вам даже заранее известно, что масса вещества все время постоянна. В этом случае состояние вещества в любой момент времени определяется его температурой и объемом. Если известны температура и объем вещества, а также зависимость давления от объема и температуры, то можно узнать и внутреннюю энергию. Но кто-нибудь скажет: «А я хочу поступить иначе. Дайте мне температуру и давление и я скажу вам, каков объем. Я могу считать объем функцией температуры и давления и искать зависимость внутренней энергии именно от этих переменных». Трудности термодинамики связаны именно с тем, что каждый может подойти к задаче с того конца, с какого вздумает. Нужно только сесть и выбрать определенные переменные, а потом уж твердо стоять на своем, и все станет легко и просто.

Сейчас приступим к выводам. В механике мы подошли ко всем нужным нам результатам, исходя из центра механического мира F=ma. Такую же роль в термодинамике сыграет только что найденный нами принцип. Но какие выводы можно сделать, исходя из этого принципа?

Ну начнем. Сначала скомбинируем закон сохранения энергии и закон, связывающий Q1 и Q2, чтобы найти коэффициент полезного действия обратимой машины. Первый закон говорит, что W=Q1-Q2. Согласно нашему новому принципу,

Поэтому работа равна

(44.13)

Это соотношение характеризует эффективность машины, т. е. количество работы, произведенное при заданной затрате тепла. Коэффициент полезного действия пропорционален перепаду температур, при котором работает машина, деленному на более высокую температуру:

(44.14)

Коэффициент полезного действия не может быть больше единицы, а абсолютная температура не может быть меньше нуля, абсолютного нуля. Таким образом, раз T2 должна быть положительной, то коэффициент полезного действия всегда меньше единицы. Это наш первый вывод.

 

§ 6. Энтропия

Уравнение (44.7) или (44.12) может быть истолковано особо. При работе обратимых машин Q1/T1=Q2/T2, и тепло Q1 при температуре Т1 «эквивалентно» теплу Q2 при температуре T2; ведь если поглощается Q1, то всегда выделяется тепло Q2. Если теперь придумать для Q/T особое название, то можно сказать, что при обратимых процессах поглощается столько же Q/T, сколько и выделяется. Иначе говоря, Q/T не убывает и не прибывает. Эта величина Q/T называется энтропией, и мы говорим, что «за обратимый цикл изменение энтропии равно нулю». Если T=1°, то энтропия равна Q/1°; мы уже снабдили энтропию особым символом S=QS /1°. Энтропия повсюду обозначается буквой S, а численно она равна теплу (которое мы обозначили буквой QS ), выделяемому в одноградусном резервуаре (энтропия не равна просто теплу, это тепло, деленное на температуру, и измеряется она в джоулях на градус).

Интересно, что, кроме давления, которое зависит от температуры и объема, и внутренней энергии (функции все тех же объема и температуры), мы нашли еще величину — энтропию вещества, которая тоже является функцией состояния. Постараемся объяснить, как вычислять энтропию и что мы понимаем под словами «функция состояния». Проследим за поведением системы в разных условиях. Мы уже умеем создавать разные условия экспериментально, например можно заставить систему расширяться адиабатически или изотермически. (Между прочим, машина не обязательно должна иметь только два резервуара, может быть и три, и четыре различные температуры, и машина будет обмениваться теплом с каждым из резервуаров.) Мы можем прогуляться по всей диаграмме pV, переходя от одного состояния к другому. Иначе говоря, можно перевести газ из состояния а в какое-нибудь другое состояние b и потребовать, чтобы переход из а в b был обратимым. Теперь предположим, что вдоль пути из а в b поставлены маленькие резервуары с разными температурами. Тогда каждый короткий шажок будет сопровождаться изъятием из вещества тепла dQ и передачей его в резервуар при температуре, соответствующей данной точке пути. Давайте свяжем все эти резервуары с помощью обратимых тепловых машин с одним резервуаром единичной температуры. После того как мы закончим перевод вещества из состояния а в состояние b, мы вернем все резервуары в их первоначальное состояние. Обратимая машина вернет каждую дольку тепла dQ, изъятого из вещества при температуре Т, и каждый раз при единичной температуре будет выделяться энтропия dS, равная

(44.15)

Подсчитаем полное количество выделенной энтропии. Разность энтропии, или энтропия, нужная для перехода из а в b в результате какого-нибудь обратимого изменения, это — полная энтропия, т. е. энтропия, взятая из маленьких резервуаров и выделенная при единичной температуре:

(44.16)

Вопрос заключается в том, зависит ли разность энтропии от пути в плоскости pV? Из а в b ведет много дорог. Вспомним, что в цикле Карно мы могли перейти из точки а в точку с (см. фиг. 44.6) двумя способами. Можно было расширить газ сначала изотермически, а потом адиабатически, а можно было начать с адиабатического расширения и окончить изотермическим. Итак, мы должны выяснить, меняется ли энтропия при изменении пути из а в b (фиг. 44.10).

Фиг. 44.10. Изменение энтропии при обратимом переходе.

Она не должна измениться, потому что если мы совершим полный цикл, выйдя из а в b по одному пути и возвратясь по другому, то это путешествие будет эквивалентно полному циклу обратимой машины. При таком цикле никакого тепла не передается одноградусному резервуару.

Поскольку мы не имеем права взять тепло из одноградусного резервуара, то при каждом путешествии из а в b приходится обходиться одним и тем же количеством энтропии. Это количество не зависит от пути, существенны только конечные точки. Таким образом, можно говорить о некоторой функции, которую мы назвали энтропией вещества. Эта функция зависит только от состояния вещества, т. е. только от объема и температуры.

Можно найти функцию S(V,Т). Мы подсчитаем изменение энтропии при обратимых изменениях вещества, следя за теплом, выделяемым в одноградусном резервуаре. Но это изменение можно выразить еще в терминах тепла dQ, изымаемого у вещества при температуре Т:

(44.17)

Полное изменение энтропии равно разности энтропии в конечной и начальной точках пути:

(44.18)

Это выражение не определяет энтропию полностью. Пока известна лишь разность энтропии в двух разных состояниях. Определить энтропию абсолютно можно только после того, как мы сумеем вычислить энтропию одного какого-нибудь состояния.

Очень долго считалось, что абсолютная энтропия — это вообще ничего не значащее понятие. Но в конце концов Нернст высказал утверждение, названное им тепловой теоремой (иногда его называют третьим законом термодинамики). Смысл ее очень прост. Сейчас мы сообщим эту теорему, не объясняя, почему она верна. Постулат Нернста утверждает просто, что энтропия всякого тела при абсолютном нуле равна нулю. Теперь мы знаем, при каких Т и V (при T=0) энтропия равна нулю, и сможем вычислить энтропию в любой другой точке.

Чтобы проиллюстрировать эту идею, давайте вычислим энтропию идеального газа. При изотермическом (а следовательно, обратимом) расширении ∫dQ/T равен просто Q/T, потому что Т постоянная. Таким образом, согласно (44.4), изменение энтропии равно

так что S(V,T)=NklnV плюс функция одной только температуры. А как S зависит от T? Мы уже знаем, что при адиабатическом расширении теплообмена нет. Таким образом, энтропия остается постоянной, хотя объем V изменяется, заставляя изменяться Т (чтобы сохранить равенство TVγ-1=const). Ясно ли вам после этого, что

где а — постоянная, не зависящая ни от V, ни от Т? [Постоянная а называется химической постоянной. Она зависит от свойств газа, и ее можно определить экспериментально в соответствии с теоремой Нернста. Для этого надо измерить тепло, выделяемое газом при его охлаждении и конденсации до превращения его при 0° в твердое тело (гелий и при этой температуре остается жидким). Потом надо найти интеграл ∫dQ/T. Можно найти а и теоретически; для этого понадобятся постоянная Планка и квантовая механика, но в нашем курсе этого мы не будем касаться.]

Отметим некоторые свойства энтропии. Сначала вспомним, что на участке обратимого цикла между точками а и b энтропия меняется на Sb -Sa (фиг. 44.11).

Фиг. 44.11. Изменение энтропии за полный обратимый цикл. Полное изменение энтропии равно нулю.

Вспомним еще, что по мере продвижения вдоль этого пути энтропия (тепло, выделяемое при единичной температуре) возрастает в согласии с правилом dS=dQ/T, где dQ — тепло, изъятое из вещества при температуре Т.

Мы уже знаем, что после обратимого цикла полная энтропия всего, что включается в процесс, не изменяется. Ведь тепло Q1, поглощенное при T1, и тепло Q2, выделенное при Т2, вносят в энтропию равные по величине, но противоположные по знаку вклады. Поэтому чистое изменение энтропии равно нулю. Таким образом, при обратимом цикле энтропия всех участников цикла, включая резервуары, не изменяется. Это правило как будто похоже на закон сохранения энергии, но это не так. Оно применимо только к обратимым циклам. Если перейти к необратимым циклам, то закона сохранения энтропии уже не существует.

Приведем два примера. Для начала предположим, что какая-то машина с трением производит необратимую работу, выделяя тепло Q при температуре Т. Энтропия возрастет на Q/Т. Тепло Q равно затраченной работе, и когда мы производим какую-то работу с помощью трения о какой-то предмет, температура которого равна Т, то энтропия возрастает на величину W/Т.

Другой пример необратимости: если приложить друг к другу два предмета с разными температурами, скажем Т1 и Т2, то от одного предмета к другому перетечет некоторое количество тепла. Предположим, например, что мы бросили в холодную воду горячий камень. Насколько изменяется энтропия камня, если он отдает воде тепло ΔQ при температуре T1? Она уменьшается на ΔQ/T1. А как изменяется энтропия воды? Она возрастет на ΔQ/T2. Тепло, конечно, может перетечь только от более высокой температуры Т1 к более низкой Т2. Поэтому если T1 больше Т2, то ΔQ положительно. Таким образом, изменение энтропии положительно и равно разности двух дробей:

(44.19)

Итак, справедлива следующая теорема: в любом необратимом процессе энтропия всего на свете возрастает. Только обратимые процессы могут удержать энтропию на одном уровне. А поскольку абсолютно необратимых процессов не существует, то энтропия всегда понемногу растет. Обратимые процессы — это идеализированные процессы с минимальным приростом энтропии.

К сожалению, нам не придется углубиться в область термодинамики. Наша цель лишь проиллюстрировать основные идеи этой науки и объяснить причины, по которым возможно основываться на этих аргументах. Но в нашем курсе мы не будем часто прибегать к термодинамике. Термодинамикой широко пользуются в технике и в химии. Поэтому с термодинамикой вы практически познакомитесь в курсе химии или технических наук. Ну а дублировать нет смысла, и мы ограничимся лишь некоторым обзором природы теории и не будем вдаваться в детали для специальных ее применений.

Два закона термодинамики часто формулируют так:

Первый закон: Энергия Вселенной всегда постоянна.

Второй закон: Энтропия Вселенной всегда возрастает.

Это не слишком хорошая формулировка второго закона. В ней ничего не говорится, например, о том, что энтропия не изменяется после обратимого цикла и не уточняется само понятие энтропии. Просто это легко запоминаемая форма обоих законов, но из нее нелегко понять, о чем собственно идет речь.

Все законы, о которых сейчас шла речь, мы собрали в табл. 44.1. А в следующей главе мы используем эту сводку законов, чтобы найти соотношение между теплом, выделяемым резиной при растяжении, и дополнительным натяжением резины при ее нагревании.

Таблица 44.1 ЗАКОНЫ ТЕРМОДИНАМИКИ

 

Глава 45 ПРИМЕРЫ ИЗ ТЕРМОДИНАМИКИ

 

§ 1. Внутренняя энергия

Когда приходится использовать термодинамику для дела, то оказывается, что она очень трудный и сложный предмет. В этой книге, однако, мы не будем залезать в самые дебри. Эта область особенно интересна для химиков и инженеров, и тем, кому захочется получше познакомиться с ней, следует обратиться к физической химии или инженерной термодинамике. Есть еще ряд хороших справочных книг, в которых эта тема обсуждается более подробно.

Термодинамика сложна потому, что каждое явление она позволяет описывать многими способами. Если нам нужно описать поведение газа, то мы можем исходить из того, что его давление зависит от температуры и объема, а можно предположить, что объем зависит от давления и температуры. То же самое и с внутренней энергией U: можно сказать, что она определяется температурой и объемом, стоит только выбрать именно эти переменные, но можно говорить о зависимости от температуры и давления или от давления и объема и т. д. В предыдущей главе мы познакомились с другой функцией температуры и объема, называемой энтропией S. И теперь ничто не помешает нам построить другие функции этих переменных. Например, функция U-TS тоже зависит от температуры и объема. Таким образом, нам приходится иметь дело с большим количеством разных величин, зависящих от разнообразных комбинаций переменных.

Чтобы упростить понимание этой главы, договоримся с самого начала выбрать в качестве независимых переменных температуру и объем. Химики используют для этого температуру и давление, потому что их легче измерять и контролировать в химических реакциях. Но мы используем повсюду в этой главе температуру и объем и изменим этому только в одном месте, чтобы посмотреть, как совершается переход к химическим переменным.

Итак, сначала рассмотрим только одну систему независимых переменных — температуру и объем. Затем нас будут интересовать только две функции этих переменных: внутренняя энергия и давление. Все другие термодинамические функции можно получить с помощью этих двух, но не обязательно это делать именно сейчас. Даже после таких ограничений термодинамика останется еще трудным предметом, но все же уже не столь невозможным для понимания!

Сначала немного займемся математикой. Если величина есть функция от двух переменных, то дифференцировать ее придется осторожнее, чем мы это делали раньше, имея дело с одной переменной. Что мы понимаем под производной давления по температуре? Изменение давления, сопровождающее изменение температуры, разумеется, зависит от того, что случилось с объемом, пока менялась температура. Прежде чем понятие производной по температуре обретет ясный смысл, надо сказать что-то определенное об изменении объема. Например, можно спросить, какова скорость изменения Р относительно Т при постоянном объеме. Тогда отношение изменений обеих этих величин, по существу, обычная производная, которой привыкли присваивать символ dP/dT. Мы обычно используем особый символ ∂P/∂T, он напоминает нам, что Р зависит, кроме Т, еще и от переменной V, и эта переменная не изменяется. Чтобы подчеркнуть тот факт, что V не изменяется, мы не только используем символ ∂, но еще пометим индексом остающуюся постоянной переменную (∂P/∂T)у . Конечно, поскольку имеются только две независимые переменные, то это обозначение излишне, но оно, быть может, поможет нам легче пройти сквозь термодинамические дебри частных производных.

Предположим, что функция f(x, у) зависит от двух независимых переменных х и у. Под символом (∂f/∂x)у мы понимаем самую обычную производную, получаемую общепринятым способом, если у постоянна:

Аналогично определяется и

Например, если f(x, у)=х2+ух, то (∂f/∂x)y =2x+y, а (∂f∂y)x =х. Мы можем распространить это на старшие производные: ∂2f/∂y2 или ∂2f/∂y∂x. Последний случай означает, что сначала f продифференцировано по х, считая у постоянным, а затем результат продифференцирован по у, но теперь постоянным стало х. Порядок дифференцирования не имеет значения: ∂2f/∂x∂y=∂2f/∂y∂x.

Нам придется подсчитывать изменение Δf, происходящее с f(x, у), если х переходит в х+Δх, а у переходит в y+Δy. Будем предполагать, что Δx и Δy бесконечно малы:

(45.1)

Последнее уравнение и есть основное соотношение, связывающее приращение Δf с Δx и Δy.

Посмотрим, как используется это соотношение; для этого вычислим изменение внутренней энергии U(Т,V), если температура Т переходит в Т+ΔT, а объем V переходит в V+ΔV. Используем формулу (45.1) и запишем

(45.2)

В предыдущей главе мы нашли другое выражение для изменения внутренней энергии ΔU; тогда к подводимому газу прибавлялось тепло ΔQ:

(45.3)

Сравнив (45.2) и (45.3), можно было бы подумать, что P=(∂U/∂V)T , но это не так. Чтобы получить верный результат, сначала предположим, что газ получает тепло ΔQ, причем объем его не изменяется, так что ΔV=0. Если ΔV=0, то уравнение (45.3) говорит нам, что ΔU=ΔQ, а уравнение (45.2) утверждает, что ΔU=(∂U/∂T)V ΔT, поэтому (∂U/∂T)V =ΔQ/ΔT. Отношение ΔQ/ΔT—количество тепла, которое нужно подвести к телу, чтобы изменить его температуру на один градус, удерживая объем постоянным,— называется удельной теплоемкостью при постоянном объеме и обозначается символом CV . Таким образом, мы показали, что

(45.4)

Теперь снова подведем к газу тепло ΔQ, но на этот раз договоримся, что температура газа останется постоянной, а объему мы позволим измениться на ΔV. В этом случае анализ сложнее, но мы можем вычислить ΔU, используя аргументы Карно, для чего нам придется снова призвать на помощь цикл Карно из предыдущей главы.

Диаграмма давление — объем для цикла Карно изображена на фиг. 45.1. Мы уже показали, что полная работа, совершаемая газом при обратимом цикле, равна ΔQ(ΔT/T), где ΔQ — тепло, подводимое к газу при температуре Т во время изотермического расширения от V до V+ΔV, а Т—ΔТ — это конечная температура, которой достигает газ при адиабатическом расширении на втором этапе цикла. Сейчас мы покажем, что эта работа равна, кроме того, заштрихованной площади на фиг. 45.1. Работа газа во всех случаях жизни равна ∫PdV; она положительна, если газ расширяется, и отрицательна, когда он сжимается. Если вычертить зависимость Р от V, то изменения Р и V изобразятся кривой, в каждой точке которой определенному значению Р соответствует определенное значение V. Работа, произведенная газом, пока его объем изменяется от одного значения до другого (интеграл ∫PdV),— это площадь под кривой, соединяющей начальное и конечное значения V. Применим эту идею к циклу Карно и убедимся, что если обойти цикл, помня о знаке совершенной газом работы, то чистая работа газа будет равна заштрихованной на фиг. 45.1 площади.

Фиг. 45.1. Диаграмма Р — V для цикла Карно. Кривые, помеченные Т и Т—ΔТ,— изотермы; крутые кривые между ними — адиабаты. Когда газ изотермически расширяется при температуре Т, он получает тепло ΔQ и увеличивает свой объем на ΔV; ΔР—изменение давления при постоянном объеме, температура в это время падает с Т до Т—ΔT.

А теперь вычислим эту площадь чисто геометрически. Цикл, который был использован для получения фиг. 45.1, отличается от цикла, описанного в предыдущей главе тем, что теперь ΔQ и ΔT бесконечно малы. Наши адиабаты и изотермы очень близки друг к другу, поэтому фигура, описанная жирными линиями на фиг. 45.1, приближается к параллелограмму, когда приращения ΔQ и ΔТ стремятся к нулю. Площадь этого параллелограмма в точности равна ΔVΔP (где ΔV — изменение объема, когда к газу подводится энергия ΔQ при постоянной температуре, а ΔР — изменение давления при изменении температуры на ΔT и постоянном объеме). Легко показать, что заштрихованная площадь на фиг. 45.1 равна площади, ограниченной пунктиром на фиг. 45.2.

Фиг. 45.2. Заштрихованная площадь=Площадь, ограниченная пунктирными линиями=Площадь прямоугольника=ΔPΔV.

А эту фигуру легко превратить в прямоугольник со сторонами ΔР и ΔV, для чего нужно лишь вырезать из нее треугольники и сложить их немного иначе.

Соберем все наши выводы вместе.

Выражение (45.5) содержит в себе суть результатов, следующих из аргументов Карно. Всю термодинамику можно вывести из (45.5) и первого закона, содержащегося в уравнении (45.3). Выражение (45.5)— это, в сущности, второй закон, хотя впервые Карно сформулировал его несколько иначе, поскольку не пользовался нашим определением температуры.

А теперь можно приступить к вычислению (∂U/∂V)T . Насколько изменится внутренняя энергия U, если объем изменится на ΔV? Во-первых, внутренняя энергия U меняется за счет подводимого тепла и, во-вторых, за счет совершаемой работы. Подводимое тепло, согласно (45.5), равно

а совершаемая над веществом работа равна —PΔV. Поэтому изменение ΔU складывается из двух кусков

(45.6)

Поделив обе стороны на ΔV, мы найдем скорость изменения U относительно V при постоянной Т

(45.7)

В нашей термодинамике, где есть только две переменные, Т и V, и только две функции, Р и U, уравнения (45.3) и (45.7) — это основные уравнения, из которых можно вывести все последующие результаты.

 

§ 2. Применения

Теперь обсудим смысл уравнения (45.7) и посмотрим, почему оно дает ответ на поставленные в предыдущей главе вопросы. Мы занимались рассмотрением такой задачи: в кинетической теории ясно, что рост температуры приводит к увеличению давления, потому что усиливается бомбардировка поршня атомами. Те же физические причины приводят к тому, что при выталкивании поршня от газа отбирается тепло, и чтобы удержать температуру постоянной, надо позаботиться о подводе тепла. При расширении газ остывает, а при нагревании его давление возрастает. Между этими явлениями должна существовать какая-то связь, и она полностью определяется уравнением (45.7). Если мы удерживаем объем постоянным и поднимаем температуру, давление растет со скоростью (∂P/∂T)V . Вот мы и нашли эту связь: если увеличить объем и не подвести какого-то количества тепла для поддержания температуры, то газ остынет, а величина (∂U/∂V)T подскажет нам, сколько именно надо подбавить тепла. Уравнение (45.7) выражает фундаментальную связь между этими двумя эффектами. Именно это мы обещали найти, отправляясь на поиски законов термодинамики. Не зная внутреннего строения газа и лишь веря, что построить вечный двигатель второго рода выше наших сил, мы смогли вывести соотношение между количеством тепла, необходимого для поддержания постоянной температуры при расширении газа, и изменением давления газа при нагревании!

Получив от газа все, что нужно, рассмотрим другой случай — резину. Растянув резиновую полоску, мы обнаружили, что ее температура возросла, а нагревание заставило ее сжаться. Какое уравнение дает в случае резины тот же результат, что и уравнение (45.3) для газа? Сначала все идет, как и раньше: когда к резине подводится тепло ΔQ, внутренняя энергия изменяется на ΔU и производится какая-то работа. Только теперь эта работа равна —FΔL вместо PΔV, где F — это приложенная к резине сила, а L — длина резиновой полоски. Сила F зависит от температуры и длины резиновой полоски. Заменив в (45.3) PΔV на —FΔL, получим

(45.8)

Сравнивая (45.3) и (45.8), мы убедимся, что уравнение для резины получилось сразу после замены одних букв другими. Если заменить V на L, а Р на —F, то все аргументы цикла Карно окажутся применимыми и к резине. Можно тотчас же, скажем, вывести, что нужное для растяжения на ΔL тепло ΔQ определяется уравнением, аналогичным (45.5): ΔQ=—Т(∂F/∂T)L ΔL. Это уравнение говорит нам, насколько увеличится сила, если длина резиновой полоски при нагревании останется постоянной. Надо только узнать, сколько тепла требуется для поддержания постоянной температуры при небольшом растяжении полоски. Итак, мы видим, что и к резине, и к газу применимы одни и те же уравнения. Можно даже писать ΔU=ΔQ+AΔB, где А и В — самые разные величины, сила и длина, давление и объем и т. д. Если интересует поведение газа, нужно заменить A и В на Р и V.

Для примера рассмотрим разность электрических потенциалов, или электродвижущую силу (э. д. с.) батареи Е, и заряд ΔZ, прошедший через батарею. Мы знаем, что работа, производимая обратимой электрической батареей, например аккумулятором, равна EΔZ. (Поскольку мы не включили в рассмотрение член PΔV, то придется потребовать, чтобы объем оставался постоянным.) Посмотрим, что скажет о работе батареи термодинамика. Если заменить Р на Е, а V на Z, то вместо уравнения (45.6) получится

(45.9)

Это уравнение говорит нам, что при путешествии заряда ΔZ по батарее меняется внутренняя энергия U. Но почему ΔU/ΔZ — это не просто э. д. с. батареи E? Дело в том, что в реальных обстоятельствах движение зарядов внутри батареи вызывает выделение тепла. Внутренняя энергия батареи изменяется, во-первых, за счет работы, производимой батареей во внешней цепи, и, во-вторых, за счет нагревания батареи. Интересно, что вторую часть изменения внутренней энергии опять-таки можно подсчитать, следя, как меняется э. д. с. батареи при изменении температуры. Между прочим, когда заряды текут по батарее, там происходят химические реакции, и уравнение (45.9) указывает на отличный способ измерения необходимой для реакции энергии. Для этого нам нужно лишь сделать батарею, работающую на этой реакции, и сначала просто измерить э. д. с., а потом проследить, как меняется э. д. с. с температурой, если ни один заряд не выпускается из батареи!

Мы предположили, что объем батареи можно поддерживать постоянным, только поэтому мы позволили себе пренебречь членом PΔV и считать, что работа батареи равна EΔZ. Но оказывается, что поддерживать объем постоянным технически очень трудно. Гораздо легче держать батарею под постоянным атмосферным давлением. Вот почему химики не любят только что написанных нами уравнений: они предпочитают уравнения, которые были бы связаны с постоянным давлением. Мы с самого начала этой главы за независимые переменные приняли V и Т. Химикам больше нравятся Р и Т, поэтому посмотрим теперь, как преобразуются наши выводы при переходе к химической системе переменных. Постарайтесь при этом не ошибиться, потому что мы как-никак сменили детали и перешли от Т и V к Т и Р.

Начнем с (45.3), где ΔU=ΔQ-PΔV; член PΔV можно заменить на EΔZ или даже на АΔВ. Если бы нам удалось как-нибудь заменить PΔV на VΔP, тогда V и Р поменялись бы ролями и химики остались бы довольны. Тот, кто сообразителен, заметит, что дифференциал произведения PV равен d(PV)=PdV+VdP. Добавив это равенство к (45.3), он получит

Чтобы все наши последующие выводы походили на выводы из уравнения (45.3), давайте будем считать U+PV какой-то новой функцией, назовем ее энтальпией Н, и напишем в таком виде: ΔH=ΔQ+VΔP.

Вот теперь мы готовы перевести все наши рассуждения на химический язык, надо только помнить, что U→H, Р→-V, V→P. Химики считают, что вся термодинамика содержится не в уравнении (45.7), а в уравнении

Выяснив, как происходит переход к химическим переменным Т и Р, вернемся к нашим старым переменным. Теперь и уже до конца главы нашими независимыми переменными будут Т и V.

Сейчас давайте применим полученные результаты к некоторым физическим процессам. Сначала рассмотрим идеальный газ. Из кинетической теории известно, что внутренняя энергия газа зависит только от характера движения молекул и от их числа. Внутренняя энергия зависит только от Т, а к V она безразлична. Если изменять V при постоянной Т, то U не изменится. Значит, (∂U/∂V)T =0, и уравнение (45.7) говорит нам, что для идеального газа

(45.10)

Уравнение (45.10) — это дифференциальное уравнение, и оно кое-что расскажет нам о Р. Мы расправимся с частной производной так: поскольку частная производная вычислена при постоянном V, можно заменить частную производную обычной, только надо помнить, что все это делается «при постоянном V». Уравнение (45.10) тогда принимает вид

(45.11)

интегрирование не составит для нас труда, и мы получим

(45.12)

Мы знаем, что давление идеального газа равно

(45.13)

Это соотношение совместимо с (45.12), потому что R и V — постоянные. Но зачем же мы мучились, решая эти уравнения? Ведь результат-то был уже известен. Потому что мы пользовались двумя независимыми определениями температуры! Однажды мы предположили, что кинетическая энергия молекул пропорциональна температуре. Это предположение привело нас к температурной шкале, которую мы назвали шкалой идеального газа. Температура Т в уравнении (45.13) отсчитывается по газовой шкале. Мы называли отсчитанную по газовой шкале температуру кинетической температурой. Потом мы определили температуру иначе, и это определение вообще не нуждалось ни в каком веществе. Исходя из второго закона, мы определили то, что можно назвать «абсолютной термодинамической температурой» Т; она появляется в уравнении (45.12). Здесь мы только доказали, что давление идеального газа (идеальный газ для нас нечто, чья внутренняя энергия не зависит от объема) пропорционально абсолютной термодинамической температуре. Мы, кроме того, знаем, что давление пропорционально температуре, измеренной по газовой шкале. Таким образом, можно заключить, что кинетическая температура пропорциональна «абсолютной термодинамической температуре». Это, конечно, означает, что если бы мы были благоразумны, то показания обеих шкал могли бы всегда жить в согласии. В конце концов эти шкалы можно выбрать так, что они совпадут; постоянную пропорциональности можно положить равной единице. Очень долго люди сами себе создавали трудности, но наконец превратили две шкалы в одну!

 

§ 3. Уравнение Клаузиуса— Клайперона

Испарение жидкости — это еще одна область, в которой можно применить наши результаты. Предположим, что мы вдвигаем поршень в цилиндр с каким-то веществом.

Естественно задать себе вопрос: как зависит давление от объема, если температура остается постоянной? Иначе говоря, мы хотим начертить изотермические линии на диаграмме Р—V. Вещество в цилиндре — это далеко не идеальный газ, с которым мы имели дело; теперь это жидкость или пар, а может быть, и то и другое вместе. Если сжать вещество достаточно сильно, то оно начнет превращаться в жидкость. Если мы будем увеличивать давление, объем изменится очень мало, а наши изотермы при уменьшении объема пойдут резко вверх, как это показано в левой части фиг. 45.3.

Фиг. 45.3. Изотермы конденсирующегося пара. Пар сжимается в цилиндре. Слева — все вещество превратилось в жидкость; справа — вся жидкость испарилась; в середине — в цилиндре сосуществуют жидкость и пар.

Если увеличивать объем, выдвигая поршень из цилиндра, давление будет падать, пока мы не достигнем точки кипения жидкости и в цилиндре появится пар. Дальнейшее вытягивание поршня приведет к более сильному испарению. Когда цилиндр заполнен частично паром, а частично жидкостью, то между ними устанавливается равновесие — жидкость испаряется, пар конденсируется, и скорости этих процессов равны. Если предоставить пару больший объем, то, чтобы удержать прежнее давление, понадобится больше пара. Поэтому, хоть жидкость все испаряется, давление остается прежним. Вдоль плоской части кривой на фиг. 45.3 давление не изменяется, это давление называется давлением пара при температуре Т. Если объем все увеличивается, наступит момент, когда запасы жидкости иссякнут. В такой ситуации давление падает при увеличении объема, ведь теперь мы имеем дело с обычным газом; это изображено в правой части диаграммы Р—V. Нижняя кривая на фиг. 45.3— это изотермическая кривая при более низкой температуре Т—ΔT. Давление жидкости в этом случае немного меньше, потому что с ростом температуры жидкости расширяются (не все жидкости, вода около точки замерзания поступает наоборот), а давление пара при уменьшении температуры, конечно, падает.

Из двух изотерм можно снова построить цикл, соединив концы их плоских участков (скажем, адиабатами), как это показано на фиг. 45.4. Небольшая зазубрина в нижнем правом углу фигуры несущественна, и мы просто забудем о ней. Используем аргументы Карно, которые показывают, как связано тепло, подведенное к жидкости для превращения ее в пар, с работой, совершаемой веществом при обходе цикла. Пусть L—это тепло, необходимое для испарения жидкости в цилиндре. Вспомним, как мы рассуждали при выводе уравнения (45.5), и немедленно скажем, что L(ΔT/T) равно работе, совершенной веществом. Как и раньше, работа вещества равна площади, заключенной внутри цикла. Эта площадь приблизительно равна ΔP(VG—VL ), где ΔР — разность давлений пара при температурах Т и Т—ΔT, VG — объем газа, а VL — объем жидкости. Оба объема надо измерять при давлении, равном давлению пара.

Сравнивая два выражения для работы, мы получаем L(ΔT/T)=ΔP(VG-VL), или

(45.14)

Уравнение (45.14) связывает скорость изменения давления пара с температурой и количеством тепла, необходимым для испарения жидкости. Хотя вывел его Карно, называется оно уравнением Клаузиуса — Клайперона.

Сравним уравнение (45.14) с результатом, следующим из кинетической теории. Обычно VG гораздо больше VL . Поэтому VG -VL ≈VG =RT/P на моль. Если еще предположить, что L — не зависящая от температуры постоянная (хотя это не очень хорошее приближение), то мы получим ∂P/∂T=L/(RT2P). Вот решение этого дифференциального уравнения:

(45.15)

Надо выяснить, в каких отношениях находится это выражение с полученной ранее с помощью кинетической теории зависимостью давления от температуры. Кинетическая теория говорит, хотя и очень неопределенно, что число молекул пара над жидкостью примерно равно

(45.16)

где UG —UL — разность отнесенных к молю внутренних энергий газа и жидкости. Термодинамическое уравнение (45.15) и кинетическое уравнение (45.16) очень похожи, потому что давление равно nkT, но все-таки это разные уравнения. Однако их можно сделать одинаковыми, если заменить старое предположение L=const предположением о том, что L—UG=const. Если предположить, что L—UG — не зависящая от температуры постоянная, то соображения, из которых ранее следовало (45.15), приведут теперь к уравнению (45.16).

Это сравнение показывает преимущества и недостатки термодинамики по сравнению с кинетической теорией. Прежде всего полученное термодинамически уравнение (45.14) — это точное соотношение, а (45.16) — всего-навсего приближение. Ведь нам пришлось предположить, что U приблизительно постоянна и что наша модель верна. Во-вторых, нам, быть может, никогда не удастся понять до конца, как газ переходит в жидкость, и все-таки уравнение (45.14) правильно, а (45.16)— это только приближение. В-третьих, хотя мы говорили о превращении газа в жидкость, наши аргументы верны для любого перехода из одного состояния в другое. Например, переход твердое тело — жидкость описывается кривыми, очень похожими на кривые фиг. 45.3 и 45.4.

Фиг. 45.4. Диаграмма Р — V для цикла Карно с конденсирующимся в цилиндре паром. Слева — все вещество переходит в жидкость. Чтобы полностью испарить ее при температуре Т, нужно добавить тепла L. При падении температуры от Т до Т—ΔT пар расширяется адиабатически.

Вводя скрытую теплоту плавления М/моль, мы получим формулу, аналогичную уравнению (45.14): (∂Pпл /∂T)V =M/[T(VL -VS )]. Мы можем не знать ничего о кинетической теории процесса плавления, а все же получить правильное уравнение. Однако если мы узнаем кинетическую теорию, то сразу же получим большое преимущество. Уравнение (45.14) — это всего лишь дифференциальное уравнение, и мы еще совершенно не умеем находить постоянные интегрирования. В кинетической теории можно вычислить и эти постоянные, надо только придумать хорошую модель, описывающую все явление полностью. Итак, в каждой теории есть и хорошее, и плохое. Если познания наши слабы, а картина сложна, то термодинамические соотношения оказываются самым мощным средством. Когда же картина упрощается настолько, что можно ее проанализировать теоретически, то лучше сначала попробовать выжать из этого анализа как можно больше.

Еще один пример: излучение черного тела. Мы уже говорили об ящике, содержащем излучение и ничего больше, и уже толковали о равновесии между излучением и осциллятором. Мы выяснили также, что когда фотоны ударяются о стенки ящика, они создают давление Р. Мы вывели формулу PV=U/3, где U — полная энергия фотонов, а V — объем ящика. Если подставить U=3РV в основное уравнение (45.7),то обнаружится, что

(45.17)

Поскольку объем ящика не изменяется, можно заменить (∂P/∂T)V на dP/dT и получить обыкновенное дифференциальное уравнение. Оно легко интегрируется и дает lnP=4lnT+const, или Р=const·T4. Давление излучения изменяется как четвертая степень температуры, поэтому заключенная в излучении энергия U/V=P/3 тоже меняется как T4. Обычно пишут так: U/V=(4σ/с)T4, где с — скорость света, а σ— другая постоянная. Термодинамика сама по себе ничего не скажет нам об этой постоянной. Это хороший пример и ее могущества, и ее бессилия. Знать, что U/V изменяется как T4, — это уже большое дело, но узнать, чему именно равно U/V при той или иной температуре, можно, только разобравшись в деталях полной теории. У нас есть теория излучения черного тела и сейчас мы вычислим σ.

Пусть I(ω)dω — распределение интенсивности, иначе говоря, поток энергии через 1 м2 за 1 сек в интервале частот между ω и ω+dω:

поэтому

Мы уже успели узнать, что

Подставляя выражение для I(ω) в наше уравнение для U/V, получаем

Если сделать замену переменных x=ℏω/kT, то это выражение примет вид

Этот интеграл — просто-напросто какое-то число, и мы можем найти его приближенно. Для этого надо лишь вычертить подынтегральную кривую и подсчитать площадь под ней. Она приблизительно равна 6,5. Математики могут вычислить наш интеграл точно, он равен π4/15. Сравнивая это выражение с записанным ранее U/V=(4σ/с)T4, мы найдем σ:

Много ли энергии утечет за 1 сек из дырки единичной площади, проделанной в стенке ящика? Чтобы найти поток энергии, умножим плотность энергии U/V на с. Еще нужно умножить на 1/4; эта четверть набегает вот по каким причинам. Во-первых, 1/2 появляется из-за того, что мы вычисляем только вырвавшуюся наружу энергию, и, во-вторых, если поток подходит к дырке не под прямым углом, то вырваться ему труднее; это уменьшение эффективности учитывается умножением на косинус угла с нормалью. Среднее значение косинуса равно 1/2. Теперь понятно, почему мы писали U/V=(4σ/c)T4: так проще выразить поток энергии сквозь маленькую дырку; если отнести поток к единичной площади, то он равен просто σT4.

 

Глава 46 ХРАПОВИК И СОБАЧКА

 

§ 1. Как действует храповик

В этой главе мы поговорим о храповике и собачке — очень простом устройстве, позволяющем оси вращаться только в одном направлении. Возможность получать одностороннее вращение заслуживает глубокого и тщательного анализа, из него проистекут интересные заключения.

Вопросы, которые мы будем обсуждать, возникают при попытке найти с молекулярной или кинетической точки зрения простое объяснение тому, что существует предел работы, которая может быть получена от тепловой машины. Правда, мы уже знаем сущность доказательства Карно, но было бы приятно найти и элементарное его объяснение — такое, которое показало бы, что так физически на самом деле происходит. Существуют, конечно, сложные, покоящиеся на законах Ньютона математические доказательства ограниченности количества работы, которое можно получить, когда тепло перетекает с одного места в другое; но очень непросто сделать эти доказательства элементарными. Короче говоря, мы не понимаем их, хотя можем проследить выкладки.

В доказательстве Карно то обстоятельство, что при переходе от одной температуры к другой нельзя извлечь неограниченное количество тепла, следует из другой аксиомы: если все происходит при одной температуре, то тепло не может быть превращено в работу посредством циклического процесса. Поэтому первым делом попытаемся понять, хотя бы на одном элементарном примере, почему верно это более простое утверждение.

Попробуем придумать такое устройство, чтобы второй закон термодинамики нарушался, т. е. чтобы работу из теплового резервуара получали, а перепада температур не было. Пусть в сосуде находится газ при некоторой температуре, а внутри имеется вертушка (фиг. 46.1), причем будем считать, что T1=T2=T.

Фиг. 46.1. Машина, состоящая из храповика и собачки.

От ударов молекул газа вертушка будет покачиваться. Нам остается лишь пристроить к другому концу оси колесико, которое может вертеться только в одну сторону,— храповичок с собачкой. Собачка пресечет попытки вертушки поворачиваться в одну сторону, а повороты в другую—разрешит. Колесико будет медленно поворачиваться; может быть, удастся даже подвесить на ниточку блошку, привязать нить к барабану, насаженному на ось, и поднять эту блошку!

Возможно ли это? По гипотезе Карно — нет. Но по первому впечатлению — очень даже возможно (если только мы верно рассудили). Видно, надо посмотреть повнимательнее. И действительно, если вдумаешься в работу храповика с собачкой, все оказывается не так просто.

Во-первых, хотя наш идеализированный храповик и предельно прост, но есть еще собачка, а при ней положено быть пружинке. Проскочив очередной зубец, собачка должна возвратиться в прежнее положение, так что без пружинки не обойтись.

Весьма существенно и другое свойство храповика и собачки (на рисунке его нельзя показать). Предположим, что части нашего устройства идеально упруги. Когда собачка пройдет через конец зубца и сработает пружинка, собачка ударится о колесико и начнет подпрыгивать. Если в это время произойдет очередная флуктуация, вертушка может повернуться и в другую сторону, так как зубец может проскользнуть под собачкой, когда та приподнята! Значит, для необратимости вертушки важно, чтобы было устройство, способное гасить прыжки собачки. Но при этом гашении энергия собачки перейдет к храповику и примет вид тепловой энергии. Выходит, что по мере вращения храповик будет все сильнее нагреваться. Для простоты пусть газ вокруг храповика уносит часть тепла. Во всяком случае, вместе с храповиком начнет нагреваться и сам газ. И что же, так будет продолжаться вечно? Нет! Собачка и храповик, сами обладая некоторой температурой Т, подвержены также и броуновскому движению. Это значит, что время от времени собачка случайно поднимается и проходит мимо зубца как раз в тот момент, когда броуновское движение вертушки пытается повернуть ее назад. И чем горячее предмет, тем чаще это бывает.

Вот отчего наш механизм не будет находиться в вечном движении. Иногда от щелчков по крыльям вертушки собачка поднимается и вертушка поворачивается. Но иногда, когда вертушка стремится повернуть назад, собачка оказывается уже приподнятой (из-за флуктуации движений этого конца оси) и храповик действительно поворачивает обратно. В итоге—чистый нуль. И совсем нетрудно показать, что, когда температура в обоих сосудах одинакова, в среднем вращения не будет. Будет, конечно, множество поворотов в ту или иную сторону, но чего мы хотим — одностороннего вращения,— тому не бывать.

Рассмотрим причину этого. Чтобы поднять собачку до верха зубца, надо проделать работу против натяжения пружинки. Назовем эту работу ε; пусть θ — угол между зубцами. Шанс, что система накопит достаточно энергии ε, чтобы поднять собачку до края зубца, есть ехр(-ε/kT). Но вероятность того, что собачка поднимется случайно, тоже есть ехр(-ε/kT). Значит, сколько раз собачка случайно поднимется, давая храповику свободно повернуться назад, столько же раз окажется достаточно энергии, чтобы при прижатой собачке вертушка повернулась вперед. Выйдет равновесие, а не вращение.

 

§ 2. Храповик как машина

Пойдем дальше. Рассмотрим другой пример: температура вертушки T1, а температура храповика Т2; T2 меньше Т1. Т ак как храповик холодный и флуктуации собачки сравнительно редки, ей теперь очень трудно раздобыть энергию ε. Но из-за того, что вертушка горячая, она часто получает энергию ε, и наше устройство начнет, как и задумано, вертеться в одну сторону.

Посмотрим-ка, удастся ли нам теперь поднимать грузы. Привяжем к барабану нить и привесим к ней грузик вроде нашей блошки. Пусть L будет момент, создаваемый грузом. Если момент L не очень велик, наша машина груз поднимет, так как из-за броуновских флуктуации повороты в одну сторону вероятнее, чем в другую. Определим, какой вес мы сможем поднять, как быстро он будет подниматься и т. д.

Сперва рассмотрим движение вперед, для которого храповик и предназначен. Сколько энергии нужно занять у вертушки, чтобы продвинуться на шаг? Чтобы поднять собачку, нужна энергия ε. Чтобы повернуть храповик на угол θ против момента L, нужна энергия Lθ. Всего нужно занять энергию ε+Lθ. Вероятность заполучить ее равна ехр[-(ε+Lθ)/kT1]. В действительности дело не только в самой этой энергии, но и в том, сколько, раз в секунду она окажется в нашем распоряжении. Вероятность в секунду только пропорциональна ехр[-(ε+Lθ)/kT1]; обозначим коэффициент пропорциональности 1/τ (он в конце выкладок выпадет). После каждого шага вперед совершенная над грузом работа есть Lθ. Энергия, взятая у вертушки, равна ε+Lθ. Энергией ε наматывается нить, затем следует: щелк, щелк, клингенкланггеклунген..., и энергия переходит в тепло. Вся одолженная энергия идет на то, чтобы поднять блошку и собачку, которая потом падает и отдает тепло другой стороне (храповику).

Рассмотрим теперь случай обратного вращения. Что происходит здесь? Чтобы храповик повернулся назад, надо лишь снабдить собачку такой энергией, чтоб ей хватило сил подняться и пропустить храповик. Эта энергия по-прежнему равна ε. Вероятность (в пересчете на секунду) того, что собачка поднимется на нужную высоту, теперь равна (1/τ)ехр(-ε/kT2). (Множитель пропорциональности тот же, но в показателе стоит kT2 из-за того, что температура иная.) Когда это случается, т. е. зубчатка проскальзывает назад, работа уже высвобождается (высвободился один зубец, а вместе с ним и работа Lθ). Энергия, взятая у системы храповик — собачка, есть ε, а энергия, переданная газу на другом конце оси при температуре T1 есть Lθ+ε. Это тоже легко понять. Положим, что собачка поднялась сама собой за счет флуктуации. Когда она упадет и пружинка ударит ее по зубцу, возникнет сила, стремящаяся повернуть зубчатку, ведь плоскость-то, о которую ударилась собачка, наклонная. Эта сила производит работу; то же можно сказать о весе грузика. Обе силы суммируются, и вся медленно высвобождаемая энергия появляется в виде тепла на той стороне, где вертушка. (Конечно, так и должно быть по закону сохранения энергии, но мы обязаны осторожно продумать все насквозь!)

Мы замечаем, что все эти энергии в точности те же, что и раньше, только переставлены. Итак, смотря по тому, какое из отношений больше, грузик либо медленно поднимается, либо медленно опускается. Конечно, на самом деле он непрерывно ходит туда-сюда, покачивается, но мы говорим об усредненном поведении.

Положим, что при определенном весе вероятности окажутся равными. Тогда привесим к нити бесконечно легкий грузик. Весь груз медленно пойдет вниз, и машина будет совершать работу, энергия будет откачиваться от храповика и пересылаться вертушке. Если же убрать часть груза, неравновесность перекинется на другую сторону. Груз поднимается, тепло отбирается от вертушки и поставляется шестерне. Мы попадаем в условия обратимого цикла Карно благодаря тому, что груз выбран как раз так, чтобы обе вероятности были равны. Это условие таково: (ε+Lθ)/T1=ε/T2. Пусть машина медленно тянет груз вверх.

Таблица 46.1 ОПЕРАТИВНАЯ СВОДКА ДЕЙСТВИЙ ХРАПОВИКА И СОБАЧКИ

Энергия Q1 отбирается от лопастей, а энергия Q2 доставляется шестерне, и эти энергии находятся в отношении (ε+Lθ)/ε. Когда мы опускаем груз, то опять Q1/Q2=(ε+Lθ)/ε. Итак (табл. 46.1), мы имеем

Далее, полученная работа относится к энергии, взятой у вертушки, как Lθ к Lθ+ε, т. е. как (T1-Т2)/Т1. Мы видим, что наше устройство, работая обратимо, ни за что не сможет высосать работы больше, чем позволяет это отношение. Это тот вывод, которого мы и ожидали на основе доказательства Карно, а одновременно и главный результат этой лекции.

Однако мы можем использовать наше устройство, чтобы понять еще кое-какие явления, даже неравновесные, лежащие вне области применимости термодинамики.

Давайте подсчитаем теперь, как быстро наш односторонний механизм будет вращаться, если все его части одинаково нагреты, а к барабану подвешен грузик. Если мы потянем чересчур сильно, могут произойти любые неприятности. Собачка соскользнет вдоль храповика, пружинка лопнет или еще что-нибудь случится. Но предположим, мы тянем так осторожно, что все работает гладко. В этих условиях верен вышеприведенный анализ вероятностей поворота храповика вперед или назад, и нужно только учесть равенство температур. С каждым скачком валик поворачивается на угол θ, так что угловая скорость равна величине θ, помноженной на вероятность одного из этих скачков в секунду. Ось поворачивается вперед с вероятностью (1/τ)ехр[-ε+Lθ)/kT], а назад она поворачивается с вероятностью (1/τ)ехр(-ε/kT). Угловая скорость равна

(46.1)

График зависимости ω от L показан на фиг. 46.2.

Фиг. 46.2. Угловая скорость храповика как функция вращательного момента.

Мы видим, что, когда L положительно, результат один, когда отрицательно — совсем другой. Если L растет, будучи положительным, что бывает, когда мы хотим повернуть храповик назад, скорость вращения назад близка к постоянной величине. А когда L становится отрицательным, ω поистине «рвется вперед», так как у ε показатель степени огромен! Таким образом, угловая скорость, вызываемая действием разных сил, весьма несимметрична. Пойти в одну сторону легко: мы получаем большую угловую скорость от маленькой силы. Идя в обратную сторону, мы можем приложить много усилий, а вал все же будет двигаться еле-еле.

Такое же положение возникает в электрическом выпрямителе. Вместо силы там имеется электрическое поле, а взамен угловой скорости — сила тока. Для выпрямителя напряжение тоже не пропорционально сопротивлению, наблюдается та же несимметричность. Анализ, проделанный нами для механического выпрямителя, годится и для электрического. Вид полученной выше формулы типичен для зависимости пропускной способности выпрямителя от напряжения.

Уберем теперь все грузики и обратимся к первоначальному механизму. Если бы Т2 было меньше Т1, храповик вертелся бы вперед. Этому поверит любой. Но вот во что трудно поверить сразу, так это в обратное. Если T2 больше T1, храповик вращается назад! Динамический храповик с избытком теплоты внутри вертится назад, потому что собачка храповика отскакивает. Если собачка в какой-то момент находится на наклонной плоскости, она толкает эту плоскость в сторону подъема. Но это происходит все время, ведь если случится, что собачка поднимется достаточно высоко, чтобы проскочить край зубца, она окажется на новой наклонной плоскости. Словом, горячие храповик с собачкой идеально приспособлены для вращения в сторону, обратную той, в какую им первоначально предназначено было вертеться!

Как бы хитроумно мы ни сконструировали «однобокий» механизм, при равенстве температур он не захочет вертеться в одну сторону чаще, чем в другую. Когда мы смотрим на него, он может поворачиваться либо туда, либо сюда, но при продолжительной работе ему никуда не уйти. Тот факт, что он не уйдет никуда, на самом деле фундаментальный, глубокий принцип; все в термодинамике покоится на нем.

 

§ 3. Обратимость в механике

Что же это за глубокий механический принцип, который утверждает, что при постоянстве температуры и достаточно продолжительной работе наше устройство не уйдет ни назад, ни вперед? Очевидно, мы получили фундаментальное утверждение о том, что нельзя придумать машину, которая, будучи предоставлена самой себе в течение долгого времени, охотней повернулась бы в какую-то одну определенную сторону. Попробуем выяснить, как это вытекает из законов механики.

Законы механики действуют примерно так: сила есть масса на ускорение; сила, действующая на частицу, есть сложная функция положений всех прочих частиц. Бывает, что силы зависят и от скорости, например в магнетизме, но не о них сейчас речь. Возьмем простой случай, скажем тяготение, когда силы определяются только расположением частиц. Положим, что мы решили нашу систему уравнений и получили для каждой частицы определенную траекторию x(t). Для достаточно сложных систем и решения очень сложны; с течением времени возможно появление самых невероятных конфигураций. Если мы придумаем любое, какое только нам придет в голову, расположение частиц и терпеливо подождем, то это расположение непременно наступит! Следя за решением в течение долгого времени, мы увидим, что оно как бы перепробует все, что возможно. В простейших устройствах это не обязательно, но в более или менее сложных системах с большим числом атомов такая вещь происходит.

Но решения способны и на большее. Решая уравнения движения, мы можем получить некоторую функцию, скажем t+t2+t3. Мы утверждаем, что другим решением будет -t+t2-t3. Иными словами, если всюду в решение подставить -t вместо t, то мы получим еще одно решение того же уравнения. Это произойдет оттого, что при замене t на -t в первоначальном дифференциальном уравнении ничего не изменится: в нем присутствуют лишь вторые производные по времени. Значит, если наблюдается некоторое движение, то возможно и точно противоположное движение. К нашему замешательству, может оказаться, когда мы следим за движением достаточно долго, что оно временами совершается в одну сторону, а временами — в обратную. Одно направление ничем не привлекательней другого. Поэтому невозможно сконструировать машину, для которой после длительной работы одно направление окажется более вероятным, чем другое, если только машина достаточно сложна.

Можно, правда, изобрести машину, для которой это утверждение явным образом неверно. Взять, например, колесо, закрутить его в пустом пространстве, и оно навсегда пойдет вертеться в одну сторону. Имеются поэтому некоторые условия, вроде сохранения момента вращения, из-за которых наши рассуждения нарушаются. Но это только означает, что наши доказательства надо проделать поаккуратней. Надо, например, учесть, что вращательный момент забирают себе стенки или еще что-то, так что специальные законы сохранения перестают действовать. Тогда опять, если система достаточно сложна, наше доказательство годится. Оно основано на обратимости законов механики.

Отдавая должное истории, мы хотели бы отметить устройство, изобретенное Максвеллом, впервые разработавшим динамическую теорию газов. Он нарисовал такую картину: пусть имеются два сосуда с газом при одной и той же температуре. Между сосудами имеется маленькое отверстие. Возле него сидит небольшой чертик (конечно, это может быть и прибор!). В отверстии есть дверца, чертик может ее открывать и закрывать. Он следит за молекулами, подлетающими слева. Как только он замечает быструю молекулу, он отворяет дверцу. Увидит медленную — и дверцу на замок! Можно сделать его чертиком высшей квалификации, пристроив на затылок ему еще пару глаз, чтобы с молекулами в другом сосуде он поступал наоборот: пропускал налево медленные, а быстрые не выпускал. Вскоре левый сосуд остынет, а правый нагреется. Спрашивается, будут ли нарушены идеи термодинамики существованием этакого чертика?

Оказывается, что если чертик конечного размера, то сам он вскоре так нагреется, что ничего не увидит. Простейшим чертиком явится, скажем, откидная дверца с пружинкой. Быстрой молекуле хватает сил открыть дверцу и проскочить, а медленной не хватит, и она отлетит прочь. Но это опять-таки знакомая нам система храповик — собачка, только в другом виде; в конце концов механизм просто нагреется. Чертик не может не нагреться, если его теплоемкость не бесконечна. В нем, во всяком случае, имеется конечное число шестеренок и колесиков, так что он не сможет отделаться от излишка тепла, которое приобретет, наблюдая молекулы. Вскоре он так начнет дрожать от броуновского движения, что не сможет сказать, что это там за молекулы, приближаются ли они, удаляются ли, словом, не сможет работать.

 

§ 4. Необратимость

Все ли законы физики обратимы? Конечно, нет! Попробуйте-ка, например, из яичницы слепить обратно яйцо! Или пустите фильм в обратную сторону — публика в зале тотчас же начнет смеяться. Необратимость — самая яркая черта всех событий.

Откуда же она появляется? Ведь ее нет в законах Ньютона. Если мы считаем, что любое явление может быть в конечном счете объяснено законами физики, и если также оказывается, что все уравнения обладают фантастическим свойством давать при t→-t другое решение, то ведь тогда обратимо любое явление. Но как же тогда получается, что в природе, в явлениях большого масштаба, все необратимо? Видимо, значит, есть какие-то законы, какие-то неизвестные нам, но важные уравнения, быть может, в электричестве, а может, в нейтринной физике, для которых уже существенно, куда идет время.

Рассмотрим теперь этот вопрос. Один закон такого рода мы уже знаем — он утверждает, что энтропия только растет. Когда одно тело теплое, а другое холодное, тепло переходит от теплого к холодному. Это утверждение нам подошло бы. Но хорошо бы и этот закон понять с точки зрения механики. Нам уже удалось получить при помощи чисто механических соображений все следствия из постулата о том, что тепло не может течь в обратную сторону; это помогло нам понять второй закон. Значит, необратимость из обратимых уравнений получать мы способны. Но использовали ли мы при этом только законы механики? Разберемся в этом глубже.

Так как речь зашла об энтропии, то нам придется найти ее микроскопическое описание. Когда мы говорим, что в чем-то (например, в газе) содержится определенное количество энергии, то мы можем обратиться к микроскопической картине этого явления и сказать, что каждый атом имеет определенную энергию. Полная энергия есть сумма энергий атомов. Равным образом, у каждого атома есть своя определенная энтропия. Суммируя, получим полную энтропию. На самом деле здесь все обстоит не так уж гладко, но все же давайте посмотрим, что получится.

В виде примера подсчитаем разницу энтропии газа при одной температуре, но в разных объемах. В гл. 44 для изменения энтропии мы получили

В нашем случае энергия газа до и после расширения одна и та же, потому что температура не менялась. Значит, чтобы восполнить работу, проделанную газом, нужно придать ему какое-то количество тепла. Для малых изменений объема

Подставив это в dQ, получим, как в гл. 44,

Например, при удвоении объема энтропия меняется на Nkln2.

Рассмотрим теперь другой интересный пример. Пусть имеется цилиндр с перегородкой посредине. По одну ее сторону — неон («черные» молекулы), а по другую — аргон («белые» молекулы). Уберем перегородку и позволим газам перемешаться. Как изменится энтропия? Можно представить себе, что вместо перегородки между газами стоит поршень с отверстиями, в которые проходят белые молекулы и не проходят черные, и другой поршень с обратными свойствами. Сдвигая поршень к основанию цилиндра, легко понять, что для каждого газа задача сводится к только что решенной. Энтропия, таким образом, меняется на Nkln2; это значит, что энтропия на одну молекулу возрастает на kln2. Цифра 2 появилась оттого, что вдвое увеличился объем, приходящийся на одну молекулу. Странное обстоятельство! В нем проявилось свойство не самой молекулы, а свободного места вокруг нее. Выходит, что энтропия увеличивается, когда температура и энергия не меняются, а изменилось только распределение молекул!

Мы знаем, что стоит убрать перегородку, и газы через некоторое время перемешаются из-за столкновений, колебаний, ударов молекул и т. д. Стоит убрать перегородку, и какая-то белая молекула начнет приближаться к черной, а черная — к белой, они проскочат мимо друг друга и т. д. Постепенно какие-то из белых молекул проникнут случайно в объем, занятый черными, а черные — в область белых. Через какое-то время получится смесь. В общем это необратимый процесс реального мира, он должен привести к росту энтропии.

Перед нами простой пример необратимого процесса, полностью состоящего из обратимых событий. Каждый раз, когда происходит столкновение двух молекул, они разлетаются в определенных направлениях. Если запустить киноленту, на которой засняты столкновения, в обратную сторону, то ничего неправильного на экране не появится. Ведь один вид столкновений столь же вероятен, как и другой. Поэтому перемешивание полностью обратимо, и тем не менее оно необратимо. Каждому известно, что, взяв отдельно белое и отдельно черное и перемешав их, мы через несколько минут получим смесь. Подождем еще сколько-то там минут — они не отделятся, смесь останется смесью. Значит, бывает необратимость, основанная на обратимых ситуациях. Но теперь нам ясна и причина. Мы начали с расположения, которое в каком-то смысле упорядочено. В хаосе столкновений оно стало неупорядоченным. Переход от упорядоченного расположения к беспорядочному является источником необратимости.

Конечно, если бы мы сняли на киноленту это движение и пустили бы потом пленку назад, то увидели бы, как постепенно устанавливается порядок. Кто-нибудь мог бы возразить: «Но это — против всех законов физики!» Тогда мы бы прокрутили фильм еще раз и просмотрели бы каждое столкновение. Все они были бы безупречны, каждое подчинялось бы законам физики. Все дело, конечно, в том, что скорости каждой молекулы были бы выдержаны в точности, так что, если проследить их пути вспять, мы возвратимся к начальным условиям. Но такая ситуация крайне маловероятна. Если иметь дело не со специально приготовленным газом, а просто с белыми и черными молекулами, их никогда не удалось бы вернуть назад.

 

§ 5. Порядок и энтропия

Итак, мы должны теперь потолковать о том, что понимать под беспорядком и что — под порядком. Дело не в том, что порядок приятен, а беспорядок неприятен. Наши смешанные и несмешанные газы отличаются следующим. Пусть мы разделили пространство на маленькие элементы объема. Сколькими способами можно разместить белые и черные молекулы в элементах объема так, чтобы белые оказались на одной стороне, а черные — на противоположной? И сколькими способами можно их разместить без этого ограничения? Ясно, во втором случае способов гораздо больше. Мы измеряем «беспорядок» в чем-то по числу способов, каким может быть переставлено его содержимое, лишь бы внешне все выглядело без изменения. Логарифм числа способов — это энтропия. В цилиндре с разделенными газами число способов меньше и энтропия меньше, т. е. меньше «беспорядок».

Пользуясь этим техническим определением «беспорядка», можно понять наше утверждение. Во-первых, энтропия измеряет «беспорядок». Во-вторых, Вселенная всегда переходит от «порядка» к «беспорядку», поэтому энтропия всегда растет. Порядок не есть порядок в том смысле, что именно эта расстановка молекул нам нравится; смысл в том, что число разных способов расставить молекулы (лишь бы со стороны расстановки выглядели одинаково) относительно ограничено. Когда мы крутили назад наш фильм о перемешивании газов, было не так уж много беспорядка. Каждый отдельный атом имел в точности необходимые скорость и направление, чтобы выйти куда положено! Энтропия была в общем невысока, хотя это и не было заметно.

А что можно сказать о необратимости других физических законов? Когда мы рассматривали электрическое поле ускоряемого заряда, было сказано, что мы должны брать запаздывающее поле. В момент t на расстоянии r от заряда надо брать поле, созданное ускорением в момент t-r/c, а не в момент t+r/c. Поэтому законы электричества на первый взгляд необратимы. Вместе с тем очень странно, что эти законы следуют из уравнений Максвелла, которые в действительности обратимы. Однако можно привести довод, что если бы мы пользовались только опережающим полем, полем, отвечающим положению дел в момент t+r/c, и сделали это совершенно последовательно в полностью замкнутом пространстве, то все происходило бы в точности так же, как при употреблении запаздывающих полей! Эта кажущаяся необратимость в теории электричества, таким образом (по крайней мере в замкнутой полости), вовсе не является необратимостью. Вы это должны уже слегка сами чувствовать; вы знаете уже, что когда колеблющийся заряд создает поле, отражающееся от стен оболочки, то в конечном счете устанавливается равновесие, в котором односторонности нет места. Запаздывающие поля — только прием, удобный метод решения.

Насколько нам известно, все основные законы физики, подобно уравнениям Ньютона, обратимы. Тогда откуда необратимость? Она — из-за превращения порядка в беспорядок. Но это утверждение все равно не понятно, пока мы не знаем, откуда порядок. Почему ситуации, в которых мы оказываемся ежедневно, никогда не бывают равновесными? Одно мыслимое объяснение таково. Рассмотрим снова наш цилиндр со смесью белых и черных молекул. Если следить за ним достаточно долго, может оказаться, что по чисто случайному, крайне невероятному, но все же мыслимому стечению обстоятельств белые молекулы распределятся главным образом у дна, а черные — у крышки. После этого с течением времени они опять начнут перемешиваться.

Стало быть, одно возможное объяснение высокой степени упорядоченности нынешнего мира заключается в том, что нам просто повезло. Вероятно, как-то однажды во Вселенной случилась флуктуация, все как-то разделилось, а теперь вновь возвращается к прежнему. Такая теория не несимметрична; на вопрос, как мог бы выглядеть разделенный газ немного раньше или немного позже, она ответит: в любом случае мы увидели бы серое пятно, потому что молекулы опять смешались бы. Как бы ни потекло время, вперед или назад, газ все равно перемешался бы. Таким образом, по этой теории именно необратимость является одной из случайностей жизни.

Легко показать, что это не так. Предположим, что мы смотрим не на весь цилиндр сразу, а на какую-то часть его. Пусть в какой-то момент мы открыли в этой части определенную степень порядка: белое с черным в ней разделены. Что отсюда следует для частей, которые мы еще не рассматривали? Если мы и впрямь считаем, что порядок возникает из беспорядка путем флуктуации, то мы обязаны рассмотреть самую вероятную флуктуацию из тех, которые способны в нашей части установить порядок. Но при такой наивероятнейшей флуктуации остальная часть сосуда вовсе не должна рассортироваться — совсем наоборот! Значит, из гипотезы, что мир — это флуктуация, следует, что, когда мы взглянем на часть мира, прежде нами не виденную, мы должны обнаружить в ней смесь, беспорядок, в отличие от известного нам прежде мира. Если весь наш порядок есть флуктуация, выброс, мы не смеем надеяться на порядок где-либо сверх того, где он уже обнаружен.

Теперь предположим, что разделение произошло от того, что в прошлом Вселенная была действительно упорядочена (не из-за флуктуации, а просто белое и черное были первоначально обособлены). Тогда эта теория предскажет, что в других местах тоже должен быть порядок, порядок не как случайность, а из-за того, что в прежние времена порядок был лучше. Тогда можно ожидать, что мы обнаружим в местах, которые мы еще не видели, порядок.

Астрономы, например, пока наблюдали не все звезды. Каждую ночь они наводят свои телескопы на новые звезды, и эти звезды ведут себя так же, как и старые. Из этого мы заключаем, что Вселенная — не флуктуация и что наш порядок — это память о тех временах, когда все только начиналось. Мы не говорим, что нам понятна логика этого. По каким-то причинам Вселенная когда-то имела очень малую для своего энергосодержания энтропию, и с той поры энтропия выросла. Это — путь по направлению в будущее. В этом начало всех необратимостей. Именно это порождает процессы роста и распада. Именно из-за этого мы вспоминаем не будущее, а прошлое, вспоминаем события, которые ближе к тому моменту в истории мира, когда порядок был лучше нынешнего. Именно поэтому мы не способны вспомнить события того времени, беспорядок при котором сильней теперешнего,— мы называем это время будущим.

Мы уже говорили когда-то, что в стакане вина откроется нам вся Вселенная, стоит только заглянуть в него поглубже. Стакан вина — штука достаточно сложная, есть там и влага, и стекло, и свет, и еще многое другое.

Прелесть физики еще и в том, что даже такие простые и идеализированные вещи, как храповик с собачкой, действуют лишь оттого, что и они — часть Вселенной. Храповик с собачкой работают в одну сторону только потому, что они находятся в тесном контакте с остальной Вселенной. Если бы храповик с собачкой поместить в сосуд и изолировать на некоторое время, то колесико перестанет предпочитать одно направление вращения другому. Но по той же причине, по какой мы, открывая шторы, впускаем свет, из-за чего мы идем остывать в тень и греться на солнце, по той же причине храповик с собачкой вертятся лишь в одну сторону. Односторонность связана как-то с тем, что храповик — это часть нашей Вселенной. Часть Вселенной не только в том смысле, что подчиняется законам Вселенной, но и потому, что его одностороннее поведение связано с односторонним поведением всей Вселенной. Оно не может пока быть понято до конца: наука приоткрыла великую тайну ранней истории мира, которая сейчас служит лишь предметом разных гипотез.

 

Глава 47 ЗВУК. ВОЛНОВОЕ УРАВНЕНИЕ

 

§ 1. Волны

В этой главе мы будем обсуждать новое явление — волны. О волнах часто и много говорится в физике, и мы наше внимание должны сконцентрировать на этом вопросе не только потому, что собираемся рассмотреть частный пример волн — звук,— но и потому, что волновые процессы имеют и другие многочисленные применения во всех областях физики.

Изучая гармонический осциллятор, мы уже отмечали, что существуют примеры как механических колеблющихся систем, так и электрических. Волны тесно связаны с колебательными системами, однако волновое движение есть не только колебание в данном месте, зависящее от времени, но и движение в пространстве.

Мы уже на самом деле изучали волны. Когда мы говорили о волновых свойствах света, мы обращали особое внимание на пространственную интерференцию волн одной и той же частоты от различных источников, расположенных в разных местах. Существуют еще два важных явления, о которых мы не упоминали и которые свойственны как свету, т. е. электромагнитным волнам, так и любой другой форме волнового движения. Первое из них — это явление интерференции, но уже не в пространстве, а во времени. Когда мы слушаем звуки сразу от двух источников, причем частоты их слегка отличаются, к нам приходят то гребни обеих волн, то гребень одной волны и впадина другой (фиг. 47.1).

Фиг. 47.1. Интерференция звука во времени от двух источников с несколько отличающимися частотами приводит к биениям.

Звук то усиливается, то ослабевает, возникают биения, или, другими словами, происходит интерференция во времени. Второе явление — это волновое движение в замкнутом объеме, когда волны отражаются то от одной, то от другой стенки.

Все эти эффекты можно было, конечно, рассмотреть и на примере электромагнитных волн. Мы этого не сделали по той причине, что на одном примере мы не почувствовали бы общего характера явления, свойственного самым разным процессам. Чтобы подчеркнуть общность понятия волн вне рамок электродинамики, мы рассмотрим здесь другой пример — звуковые волны.

Есть еще пример — морские волны, набегающие на берег, или мелкая водяная рябь. Кроме того, существуют два рода упругих волн в твердых телах: волны сжатия (или продольные волны), в которых частицы тела колеблются вперед и назад в направлении распространения волны (звуковые колебания в газе именно такого типа), и поперечные волны, когда частицы тела колеблются перпендикулярно направлению движения волны. При землетрясениях в результате движения участка земной коры возникают упругие волны обоих типов.

И, наконец, есть еще один тип волн, который нам дает современная физика. Это волны, определяющие амплитуду вероятности нахождения частицы в данном месте,— «волны материи», о которых мы уже говорили. Их частота пропорциональна энергии, а волновое число пропорционально импульсу. Эти волны встречаются в квантовой механике.

В этой главе мы будем рассматривать только такие волны, скорость которых не зависит от длины волны. Пример таких волн — распространение света в вакууме. Скорость света в этом случае одна и та же для радиоволн, для синего и зеленого света и вообще для света любой длины волны. Именно поэтому, когда мы описывали волновые явления, мы сначала и не заметили самого факта распространения волн. Вместо этого мы говорили, что если перенести заряд в некоторую точку, то электрическое поле на расстоянии х будет пропорционально ускорению заряда, но не в момент времени t, а в более ранний момент времени t- x/c. Поэтому распределение электрического поля в пространстве в некоторый момент времени, изображенное на фиг. 47.2, спустя время t передвинется на расстояние ct. Выражаясь математически, можно сказать, что в рассматриваемом нами одномерном случае электрическое поле есть функция от x-ct. Отсюда видно, что при t=0 оно оказывается функцией только х. Если взять более поздний момент времени и несколько увеличить х, мы получим ту же самую величину поля. Например, если максимум поля возникает при x=3 и в момент времени t=0, то положение максимума в момент времени t находится из равенства

Мы видим, что такая функция отвечает распространению волны. Итак, функция f(x-ct) описывает волну. Мы можем все сказанное записать кратко так:

если Δx=cΔt. Конечно, существует еще и другая возможность, когда источник излучает волны не направо, как указано на фиг. 47.2, а налево, так что волны будут двигаться в сторону отрицательных х.

Фиг. 47.2. Примерное распределение электрического поля в некоторый момент времени (а) и электрическое поле через промежуток времени t (b).

Тогда распространение волны описывалось бы функцией g(x+ct).

Может еще случиться, что в пространстве одновременно движется несколько волн, и тогда электрическое поле есть сумма всех полей и все они распространяются независимо. Это свойство электрических полей можно выразить так: пусть f1(x-ct) отвечает одной волне, а f2(x-ct) — другой, тогда их сумма также описывает некоторую волну. Это утверждение называется принципом суперпозиции. Он справедлив и для звуковых волн.

Мы хорошо знаем, что звуки воспринимаются в той последовательности, в какой они создаются источником. А если бы высокие частоты распространялись быстрее, чем низкие, то вместо звуков музыки мы слышали бы резкий и отрывистый шум. Точно так же если бы красный свет двигался быстрее, чем синий, то вспышка белого света выглядела бы сначала красной, затем белой и наконец синей. Мы хорошо знаем, что такого на самом деле не происходит. И звук, и свет движутся в воздухе со скоростью, почти не зависящей от частоты. Примеры волнового движения, где этот принцип не выполняется, будут рассмотрены в гл. 48.

Для света (электромагнитных волн) мы получили формулу, определяющую электрическое поле в данной точке, которое возникает при ускорении заряда. Казалось бы, нам остается теперь подобным образом определить какую-нибудь характеристику воздуха, скажем давление на заданном расстоянии от источника через движение источника, и учесть запаздывание при распространении звука.

В случае света такой подход был приемлем, так как все наши знания сводились к тому, что заряд в одном месте действует с некоторой силой на заряд в другом месте. Подробности распространения взаимодействия из одной точки в другую были абсолютно несущественны. Но звук, как известно, распространяется по воздуху от источника к уху, и естественно спросить, чему равно давление воздуха в каждый данный момент. Кроме того, хотелось бы знать, как именно движется воздух.

В случае электричества мы могли поверить в правило, поскольку законы электричества мы еще не проходили, но для звука это не так. Нам недостаточно сформулировать закон, определяющий распространение звукового давления в воздухе; этот процесс должен быть объяснен на основе законов механики. Короче, звук есть часть механики, и он должен быть объяснен с помощью законов Ньютона. Распространение звука из одной точки в другую есть просто следствие механики и свойств газов, если звук распространяется в газе, или свойств жидкостей и твердых тел, если звук проходит через эти среды. Позднее мы выведем также свойства света и его волновое движение из законов электродинамики.

 

§ 2. Распространение звука

Давайте выведем теперь свойства распространения звука между источником и приемником, основываясь на законах Ньютона, но не учитывая при этом взаимодействия звука с источником и приемником. Обычно мы более подробно останавливались на результате, а не на его выводе. В этой главе мы используем противоположный подход. Главным здесь будет в некотором смысле само получение результата. Метод объяснения новых явлений с помощью старых, законы которых уже известны, представляет собой, пожалуй, величайшее искусство математической физики. Математическая физика решает две проблемы: найти решение заданного уравнения и найти уравнения, описывающие новое явление. То, чем мы будем заниматься, относится как раз ко второй проблеме.

Рассмотрим простейший пример — распространение звука в одномерном пространстве. Для вывода нам сначала необходимо понять, что же в действительности происходит. В основе явления лежит следующий факт: когда тело перемещается в воздухе, возникает возмущение, которое как-то распространяется по воздуху. На вопрос, что это за возмущение, мы можем ответить: это такое движение тела, которое вызывает изменение давления. Конечно, если тело движется медленно, воздух лишь обтекает его, но нас интересует быстрое движение, когда воздух не успевает обойти вокруг тела. При этих условиях воздух в процессе движения сжимается и возникает избыточное давление, толкающее окружающие слои воздуха. Эти слои в свою очередь сжимаются, снова возникает избыточное давление, и вот начинает распространяться волна.

Опишем этот процесс на языке формул. Прежде всего решим, какие нам нужны переменные. В нашей задаче нам нужно знать, насколько переместился воздух, поэтому смещение воздуха в звуковой волне, несомненно, будет первой нашей переменной. Вдобавок хотелось бы знать, как меняется плотность воздуха при смещении. Давление воздуха тоже меняется, и это еще одна интересная переменная. Кроме того, воздух движется с некоторой скоростью, и мы должны уметь определить скорость частиц воздуха. Частицы воздуха имеют еще и ускорение, но, записав все эти переменные, мы сразу же поймем, что и скорость, и ускорение будут нам известны, если известно смещение воздуха как функция времени.

Как уже говорилось, мы рассмотрим волну в одном измерении. Так можно поступить, если мы находимся достаточно далеко от источника и так называемый фронт волны мало отличается от плоскости. На этом примере наше доказательство будет проще, поскольку можно сказать, что смещение χ зависит только от х и t, а не от у и z. Поэтому поведение воздуха описывается функцией χ(х, t).

Насколько полно такое описание? Казалось бы, оно очень не полно, потому что нам не известны подробности движения молекул воздуха. Они движутся во всех направлениях, и этот факт не отражается функцией χ(х, t). С точки зрения кинетической теории, если в одном месте наблюдается большая плотность молекул, а в соседнем меньшая, молекулы будут переходить из области с большей плотностью в область с меньшей плотностью, так чтобы уравнять плотности. Очевидно, что при этом никаких колебаний не происходит и звук не возникает. Для получения звуковой волны нужно, чтобы молекулы, вылетая из области с большей плотностью и давлением, передавали импульс другим молекулам, находящимся в области разрежения. Звук возникает в том случае, если размеры области изменения плотности и давления намного больше расстояния, проходимого молекулами до соударения с другими молекулами. Это расстояние есть длина свободного пробега, и оно должно быть много меньше расстояния между гребнями и впадинами давления. В противном случае молекулы перейдут из гребня во впадину, и волна моментально выровнится.

Мы, естественно, хотим описать поведение газа в масштабе, большем, чем длина свободного пробега, так что свойства газа не будут определяться поведением отдельных молекул. Например, смещение есть смещение центра инерции небольшого объема газа, а давление или плотность относятся к этому же объему. Мы обозначим давление через Р, а плотность через ρ, причем обе величины будут функциями от х и t. Необходимо помнить, что наше описание приближенное и справедливо лишь, когда свойства газа не слишком быстро меняются с расстоянием.

 

§ 3. Волновое уравнение

Итак, физические явления, происходящие в звуковой волне, обладают следующими тремя свойствами:

I. Газ движется, и плотность его меняется.

II. При изменении плотности меняется и давление.

III. Неравномерное распределение давления вызывает движение газа.

Рассмотрим сначала свойство II. Для любого газа, жидкости или твердого тела давление является функцией плотности. До прихода звуковой волны мы имели равновесное состояние с давлением Р0 и плотностью ρ0. Давление Р зависит от плотности среды: Р=f(ρ), и в частности равновесное давление Р0=f(ρ0). Отклонения величины давления от равновесного в звуковой волне очень малы. Давление удобно измерять в барах (1 бар=105н/м2). Давление в одну стандартную атмосферу приблизительно равно 1 бар (1 атм=1,0133 бар). Для звука обычно используется логарифмическая шкала интенсивности, так как восприятие уха, грубо говоря, растет логарифмически. В этой децибельной шкале уровень звукового давления I связан с амплитудой звукового давления:

(47.1)

где давление отнесено к некоторому стандартному давлению Ротн=2·10-10 бар.

Звуковое давление Р=103 Ротн=2·10-7 бар соответствует довольно сильному звуку в 60 дб. Мы видим, что давление меняется в звуковой волне на очень малую величину по сравнению с равновесным или средним, равным 1 атм. Смещение и перепады плотности также очень малы. При взрывах, однако, изменения уже не столь малы; избыточное звуковое давление может превышать 1 атм. Такие большие перепады давления приводят к новым явлениям, которые мы рассмотрим позже. В звуковых волнах уровень силы звука выше 100 дб встречается редко; уровень силы звука в 120 дб уже вызывает боль в ушах. Поэтому, написав для звуковой волны

(47.2)

можно считать, что изменение давления Pu очень мало по сравнению с P0, а изменение плотности ρu очень мало по сравнению с ρ0. Тогда

(47.3)

где P0=f(ρ0) и f'(ρ0) — производная от f(ρ), взятая при значении ρ=ρ0. Второе равенство здесь возможно только потому, что ρu очень мало. Таким образом, мы находим, что избыточное давление Pu пропорционально избыточной плотности ρu; коэффициент пропорциональности обозначается через ϰ:

Это весьма простое соотношение и составляет точное содержание свойства II.

Перейдем теперь к свойству I. Предположим, что положение элемента объема воздуха, не возмущенного звуковой волной, есть х, а звук смещает его в момент времени t на величину χ(х,t), так что его новое положение есть x+χ(x,t), как показано на фиг. 47.3.

Фиг. 47.3. Смещение воздуха в точке х есть χ(х,t), а в точке х+Δх равно χ(x+Δx,t). Первоначальный объем, приходящийся на единицу площади в плоской звуковой волне, есть Δx, а окончательный объем равен Δx+χ(x+Δx,t)-χ(x,t).

Далее, положение соседнего элемента объема есть х+Δх, и его смещенное положение есть х+Δх+χ(х+Δх,t). Теперь можно найти изменение плотности. Поскольку мы рассматриваем плоскую волну, удобно взять единичную площадку, перпендикулярную оси х, т. е. направлению распространения волны. Количество воздуха, приходящееся на единичную площадку в интервале Δx, есть ρ0Δx, где ρ0 — невозмущенная, или равновесная, плотность воздуха. Эта порция воздуха, смещенная звуковой волной, будет находиться теперь между x+χ(x,t) и x+Δх+χ(х+Δх,t), причем количество воздуха в этом интервале то же самое, что в интервале Δx до прихода волны. Если через ρ обозначить новую плотность, то

(47.5)

Поскольку Δx мало, можно написать χ(x+Δx,t)-χ(x,t)=(∂χ/∂x)Δx. Здесь уже появляется частная производная, потому что χ зависит и от x, и от времени. Наше уравнение принимает вид

(47.6)

или

(47.7)

Но в звуковой волне все изменения малы, так что ρu мало, χ мало и ∂χ/∂x тоже мало. Поэтому в уравнении, которое мы только что написали,

(47.8)

можно пренебречь ρu (∂χ/∂x) по сравнению с ρ0(∂χ/∂x). Так мы приходим к соотношению, которое требовалось согласно свойству I:

(47.9)

Именно такой вид уравнения можно было ожидать из чисто физических соображений. Если смещение различно для разных х, плотность будет изменяться. Знак тоже правильный: если смещение χ растет с ростом х, так что воздух расширяется, плотность должна уменьшаться.

Теперь нам нужно найти третье уравнение — уравнение движения, производимого избытком давления. Зная соотношение между силой и давлением, можно получить уравнение движения. Возьмем объем воздуха толщиной Δx и с единичной площадью грани, перпендикулярной х, тогда масса воздуха в этом объеме есть ρ0Δx, а ускорение воздуха есть ∂2χ/∂t2, так что масса, умноженная на ускорение для этого слоя, есть ρ0Δx(∂2χ/∂t2). (Если Δx мало, то безразлично, где брать ускорение — на краю слоя или где-нибудь посредине.) Сила, действующая на единичную площадку нашего слоя, перпендикулярную оси x, должна быть равна ρ0Δx(∂2χ/∂t2). В точке х мы имеем силу Р(х,t), действующую на единицу площади в направлении +х, а в точке x+Δx возникает сила в обратном направлении, по величине равная Р(x+Δx, t) (фиг. 47.4):

Фиг. 47.4. Результирующая сила в направлении оси х, возникающая за счет давления на единичную площадку, перпендикулярную к оси х, есть — (∂P/∂x)Δх.

(47.10)

Мы учли, что Δx мало и что только избыточное давление Рu меняется в зависимости от х. Итак, согласно свойству III мы получаем

(47.11)

Теперь уже уравнений достаточно, чтобы увязать все величины и привести к одной переменной, скажем х. Можно выразить Рu в (47.11) с помощью (47.4):

(47.12)

а затем исключить ρu с помощью (I). Тогда ρ0 сократится и у нас останется

(47.13)

Обозначим сs 2=ϰ, тогда можно написать

(47.14)

Это и есть волновое уравнение, которое описывает распространение звука в среде.

 

§ 4. Решения волнового уравнения

Посмотрим теперь, действительно ли волновое уравнение описывает основные свойства звуковых волн в среде. Прежде всего мы хотим вывести, что звуковое колебание, или возмущение, движется с постоянной скоростью. Кроме того, нам нужно доказать, что два различных колебания могут свободно проходить друг через друга, т. е. принцип суперпозиции. Мы хотим еще доказать, что звук может распространяться и вправо и влево. Все эти свойства должны содержаться в нашем одном уравнении.

Раньше мы отмечали, что любое возмущение, имеющее вид плоской волны и движущееся с постоянной скоростью, записывается в виде f(x-vt). Посмотрим теперь, является ли f(x-vt) решением волнового уравнения. Вычисляя ∂χ/∂x, получаем производную функции dχ/dx=f'(x-vt). Дифференцируя еще раз, находим

(47.15)

Дифференцируя эту же функцию χ по t, получаем значение — V, умноженное на производную, или ∂χ/∂t=-vf(x-vt); вторая производная по времени дает

(47.16)

Очевидно, что f(х-vt) удовлетворяет волновому уравнению, если v равно cs .

Таким образом, из законов механики мы получаем, что любое звуковое возмущение распространяется со скоростью cs и, кроме того,

тем самым мы связали скорость звуковых волн со свойствами среды.

Легко увидеть, что звуковая волна может распространяться: и в направлении отрицательных х, т. е. звуковое возмущений вида χ(х, t)=g(x+vt) также удовлетворяет волновому уравнению. Единственное отличие этой волны от той, которая распространялась слева направо, заключается в знаке v, но знак д2χ/dt2 не зависит от выбора x+vt или х-vt, потому что в эту производную входит только v2. Отсюда следует, что решение уравнения описывает волны, бегущие в любом направлении со скоростью cs .

Особый интерес представляет вопрос о суперпозиции решений. Допустим, мы нашли одно решение, скажем χ1. Это значит, что вторая производная χ1 по х равна второй производной χ1 по t1, умноженной на 1/сs 2. И пусть есть второе решение χ2, обладающее тем же свойством. Сложим эти два решения, тогда получается

(47.17)

Теперь мы хотим удостовериться, что χ(х, t) тоже представляет некую волну, т. е. χ тоже удовлетворяет волновому уравнению. Это очень просто доказать, так как

(47.18)

и вдобавок

(47.19)

Отсюда следует, что ∂2χ/∂x2=(1/cs 2)∂2χ/∂t2, так что справедливость принципа суперпозиции проверена. Само существование принципа суперпозиции связано с тем, что волновое уравнение линейно по χ.

Теперь естественно было бы ожидать, что плоская световая волна, распространяющаяся вдоль оси х и поляризованная так, что электрическое поле направлено по оси y, тоже удовлетворяет волновому уравнению

(47.20)

где с — скорость света. Волновое уравнение для световой волны есть одно из следствий уравнений Максвелла. Уравнения электродинамики приводят к волновому уравнению для света точно так же, как уравнения механики приводят к волновому уравнению для звука.

 

§ 5. Скорость звука

При выводе волнового уравнения для звука мы получили формулу, которая связывает при нормальном давлении скорость движения волны и относительное изменение давления с плотностью:

(47.21)

Чтобы оценить скорость изменения давления, очень важно знать, как при этом меняется температура. Можно ожидать, что в местах сгущения звуковой волны температура повысится, а в местах разрежения — понизится. Ньютон первым вычислил скорость изменения давления с плотностью, предположив, что температура при этом не меняется. Он считал, что тепло передается из одной области звуковой волны в другую так быстро, что температура измениться не успеет. Способ Ньютона дает изотермическую скорость звука, что неправильно. Правильное вычисление было сделано позже Лапласом, считавшим вопреки Ньютону, что давление и температура в звуковой волне меняются адиабатически. Поток тепла из области сгущения в область разрежения пренебрежимо мал, если только длина волны велика по сравнению с длиной свободного пробега. При этих условиях ничтожная утечка тепла в звуковой волне не влияет на скорость звука, хотя и приводит к небольшому поглощению звуковой энергии. Мы можем, естественно, ожидать, что поглощение тепла усилится, когда длина волны приблизится к длине свободного пробега, но такие длины волн примерно в миллион раз меньше длины волны слышимого звука.

Итак, для звука истинная скорость изменения давления с плотностью должна вычисляться без учета отвода тепла. Это соответствует адиабатическому изменению давления, для которого мы нашли, что PVγ=const, где V — объем. Поскольку плотность ρ обратно пропорциональна объему, связь P и ρ для адиабатических процессов дается соотношением

(47.22)

откуда мы получаем dP/dρ=γP/ρ. Тогда для скорости звука возникает соотношение

(47.23)

Можно еще написать сs2=γPV/ρV и использовать соотношение PV=NkT. Мы видим, кроме того, что ρV есть масса газа, которую можно записать как Nm или μ, где m — масса молекулы, а μ — молекулярный вес. Таким образом, находим

(47.24)

откуда видно, что скорость звука зависит только от температуры газа и не зависит от давления или плотности. Мы уже отмечали, что

(47.25)

где — средняя квадратичная скорость молекул. Отсюда следует, что сs2=γ/3 , или

(47.26)

Это равенство означает, что скорость звука есть средняя скорость молекул воздуха (точнее, корень квадратный из средней квадратичной скорости), умноженная на некоторое число, грубо говоря, на 1/(3)1/2. Другими словами, она того же порядка величины, что и скорость молекул, но на самом деле несколько меньше средней скорости молекул.

В общем-то мы могли этого ожидать, потому что такое возмущение, как изменение плотности, передается в конечном счете движением молекул. Однако подобного рода соображения не подсказывают нам точного значения скорости; могло ведь оказаться, что звук переносится самыми быстрыми или самыми медленными молекулами. Разумно и весьма утешительно, что скорость звука оказалась равной приблизительно половине средней молекулярной скорости.

 

Глава 48 БИЕНИЯ

 

§ 1. Сложение двух волн

Не так давно мы довольно подробно обсуждали свойства световых волн и их интерференцию, т. е. эффект суперпозиции двух волн от различных источников. Но при этом предполагалось, что частоты источников одинаковы. В этой же главе мы остановимся на некоторых явлениях, возникающих при интерференции двух источников с различными частотами.

Нетрудно догадаться, что при этом произойдет. Действуя так же, как прежде, давайте предположим, что имеются два одинаковых осциллирующих источника с одной и той же частотой, причем фазы их подобраны так, что в некоторую точку Р сигналы приходят с одинаковой фазой. Если это свет, то в этой точке он очень ярок, если это звук, то он очень громок, а если это электроны, то их очень много. С другой стороны, если приходящие волны отличаются по фазе на 180°, то в точке Р не будет никаких сигналов, ибо полная амплитуда будет иметь здесь минимум. Предположим теперь, что некто крутит ручку «регулировка фазы» одного из источников и меняет разность фаз в точке Р то туда, то сюда, скажем сначала он делает ее нулевой, затем — равной 180° и т. д. При этом, разумеется, будет меняться и сила приходящего сигнала. Ясно теперь, что если фаза одного из источников медленно, постоянно и равномерно меняется по сравнению с другим, начиная с нуля, а затем возрастает постепенно до 10, 20, 30, 40° и т. д., то в точке Р мы увидим ряд слабых и сильных «пульсаций», ибо когда разность фаз проходит через 360°, в амплитуде снова возникает максимум. Но утверждение, что один источник с постоянной скоростью меняет свою фазу по отношению к другому, равносильно утверждению, что число колебаний в 1 сек у этих двух источников несколько различно.

Итак, теперь известен ответ: если взять два источника, частоты которых немного различны, то в результате сложения получаются колебания с медленно пульсирующей интенсивностью. Иначе говоря, все сказанное здесь действительно имеет отношение к делу!

Этот результат легко получить и математически. Предположим, например, что у нас есть две волны и забудем на минуту о всех пространственных соотношениях, а просто посмотрим, что приходит в точку Р. Пусть от одного источника приходит волна cosω1t, а от другого — волна cosω2t, причем обе частоты ω1 и ω2 не равны в точности друг другу. Разумеется, амплитуды их тоже могут быть различными, но сначала давайте предположим, что амплитуды равны. Общую задачу мы рассмотрим позднее. Полная амплитуда в точке Р при этом будет суммой двух косинусов. Если мы построим график зависимости амплитуды от времени, как это показано на фиг.48.1, то окажется, что, когда гребни двух волн совпадают, получается большое отклонение, когда совпадают гребень и впадина — практически нуль, а когда гребни снова совпадают, вновь получается большая волна.

Фиг. 48.1. Суперпозиция двух косинусообразных волн с отношением частот 8:10. Точное повторение колебаний внутри каждого биения для общего случая не типично.

Математически нам нужно взять сумму двух косинусов и как-то ее перестроить. Для этого потребуются некоторые полезные соотношения между косинусами. Давайте получим их. Вы знаете, конечно, что

(48.1)

и что вещественная часть экспоненты eia равна cosа, а мнимая часть равна sinа. Если мы возьмем вещественную часть ехр[-i(a+b)], то получим cos(a+b), а для произведения

мы получаем cosacosb-sinasinb плюс некоторая мнимая добавка. Сейчас, однако, нам нужна только вещественная часть. Таким образом,

(48.2)

Если теперь изменить знак величины b, то, поскольку косинус при этом не изменяет знака, а синус изменяет знак на обратный, мы получаем аналогичное выражение для косинуса разности

(48.3)

После сложения этих двух уравнений произведение синусов сократится, и мы находим, что произведение двух косинусов равно половине косинуса суммы плюс половина косинуса разности

(48.4)

Теперь можно обернуть это выражение и получить формулу для cosα+cosβ, если просто положить α=а+b, a β=а-b, т. е. a=1/2(α+β), a b=1/2(α-β):

(48.5)

Но вернемся к нашей проблеме. Сумма cosω1t и cosω2t равна

(48.6)

Пусть теперь частоты приблизительно одинаковы, так что 1/2(ω1+ω2) равна какой-то средней частоте, которая более или менее та же, что и каждая из них. Но разность ω1-ω2 гораздо меньше, чем ω1 и ω2, поскольку мы предположили, что ω1 и ω2 приблизительно равны друг другу. Это означает, что результат сложения можно истолковать так, как будто есть косинусообразная волна с частотой, более или менее равной первоначальным, но что «размах» ее медленно меняется: он пульсирует с частотой, равной 1/2(ω1-ω2). Но та ли это частота, с которой мы слышим биения? Уравнение (48.6) говорит, что амплитуда ведет себя как cos1/2(ω1-ω2), и это надо понимать так, что высокочастотные колебания заключены между двумя косинусоидами с противоположными знаками (пунктирная линия на фиг. 48.1). Хотя амплитуда действительно меняется с частотой 1/2(ω1-ω2), однако если речь идет об интенсивности волн, то мы должны представлять себе частоту в два раза большую. Иначе говоря, модуляция амплитуды в смысле ее интенсивности происходит с частотой ω1-ω2, хотя мы и умножаем на косинус половинной частоты.

Пренебрегая этими небольшими усложнениями, мы можем заключить, что если складывать две волны с частотами ω1 и ω2, то получим волну с частотой, равной средней частоте 1/2(ω1+ω2), «сила» которой осциллирует с частотой ω1-ω2.

Если амплитуды двух волн различны, то можно, конечно, повторить все вычисления снова, умножив предварительно косинусы на различные амплитуды А1 и А2 и произведя массу всяких математических вычислений, перестроек и т. п. с использованием уравнений, подобных (48.2) — (48.5). Однако есть и другой, более легкий путь провести этот же анализ. Известно, например, что гораздо легче работать с экспонентами, чем с синусами и косинусами, поэтому можно представить A1cosω1t как реальную часть экспоненты А1ехр(iω1t). Подобным же образом вторая волна будет реальной частью A2ехр(iω2t). После сложения этих экспонент A1exp(iω1t)+A2exp(iω2t) и выделения в качестве множителя экспоненты со средней частотой мы получим

(48.7)

т. е. снова оказывается, что высокочастотная волна модулируется малой частотой.

 

§ 2. Некоторые замечания о биениях и модуляции

Предположим теперь, что нас интересует интенсивность волны, описываемой уравнением (48.7). Чтобы найти ее, нужно взять квадрат абсолютной величины либо правой, либо левой части этого уравнения. Давайте возьмем левую часть. Интенсивность при этом будет равна

(48.8)

Видите, интенсивность возрастает и падает с частотой ω1-ω2, изменяясь в пределах между (А1+A2)2 и (А1-A2)2. Если А1≠А2, то минимальная интенсивность не равна нулю.

Те же результаты можно получить и другим путем—с помощью схем, подобных фиг. 48.2.

Фиг. 48.2. Результат сложения двух комплексных векторов с равными частотами.

Изобразим одну из волн в виде вектора длиной A1 в комплексной плоскости, вращающегося с угловой скоростью ω1. Вторую волну изобразим другим вектором, длина которого A2, а угловая скорость вращения ω2. Если эти частоты в точности равны между собой, то мы получим вращающийся вектор, длина которого все время постоянна. Так что интенсивность в этом случае будет все время постоянной фиксированной величиной. Если, однако, частоты хоть немного отличаются одна от другой, то эти два вектора будут крутиться с различными скоростями.

На фиг. 48.3 показано, как выглядит вся картина «с точки зрения» вектора A1exp(iω1t).

Фиг. 48.3. Результат сложения двух комплексных векторов с различными частотами во вращающейся системе отсчета первого вектора. Показаны девять последовательных положений медленно вращающегося вектора.

Мы видим, что вектор А2 медленно «отворачивается» от вектора А1, так что амплитуда, получаемая при сложении этих векторов, сначала велика, а затем, когда второй вектор совсем «отвернется» в другую сторону, т. е. когда угол между ними станет 180°, она будет особенно мала, и т. д. Вектор крутится, амплитуда суммы векторов становится то больше, то меньше, а интенсивность пульсирует. Идея сравнительно простая, и ее можно реализовать множеством различных способов. Этот эффект очень легко наблюдать экспериментально. Можно установить, например, два громкоговорителя, каждый из которых связан со своим генератором колебаний и может давать свой собственный тон. Таким образом, мы принимаем один сигнал от первого источника, а другой сигнал от второго. Если частоты этих сигналов в точности одинаковы, то в результате в каждой точке пространства получится эффект определенной силы. Но если генераторы немного расстроить, то мы услышим некоторые изменения интенсивности. Чем больше мы расстраиваем генераторы, тем более быстрыми будут изменения силы звука. Однако уху становится трудно уследить за изменениями, скорость которых превышает 10 колебаний в секунду или что-то около этого.

Тот же эффект можно наблюдать и на осциллографе, который просто показывает сумму токов двух генераторов. Если частота пульсаций сравнительно мала, то мы просто видим, как на экране перед нами проходят синусоидальные волны, амплитуда которых пульсирует, но если сделать пульсации более быстрыми, то мы увидим нечто похожее на то, что показано на фиг. 48.1. По мере увеличения разницы между частотами «вершины» сближаются все больше и больше. Если амплитуды не равны друг другу, если мы один сигнал сделаем слабее другого, то образуется волна, амплитуда которой, как это и ожидается, никогда не становится равной нулю. Все получается так, как нужно, независимо от того, электричество это или звук.

Но возможно и обратное явление! При радиопередаче используют так называемую амплитудную модуляцию (AM). Вот как это делается. Радиопередатчик возбуждает электрические колебания очень высокой частоты. Для радиовещания, например, используется частота 800 кгц. Если включен этот несущий сигнал, то передатчик будет излучать волны с частотой 800 000 колебаний в секунду, причем амплитуда их постоянна. Информация же (зачастую совершенно бесполезная, вроде того, какую марку автомобиля вам следует приобрести) передается следующим образом: когда кто-то говорит в микрофон, амплитуда несущего сигнала изменяется «в ногу» с колебаниями звука, приходящего в микрофон.

Возьмем простейший с точки зрения математики случай, когда певица берет безупречную ноту с безупречным синусоидальным колебанием голосовых связок, причем получается сигнал, сила которого меняется, как это показано на фиг. 48.4.

Фиг. 48.4. Модуляция несущей волны. На этом схематическом рисунке отношение ωc /ωm =5. В настоящей радиоволне ωc /ωm ≈100.

Изменения слышимой частоты принимаются затем приемником; мы избавляемся от несущей волны и смотрим просто на «обертку», которая представляет собой колебания голосовых связок, или звук голоса певицы. Громкоговоритель же производит колебания той же частоты в воздухе, и в принципе слушатель не может обнаружить разницы между настоящим голосом певицы и передачей, слышимой по радио. В действительности же из-за некоторых искажений и других тончайших эффектов можно все же определить, слышим ли мы радио или «живой» голос певицы; в других же отношениях все происходит так, как мы описали.

 

§ 3. Боковые полосы

Описанную выше модулированную волну математически можно записать в виде

(48.9)

где (ωс — несущая частота, а ωm— частота слышимого звука. Используя теоремы о косинусах или свойства экспоненты exp(iθ) (разницы в этом никакой нет, однако легче работать с экспонентой), мы получаем

(48.10)

Таким образом, с другой точки зрения можно сказать, что выходящая волна состоит из суперпозиции трех волн: обычной волны с частотой ωс, т. е. несущей частоты, и затем двух новых волн с двумя другими частотами. Одна из них равна сумме несущей и модулирующей частот, а другая — разности. Если построить нечто вроде графика зависимости интенсивности излучения генератора от частоты, то сначала мы, естественно, обнаружим большую интенсивность при несущей частоте ωс , но как только певица начнет петь, мы неожиданно обнаружим интенсивность, пропорциональную силе голоса певицы b2 при частотах ωс +ωm и ωс-ωm, как это показано на фиг. 48.5.

Фиг. 48.5. Спектр частот несущей волны ωс , модулированной одной косинусообразной волной ωm .

Они называются боковыми полосами. Если из передатчика выходит модулированный сигнал, то возникают боковые полосы. Если в одно и то же время передаются две ноты, скажем, с частотами ωm и ωm', например играют два инструмента или какая-то другая усложненная волна, тогда из математики видно, что получаются две новые волны, соответствующие частотам ωm±ωm'.

Итак, если происходит какая-то сложная модуляция, которую можно представить в виде суммы многих косинусов, то оказывается, что в действительности передатчик работает в целой области частот, именно несущей частоты плюс-минус максимальная частота, содержащаяся в модулирующем сигнале.

Хотя вначале мы могли поверить, что радиопередатчик работает только на номинальной несущей частоте, так как в нем находится большой сверхстабильный кристаллический осциллятор и все подобрано так, чтобы частота была равна в точности 800 кгц, но в тот момент, когда диктор объявляет, что станция работает на частоте 800 кгц, он тем самым модулирует эту частоту и передача уже не идет точно на этой частоте. Предположим, что усилители построены так, что они могут передавать широкую полосу частот в области, воспринимаемой ухом (ухо может слышать частоты вплоть до 20 000 гц, но обычно радиоприемники и радиопередатчики работают ниже частоты 10 000 гц, и по радио мы высших частот не слышим). Так что голос диктора, объявляющего что-то по радио, может содержать частоты вплоть до 10 000 гц, передатчик излучает частоты в области от 790 до 810 кгц. Если при этом на частоте, скажем, 795 кгц работает еще одна радиостанция, то возникают большие помехи. Если мы сделаем наш приемник столь чувствительным, что он будет принимать только частоту 800 кгц и не будет захватывать по 10 кгц с каждой стороны, то мы не услышим, что сказал диктор, ведь информация передается именно на боковых частотах! Поэтому очень важно, чтобы станции были разделены некоторой областью частот и их боковые полосы не перекрывались, а приемник не должен быть столь избирательным, чтобы не позволять принимать боковые полосы вместе с номинальной частотой. Но эта проблема не вызывает больших затруднений при радиопередачах. Мы слышим в области ±20 кгц, а радиопередача ведется обычно в области от 500 до 1500 кгц, так что места должно хватить для множества станций.

Проблема телевидения намного труднее. Когда электронный луч бежит по экрану телевизионной трубки, он создает множество светлых и темных точек. Эти светлые и темные точки и есть «сигналы». Обычно, чтобы «показать» весь кадр, лучу требуется примерно в тридцатую долю секунды пробежать 500 строк. Пусть разрешение по горизонтали и по вертикали более или менее одинаково, т. е. на миллиметр каждой строки приходится ровно столько же точек, сколько строк приходится на миллиметр высоты. Нужно, чтобы мы могли различать последовательность светлое — темное, светлое — темное, светлое — темное на протяжении 500 линий. Чтобы это можно было сделать с помощью косинусообразной волны, требуется длина волны, т. е. расстояние от максимума до минимума, соответствующая длине 1/250 части экрана. Таким образом, получается 250x500x30 «единичек информации» в секунду, поэтому высшая частота, которую нужно передать, оказывается равной приблизительно 4 Мгц. На самом деле, чтобы отделить телевизионные станции одну от другой, мы должны использовать несколько большую ширину — около 6 Мгц. Часть ее используется для передачи звукового сопровождения и другой информации. Таким образом, телевизионный канал имеет ширину 6 Мгц. Разумеется, модулировать с частотой, превышающей частоту несущей волны, невозможно, поэтому телевизионные передачи нельзя вести на частоте, например, 800 кгц.

Во всяком случае, телевизионная полоса начинается с частоты 54 Мгц. Первый телевизионный канал в Соединенных Штатах работает в полосе от 54 до 60 Мгц, т. е. имеет ширину 6 Мгц. «Постойте,— можете сказать вы,— ведь только сейчас мы доказали, что боковые полосы должны быть с обеих сторон, а поэтому ширина должна быть вдвое больше». Оказывается, радиоинженеры довольно хитрый народ. Если при анализе модулирующего сигнала использовать не только косинус, а косинус и синус, чтобы учесть разность фаз, то между высокочастотной и низкочастотной боковыми полосами обнаружится наличие определенного постоянного соотношения. Этим мы хотим сказать, что вторая боковая полоса не содержит никакой новой информации по сравнению с первой, так что одну из них вполне можно выкинуть. Приемник же устроен таким образом, что потерянная информация восстанавливается из несущей частоты и одной боковой полосы. Передача с помощью одной боковой полосы — очень интересный метод уменьшения ширины полосы, необходимой для передачи информации.

 

§ 4. Локализованный волновой пакет

Следующий вопрос, который мы хотим обсудить,— это интерференция волн как в пространстве, так и во времени. Предположим, что в пространстве распространяются две волны. Вы, конечно, знаете, что распространение волны в пространстве, например звуковой, можно описать с помощью экспоненты exp[i(ωt-kx)]. Такая экспонента удовлетворяет волновому уравнению при условии, что ω2=k2с2, где с — скорость распространения волны. В этом случае экспоненту можно записать в виде ехр[ik(x-ct)], что является частным случаем общего решения f(x-ct). Такая экспонента должна описывать волну, распространяющуюся со скоростью ω/k, равной с, и поэтому здесь все в порядке.

Давайте теперь складывать две такие волны. Пусть первая волна распространяется с одной частотой, а вторая волна — с какой-то другой. Случай неравных амплитуд рассмотрите самостоятельно, хотя существенного отличия здесь нет. Таким образом, мы хотим сложить exp[i(ω1t-k1x)]+exp[i(ω2t-k2x)]. Это можно сделать с помощью математики, аналогичной использованной нами при сложении двух сигналов. Если скорости с обеих волн одинаковы, то сделать это очень легко; за исключением того, что вместо t стоит t'=t-х/с, это будет то же самое, что мы недавно проделали:

(48.11)

При этом, естественно, мы получаем точно такие же модуляции, как и раньше, которые, однако, движутся вместе с волной. Другими словами, если сложить две волны, которые не просто осциллируют, но и перемещаются в пространстве, то получившаяся волна также будет двигаться с той же скоростью.

Хотелось бы обобщить это на случай волн, у которых отношение между частотой и волновым числом k не столь просто, например распространение волн в веществе с некоторым показателем преломления. В гл. 31 (вып. 3) мы уже изучали показатель преломления n и выяснили, что он связан с волновым числом следующим образом: k=nω/с. В качестве интересного примера мы нашли показатель преломления n для рентгеновских лучей:

(48.12)

На самом деле в гл. 31 мы получали и более сложные формулы, однако эта ничуть не хуже, так почему бы нам не взять ее в качестве примера.

Нам известно, что даже в том случае, когда ω и k не пропорциональны друг другу, отношение ω/k все равно будет скоростью распространения данной частоты и данного волнового числа. Это отношение называется фазовой скоростью, т. е. скоростью, с которой движется фаза или узел отдельной волны:

(48.13)

Интересно, что, например, для случая распространения рентгеновских лучей в стекле эта фазовая скорость больше скорости света в пустоте [поскольку n, согласно (48.12), меньше единицы], а это несколько неприятно, ведь не думаем же мы, что можно посылать сигналы быстрее скорости света!

Обсудим теперь интерференцию двух волн, у которых значения ω и k связаны какой-то определенной зависимостью. Например, написанная ранее формула для показателя n говорит, что k есть определенная известная функция частоты ω. Для большей определенности давайте выпишем формулу зависимости k и ω в данной частной задаче:

(48.14)

где a=Nqe 2/2ε0m — постоянная. Во всяком случае, мы хотим сложить такие две волны, у которых для каждой частоты существует определенное волновое число.

Давайте сделаем это точно так же, как и при получении уравнения (48.7):

(48.15)

Таким образом, снова получается модулированная волна, распространяющаяся со средней частотой и средним волновым числом, однако сила ее меняется в соответствии с выражением, зависящим от разности частот и разности волновых чисел.

Рассмотрим теперь случай, когда разности между двумя волнами относительно малы. Предположим, что мы складываем две волны с приблизительно равными частотами, при этом (ω1+ω2)/2 практически равно каждой из частот ω. То же можно сказать и о (k1+k2)/2. Таким образом, скорость волны, быстрых осцилляции, узлов действительно остается равной ω/k. Но смотрите, скорость распространения модуляций не та же самая! Как нужно изменить х, чтобы сбалансировать некоторую величину времени t? Скорость этих модулирующих волн равна

(48.16)

Скорость движения модуляций иногда называют групповой скоростью. Если мы возьмем случай относительно малой разности между частотами и соответственно относительно малой разности между волновыми числами, то это выражение переходит в пределе в

(48.17)

Другими словами, чем медленнее модуляции, тем медленнее и биения, и вот что самое удивительное — существует определенная скорость их распространения, которая не равна фазовой скорости волны.

Групповая скорость равна производной ω по k, а фазовая скорость равна отношению ω/k.

Посмотрим, можно ли понять, почему так происходит. Рассмотрим две волны с несколько различными длинами, как это показано на фиг. 48.1. Они то совпадают по фазе, то различаются, то снова совпадают и т. д. Однако теперь эти волны в действительности представляют волны в пространстве, распространяющиеся с немного различными скоростями. Но поскольку фазовая скорость, скорость узлов этих двух волн, не в точности одинакова, то происходит нечто новое. Предположим, что мы едем рядом с одной из волн и смотрим на другую. Если бы они двигались с одинаковой скоростью, то вторая волна оставалась бы относительно нас там же, где и была с самого начала, поскольку мы едем как бы на гребне одной волны и видим гребень второй прямо около себя. Однако в действительности скорости не равны. Частоты немного отличаются друг от друга, а поэтому немного отличаются и скорости. Из-за этой небольшой разницы в скоростях другая волна либо медленно обгоняет нас, либо отстает. Что же с течением времени происходит с узлом? Если чуть-чуть продвинуть одну из волн, то узел при этом уйдет на значительное расстояние вперед (или назад), т. е. сумма этих двух волн имеет какую-то огибающую, которая вместе с распространением волн скользит по ним с другой скоростью. Групповая скорость является той скоростью, с которой передаются модулирующие сигналы.

Если мы посылаем сигнал, т. е. производим какие-то изменения волны, которые могут быть услышаны и расшифрованы кем-то, то это является своего рода модуляцией, но такая модуляция при условии, что она относительно медленная, будет распространяться с групповой скоростью (быстрые модуляции значительно труднее анализировать).

Теперь мы можем показать (наконец-то!), что скорость распространения рентгеновских лучей в куске угля, например, не больше, чем скорость света, хотя фазовая скорость больше скорости света. Чтобы сделать это, нужно найти соотношение dω/dk, которое мы вычислим дифференцированием формулы (48.14): dk/dω=1/c+a/(ω2c). А групповая скорость равна обратной величине, т. е.

(48.18)

что меньше, чем с! Таким образом, хотя фазы могут бежать быстрее скорости света, модулирующие сигналы движутся медленнее, и в этом состоит разрешение кажущегося парадокса! Разумеется, в простейшем случае ω=kc групповая скорость dω/dk тоже равна с, т. е. когда все фазы движутся с одинаковой скоростью, естественно, и групповая скорость будет той же самой.

 

§ 5. Амплитуда вероятности частиц

Рассмотрим еще один необычайно интересный пример фазовой скорости. Он относится к области квантовой механики. Известно, что амплитуда вероятности найти частицу в данном месте изменяется при некоторых обстоятельствах в пространстве и времени (давайте возьмем одно измерение) следующим образом:

(48.19)

где ω — частота, связанная с классической энергией, E=ℏω, а k — волновое число, которое связано с импульсом соотношением р=ℏk. Мы говорим, что частица имеет определенный импульс р, если волновое число в точности равно k, т. е. если бежит идеальная волна повсюду с одинаковой амплитудой. Выражение (48.19) дает амплитуду вероятности, но если мы возьмем квадрат абсолютной величины, то получим относительную вероятность обнаружения частицы как функцию положения и времени. В данном случае она равна постоянной, что означает вероятность обнаружить частицу в любом месте. Рассмотрим теперь такой случай, когда известно, что обнаружить частицу в каком-то месте более вероятно, чем в других местах. Подобную картину мы описываем волной, которая имеет максимум в данном месте и сходит на нет по мере удаления в стороны (фиг. 48.6).

Фиг. 48.6. Локализованный волновой пакет,

(Это не то же самое, что изображено на фиг. 48.1, где волна имеет целый ряд максимумов, но сними вполне можно расправиться, сложив несколько волн с приблизительно одинаковыми значениями ω и k. Таким способом можно избавиться от всех максимумов, кроме одного.)

При этих обстоятельствах, поскольку квадрат выражения (48.19) представляет вероятность найти частицу в некотором месте, мы знаем, что в данный момент больше шансов найти частицу вблизи центра «колокола», где амплитуда максимальна. Если подождать немного, то волна передвинется, и по прошествии некоторого промежутка времени «колокол» перейдет в какое-то другое место. Зная, что частица вначале где-то была расположена, мы ожидали бы, согласно классической механике, что она будет где-то и позднее, ведь есть же у нее скорость и импульс в конце концов. При этом квантовая теория дает в пределе правильные классические соотношения между энергией, импульсом и скоростью, если только групповая скорость, скорость модуляции, будет равна скорости классической частицы с тем же самым импульсом.

Сейчас необходимо показать, так ли это на самом деле или нет. Согласно классической теории, энергия связана со скоростью уравнением

(48.20)

Точно таким же образом импульс равен

(48.21)

Как следствие отсюда после исключения v получается

т. е. рμрμ=m2. Это величайший результат четырехмерья, о котором мы уже говорили много раз, устанавливающий связь между энергией и импульсом в классической теории. Теперь же, поскольку мы собираемся заменить E и p на ω и k помощью подстановки Е=ℏω и p=ℏk, он означает, что в квантовой механике должна существовать связь

(48.22)

Таким образом, возникло соотношение между частотой и волновым числом квантовомеханической амплитуды, описывающей частицу с массой m. Из этого уравнения можно получить

т. е. фазовая скорость ω/k снова больше скорости света!

Рассмотрим теперь групповую скорость. Она должна быть равна скорости, с которой движется модуляция, т. е. dω/dk.

Чтобы найти ее, нужно продифференцировать квадратный корень; это дело нехитрое. Производная равна

Но входящий сюда квадратный корень есть попросту ω/с, так что эту формулу можно записать в виде dω/dk=c2k/ω. Далее, так как k/ω равно р/Е, то

Но, согласно (48.20) и (48.21), с2р/Е равно v — скорости частицы в классической механике. Таким образом видно, что, принимая во внимание основные квантовомеханические соотношения E=ℏω и p=ℏk, определяющие ω и k через классические величины Е и р и дающие только уравнение ω2-k2c2==m2с4/ℏ2, теперь можно понять также соотношения (48.20) и (48.21), связывающие Е и р со скоростью. Групповая скорость, разумеется, должна быть скоростью частиц, если эта интерпретация вообще имеет какой-либо смысл. Пусть в какой-то момент, как мы полагаем, частица находится в одном месте, а затем, скажем через 10 минут,— в другом. Тогда, согласно квантовой механике, расстояние, пройденное «колоколом», разделенное на интервал времени, должно равняться классической скорости частицы.

 

§ 6. Волны в пространстве трех измерений

Мы заканчиваем наше обсуждение волн несколькими общими замечаниями о волновом уравнении. Эти замечания, призванные дать нам картину того, чем нам предстоит заниматься в будущем, вовсе не претендуют на то, чтобы вы поняли их сразу; они должны скорее показать, как будут выглядеть все эти вещи, когда вы несколько больше познакомитесь с волнами. Мы уже записали уравнение для распространения звука в одном измерении:

здесь с — скорость того, что мы назвали волнами. Если речь идет о звуке, то это скорость звука, если о свете — то это скорость света. Мы показали, что для звуковой волны перемещения частиц должны распространяться с некоторой скоростью. Но избыточное давление, как и избыточная плотность, тоже распространяется с некоторой скоростью. Таким образом, можно ожидать, что и давление будет удовлетворять этому же уравнению.

Так оно и есть на самом деле, однако докажите это самостоятельно. Указание: ρu пропорционально скорости изменения χ с расстоянием х. Следовательно, продифференцировав волновое уравнение по х, мы немедленно обнаружим, что ∂χ/∂x удовлетворяет тому же самому уравнению. Другими словами, ρu удовлетворяет тому же самому уравнению. Но Рu пропорционально ρu, поэтому и Рu удовлетворяет тому же самому уравнению. Таким образом, и давление, и перемещение — все описывается одним и тем же уравнением.

Обычно волновое уравнение для звука записывается через давление, а не через перемещение. Это проще, потому что давление — скаляр и не имеет никакого направления. Но перемещение есть вектор, и поэтому лучше иметь дело с давлением.

Следующий вопрос, который нам предстоит обсудить, относится к волновому уравнению в трехмерном пространстве. Мы знаем, что звуковая волна в одномерном пространстве описывается решением ехр[i(ωt-kx)], где ω=kcs. Кроме того, нам известно, что в трех измерениях волна описывается выражением exp[i(ωt-kx x-ky y-kz z)], и в этом случае ω2=k2сs2 [сокращенная запись (kx2+ky2+kz2)cS2]. Сейчас мы хотим просто угадать вид волнового уравнения в трехмерном пространстве. Естественно, что в случае звука это уравнение можно получить с помощью тех же самых динамических соображений, но уже в трехмерном пространстве. Однако мы не будем сейчас делать этого, а просто напишем ответ: уравнение для давления или перемещения (или чего-то другого) имеет вид

(48.23)

правильность этого уравнения может быть легко проверена подстановкой в него функции exp[i(ωt-k·r)]. Ясно, что при каждом дифференцировании по х происходит умножение на -ikx . Если мы дифференцируем дважды, то это эквивалентно умножению на -k2x , так что для такой волны первый член получится равным -kx 2Pu . Точно таким же образом второй член окажется равным -kу 2Рu , а третий — равным -kz 2Pu . С правой же стороны мы получим -ω2/cs2Рu. Если мы вынесем 1 за скобку Ри и изменим знаки всех членов, то увидим, что между k и ω как раз получится желаемое соотношение.

Возвращаясь назад, мы должны прийти к основному уравнению, соответствующему дисперсионному соотношению (48.22) для квантовомеханической волны. Если φ — амплитуда нахождения частицы в момент t в точке с координатами x, y и z, то основное уравнение квантовой механики для свободной частицы имеет вид

(48.24)

Прежде всего заметим, что релятивистский характер этого уравнения гарантируется появлением координат x, y, z и времени t в такой удачной комбинации, что она автоматически учитывает принцип относительности. Кроме того, это уравнение волновое. Если подставить в него плоскую волну, то как следствие мы получим равенство -k2+ω2/c2=m2c2/ℏ2, которое должно выполняться в квантовой механике. В этом волновом уравнении содержится еще одна фундаментальная вещь: любая суперпозиция волн также будет его решением. Таким образом, это уравнение опирается на всю квантовую механику и всю теорию относительности, которая уже обсуждалась нами до сих пор, по крайней мере когда мы имели дело с единственной частицей в пустом пространстве без всяких потенциалов и воздействующих на нее сил!

 

§ 7. Собственные колебания

Вернемся теперь к другим очень любопытным примерам биений, которые немного отличаются от того, что мы рассматривали до сих пор. Представьте себе два одинаковых маятника, которые связаны между собой слабой пружинкой. Длины их должны быть одинаковыми с возможно большей точностью. Если мы оттянем один маятник и отпустим его, то он будет качаться взад и вперед и будет тянуть то взад, то вперед связывающую пружинку, т. е. получится устройство, создающее силу с собственной частотой второго маятника. Можно заключить из знакомой нам теории резонансов, что если к какому-то предмету прикладывать с надлежащей частотой силу, то она будет двигать этот предмет. Таким образом, ясно, что один маятник, двигаясь взад и вперед, будет раскачивать второй. Однако при этих условиях происходит некое новое явление, связанное с тем, что энергия системы конечна. Первый маятник постепенно растрачивает свою энергию, вызывая движение другого маятника, и в конце концов полностью отдаст свою энергию и остановится. Вся энергия теперь будет сосредоточена во втором маятнике. Но пройдет немного времени и все будет происходить наоборот: энергия из второго маятника будет перекачиваться назад, в первый маятник. Это очень интересное и занимательное явление. Мы сказали, что оно связано с теорией биений, и сейчас мы должны показать, как можно понять это явление с точки зрения этой теории.

Обратите внимание, что движение каждого из двух маятников — это колебания с циклически изменяющейся амплитудой. Поэтому движение одного из маятников можно, очевидно, рассматривать с различных точек зрения, в частности как сумму двух одновременных колебаний с мало отличающимися частотами. Таким образом должно быть возможно обнаружить в этой системе два других движения и утверждать, что поскольку система наша, безусловно, линейная, то мы видим суперпозицию этих двух решений. Действительно, легко найти два способа так запустить нашу систему, что каждый из них даст в результате идеальное абсолютно периодическое колебание с одной частотой. Движение, с которого мы начали, не строго периодично, оно не продолжается все время (один маятник постепенно передает свою энергию другому и изменяет свою амплитуду), но есть способы так начать движение, что не будет никаких подобных изменений. Как только вы узнаете, что это за способы, то сразу же поймете почему. Если, например, мы запустим оба маятника одновременно, то, поскольку длина их одинакова и пружинка в этом случае бездействует, оба маятника так и будут продолжать качаться все время вместе. (Разумеется, если нет трения и все достаточно хорошо подогнано.) С другой стороны, существует еще одна возможность создать строго периодическое движение, которое также имеет определенную частоту,— когда маятники, оттянутые вначале в разные стороны на точно равные расстояния, движутся в противоположных направлениях. Нетрудно сообразить, что пружинка немного увеличивает «восстанавливающую силу», возникающую из-за действия силы тяжести, и система колеблется с несколько большей частотой, чем в первом случае,— вот и все. Почему с большей? Да потому что пружинка тянет, помогая силе тяжести, и это делает систему более «жесткой», так что частота такого колебания чуть-чуть больше.

Итак, создать колебания с постоянной амплитудой в нашей системе можно двумя способами: либо оба маятника качаются все время вместе с одной частотой, либо они качаются в противоположных направлениях с несколько большей частотой.

Действительное же движение системы, поскольку она линейна, можно представить в виде суперпозиции этих двух способов. (Напомним, что предметом этой главы являются эффекты сложения двух движений с различными частотами.) Давайте подумаем, что произошло бы, если бы мы сложили эти два решения. Если в момент t=0 запустить оба эти движения (причем с равными амплитудами и одинаковой фазой), то сумма этих двух движений означает, что один маятник, на который каким-то образом воздействовало первое движение и противоположным образом воздействовало второе, должен оставаться на месте, тогда как другой маятник, двигаясь одинаково при обоих способах движения, качается с удвоенной амплитудой. С течением времени, однако, оба эти основных движения, существуя независимо одно от другого, медленно сдвигаются по фазе одно относительно другого. Это означает, что после достаточно большого промежутка времени, такого, что в первом движении произойдет, скажем, 900,5 колебания, а во втором — только 900, относительная фаза станет как раз обратной по отношению к тому, что было вначале. Иначе говоря, маятник, имевший вначале большую амплитуду, остановится, тогда как маятник, неподвижный вначале, начнет качаться изо всех сил!

Итак, мы видим, что такое сложное движение можно рассматривать в рамках идеи резонансов, когда энергия от одного маятника переходит к другому, или как суперпозицию двух движений с постоянной амплитудой и различными частотами.

 

Глава 49 СОБСТВЕННЫЕ КОЛЕБАНИЯ

 

§ 1. Отражение волн

В этой главе мы рассмотрим ряд замечательных явлений, возникающих в результате «заключения» волны в некоторую ограниченную область. Сначала нам придется установить несколько частных фактов, относящихся, например, к колебанию струны, а затем, обобщив эти факты, мы придем, по-видимому, к наиболее далеко идущему принципу математической физики.

Первый пример волн в ограниченном пространстве — это волны в пространстве, ограниченном с одной стороны. Давайте возьмем простой случай одномерной волны на струне. Можно было бы рассмотреть плоскую звуковую волну в пространстве, ограниченном с одной стороны стенкой, или какие-то другие примеры той же природы, но для наших теперешних целей вполне достаточно простой струны. Предположим, что один конец струны закреплен, ну, например, вмурован в «абсолютно жесткую» стенку. Математически это можно описать, указав, что перемещение струны у в точке x=0 должно быть нулем, ибо конец струны не может двигаться. Далее, если бы в этом деле не участвовала стенка, то, как мы знаем, общее решение, описывающее движение струны, можно было бы представить в виде суммы двух функций F(x-ct) и G(x+ct), причем первая описывает волну, бегущую по струне в одну сторону, а вторая — в другую, так что

(49.1)

будет общим решением для любой струны. Но нам, помимо этого, нужно еще удовлетворить условию неподвижности одного конца. Если в уравнении (49.1) мы положим х=0 и посмотрим, какие будут у в любой момент t, то получим y=F(-ct)+G(+ct). Но эта сумма должна быть нулем в любой момент времени, а это означает, что функция G(+ct) должна быть равна -F(-ct). Другими словами, функция G от некоторой величины должна быть равна функции -F от той же величины со знаком минус. Подставляя снова полученный результат в уравнение (49.1), находим решение поставленной задачи:

(49.2)

Ясно, что это выражение всегда даст y=0, если х положить равным нулю.

На фиг. 49.1 представлена волна, идущая в отрицательном x-направлении вблизи точки х=0, и гипотетическая волна, идущая в противоположном направлении с обратным знаком и с другой стороны от начала координат.

Фиг. 49.1. Отражение от стенки как суперпозиция двух бегущих волн.

Я сказал «гипотетическая», потому что с другой стороны, конечно, никакой колеблющейся струны нет. Истинное же движение струны должно рассматриваться как сумма этих двух волн в области положительных х. Достигнув начала координат, они в точке х=0 полностью уничтожат друг друга, а затем вторая (отраженная) волна, идущая, разумеется, в противоположном направлении, окажется единственной волной в области положительных х. Эти результаты эквивалентны следующему утверждению: волна, достигнув защемленного конца струны, отражается от него с изменением знака. Такое отражение всегда можно понять, если представить себе, как нечто дошедшее до конца струны вылетит затем из-за стены «вверх ногами». Короче говоря, если мы предположим, что струна бесконечна и что, где бы ни находилась волна, бегущая в одном направлении, всегда существует симметричная ей относительно точки х=0 другая волна, бегущая в противоположном направлении, то в самой точке х=0 никакого перемещения не будет, а поэтому безразлично, защемлена ли струна в этом месте или нет.

Следующий наш пример — отражение периодической волны. Предположим, что волна, описываемая функцией F(x-ct), представляет собой синусоидальную волну, которая затем отражается. Тогда отраженная волна -F(-х-ct) тоже будет синусоидальной волной той же частоты, но пойдет она в противоположном направлении. Эту ситуацию проще всего описать с помощью комплексных функций

Нетрудно убедиться, что если подставить их в выражение (49.2) и положить х=0, то в любой момент времени t перемещение будет равно нулю и, следовательно, необходимое условие окажется выполненным. Воспользовавшись теперь свойством экспоненты, можно записать результат в более простом виде:

(49.3)

Мы получили нечто новое и интересное. Из этого решения ясно, что если мы посмотрим на любую точку х нашей струны, то увидим, что она осциллирует с частотой ω. Совершенно неважно, где находится эта точка, все равно частота будет той же самой! Однако на струне есть такие места (где sin(ωx/c)=0), которые вообще не перемещаются. Более того, если в любой момент времени t сделать моментальный снимок колеблющейся струны, то на фотографии получится синусоидальная волна, но величина ее амплитуды будет зависеть от времени t. Из выражения (49.3) можно видеть, что длина одного цикла синусоидальной волны равна длине какой-либо из волн:

(49.4)

Неподвижные точки удовлетворяют условию sin(ωx/c)=0, которое означает, что ωx/c=0, π, 2π, ..., nπ, ... . Эти точки называются узлами. Каждая точка между двумя соседними узлами движется синусоидально вверх и вниз, но способ ее движения остается фиксированным в пространстве. Это основная характеристика того, что называется собственным колебанием, гармоникой или модой. Если движение обладает тем свойством, что каждая точка предмета движется строго синусоидально и все точки движутся с одинаковой частотой (хотя одни, может быть, больше, а другие меньше), то мы имеем дело с собственным колебанием.

 

§ 2. Волны в ограниченном пространстве и собственные частоты

Перейдем к обсуждению следующей интересной задачи. Что произойдет, если струну закрепить с двух концов, скажем в точках x=0 и x=L? Давайте начнем с идеи отражения волны, с некоего горба, движущегося в одном направлении. С течением времени этот горб подойдет к одному концу струны и в конце концов превратится в небольшой всплеск, поскольку здесь он складывается с перевернутым ответным горбом, идущим с другой стороны. Наконец первый горб совсем исчезнет, а в обратном направлении побежит другой, «ответный» горб, и весь процесс повторится уже на другом конце. Как видите, задача решается совсем просто, впрочем здесь возникает интересный вопрос: можно ли в этом случае получить синусоидальную волну (только что описанное решение периодично, но, разумеется, не синусоидально периодично). Давайте попытаемся «вставить» в нашу струну синусоидально периодическую волну. Если один конец струны закреплен, то мы знаем, что должно получиться нечто похожее на наше предыдущее решение (49.3). Но то же самое должно получиться и у второго конца, ведь он тоже закреплен. Поэтому единственная возможность получить периодическое синусоидальное движение—это взять волну, которая в точности укладывается на длине струны. В противном случае мы не получим собственной частоты, с которой струна могла бы продолжать свои колебания. Короче говоря, если по струне пустить синусоидальную волну, которая в точности укладывается на ее длине, то она сохраняет свою идеальную синусообразную форму и будет гармонически колебаться с некоторой частотой.

Математически мы можем задать форму волны в виде функции sinkx, где k=ω/c, как и в уравнениях (49.3) и (49.4). Эта функция обращается в нуль при х=0, однако то же условие должно выполняться и на другом конце струны. Дело в том, что k уже не будет произвольным, как в случае полуограниченной струны. Оба конца могут быть закреплены при одном-единственном условии, что sinkL=0. Но чтобы синус был равен нулю, его угол должен быть кратен целому числу π, например 0, π, 2π и т. д. Поэтому уравнение

(49.5)

в зависимости от того целого числа, которое мы подставим в него, дает полный набор различных чисел k. При этом каждому числу k соответствует частота ω, которая по формуле (49.3) равна просто

(49.6)

Итак, мы нашли, что синусоидальные колебания струны могут происходить только с некоторыми определенными частотами. Это — наиболее важная характеристика волн в ограниченной области. Сколь бы сложна ни была система, всегда оказывается, что в ней могут быть чисто синусоидальные колебания, но частота их определяется свойствами данной системы и природой ее границ. В случае струны возможно множество различных частот, каждой из которых соответствует определенное собственное колебание — движение, синусоидально повторяющее самое себя.

На фиг. 49.2 показаны первые три собственные гармоники нашей струны.

Фиг. 49.2. Первые три гармоники колеблющейся струны.

Длина волны λ первой из них равна 2L. В этом легко убедиться, продолжив волну до точки x=2L и получив полный цикл синусоидальной волны. Угловая частота ω равна в общем случае 2πc, деленному на длину волны λ, а поскольку сейчас у нас λ=2L, то частота будет равна πс/L, что согласуется с формулой (49.6) при n=1. Обозначим эту частоту через ω1 Следующая собственная гармоника напоминает бантик из двух петель с узлом посредине. Ее длина просто равна L. Соответствующая величина k, а следовательно, и частота ω должны быть вдвое большими, т. е частота равна 2ω1. Частота третьей собственной гармоники оказывается равной Зω1 и т. д. Таким образом, различные собственные гармоники кратны целому числу низшей частоты ω1 т. е. ω1, 2ω1, 3ω1 и т. д.

Вернемся теперь к общему движению струны. Оказывается, что любое возможное движение можно рассматривать как одновременное действие некоторого числа собственных колебаний. На самом деле для описания наиболее общего движения должно быть одновременно возбуждено бесконечное число собственных гармоник. Чтобы получить некоторое представление о том, что происходит при таком сложении, давайте посмотрим, что получится при одновременном колебании двух первых собственных гармоник. Пусть первая из них колеблется так, как это показано в ряде схематических чертежей фиг. 49.3, где изображены отклонения струны через равные промежутки времени на протяжении полуцикла низшей частоты.

Предположим теперь, что одновременно с первой собственной гармоникой работает и вторая. Последовательные положения струны при возбуждении этой собственной гармоники показаны тоже на фиг. 49.3 пунктирной линией. По отношению к первой гармонике они сдвинуты по фазе на 90°. Это означает, что в начальный момент никакого отклонения не было, но скорости двух половинок струны направлены в противоположные стороны. Вспомним теперь общий принцип линейных систем: если взять любые два решения, то сумма их тоже будет решением. Поэтому перемещения, полученные сложением двух решений, показанных на фиг. 49.3, будут третьим возможным решением.

Фиг. 49.3. Две гармоники, напоминающие при сложении бегущую волну.

На этом же рисунке показан и результат сложения, который начинает напоминать горб, пробегающий взад и вперед по струне от одного конца до другого, хотя с помощью только двух собственных гармоник нельзя построить достаточно хорошей картины такого движения; их нужно гораздо больше. Этот результат представляет на самом деле частный случай основного принципа линейных систем, который гласит:

Любое движение можно рассматривать как составленное из различных собственных гармоник, взятых с надлежащими амплитудами и фазами.

Значение этого принципа обусловлено тем фактом, что каждое собственное колебание — очень простая вещь — это просто синусоидальное движение во времени. По правде говоря, даже общее движение струны — еще не самая сложная вещь; существует движение куда более сложное, скажем такое, как вибрация крыльев самолета. Тем не менее даже у крыльев самолета можно обнаружить некие собственные кручения с определенными частотами. А если так, то полное движение можно рассматривать как суперпозицию гармонических колебаний (за исключением тех случаев, когда вибрация настолько велика, что система уже не может рассматриваться как линейная).

 

§ 3. Двумерные собственные колебания

Сейчас мы перейдем к рассмотрению очень интересного поведения собственных гармоник в двумерных колебаниях. До сих пор мы говорили только об одномерных колебаниях: натянутой струне или звуковых волнах в трубе. В конце концов мы должны добраться до трех измерений, но сначала давайте остановимся на более легком этапе — этапе двумерных колебаний. Возьмем для большей определенности прямоугольный резиновый барабан, перепонка которого закреплена по краям так, что на прямоугольном крае барабана она перемещаться не может. Пусть размеры прямоугольника будут равны а и b, как это показано на фиг. 49.4.

Фиг. 49.4. Колебание прямоугольной пластинки.

Прежде всего, каковы характеристики возможного движения? Можно начать с того же, с чего мы начали, когда рассматривали пример со струной. Если бы никакого закрепления не было вовсе, то можно было бы ожидать появления волн, бегущих в некотором направлении, например синусоидальной волны, описываемой функцией ехр(iωt) ехр[-i(kx x)+i(ky y)], направление движения которой зависит от относительной величины чисел kx и ky . А как теперь сделать узел на оси х, т. е. при y=0? Используя ту же идею, что и для одномерной струны, можно добавить волну, описываемую комплексной функцией -exp(iωt)ехр[-i(kx x)-i(ky y)].

Суперпозиция этих волн в результате дает нулевое перемещение при y=0 независимо от того, каковы будут значения х и t. (Хотя эти функции будут определены и для отрицательных значений у там, где никакого барабана нет и колебаться нечему, но на это можно не обращать никакого внимания. Ведь нам хотелось устранить перемещение при у=0, и мы добились этого.) Вторую функцию в этом случае можно рассматривать как отраженную волну.

Однако нам нужно получить узел не только на линии y=0, но и на линии у=b. Как же это сделать? Решение такой задачи связано с некоторыми вещами, которыми мы занимались при изучении отражения света от кристалла. Волны, гасящие друг друга при y=0, могут сделать то же самое и при у=b, только когда 2bsinθ равно целому числу длин волн λ, (θ — угол, показанный на фиг. 49.4):

(49.7)

Точно таким же образом, т.е. сложением еще двух функций [-exp(iωt)]exp[i(kx x)+i(ky y)] и [+exp(iχt)]exp[i(kx x)-i(ky y)], каждая из которых представляет отражение другой от линии х=0, можно устроить узел и на оси у. Условие того, что линия х=а будет тоже узловой, получается так же, как и условие при у=b, т. е. 2acosθ должно быть равно целому числу длин волн:

(49.8)

Тогда окончательный результат таков: волны, «заключенные» в ящике, имеют вид стоячей волны, т. е. образуют какие-то определенные собственные гармоники.

Таким образом, если мы хотим иметь дело с собственными гармониками, то должны удовлетворить двум написанным выше условиям. Для начала давайте найдем длину волны. Исключив из уравнений (49.7) и (49.8) угол θ, можно выразить длину волны через a, b, n и m. Легче всего это сделать так: сначала разделить обе части уравнений соответственно на 2b и 2a, а затем возвести их в квадрат и сложить. В результате мы получим уравнение

которое легко разрешить относительно λ:

(49.9)

Итак, мы определили длину волны через два целых числа, а по длине волны мы немедленно получаем частоту ω, ибо, как известно, частота равна 2πc, деленной на длину волны.

Этот результат настолько важен и интересен, что необходимо теперь получить его строго математически без использования аналогий с отражением. Давайте представим колебание в виде суперпозиции четырех волн, подобранных таким образом, чтобы все четыре линии x=0, х=а, y=0 и у=b были узловыми. Потребуем еще, чтобы все эти волны имели одинаковую частоту, т. е. чтобы результирующее движение представляло собственное колебание. Из главы об отражении света мы уже знаем, что функция exp(iωt)exp[-i(kx x)+i(ky y)] описывает волну, идущую в направлении, указанном на фиг. 49.4. По-прежнему остается справедливым уравнение (49.6), т. е. k=ω/c, с той разницей, что теперь

(49.10)

Из рисунка ясно, что kx =kcosθ, а ky =ksinθ.

Таким образом, наше выражение для перемещения прямоугольной перепонки барабана (назовем это перемещение φ) запишется в виде

(49.11а)

Хотя выглядит это довольно неприглядно, сумма таких экспонент, в сущности, не так уж громоздка. Их можно свернуть в синусы, так что перемещение, как оказывается, приобретает вид

(49.11б)

Другими словами, получились знакомые синусоидальные колебания, форма которых тоже синусоидальна как в направлении оси х, так и в направлении оси у. Граничные условия при x=0 и y=0 удовлетворяются автоматически. Однако мы хотим, кроме того, чтобы φ обращалось в нуль при х=а и у=b. Для этого мы должны наложить два дополнительных условия, а именно kx a и kx b должны быть равны целому числу n (эти целые числа могут быть разными для kx a и ky b!). Но поскольку, как мы видели, kx =kcosθ и ky =ksinθ, то отсюда немедленно получаются уравнения (49.7) и (49.8), а из них следует окончательный результат (49.9).

Возьмем теперь для примера прямоугольник, ширина которого вдвое больше высоты. Если положить а=2b и воспользоваться уравнениями (49.4) и (49.9), то можно вычислить частоты всех гармоник

(49.12)

В табл. 49.1 перечислено несколько простых гармоник и качественно показана их форма.

Таблица 49.1 ПРОСТЫЕ ГАРМОНИКИ И ИХ ФОРМА

Следует отметить наиболее важную особенность этого частного случая — частоты не кратны ни друг другу, ни какому-то другому числу. Представление о том, что собственные частоты гармонически связаны друг с другом, в общем случае неверно. Оно неверно ни для системы размерности, большей единицы, ни даже для одномерной системы, более сложной, чем однородная и равномерно натянутая струна. Простейшим примером может служить подвешенная цепочка, натяжение которой вверху меньше, чем внизу. Если возбудить в такой цепочке гармонические колебания, то возникнут собственные гармоники с различными частотами, однако частоты не будут просто кратными какому-то числу, да и сама форма гармоник больше не будет синусоидальной.

Еще причудливей оказываются гармоники более сложных систем. Человеческий рот, например, представляет собой полость, расположенную над голосовыми связками. Движением языка и губ можно создать либо трубу с открытым концом, либо трубу с закрытым концом, причем диаметры и формы этой трубы будут раз личными. В общем это страшно сложный резонатор, но тем не менее все же резонатор. При разговоре мы с помощью голосовых связок создаем какой-то тон. Тон этот довольно сложен, в него входит множество звуков, но благодаря различным резонансным частотам полость рта еще больше модифицирует его. Певец, например, может петь различные гласные: «а», «о», «у» и еще другие с той же самой высотой, но звучат они по-разному, ибо различные гармоники по-разному резонируют в этой полости. Огромную роль резонансных частот полости в образовании голосовых звуков можно продемонстрировать на очень простом опыте. Как известно, скорость звука обратно пропорциональна квадратному корню из плотности, поэтому для разных газов она различна. Если вместо воздуха мы используем гелий, плотность которого меньше, то скорость звука в нем окажется больше и все резонансные частоты полости будут больше. Следовательно, если бы мы могли перед тем, как начать говорить, наполнить наши легкие гелием, то, хотя голосовые связки по-прежнему колебались бы с той же частотой, характер нашего голоса резко изменился бы.

 

§ 4. Связанные маятники

Напоследок необходимо подчеркнуть, что гармоники возникают не только в сложных непрерывных системах, но и в очень простых механических системах. Хорошим примером этого служит рассмотренная в предыдущей главе система двух связанных маятников. Там мы показали, что общее движение этой системы можно рассматривать как суперпозицию двух типов гармонических движений с различными частотами, так что даже такую систему можно рассматривать с точки зрения собственных гармоник. В струне возбуждается бесконечное число собственных гармоник, у двумерной поверхности их тоже бесконечно много. В каком-то смысле здесь получается даже двойная бесконечность (если бы мы только знали, как работать с бесконечностями!). Но в простом механическом устройстве, обладающем только двумя степенями свободы и требующем для своего описания лишь двух переменных, возбуждаются всего две гармоники.

Попробуем найти математически эти две гармоники для случая, когда длины маятников одинаковы. Пусть отклонение одного маятника будет х, а другого — y, как это показано на фиг. 49.5.

Фиг. 49.5. Два связанных маятника.

При отсутствии пружины сила тяжести, действующая на первый маятник, пропорциональна его отклонению. Если бы здесь не было пружины, то для одного маятника появилась бы некоторая собственная частота ω0, а уравнение движения в этом случае приобрело бы вид

(49.13)

Второй маятник при отсутствии пружины качался бы точно так же, как и первый. Однако при наличии пружины в дополнение к восстанавливающей силе, возникающей в результате гравитации, появляется еще добавочная сила от пружины, которая стремится «стянуть» маятники. Эта сила зависит от превышения отклонения х над отклонением у и пропорциональна их разности, т. е. она равна некоторой постоянной, зависящей только от геометрии, умноженной на (х-у). Та же сила, но в обратном направлении действует на второй маятник. Поэтому уравнения движения, которые мы должны решить, будут следующими:

(49.14)

Чтобы найти движение, при котором оба маятника колеблются с одинаковой частотой, мы должны определить, насколько отклоняется каждый из них. Другими словами, маятник А и маятник В будут колебаться с одинаковой частотой и с какими-то амплитудами А и B, отношение которых фиксировано. Давайте проверим, насколько подходит такое решение:

(49.15)

Если подставить его в уравнения (49.14) и собрать подобные члены, то получим

(49.16)

При выводе этих уравнений мы сократили общий множитель еi ω t и разделили все на m.

Теперь мы видим, что получились два уравнения для, казалось бы, двух неизвестных. Однако на самом деле здесь не два неизвестных, ибо общие масштабы движения нельзя найти из этих уравнений. Они могут дать нам только отношение А к В, причем оба уравнения должны дать одинаковую величину. Требование согласованности уравнений друг с другом накладывает требование на частоту: она должна быть какой-то очень специальной.

Но найти частоту в этом частном случае довольно легко. Если перемножить оба уравнения, то мы получим

(49.17)

В обеих сторонах можно сократить произведение АВ, за исключением тех случаев, когда либо А, либо В равно нулю, что означает отсутствие движения вообще. Но если движение есть, то должны быть равны между собой и другие сомножители, что приводит к квадратному уравнению. В результате получаются две возможные частоты:

(49.18)

Более того, если подставить эти значения частот снова в уравнения (49.16), то для первой частоты мы получим А=В, т. е. пружина вообще не будет растягиваться и оба маятника колеблются с частотой ω0, как если бы пружины вообще не было. В другом решении, когда А=-В, пружина увеличивает восстанавливающую силу и частота возрастает. Более интересен случай, когда маятники имеют различные длины. Анализ этого случая, который очень похож на то, что мы недавно проделали, рекомендуем в качестве упражнения провести самим читателям.

 

§ 5. Линейные системы

Давайте теперь подытожим рассмотренные выше идеи, которые все являются аспектами, по-видимому, наиболее общего и удивительного принципа математической физики. Если у нас есть линейная система, характеристики которой не зависят от времени, то движение ее, вообще говоря, не обязано быть каким-то особенно простым. На самом деле оно может быть чрезвычайно сложным, однако существуют такие особые движения (обычно их целый ряд), при которых форма колебания синусоидально зависит от времени. Для колеблющихся систем, о которых сейчас шла речь, мы обычно получали мнимую экспоненту, но вместо того, чтобы сказать «экспоненциально», я предпочел сказать «синусоидально». Однако если стремиться к большей общности, то нужно говорить о каких-то особых движениях, очень специальной формы, изменяющихся экспоненциально со временем. Наиболее общее движение систем всегда можно представить в виде суперпозиции движений, включающих каждую из различных экспонент.

Есть смысл подчеркнуть еще раз специально для случая синусоидального движения: линейная система не обязательно должна двигаться чисто синусоидально, т. е. с одной определенной частотой, но как бы она ни двигалась, это движение можно представить в виде суперпозиции чисто синусоидальных колебаний. Частота каждого из этих колебаний, как и форма волны, зависит от свойств системы. Общее движение любой такой системы характеризуется заданием амплитуды и фазы каждой из гармоник при их сложении. Можно сказать это и по-другому: колебание любой линейной системы эквивалентно набору гармонических независимых осцилляторов, частоты которых соответствуют частотам собственных гармоник данной системы.

Эту главу мы закончим замечанием о связи гармоник с квантовой механикой. Колеблющимися объектами и величинами, которые изменяются со временем в квантовой механике, являются амплитуды вероятности, которые определяют вероятности обнаружения электрона или системы электронов в данном месте. Эта амплитуда может изменяться в пространстве и времени и удовлетворяет линейному уравнению. Но при переходе к квантовой механике происходит переименование. То, что мы называли частотой амплитуды вероятности, переходит в энергию в ее классическом смысле. Поэтому установленный выше принцип можно перевести на язык квантовой механики, заменив слово частота словом энергия. Получится примерно так: квантовомеханическая система, например атом, не обязательно обладает определенной энергией, точно так же, как простая механическая система не обязательно имеет определенную частоту, но каково бы ни было поведение системы, его всегда можно представить в виде суперпозиции состояний с определенной энергией. Энергия каждого состояния, как и форма амплитуды, которая дает вероятность нахождения частицы в различных местах, определяется свойствами атома. Общее движение может быть описано заданием амплитуд каждого из различных энергетических состояний. Именно здесь кроется причина возникновения энергетических уровней в квантовой механике. Поскольку квантовая механика все описывает в виде волн, то при некоторых обстоятельствах, когда электрон не обладает достаточной энергией, чтобы бесповоротно оторваться от протона, он представляет собой просто волну в ограниченном пространстве. Поэтому, так же как и для ограниченной струны, при решении волнового уравнения в квантовой механике в подобном случае возникают определенные дискретные частоты. В квантовомеханической интерпретации это будут определенные энергии. Следовательно, квантовомеханическая система, вследствие того что она описывается с помощью волн, может иметь определенные состояния с фиксированной энергией; примером могут служить дискретные энергетические уровни атомов.

 

Глава 50 ГАРМОНИКИ

 

§ 1. Музыкальные звуки

Говорят, что Пифагор первый обнаружил тот интересный факт, что одновременное звучание двух одинаковых струн различной длины приятнее для слуха, если длины этих струн относятся друг к другу как небольшие целые числа. Если длины струн относятся как 1:2, то это — музыкальная октава; если они относятся как 2:3, то это соответствует интервалу между нотами до и соль и называется квинтой. Эти интервалы считаются «приятно» звучащими аккордами. На Пифагора произвело такое впечатление это открытие, что на его основе он создал школу «пифагорийцев», как их называли, которые мистически верили в великую силу чисел. Они полагали, что нечто подобное будет открыто и в отношении планет, или «сфер». Иногда можно услышать такое выражение: «музыка сфер». Смысл его в том, что в природе предполагалось существование числовой связи между орбитами планет или между другими вещами. Это считается чем-то вроде суеверия древних греков. Но далеко ли от этого ушел наш сегодняшний научный интерес к количественным соотношениям? Открытие Пифагора, помимо геометрии, было первым примером установления числовых связей в природе. Поистине должно быть было удивительно вдруг неожиданно обнаружить, что в природе есть такие факты, которые описываются простыми числовыми соотношениями. Обычное измерение длин позволяет предсказать то, что, казалось бы, не имеет никакого отношения к геометрии,— создание «приятных» звуков. Это открытие привело к мысли, что арифметика и математический анализ, по-видимому, могут служить хорошим орудием в понимании природы. Результаты современной науки полностью подтверждают такую точку зрения.

Пифагор смог сделать свое открытие лишь с помощью экспериментальных наблюдений. Однако все значение этого открытия, по-видимому, не было ему ясно. А случись это, и развитие физики началось бы гораздо раньше. (Впрочем, всегда легко рассуждать о том, что сделал кто-то когда-то и что на его месте следовало бы сделать!)

Можно отметить еще одну, третью сторону этого интересного открытия: оно касается двух нот, которые звучат приятно для слуха. Но далеко ли ушли мы от Пифагора в понимании того, почему только некоторые звуки приятны для слуха? Общая теория эстетики, по-видимому, ненамного продвинулась со времен Пифагора. Итак, одно это открытие греков имеет три аспекта: эксперимент, математические соотношения и эстетику. Физики пока добились успеха только в первых двух. В этой главе мы расскажем о современном понимании открытия Пифагора.

Среди звуков, которые мы слышим, есть такой сорт, который называется шумом. Ему соответствуют какие-то нерегулярные колебания барабанной перепонки уха, вызванные нерегулярными колебаниями находящихся поблизости объектов. Если начертить диаграмму зависимости давления воздуха на барабанную перепонку (а следовательно, и перемещения ее) от времени, то график, соответствующий шуму, будет выглядеть так, как это изображено на фиг. 50.1,а.

Фиг. 50.1. Давление как функция времени. а — для шума; б — для музыкального звука.

(Такой шум может, например, вызвать топание ногой.) А музыкальный звук имеет другой характер. Музыка характеризуется наличием более или менее длительных тонов, или музыкальных «нот». (Кстати, музыкальные инструменты тоже умеют производить шум!)

Тон может длиться сравнительно недолго, например когда мы ударяем по клавише фортепьяно, или неопределенно долго, когда, скажем, флейтист берет длинную ноту.

В чем состоит особенность музыкальной ноты с точки зрения давления воздуха? Музыкальный звук отличается от шума тем, что график его периодичен. Форма колебаний давления воздуха со временем пусть даже какая-то неправильная, но она должна повторяться снова и снова. Пример зависимости давления от времени для музыкального звука показан на приведенной выше фиг. 50.1.б.

Обычно музыканты, говоря о музыкальном тоне, определяют три его характеристики — громкость, высоту и «качество». «Громкость», как известно, определяется величиной изменения давления. «Высоте» соответствует период времени повторения основной формы давления («низкие» ноты имеют более длинный период, нежели «высокие»). А под «качеством» тона понимается разница, которую мы способны уловить между двумя нотами одинаковой громкости и высоты. Мы прекрасно различаем звучание гобоя, скрипки или сопрано, даже если высота издаваемых ими звуков кажется одинаковой. Здесь уже дело идет о структуре периодически повторяющейся формы.

Давайте кратко рассмотрим звук, производимый вибрирующей струной.

Если оттянуть струну, а затем отпустить ее, то последующее движение будет определяться волнами, которые мы возбудили. Эти волны, как вы знаете, пойдут в обоих направлениях по струне, а затем отразятся от ее концов. Так они будут бегать взад и вперед довольно долго. И сколь бы сложны ни были эти волны, они будут повторяться периодически снова и снова.

Период этих повторений равен просто времени T, которое требуется волне, чтобы пробежать дважды всю длину струны. Ведь это как раз то время, которое необходимо для того, чтобы любая волна, отразившись от каждого конца, вернулась в начальное положение и продолжала движение в первоначальном направлении. Время, необходимое для того, чтобы волна достигла конца струны в любом направлении, одинаково. Каждая точка струны после целого периода возвращается в свое исходное положение, затем опять отклоняется от него и снова, спустя период, возвращается, и т. д.

Возникающий при этом звук тоже должен повторять те же колебания; вот почему мы, тронув струну, получаем музыкальный звук.

 

§ 2. Ряд Фурье

В предыдущей главе мы познакомились с другой точкой зрения на колеблющуюся систему. Мы видели, что в струне возникают различные собственные гармоники и что любое частное колебание, которое только возможно получить из начальных условий, можно рассматривать как составленную в надлежащей пропорции комбинацию нескольких одновременно осциллирующих собственных гармоник. Для струны мы нашли, что собственные гармоники имеют частоты ω0, 2ω0, 3ω0, .... Поэтому наиболее общее движение струны складывается из синусоидальных колебаний основной частоты ω0, затем второй гармоники 2ω0, затем третьей гармоники Зω0 и т. д. Основная гармоника повторяется через каждый период T1=2π/ω0, вторая гармоника — через каждый период T2=2π/2ω0; она повторяется также и через каждый период Т1=2Т2, т. е. после двух своих периодов. Точно таким же образом через период Т1 повторяется и третья гармоника. В этом отрезке укладываются три ее периода. И снова мы понимаем, почему задетая струна через период T1 полностью повторяет форму своего движения. Так получается музыкальный звук.

До сих пор мы говорили о движении струны. Однако звук, который представляет собой движение воздуха, вызванное движением струны, тоже должен состоять из тех же гармоник, хотя здесь мы уже не можем говорить о собственных гармониках воздуха. К тому же относительная сила различных гармоник в воздухе может быть совсем другой, чем в струне, особенно если струна «связана» с воздухом посредством «звучащей доски». Разные гармоники по-разному связаны с воздухом.

Если для музыкального тона функция f(t) представляет давление воздуха в зависимости от времени (скажем, такая, как на фиг. 50.1.б), то можно ожидать, что f(t) записывается в виде суммы некоторого числа простых гармонических функций от времени (подобных cosωt) для каждой из различных гармонических частот. Если период колебаний равен Т, то основная угловая частота будет ω=2π/Т, а следующие гармоники будут 2ω, 3ω и т. д.

Здесь появляется небольшое усложнение. Мы не вправе ожидать, что для каждой частоты начальные фазы обязательно будут равны друг другу. Поэтому нужно пользоваться функциями типа cos(ωt+φ). Вместо этого, однако, проще использовать для каждой частоты как синус, так и косинус. Напомним, что

(50.1)

а поскольку φ — постоянная, то любые синусоидальные колебания с частотой ω могут быть записаны в виде суммы членов, в один из которых входит sinωt, а в другой — cosωt.

Итак, мы приходим к заключению, что любая периодическая функция f(t) с периодом Т математически может быть записана в виде

(50.2)

где ω=2π/T, а a и b — числовые постоянные, указывающие, с каким весом каждая компонента колебания входит в общее колебание f(t). Для большей общности мы добавили в нашу формулу член с нулевой частотой а0, хотя обычно для музыкальных тонов он равен нулю. Это просто сдвиг средней величины звукового давления (т. е. сдвиг «нулевого» уровня). С этим членом наша формула верна для любого случая. Уравнение (50.2) схематически показано на фиг. 50.2.

Фиг. 50.2. Любая периодическая функция f(t) равна сумме простых гармонических функций.

Амплитуды гармонических функций аn и bn выбираются по специальному правилу. На рисунке они показаны только схематически без соблюдения масштаба. [Ряд (50.2) называется рядом Фурье для функций f(t).]

Мы сказали, что любую периодическую функцию можно написать в таком виде. Следует внести небольшую поправку и подчеркнуть, что в такой ряд можно разложить вообще любую звуковую волну или любую функцию, с которой мы сталкиваемся в физике. Математики, конечно, могут придумать такую функцию, что ее нельзя будет составить из простых гармонических (например, функцию, которая «заворачивает» назад, так что для некоторых величин t она имеет два значения!). Однако здесь нам не стоит беспокоиться о таких функциях.

 

§ 3. Качество и гармония

Теперь мы уже можем описать, чем определяется «качество» музыкального тона. Оно определяется относительным количеством различных гармоник, т. е. относительными величинами а и b. Тон, содержащий только первую гармонику, называется «чистым», а тон с несколькими сильными гармониками называется «богатым». Скрипка дает гармоники в одной пропорции, а гобой — в другой.

Можно «изготовить» различные музыкальные тоны, если подсоединить к громкоговорителю несколько «осцилляторов». (Осциллятор обычно дает приблизительно чистые простые гармонические колебания) В качестве частот осцилляторов мы выберем ω, 2ω, 3ω и т. д. Приделав к каждому осциллятору регулятор громкости, можно смешивать гармоники в любой желаемой пропорции и тем самым создавать звуки различного качества. Примерно так работает электрический орган. Клавиши выбирают частоту основного осциллятора, а педали контролируют относительную пропорцию различных гармоник. С помощью этих регуляторов можно заставить орган звучать как флейту, или как гобой, или как скрипку.

Интересно, что для получения такого «искусственного» звука нет никакой необходимости разделять осцилляторы на «синусные» и «косинусные» — для каждой частоты нам достаточно только одного осциллятора. Наше ухо не очень чувствительно к относительной фазе гармоник. Оно воспринимает «синусную» и «косинусную» части частоты в целом. Поэтому наш анализ более точен, чем это необходимо для объяснения субъективной стороны музыки. Однако реакция микрофона или другого физического инструмента все-таки зависит от фазы, и наш полный анализ для таких случаев просто необходим.

«Качество» разговорной речи определяется гласными звуками. Форма рта определяет частоты собственных гармоник колебаний звука в нем. Некоторые из этих гармоник возбуждаются звуковыми волнами от голосовых связок. Таким способом происходит усиление одних гармоник по сравнению с другими. Когда мы меняем форму рта, мы даем преимущество гармоникам разных частот над другими. Благодаря этому эффекту, например, имеется разница между звуком «о—о—о» и звуком «а—а—а».

Всем известно, что каждый гласный звук, скажем «о—о—о», когда мы говорим или поем, всегда похож сам на себя как при высоких, так и при низких частотах. Из описанного нами механизма мы бы ожидали, что когда мы открываем рот и произносим звук «а—а—а», то тем самым мы выделяем какие-то определенные частоты, которые не должны измениться при повышении голоса. Таким образом, с изменением высоты отношение важных гармоник к основному тону, т. е. то, что мы называем «качеством», должно как будто изменяться. Очевидно, механизм, с помощью которого мы узнаем звуки речи, основан не на соотношении различных гармоник.

Что же можно теперь сказать об открытии Пифагора? Мы понимаем, что основные частоты двух струн, длины которых относятся как 2:3, тоже будут относиться как 3:2. Но почему же вместе они «приятно звучат»? Разгадку, по-видимому, нужно искать в частотах гармоник. Вторая гармоника короткой струны будет иметь ту же самую частоту, что и третья гармоника длинной струны. (Легко показать или просто поверить, что, задев струну, мы возбуждаем несколько сильных нижних гармоник.)

По-видимому, справедливо следующее правило: ноты звучат гармонично, когда у них есть гармоники с одинаковой частотой. Ноты диссонируют, если их высшие гармоники имеют частоты, близкие друг к другу, но достаточно отличающиеся для того, чтобы между ними возникали быстрые биения. Однако, почему биения звучат неприятно и почему унисон высших гармоник звучит приятно, мы не умеем ни определить, ни описать. Исходя из наших знаний, мы не можем сказать, что должно приятно звучать, так же как, например, что должно приятно пахнуть. Иными словами, наше понимание этого явления не идет дальше простого утверждения, что когда ноты звучат в унисон, то это приятно. Но отсюда, кроме свойства гармонии в музыке, нам ничего не вывести.

Гармонические соотношения, которые мы только что описали, легко проверить, проделав несложный опыт на фортепьяно. Давайте обозначим три последовательные ноты до в середине клавиатуры через до, до' и до", а три последовательные ноты соль, расположенные непосредственно выше их, через соль, соль' и соль". Основные гармоники при этом будут иметь следующие относительные частоты:

Вот как можно продемонстрировать эти гармонические соотношения. Давайте медленно нажмем клавишу до' так, чтобы она не зазвучала, но чтобы демпфер приподнялся. Если теперь нажать до, то вместе с основной гармоникой будет возбуждена и вторая гармоника, которая возбудит основную гармонику струны до'. Если теперь отпустить клавишу до (оставляя нажатой клавишу до'), то демпфер заглушит струну до, и мы можем услышать, как замирает тихий звук струны до'. Точно таким же образом третья гармоника до может вызвать звучание струны соль' или шестая гармоника до (которая звучит гораздо тише) может вызвать колебание основной гармоники струны соль".

Совершенно другой результат получится, если мы сначала потихоньку нажмем соль, а затем ударим по клавише до'. Третья гармоника до' будет соответствовать четвертой гармонике соль, так что будет возбуждена только четвертая гармоника соль. Мы можем услышать (если слушать очень внимательно) звук соль", который на две октавы выше, чем соль, которую мы нажали! Можно придумать еще очень много комбинаций этой игры.

Попутно заметим, что мажорный лад можно просто определить условием, что каждый из трех мажорных аккордов (фа— ля—до), (до—ми—соль) и (соль—си-бемоль—ре) представляет последовательность тонов с отношением частот (4:5:6). Эти отношения и тот факт, что в октаве (до—до', соль—соль' и т. д.) частоты относятся как 1:2, определяют в «идеальном» случае весь строй, который называется «натуральным, или пифагорийским строем». Но обычно клавишные инструменты типа фортепьяно не настраиваются таким образом, а устраивается небольшая «подтасовка», так что для всех возможных начальных тонов отношение частот только приблизительно верно. При таком строе, названном «темперированным», октава (для которой отношение частот по-прежнему равно 1:2) делится на 12 равных интервалов, так что отношение частот для каждого интервала равно (2)1/12. Для квинты отношение частот будет уже не 3/2, а (2)7/12=1,499, но для большинства людей оно достаточно близко к 3/2.

Итак, мы установили правила благозвучия через совпадение гармоник. Может быть, это совпадение и является причиной благозвучия? Кто-то утверждал, что два абсолютно чистых тона, т. е. тщательно очищенных от высших гармоник, не дают ощущения благозвучия или неблагозвучия (диссонанса), когда их частоты равны или приблизительно равны ожидаемому отношению. (Это очень сложный эксперимент, поскольку приготовить чистые тоны очень трудно по причинам, которые мы увидим дальше.) Мы не можем с уверенностью сказать, сравнивает ли ухо гармоники или занимается арифметикой, когда мы решаем, что звук нам нравится.

 

§ 4. Коэффициенты Фурье

Вернемся теперь к утверждению о том, что каждую ноту, т. е. любое периодическое колебание, можно представить в виде надлежащей комбинации гармоник. Хотелось бы знать, как можно найти нужную долю каждой гармоники. Конечно, если нам даны все коэффициенты а и b, то, пользуясь формулой (50.2), легко подсчитать функцию f(t). Теперь же вопрос состоит в том, как можно найти коэффициенты при различных гармониках, если нам задана функция f(t)? (Нетрудно испечь пирог, если есть рецепт, но как, отведав пирог, написать его рецепт?)

Фурье открыл, что на самом деле сделать это не очень трудно. Член а0 уж наверняка нетрудно найти. Мы говорили, что он равен среднему значению f(t) на протяжении одного периода (от t=0 до t=T). Легко увидеть, что это действительно так. Среднее значение синуса или косинуса на протяжении одного периода равно нулю. На протяжении двух, или трех, или другого целого числа периодов оно тоже равно нулю. Таким образом, среднее значение всех членов с правой стороны (50.2), за исключением только а0, равно нулю. (Напомним, что мы должны выбрать ω=2π/T.)

Далее, поскольку среднее значение суммы равно сумме средних, то среднее значение функции f(t) равно просто среднему от а0. Но ведь а0 — просто постоянная, и ее среднее значение равно ей самой. Вспоминая определение среднего, мы получаем

(50.3)

Найти остальные коэффициенты ненамного труднее. Чтобы сделать это, используем один фокус, открытый самим Фурье. Предположим, что мы умножили обе стороны уравнения (50.2) на какую-то гармоническую функцию, скажем на cos7ωt. При этом получается

(50.4)

А теперь усредним обе стороны равенства. Среднее от члена a0cos7ωt по периоду Т пропорционально среднему от косинуса по семи его периодам. Но последнее просто равно нулю. Среднее почти всех остальных членов тоже будет равно нулю. Действительно, давайте рассмотрим член с а1. Мы знаем, что в общем случае

(50.5)

так что член с а1 равен

(50.6)

Таким образом получаются два косинуса: один с восемью полными периодами, а другой с шестью. Оба они равны нулю. Поэтому среднее значение этого члена тоже равно нулю.

Для члена с а2 мы получаем cos9ωt и cos5ωt, каждый из которых при усреднении превратится в нуль. Для члена с а9 получится cos16ωt и cos(-2ωt). Но cos(-2ωt) — это то же самое, что cos2ωt, так что опять оба члена дадут при усреднении нуль. Ясно, что все слагаемые с косинусами, за исключением одного, дадут при усреднении нуль. Этим единственным слагаемым будет член с а7. Для него же мы получим

(50.7)

Косинус нуля равен единице, а среднее от него, разумеется, тоже равно единице. Итак, мы получили, что среднее от всех членов с косинусами уравнения (50.4) равно 1/2а7.

Еще легче расправиться с синусами. Когда мы умножаем их на косинус типа cos nωt, то таким же методом можно показать, что все они при усреднении обращаются в нуль.

Мы видим, что способ, придуманный Фурье, действует как своеобразное сито. Когда мы умножаем на cos7ωt и усредняем, то все члены, кроме а7, отсеиваются и в результате остается

(50.8)

или

(50.9)

Пусть читатель сам докажет, что коэффициенты b7, например, находятся с помощью умножения (50.2) на sin 7ωt и усреднения обеих частей. Результат таков:

(50.10)

Но то, что верно для 7, очевидно, верно и для любого другого целого числа. Теперь мы запишем результат нашего доказательства в следующей, более элегантной математической форме. Если m и n — целые отличные от нуля числа и если ω=2π/T, то

(50.11)

(50.12)

(50.13)

(50.14)

(50.15)

(50.16)

В предыдущих главах для описания простого гармонического движения было удобно пользоваться экспоненциальной функцией. Вместо cosωt мы использовали Re ехр(iωt) —действительную часть экспоненциальной функции. В этой главе мы использовали синус и косинус, потому что с ними, пожалуй, немного проще проводить доказательства. Однако наш окончательный результат, уравнение (50.13), можно записать в более компактной форме:

(50.17)

где аn — комплексное число аn -ibn (с b0=0). Если мы всюду будем пользоваться одним и тем же обозначением, то должны также написать

(50.18)

Итак, теперь мы умеем раскладывать периодическую волну на ее гармонические компоненты. Эта процедура называется разложением в ряд Фурье, а отдельные члены называются фурье-компонентами. Однако до сих пор мы не показали, что, определив все фурье-компоненты и затем сложив их, мы действительно придем назад к нашей функции f(t). Математики доказали, что для широкого класса функций (в сущности, для всех функций, интересных физикам), которые можно проинтегрировать, мы снова получаем f(t). Но есть одно небольшое исключение. Если функция f(t) разрывна, т. е. если она неожиданно прыгает от одного значения к другому, сумма Фурье такой функции даст в точке разрыва значение, лежащее посредине между верхним и нижним значениями. Таким образом, если у нас есть странная функция f(t)=0 для 0≤t

В качестве упражнения предлагаем читателю найти ряд Фурье для функции, показанной на фиг. 50.3.

Фиг. 50.3. Ступенчатая функция. f(t)=+1 для 0

Поскольку эту функцию нельзя записать в точной алгебраической форме, то брать интеграл от 0 до Т обычным способом невозможно. Однако если разделить его на две части: по интервалу от 0 до T/2 [на котором функция f(t)=1] и по интервалу от T/2 до T [на котором f(t) -1], то интеграл легко берется. В результате должно получиться

(50.19)

где ω=2π/T. Таким образом, оказывается, что для нашей ступенчатой волны (со специально выбранной фазой) будут только нечетные гармоники, причем их амплитуды обратно пропорциональны частотам.

Давайте проверим, что для некоторого значения t результат (50.19) действительно дает снова f(t). Возьмем f=T/4или ωt=π/2. Тогда

(50.20)

(50.21)

Сумма этого ряда равна π/4, а, стало быть, f(t)=1.

 

§ 5. Теорема об энергии

Энергия волны пропорциональна квадрату ее амплитуды. Для сложной волны энергия за один период пропорциональна 0∫Tf2(t)dt. Эту энергию можно связать с коэффициентами Фурье. Напишем

(50.22)

После раскрытия квадрата в правой части мы получим сумму всевозможных перекрестных членов типа a5cos5ωtb7cos7ωt. Однако выше мы уже показали [уравнения (50.11) и (50.12)], что интегралы от всех таких членов по одному периоду равны нулю, так что останутся только квадратные члены, подобные a25cos25ωt. Интеграл от любого квадрата косинуса или синуса по одному периоду равен Т/2, так что получаем

(50.23)

Это уравнение называют «теоремой об энергии», которая говорит, что полная энергия волны равна просто сумме энергий всех ее фурье-компонент. Применяя, например, эту теорему к ряду (50.19), мы получаем

поскольку [f(t)]2=1. Таким образом мы узнали, что сумма квадратов обратных нечетных чисел равна π2/8. Точно так же, выписав сначала ряд Фурье для функции и используя затем теорему об энергии, можно доказать результат, понадобившийся нам в гл. 45, т. е. что 1+1/24+1/34+... равно π4/90.

 

§ 6. Нелинейная реакция

Наконец, в теории гармоник есть одно очень важное явление, которое необходимо отметить, учитывая его практическую важность, но это уже относится к области нелинейных эффектов. Во всех рассмотренных нами до сих пор системах все предполагалось линейным; реакция на действие силы, например перемещение или ускорение, всегда была пропорциональна силам. Токи в электрической цепи были тоже пропорциональны напряжениям и т. д. Теперь мы хотим рассмотреть случаи, когда строгая пропорциональность отсутствует. Представим на минуту устройство, реакция которого xвыход≡xвых в момент t определяется внешним воздействием xвход≡xвх в тот же момент t.

Например, xвх может быть силой, а хвых — перемещением, или хвх — ток, а xвых — напряжение. Если бы устройство было линейное, то мы бы получили

(50.24)

где К — постоянная, не зависящая ни от t, ни от хвх . Предположим, однако, что устройство только приблизительно линейное, т. е. на самом деле нужно писать

(50.25)

где ε мало по сравнению с единицей. Такие линейная и нелинейная реакции показаны на фиг. 50.4.

Фиг. 50.4. Реакции, а — линейная, xвых =kxвх ; б—нелинейная, xвых =k(хвх +εx2 вх ).

Нелинейная реакция приводит к нескольким важным практическим следствиям. Некоторые из них мы сейчас обсудим. Посмотрим сначала, что получается, если пропустить через подобное устройство «чистый» тон. Пусть xвх =cosωt. Если мы построим график зависимости xвых от времени, то получим сплошную кривую, показанную на фиг. 50.5.

Фиг. 50.5. Реакция нелинейного устройства на входящий сигнал cosωt. Для сравнения показана линейная реакция.

Для сравнения там же проведена пунктирная кривая, представляющая реакцию линейной системы. Мы видим, что на выходе получается уже не косинусообразная функция. Она более острая в вершине и более плоская в основании. Поэтому мы говорим, что выходной сигнал искажен. Однако, как известно, такая волна не будет уже чистым тоном, а приобретает какие-то высшие гармоники. Можно найти эти гармоники. Подставляя xвх=cosωt в уравнение (50.25), получаем

(50.26)

Используя равенство cos2θ=1/2(l-cos2θ), находим

(50.27)

Таким образом, в выходящей волне присутствует не только основная компонента, которая была во входящей волне, но и некоторая доля второй гармоники. Кроме того, в выходящей волне появился постоянный член К(ε/2), который соответствует сдвигу среднего значения, показанному на фиг. 50.5. Эффект возникновения сдвига среднего значения называется выпрямлением. Нелинейное устройство будет выпрямлять и давать на выходе высшие гармоники. Хотя предположенная нами нелинейность только добавляет вторую гармонику, нелинейность высшего порядка, например хвх3 или xвх4, даст уже более высокие гармоники.

Другим результатом нелинейной реакции является модуляция. Если входящая функция содержит два (или больше) чистых тона, то на выходе получатся не только их гармоники, но и другие частотные компоненты. Пусть хвх =Аcosω1t+Bcosω2t, причем ω1 и ω2 не находятся в рациональном отношении друг к другу. Тогда в дополнение к линейному члену (равному произведению К на входящую волну) на выходе мы получим

(50.28)

(50.29)

Первые два члена в скобках уравнения (50.29) — старые знакомые. Они дают нулевую и вторую гармоники, но последний член — это уже нечто новое.

На этот новый «перекрестный член» АВcosω1tcosω2t можно смотреть с двух сторон. Во-первых, если две частоты сильно отличаются друг от друга (например, ω1 много больше ω2), то мы можем считать, что перекрестный член представляет косинусообразные колебания с переменной амплитудой. Я имею в виду такую запись:

(50.30)

где

(50.31)

Мы говорим, что амплитуда колебаний cosω1 модулируется с частотой ω2.

Во-вторых, этот же перекрестный член можно рассматривать с другой точки зрения:

(50.32)

т. е. можно сказать, что возникают две новые компоненты, одна из которых равна сумме частот ω1+ω2, а другая — разности ω1-ω2.

Таким образом, существуют два различных, но эквивалентных способа толкования одного и того же явления. В предельном случае ω1≫ω2 можно связать эти две различные точки зрения, заметив, что поскольку (ω1+ω2) и (ω1-ω2) близки друг к другу, то между ними должны наблюдаться биения. Но эти биения дают в результате модуляцию амплитуды колебаний со средней частотой ω1, половинкой разности частот 2ω2. Теперь вы видите, почему эти два описания эквивалентны.

Итак, мы обнаружили, что нелинейная реакция дает несколько эффектов: выпрямление, возникновение гармоник и модуляцию, т. е. возникновение компонент с суммой и разностью частот.

Обратите внимание, что все эти эффекты пропорциональны не только коэффициенту нелинейности ε, но и произведению амплитуд: либо A2, либо В2, либо АВ. Поэтому мы ожидаем, что они будут более важны для сильных сигналов, чем для слабых.

Описанные нами эффекты находят множество практических приложений. Во-первых, что касается звука, то, как полагают, наше ухо — нелинейный аппарат. Такое представление возникло из того факта, что, даже когда звук содержит только чистые тоны, при большой громкости возникает ощущение, что мы слышим высшие гармоники, а также сумму и разность частот.

Аппараты, используемые обычно в звуковоспроизводящих устройствах,— усилители, громкоговорители и т. д.— всегда имеют какие-то нелинейности. Они искажают звук, порождая гармоники, которых вначале не было. Эти новые гармоники воспринимаются ухом и, несомненно, нежелательны. Именно по этой причине высокочастотная аппаратура должна быть как можно «более линейной». (Почему нелинейность нашего собственного уха не «неприятна» и откуда нам знать, что нелинейность «сидит» в громкоговорителе, а не в нашем ухе,— не ясно!)

Однако в некоторых случаях нелинейность совершенно необходима, и в некоторых частях радиопередающих и принимающих устройств она намеренно делается побольше. При радиопередачах с помощью амплитудной модуляции сигналы от «голоса» (частоты порядка нескольких килогерц) комбинируются с «несущим сигналом» (с частотой порядка нескольких мегагерц) в нелинейной цепи, которая называется модулятором. При этом получаются модулированные колебания, которые затем излучаются в эфир. В приемнике сигнал снова попадает в нелинейный контур, который складывает и вычитает частоты модулированного сигнала, выделяя снова звуковой сигнал.

Когда мы разбирали вопрос прохождения света через вещество, мы предполагали, что вынужденные колебания зарядов пропорциональны электрическому полю света, т. е. мы брали линейную реакцию. Это действительно очень хорошее приближение. Только в последние несколько лет были построены источники света (лазеры), которые дают интенсивность, достаточную для наблюдения нелинейных эффектов. Теперь можно создавать гармоники световых частот. Если пропускать через кусок стекла сильный красный свет, то выходит он оттуда с небольшим добавком второй гармоники — голубого света!

 

Глава 51 ВОЛНЫ

 

§ 1. Волна от движущегося предмета

Мы закончили количественный анализ волн, но посвятим еще одну дополнительную главу некоторым качественным оценкам различных явлений, связанных с волнами; для подробного анализа они слишком сложны. Волнами мы занимаемся уже на протяжении нескольких глав, поэтому предмет настоящей главы было бы вернее назвать «некоторые из более сложных явлений, связанных с волнами».

Первым объектом нашего обсуждения будет эффект, производимый источником волн, движущимся со скоростью, превышающей скорость распространения волн, т. е. быстрее их фазовой скорости. Рассмотрим сначала волны, которые, подобно звуку или свету, имеют определенную постоянную скорость. Если источник звука движется со сверхзвуковой скоростью, то произойдет нечто вроде следующего. Пусть в данный момент источник, находящийся в точке x1, порождает звуковую волну (фиг. 51.1), тогда в следующий момент источник переместится в точку х2, а волна из точки х1 распространится в радиусе r1, который меньше расстояния, пройденного источником, а из точки х2, разумеется, пойдет другая волна.

Фиг. 51.1. Фронт ударной волны, образующий конус с вершиной в источнике и углом полураствора θ=arcsin(cw /v).

Когда источник переместится еще дальше, в точку х3, и отсюда тоже пойдет волна, то волна из точки х2 распространится в радиусе r2, а волна из точки х1— в радиусе r3. Конечно, все это происходит непрерывно, а не какими-то этапами, и поэтому получается целый ряд таких волновых колец с общей касательной линией, проходящей через центр источника. Мы видим, что источник, вместо того чтобы порождать сферические волны, как это произошло бы, будь он неподвижен, порождает фронт, образующий в трехмерном пространстве конус или в двухмерном пару пересекающихся прямых линий. Из рисунка нетрудно найти угол между этими двумя линиями. За данный отрезок времени источник проходит расстояние, пропорциональное его скорости v, скажем х3-х1. Тем временем фронт волны распространится на расстояние r3, пропорциональное cw — скорости волны. Ясно поэтому, что синус угла полураствора равен отношению скорости волны к скорости источника, а это может быть только тогда, когда cw меньше v, или скорость объекта больше скорости волны:

(51.1)

Интересно, что движущийся предмет вовсе не обязан быть источником звука, оказывается, что когда предмет движется быстрее скорости звука, то он сам производит звук. Ему для этого вовсе не обязательно вибрировать. Любой предмет, движущийся через среду быстрее, чем эта среда переносит волны, будет автоматически порождать волны просто благодаря своему движению. Это проще понять для случая звука, но тоже самое происходит и со светом. Сначала может показаться, что ничто не может двигаться быстрее скорости света. Однако фазовая скорость света в стекле, например, меньше, чем в пустоте, а через кусок стекла можно пропустить такую частицу, скорость которой будет очень близка к скорости света в пустоте, тогда как фазовая скорость света в стекле может быть равна только 2/3 этой скорости. Частица, летящая быстрее света в среде, порождает коническую световую волну с вершиной в источнике, подобно волнам, вызванным лодкой (эти волны одной и той же природы). Измеряя угол при вершине конуса, мы можем определить скорость частицы. В физике это используется для измерения скорости частиц как один из методов определения их энергии при высокоэнергетических исследованиях. Единственное, что приходится измерять,— это направление излучения света.

Такое излучение называют излучением Черенкова, который первый наблюдал его. Тамм и Франк теоретически выяснили, насколько оно должно быть интенсивным. За эту работу этим ученым в 1958 г. совместно была присуждена Нобелевская премия.

Подобное же явление для случая звука показано здесь на фиг. 51.2; это фотография объекта, движущегося через газ со скоростью, превышающей скорость звука.

Фиг. 51.2. Ударная волна в газе, вызванная снарядом, движущимся быстрее звука.

Изменение в давлении приводит к изменению показателя преломления, поэтому границу волн с помощью специальной оптической системы можно сделать видимой. Итак, предмет, движущийся быстрее скорости звука, действительно дает коническую волну. Однако при более внимательном рассмотрении оказывается, что граница на самом деле искривлена. В асимптотике это действительно прямая линия, но вблизи вершины она искривлена, и сейчас мы обсудим, отчего так может получаться. Это непосредственно приводит нас ко второй теме данной главы.

 

§ 2. Ударные волны

Зачастую скорость волны зависит от ее амплитуды, и в случае звука эта зависимость возникает следующим образом. Движущийся в воздухе предмет должен сдвигать его со своего пути, вызывая при этом возмущение в виде какой-то ступенчатой функции давления, причем давление за волновым фронтом оказывается выше, чем в невозмущенной области, т. е. в области, куда волна (которая распространяется с нормальной скоростью) еще не добралась. Воздух за волновым фронтом оказывается адиабатически сжатым, поэтому температура его будет выше, чем перед фронтом. Но скорость звука с температурой увеличивается, поэтому в области позади скачка она оказывается больше скорости звука впереди него.

Это означает, что любое другое возмущение за скачком, вызванное, например, постоянным напором тела или чем-то другим, будет бежать быстрее, чем сам фронт: с увеличением давления скорость увеличивается. Эта картина показана на фиг. 51.3, причем для большей наглядности дополнительные возмущения взяты в виде небольших горбиков.

Фиг. 51.3 . «Мгновенные снимки» ударного фронта в последовательные моменты времени.

Мы видим, что области высокого давления с течением времени «подгоняют» фронт волны, пока волна давления в конце концов не превратится в волну с резким фронтом. Если сила волны очень велика, то «в конце концов» означает — сразу же; если же волна довольно слабая, то это займет сравнительно много времени; обычно звук скорее рассеивается и замирает прежде, чем это превращение успеет произойти.

Давление, вызываемое звуком нашей речи, очень мало по сравнению с атмосферным — только одна миллионная часть или что-то в этом роде. Но при изменении давления на величину порядка 1 атм скорость волны увеличивается примерно на 20% и «заострение» фронта волны происходит соответственно быстрее. В природе, по-видимому, ничего не протекает бесконечно быстро и то, что мы называем «резким» фронтом, на самом деле имеет все же небольшую толщину; он не бесконечно крут. Расстояние, на котором все это происходит,— порядка средней длины свободного пробега молекулы, но на таких расстояниях волновое уравнение становится несправедливым, ведь при выводе его мы не учитываем молекулярной структуры газа.

Вернемся снова к фиг. 51.2. Мы видим, что кривизну легко объяснить, если понять, что давление вблизи вершины выше, чем вдали от нее, поэтому угол θ здесь больше. Таким образом, кривизна возникла вследствие зависимости скорости от силы волны. Например, волна от взрыва атомной бомбы в течение некоторого времени движется гораздо быстрее звука, пока не отойдет достаточно далеко и в результате расплывания не будет ослаблена в такой степени, что перепад давления станет малым по сравнению с атмосферным. При этом скорость фронта приближается к скорости звука в газе, в котором он распространяется. (Скорость ударной волны всегда оказывается выше скорости звука в газе перед ней и ниже скорости звука в газе за ней. Таким образом, импульсы, идущие сзади, будут догонять фронт, но сам он движется в среде быстрее, чем нормальная скорость звукового сигнала. Поэтому только по звуку никто не в силах предсказать появление ударной волны, пока не становится слишком поздно. Конечно, свет от взрыва бомбы виден раньше, но предугадать приход ударной волны невозможно, никакого звукового сигнала впереди нее нет.)

Накапливание волн — очень интересное явление, и в основном причина его состоит в том, что после прохода одной волны скорость следующей за ней волны должна возрасти.

Рассмотрим еще один пример того же явления. Представьте себе длинный канал конечной ширины и глубины, заполненный водой. Если с достаточной быстротой двигать вдоль канала поршень, то вода будет собираться перед ним, как снег перед снегоочистителем. Теперь вообразите ситуацию, подобную изображенной на фиг. 51.4, когда где-то в канале вдруг возникает скачок высоты уровня воды.

Фиг. 51.4. Падение воды и водовороты.

Можно показать, что длинные волны в канале идут быстрее по глубокой воде, чем по мелкой. Поэтому любой новый толчок или какие-то иные нерегулярности в энергии, поступающей от поршня, побегут вперед и соберутся на фронте волны. Теоретически мы снова в конце концов должны получить резкий фронт. Однако (см. фиг. 51.4) здесь возникают некоторые усложнения. Вы видите волну, идущую вверх по каналу, причем поршень находится где-то далеко с правой стороны канала. Сначала может показаться, что это хорошая волна, такая, какую и следует ожидать, но дальше она становится острее и острее, пока не произойдет то, что изображено на рисунке. Вода на поверхности начинает сильно бурлить и переливаться вниз, но, что самое существенное, край по-прежнему остается резким, и впереди него нет никакого возмущения.

В действительности волна на воде — вещь куда более сложная, чем звук. Однако для иллюстрации мы попытаемся проанализировать скорость так называемого высокого прилива в канале. Дело не в том, что это очень важно для наших целей (никакого обобщения здесь не будет), это только иллюстрация того, как законы механики, которые мы хорошо знаем, способны объяснить подобное явление.

Фиг. 51.5. Два разреза высокого прилива в канале. Разрез б сделан на интервал времени Δt позднее разреза а.

Вообразите на минуту, что поверхность воды имеет такой вид, как изображено на фиг. 51.5,а, и что на верхнем уровне h2 она движется со скоростью v, а фронт со скоростью u надвигается на невозмущенную поверхность, высота которой h1. Мы хотим определить скорость, с которой движется фронт. За промежуток времени Δt вертикальная плоскость, проходившая вначале через точку x1 передвинется на расстояние vΔt, т. е. от х1 до х2, а фронт волны пройдет расстояние uΔt.

Применим теперь законы сохранения вещества и импульса. Возьмем сначала первый из них: мы видим, что на единицу ширины канала количество вещества h2vΔt, прошедшее мимо точки x1 (область, заштрихованная на фиг. 51.5,б), компенсируется другой заштрихованной областью, представляющей количество вещества (h2-h1)uΔt. Разделив на Δt, получим vh2=u(h2-h1). Но этого еще недостаточно, так как, хотя нам известны h1 и h2, мы еще не знаем ни u, ни v, а хотим найти обе величины.

Следующим шагом будет использование закона сохранения импульса. Мы еще не касались вопросов давления в воде и прочей гидродинамики, но и так ясно, что давление в воде на какой-то глубине должно быть как раз достаточным, чтобы поддерживать столбик воды над этой глубиной. Следовательно, давление воды равно произведению плотности ρ на g и на глубину. Так как давление воды возрастает линейно с глубиной, то среднее давление на плоскость, проходящую, например, через точку х1, равно 1/2ρgh2, что также представляет среднюю силу на единичную ширину и на единичную длину, толкающую плоскость к точке х2. Чтобы получить полную силу, давящую на воду слева, мы должны еще раз умножить на h2. С другой стороны, давление на рассматриваемую область справа дает противоположно направленную силу, которая по тем же причинам равна 1/2ρgh12. Теперь мы должны приравнять эти силы к скорости изменения импульса. Таким образом, нам нужно выяснить, насколько в случае, изображенном на фиг. 51.5,6, импульс больше, чем в случае, показанном на фиг. 51.5,а.

Мы видим, что дополнительная масса, которая приобрела скорость v равна просто ρh2uΔt—ρh2vΔt (на единицу ширины), а умножение ее на v дает дополнительный импульс, который должен быть приравнен к импульсу силы FΔt:

Исключая из этого уравнения v подстановкой vh2=u(h2-h1) и упрощая его, получаем окончательно u2=gh2(h1+h2)/2h1.

Если разность высот очень мала, так что h1 и h2 приблизительно одинаковы, то скорость будет равна √(gh). Как мы увидим позднее, это справедливо только при условии, что длина волны много больше глубины канала.

Аналогичную вещь можно сделать и для ударных волн, только теперь нужно добавить уравнение сохранения внутренней энергии, потому что ударная волна — явление необратимое. Действительно, если в задаче о высокой приливной волне проверить закон сохранения энергии, то мы увидим, что он не выполняется. Когда разность высот мала, то энергия почти сохраняется, но как только разность высот становится более заметной, возникают большие потери. Это проявляется в падении воды и водоворотах, показанных на фиг. 51.4.

С точки зрения адиабатического процесса в ударной волне тоже происходит аналогичная потеря энергии. Энергия в звуковой волне за ударным фронтом уходит на нагревание газа, что соответствует бурлению воды при высоком приливе. Оказывается, что необходимо решить три уравнения, чтобы описать все это для случая звука, причем нужно учесть, что температура за ударной волной и перед ней, как мы видели, не одинакова.

Если мы попытаемся пустить высокий прилив в обратную сторону (h2

 

§ 3. Волны в твердом теле

Следующий тип волн, о которых нам следует поговорить,— это волны в твердом теле. Мы уже рассмотрели звуковые волны в жидкости и газе, а между ними и звуковыми волнами в твердом теле имеется непосредственная аналогия. Если резко толкнуть твердое тело, то оно сожмется. Оно сопротивляется сжатию и в нем возникнут волны, аналогичные звуковым. Однако в твердом теле могут быть волны и другого рода, которых не бывает в жидкости. Если мы возбудим колебания твердого тела с помощью бокового давления (это называется сдвигом), то тело стремится вернуться в начальное положение. Именно этим, по определению, твердое тело отличается от жидкого. Если искривить жидкость и подержать ее так немного, чтобы она успокоилась, а затем отпустить, то она останется в том же состоянии, но если мы возьмем твердое тело, похожее на дрожащий кусок желе, надавим на него и отпустим, то оно вернется назад, а в теле возникает волна сдвига, которая распространяется так же, как и волна сжатия. Во всех случаях скорость этих волн меньше скорости продольных волн. В каком-то отношении волны сдвига больше напоминают световые волны, ибо здесь мы тоже имеем дело с поляризацией. У звука нет никакой поляризации, это просто волна сжатия, а световые колебания имеют характерную ориентацию, перпендикулярную к направлению их распространения.

Итак, в твердом теле могут быть волны обоих сортов. Во-первых, там распространяются волны сжатия, аналогичные звуку в воздухе, и, во-вторых, волны сдвига. Если наше твердое тело не кристалл, то волна сдвига может быть поляризована в любом направлении. (Конечно, все твердые тела — кристаллы, но если мы возьмем кусок, состоящий из микрокристаллов всех ориентации, то кристаллическая анизотропия усредняется.)

Есть еще один интересный вопрос, касающийся звуковых волн. Что получится, если длина волны в твердом теле становится все меньше и меньше? До каких пор может это продолжаться? Ясно, что она не может стать меньше расстояния между атомами, ибо если под волной мы понимаем такое явление, когда одна точка идет вниз, а следующая — вверх и т. д., то кратчайшая возможная длина волны при этом, очевидно, равна межатомному расстоянию. Вам известно, что колебания могут быть как продольные, так и поперечные, длинноволновые и коротковолновые.

Если мы рассматриваем длины волн, сравнимые с межатомным расстоянием, то скорость уже не будет постоянной; возникает дисперсионный эффект, когда скорость становится зависимой от волнового числа. А высшая гармоника поперечных волн все же должна характеризоваться именно тем, что каждые два соседних атома делают нечто противоположное друг другу.

С атомистической точки зрения ситуация здесь напоминает два связанных маятника, о которых мы уже говорили. У них могут быть два вида собственных колебаний: один — когда они качаются вместе, и другой — когда в противоположные стороны. Так что волны в твердом теле можно рассматривать и с иной точки зрения — как колебания связанных гармонических осцилляторов, подобных огромному числу связанных маятничков, причем высшая гармоника получается, когда маятнички колеблются в противоположные стороны, и низшие — при других соотношениях фаз.

Эти кратчайшие волны настолько малы, что обычно их невозможно получить технически. Однако они очень интересны, поскольку свойства этих коротких звуковых волн помогают нам объяснить в термодинамической теории твердого тела его тепловые свойства, в частности удельную теплоемкость. Переход к предельно коротким звуковым волнам означает переход к индивидуальному движению атомов; это в конечном счете одно и то же.

Очень интересным примером звуковых волн в твердом теле являются волны, идущие по земному шару, как продольные, так и поперечные. Хотя нам и не известно почему, но внутри Земли время от времени происходят землетрясения. Одни породы сдвигаются относительно других, и это движение сходно с очень низким звуком. Из такого источника выходят и путешествуют по всей Земле волны, подобные звуковым, и хотя их длина значительно больше длины обычных звуковых волн, но все же это звуковые волны. Наша Земля не однородна: давление, плотность, сжимаемость и т. д. изменяются с изменением глубины, а поэтому изменяется и скорость. Возникает нечто похожее на показатель преломления, и волны идут не по прямому пути, а по некоторой кривой. Кроме того, картина осложняется тем, что продольные и поперечные волны распространяются с разной скоростью, а поэтому и решения для них будут разными. Если мы в каком-то месте поставим сейсмограф и будем наблюдать, как скачет его самописец после того, как где-то произошло землетрясение, то мы увидим не просто какие-то неправильные прыжки. Мы увидим, как самописец сначала запрыгает, затем успокоится, затем опять запрыгает. Более конкретные детали происходящего зависят от положения сейсмографа. Если он расположен достаточно близко к месту землетрясения, то сначала мы примем продольные волны от возмущения, а уж потом, несколько секунд спустя,— поперечные, ибо они идут медленней. Измеряя разницу времени между их приходами, можно сказать, насколько далеко произошло землетрясение, разумеется, если мы достаточно хорошо знаем скорости и состав внутренних областей.

На фиг. 51.6 показан пример поведения различных видов волн в Земле.

Фиг. 51.6. Схема земного шара. Показаны пути продольных и поперечных звуковых волн.

Два сорта волн обозначены различными значками. Если в каком-то месте (назовем его «источник») произошло землетрясение, то поперечные и продольные волны, идущие по прямому пути, придут на станцию в разные моменты времени. Кроме того, возникнут отражения от границ неоднородности, дающие в результате другие пути и времена. Подобные исследования показали, что у Земли есть некое ядро, не проводящее поперечных волн. Однако даже если станция расположена диаметрально противоположно источнику, то поперечные волны все же приходят, но с неправильной фазой. Это получается оттого, что поперечные волны, падающие наклонно на поверхность, разделяющую два вещества, всегда рождают две новые волны: поперечную и продольную. Но внутри ядра Земли поперечные волны не распространяются (по крайней мере в отличие от продольных волн для них этого не обнаружено). Затем на границе ядра оба вида волн возникают вновь и попадают на станцию.

Именно по поведению волн, вызванных землетрясениями, было обнаружено, что поперечные волны не могут распространяться в некоторой сфере внутри Земли. Это означает, что центр Земли жидкий в том смысле, что он не проводит поперечных волн. Изучение землетрясений — это единственный источник наших сведений о внутреннем строении Земли. Таким образом, в результате большого числа наблюдений на различных станциях в период многих землетрясений были выяснены все детали; известно все: скорости, кривые и т. д. Мы знаем скорости различных сортов волн на любой глубине. А зная это, мы, следовательно, можем выяснить, каковы собственные гармоники Земли, ибо нам известна скорость распространения звуковых волн: другими словами, известны упругие свойства на любой глубине. Предположим, что мы приплюснули земной эллипсоид и затем отпустили его. Задача определения периода и формы свободных колебаний сводится просто к вопросу о суперпозиции волн, идущих по эллипсоиду. Мы уже выяснили, что при подобном возмущении возникает множество гармоник, начиная от низшей, которая для Земли эллипсоидальна, и вплоть до более высоких и более сложных.

Чилийское землетрясение в мае 1960 г. произвело такой «шум», что его эхо много раз обошло вокруг Земли. Как раз к этому времени были изготовлены новые высокочувствительные сейсмографы, с помощью которых определялись основные гармоники Земли и сравнивались с величинами, вычисленными из теории звука по известным скоростям, найденным из других независимых землетрясений. Результат этого эксперимента показан на фиг. 51.7, где отложена сила сигнала в зависимости от его частоты (фурье-анализ).

Фиг. 51.7. Зависимость силы от частоты, зарегистрированная сейсмографом в городах Нака (Перу) и Изабелла (Калифорния). Согласованность (или когерентность) обозначает степень связанности сигналов, регистрируемых этими станциями.

Заметьте, что одни из принимаемых частот оказывались более сильными, чем другие; наблюдались очень четкие максимумы. Это и есть собственные частоты Земли, поскольку они являются главными частотами ее колебаний.

Иными словами, если все движение Земли сводится к суперпозиции множества различных гармоник, то можно надеяться, что запись нерегулярных толчков на любой станции даст одну и ту же суперпозицию многих частот. Если проанализировать это в терминах частот, то мы сможем определить характеристические частоты Земли. Тонкие вертикальные линии на рисунке изображают рассчитанные частоты, и мы видим замечательное согласие, убеждающее нас, что теория звука вполне работает и внутри Земли.

Очень интересный факт обнаруживается на фиг. 51.8, где представлены очень точные измерения (с еще большим разрешением) низшей эллипсоидальной гармоники.

Фиг. 51.8. Фурье-анализ записи высокочувствительного сейсмографа на станции Изабелла. Хорошо виден спектральный дублет.

Заметьте, что здесь не один, а два немного отличающихся максимума: первый — с периодом 54,7 мин и второй — 53,1 мин. Природа этих двух максимумов не была известна, когда они были обнаружены, хотя с тех пор ее могли найти. Существуют по крайней мере два правдоподобных объяснения. Одно из них — это возможная асимметрия в распределении вещества Земли, которая может дать два подобных максимума. Другое, еще более интересное объяснение состоит в следующем. Вообразите волны, идущие от источника вокруг Земли в двух направлениях. Если мы в уравнениях движения учтем эффект вращения Земли, которым обычно пренебрегали при анализе, то скорости этих волн окажутся разными. Движение во вращающейся системе из-за действия кориолисовой силы изменяется, и это может вызвать наблюдаемое расщепление.

Коротко о методе получения этих кривых. На сейсмографе мы записываем не зависимость амплитуды от частоты, а перемещение как функцию времени, причем всегда какой-то очень неправильной и причудливой формы.

Чтобы найти из нее долю различных синусообразных волн для всех частот, мы уже знаем, что нужно делать. Фокус состоит в умножении полученных данных на синусообразную волну данной частоты и интегрировании, т. е. усреднении; при этом усреднении все другие частоты исчезают.

Таким образом, на рисунках фактически показаны графики интегралов от произведения полученных данных на синусообразные волны с различным числом периодов в минуту.

 

§ 4. Поверхностные волны

Следующий интересный тип волн, которые, несомненно, видел каждый и которые обычно в элементарных курсах служат примером волн,— это волны на поверхности воды. Вы скоро убедитесь, что более неудачного примера придумать трудно, ибо они нисколько не похожи ни на звук, ни на свет; здесь собрались все трудности, которые только могут быть в волнах. Давайте начнем с длинных волн на глубокой воде. Если считать океан бесконечно глубоким и на его поверхности происходят какие-то возмущения, то возникнут волны. Вообще говоря, возможны любые возмущения, но синусоидальное движение с очень небольшим возмущением дает волны, напоминающие обычные гладкие океанские волны, идущие к берегу. Вода, разумеется, в среднем остается на месте, а движутся сами волны. Что ж это за движение — поперечное или продольное? Оно не может быть ни тем, ни другим: ни поперечным, ни продольным. Хотя в каждом данном месте горбы чередуются со впадинами, оно не может быть движением вверх и вниз просто из-за закона сохранения количества воды. Куда должна деваться вода из впадины? Ведь она же практически несжимаема. Скорость волн сжатия, т. е. звука в воде, во много раз больше: мы сейчас их не рассматриваем. Итак, для нас сейчас вода несжимаема, поэтому при образовании впадины вода из этого места может двигаться только в стороны. Так оно и получается на самом деле: частички воды вблизи поверхности будут двигаться приблизительно по окружности. Как-нибудь, когда вы будете нежиться на воде, лежа на круге, и придет такой гладкий вал, посмотрите на соседние предметы и вы увидите, что они движутся по окружностям. Так что картина получается неожиданная: здесь мы имеем дело со смесью продольных и поперечных волн. С увеличением глубины круги уменьшаются, пока на достаточной глубине от них ничего не останется (фиг. 51.9).

Фиг. 51.9. Волны, на глубокой воде образуются частицами, движущимися по окружности. Обратите внимание на систематический сдвиг фазы от одной окружности к другой. Кок может при этом двигаться плавающий предмет?

Очень интересно определить скорость таких волн. Это должно быть какой-то комбинацией плотности воды, ускорения силы тяжести, которая в данном случае является восстанавливающей силой, и, возможно, длины волны и глубины. Если мы рассмотрим случай бесконечной глубины, то скорость больше не будет зависеть от нее. Но какую бы формулу для фазовой скорости волн мы ни взяли, она должна содержать эти величины в такой комбинации, чтобы давать правильную размерность. Испробовав множество различных способов, мы найдем, что только одна комбинация g и λ может дать нам размерность скорости, именно √(gλ), которая совсем не включает плотности. На самом деле эта формула для фазовой скорости не вполне точна, и полный анализ динамики, в который мы не будем входить, показывает, что все действительно получится так, как у нас, за исключением √(2π), т. е.

Интересно, что длинные волны бегут быстрее коротких. Так что когда проходящая вдали моторная лодка создает волны, то после некоторого промежутка времени они достигнут берега, но сначала это будут редкие всплески, поскольку первыми приходят длинные волны. Затем приходящие волны становятся все короче и короче, ибо скорость падает как квадратный корень из длины волны.

«Это же неверно,— может возразить кто-нибудь,— ведь чтобы делать такое утверждение, мы должны смотреть на групповую скорость». Правильно, конечно. Формула для фазовой скорости не говорит нам о том, что приходит первым; об этом может нам сказать только групповая скорость. Так что мы должны получить групповую скорость и мы сможем показать, что она равна половине фазовой скорости. Для этого нужно только вспомнить, что фазовая скорость ведет себя как квадратный корень из длины волны. Так же, т. е. как квадратный корень из длины волны, ведет себя и групповая скорость. Но как может групповая скорость быть вдвое меньше фазовой? Посмотрите на группу волн, вызванных проходящей мимо лодкой, и проследите за каким-то определенным гребнем. Вы обнаружите, что он бежит вместе с группой, но постепенно становится все меньше и меньше, а дойдя до переднего фронта, совсем умирает. Но таинственным и непостижимым образом на смену ему с заднего фронта поднимается слабенькая волна и становится она все сильнее и сильнее. Короче говоря, по группе движутся волны, тогда как сама группа движется вдвое медленнее этих волн.

Поскольку групповая и фазовая скорости не равны друг другу, то волны, вызванные движущимся объектом, будут уже не просто коническими, а гораздо более сложными и интересными. Вы можете видеть это на фиг. 51.10, где показаны волны, вызванные движущейся по воде лодкой.

Фиг. 51.10. След прошедшей моторной лодки.

Заметьте, что они совсем не похожи на то, что мы получали для звука (когда скорость не зависит от длины волны), где фронт волны был просто распространяющимся в стороны конусом. Вместо него мы получили волны позади движущегося объекта, фронт которых перпендикулярен его движению, да еще движущиеся под другими углами небольшие волны с боков. Всю эту картину движения волн в целом можно очень красиво воссоздать, зная только, что фазовая скорость пропорциональна квадратному корню из длины волны. Весь фокус заключается в том, что картина волн стационарна относительно лодки (движущейся с постоянной скоростью); все другие виды волн отстанут от нее.

До сих пор мы рассматривали длинные волны, для которых восстанавливающей силой была сила тяжести. Но когда волны становятся очень короткими, то основной восстанавливающей силой оказывается капиллярное притяжение, т. е. энергия поверхностного натяжения. Для волн поверхностного натяжения фазовая скорость равна

где Т — поверхностное натяжение, а ρ — плотность. Здесь все наоборот: чем короче длина волн, тем большей оказывается фазовая скорость. Если же действуют и сила тяжести и капиллярная сила, как это обычно бывает, то мы получаем комбинацию

где k=2π/λ — волновое число. Как видите, скорость волн на воде — вещь действительно довольно сложная. На фиг. 51.11 показана фазовая скорость как функция длины волны.

Фиг. 51.11. График зависимости фазовой скорости от длины волны для воды.

Она велика для очень коротких волн, велика для очень длинных волн, но между ними существует некоторая минимальная скорость распространения. Исходя из этой формулы, можно вычислить и групповую скорость: она оказывается равной 3/2 фазовой скорости для ряби и 1/2 фазовой скорости для волн «тяжести». Слева от минимума групповая скорость больше фазовой, а справа групповая скорость меньше. С этим фактом связано несколько интересных явлений. Поскольку групповая скорость с уменьшением длины волны быстро увеличивается, то, если мы создадим какие-то возмущения, возникнут волны соответствующей длины, которые идут с минимальной скоростью, а впереди них с большей скоростью побегут короткие и очень длинные волны. В любом водоеме можно легко увидеть очень короткие волны, а вот длинные волны наблюдать труднее.

Таким образом, мы убедились, что рябь, которая столь часто используется для иллюстрации простых волн, на самом деле гораздо сложнее и интереснее: у нее нет резкого волнового фронта, как в случае простых волн, подобных звуку или свету. Основная волна, которая вырывается вперед, состоит из мелкой ряби. Благодаря дисперсии резкое возмущение поверхности воды не приводит к резкой волне. Первыми все равно идут очень мелкие волны. Во всяком случае, когда по воде с некоторой скоростью движется объект, то возникает очень сложная картина, поскольку разные волны идут с разной скоростью. Взяв корыто с водой, можно легко продемонстрировать, что самыми быстрыми будут мелкие капиллярные волны, а уже за ними идут более крупные. Кроме того, наклонив корыто, можно увидеть, что там, где меньше глубина, меньше и скорость. Если волна идет под каким-то углом к линии максимального наклона, то она заворачивает в сторону этой линии. Таким способом можно продемонстрировать множество различных вещей и прийти к заключению, что волны на воде — куда более сложная вещь, чем волны в воздухе.

Скорость длинных волн с круговым движением воды уменьшается на мелком месте и увеличивается на глубоком. Таким образом, когда волна идет к берегу, где глубина меньше, она замедляется. Но там, где вода глубже, волна движется быстрее, так что мы снова сталкиваемся с механизмом ударной волны. Однако на этот раз, поскольку волна не столь проста, ударный фронт ее гораздо больше искажен: волна «перегибается через себя» самым привычным для нас образом (фиг. 51.12).

Фиг. 51.12. Морская волна.

Именно это мы видим, когда волна набегает на берег: в ней выявляются все присущие природе трудности. Никому до сих пор не удалось вычислить форму волны в тот момент, когда она разбивается. Это очень легко сделать, когда волны малы, но когда они становятся большими, все слишком усложняется.

Интересное свойство капиллярных волн можно наблюдать при возмущении поверхности движущимся объектом. С точки зрения самого объекта вода течет мимо него, и волны, которые в конечном итоге останутся вместе с ним, всегда будут волнами, которые как раз имеют нужную скорость, чтобы оставаться на воде вместе с объектом. Точно так же если поместить объект в поток, который будет омывать его, то картина волн окажется стационарной и как раз нужной длины волны для того, чтобы двигаться с той же скоростью, что и вода. Но если групповая скорость меньше фазовой, то возмущение идет по потоку назад, поскольку групповая скорость недостаточна для того, чтобы догнать поток. Если же групповая скорость больше фазовой, то волновая картина появится перед объектом. Если пристально следить за плывущим в потоке объектом, то можно заметить впереди него небольшую рябь, а позади него — длинные волны.

Другие интересные явления подобного рода можно наблюдать в льющейся жидкости. Если, например, быстро выливать молоко из бутылки, то можно заметить, как струя молока пересекается множеством перекрещивающихся линий. Это волны, вызванные возмущением на краях бутылки; они очень похожи на волны, вызванные объектом, плывущим по потоку. Но теперь такой эффект возникает с обеих сторон, поэтому получается картина пересекающихся линий.

Итак, мы познакомились с некоторыми интересными свойствами волн, с различными усложнениями, зависящими от фазовой скорости и длины волны, а также с зависимостью скорости волны от глубины и т. д.; все это приводит к весьма сложным, а потому и интересным явлениям природы.

 

Глава 52 СИММЕТРИЯ ЗАКОНОВ ФИЗИКИ

 

§ 1. Симметричные операции

В этой главе мы будем говорить о том, что мы называем симметрией физических законов. Подобные симметрии уже обсуждались нами в ряде мест нашего курса, когда говорилось о векторном анализе (вып. 1, гл. 11), теории относительности (вып. 2, гл. 16) и вращениях (вып. 2, гл. 20).

Почему же симметрии так интересуют нас? Прежде всего потому, что симметрия импонирует нашему складу ума, каждому доставляет удовольствие любоваться предметом, который в каком-то смысле симметричен. Любопытно, что окружающий нас мир буквально заполнен симметричными объектами, созданными самой природой. Пожалуй, самый симметричный объект, который только можно себе представить,— это сфера, а природа дает нам массу примеров сферических тел: звезды, планеты, капельки воды в облаках и т. д. А сколько различных, порой причудливых примеров симметрии находим мы в кристаллах горных пород! Изучение их позволяет нам заглянуть внутрь вещества и получить важные сведения о структуре твердого тела. Столь же полон симметриями окружающий нас животный и растительный мир, хотя симметрия цветка или бабочки уже не столь совершенна и не столь фундаментальна, как симметрия кристалла.

Но тема этой главы все же не симметрия предметов, а куда более удивительная симметрия Вселенной — симметрия тех фундаментальных законов, которые управляют всеми процессами физического мира.

Однако что же такое симметрия? Каким образом физический закон может быть «симметричным»? Проблема определения симметрии — одна из основных. Мы уже говорили об очень хорошем определении, которое было дано Вейлем. Суть его состоит в том, что объект считается симметричным, если с ним можно сделать нечто такое, после чего он будет выглядеть точно так же, как и прежде. Например, симметрична ваза, которая, отразившись в зеркале или будучи повернута вокруг своей оси, выглядит точно так же, как и до поворота или отражения. Вопрос, который мы хотим разобрать здесь,— это, что можно сделать с физическим явлением или ситуацией, возникшей при эксперименте, чтобы получился тот же самый результат. Список операций симметрии, в результате которых различные физические явления остаются неизменными, приведен в табл. 52.1.

Таблица 52.1 операции симметрии

 

§ 2. Симметрия в пространстве и времени

Самое простое, что можно попытаться сделать — это переносить (транслировать) различные явления в пространстве. Если мы в некотором месте сделаем какой-то опыт, а потом построим такую же установку (или просто перенесем старую) в другом месте и повторим наш опыт, то все должно повториться, причем в той же самой последовательности. При этом, конечно, все детали окружения и условия работы, существенные для нашего опыта, на новом месте должны быть теми же, что и прежде, т. е. должны быть тоже перенесены вместе с нашей аппаратурой. О том, что существенно и что не существенно, мы уже говорили и больше не будем останавливаться на этом.

Насколько нам сегодня известно, перемещение во времени тоже не должно изменять физических законов. (Впрочем, обо всем, содержащемся в этой главе, можно сказать: насколько нам известно сегодня!) Это означает, что если мы построим какую-то установку и запустим ее в некоторый момент времени, скажем в 10 часов утра во вторник, а затем построим вторую, точно такую же установку и запустим ее при тех же самых условиях, но ровно на три дня позднее, то эта вторая установка будет работать точно так же, как и первая, т. е. она будет повторять те же действия, в той же последовательности и с теми же интервалами длительности. При этом, конечно, снова подразумевается, что существенные свойства окружения изменяются со временем точно таким же образом, как и прежде.

Необходимо обращать внимание и на разницу, вносимую географией, ибо с изменением положения на Земле некоторые характеристики могут тоже меняться. Если мы в каком-то месте измеряем магнитное поле, а затем вместе со всей аппаратурой переедем куда-то в другое место, то приборы могут и не работать точно таким же образом, как раньше, поскольку магнитное поле в этих различных районах может быть разным. Однако всю ответственность за разницу в этом случае мы можем свалить на магнитное поле Земли. Но если вообразить, что мы передвигаем аппаратуру вместе со всем земным шаром, то, разумеется, никакой разницы быть не должно.

Другое свойство, которое мы тоже подробно обсуждали,— это вращение в пространстве. Если мы повернем нашу аппаратуру на некоторый угол, то она будет работать точно так же, как и прежде, но, разумеется, при непременном условии, что вместе с ней мы повернем все существенное для работы аппаратуры окружение. Проблеме симметрии при вращении в пространстве была посвящена глава 11. Там вы познакомились и с векторным анализом — математическим аппаратом, который наиболее полно и изящно учитывает вращательную симметрию.

Поднявшись в изучении природы на ступеньку выше, мы познакомились с более сложной симметрией — симметрией при равномерном и прямолинейном движении. Это поистине замечательная вещь. Если мы погрузим нашу работающую установку на автомашину (со всем, конечно, существенным окружением) и поедем с постоянной скоростью по прямой дороге, то явления, происходящие в движущейся машине, будут протекать точно так же, как если бы она стояла на месте, т. е. все законы физики остаются теми же самыми.

Нам даже известно, как математически выражается эта симметрия: все математические уравнения должны оставаться неизменными при преобразованиях Лоренца. Кстати, именно изучение проблем теории относительности заострило внимание физиков на симметриях физических законов.

Однако все упомянутые виды симметрии имеют геометрическую природу, причем в некотором смысле утверждается эквивалентность пространства и времени. Но существуют симметрии совершенно другого рода. Например, можно заменить один атом другим атомом того же сорта, или (в несколько другой постановке) существуют атомы одного и того же сорта, т. е. существуют такие группы атомов, что если мы переставим любые два из них, то ничто не изменится. То, что может сделать один атом кислорода определенного сорта, способен сделать и второй.

«Ерунда какая-то,— может возразить какой-нибудь скептик,— ведь это же просто определение того, что означают атомы одного и того же сорта!» Согласен, это может быть просто определением, но все дело в том, что до опыта нам не известно, существуют ли в природе атомы «одного и того же сорта», а экспериментальный факт состоит в том, что таких атомов много, очень много, так что наше утверждение все-таки что-то означает. В указанном смысле одинаковы и так называемые элементарные частицы, из которых сделаны атомы; одинаковы все протоны, одинаковы все положительные π-мезоны и т. д.

После столь длинного списка того, что можно делать, не изменяя при этом явлений, может создаться впечатление, что практически позволено делать все что угодно. Совсем нет. Вот вам пример — просто для того, чтобы продемонстрировать разницу. Допустим, что нас интересует вопрос: «А не остаются ли законы физики теми же самыми при изменении масштаба?» Пусть вы построили какую-то машину, а затем построили точную ее копию, но увеличенную, скажем, в пять раз. Будет ли копия работать точно так же? Нет, не будет! Длина волны света, испускаемого, например, атомами кальция, находящимися внутри ящика, и длина волны, излученная газом атомов кальция, которых в пять раз больше, будет не в пять раз больше, а в точности той же самой. Так что изменится отношение длины волны к размеру излучателя.

Возьмем другой пример. Время от времени в газетах вы видите фотографии моделей знаменитых соборов, сделанные из спичек, — удивительное произведение искусства, более удивительное и потрясающее, чем настоящий собор. А представьте себе, что такой деревянный собор в самом деле построен в натуральную величину. Вы уже чувствуете, что из этого получится! Он не будет стоять, он рухнет, ибо такие увеличенные модели из «спичек» недостаточно прочны. «Правильно,— может сказать кто-нибудь из вас, —но ведь существует внешнее влияние, которое тоже необходимо изменить в соответствующей пропорции!» Вы имеете в виду способность предметов противостоять силе тяжести? Хорошо. Сначала, когда мы взяли модель собора, сделанного из настоящих спичек, и настоящую Землю, то все было отлично и устойчиво. Но потом, когда мы увеличили собор, то должны увеличить и Землю, а это для собора будет еще хуже: ведь сила тяжести станет еще больше!

Сейчас вы, конечно, понимаете, что в основе зависимости явлений от размеров лежит атомная природа строения вещества. Если бы нам удалось построить аппаратуру, которая была бы так мала, что содержала бы всего пять атомов, то такую штуку нельзя было бы произвольно уменьшить или увеличить. Ведь размер отдельного атома не произвольный, он совершенно определенный.

Тот факт, что законы физики не остаются теми же при изменении масштаба, открыл еще Галилей. Он понял, что прочность материалов изменяется не в прямой пропорции с их размерами, и иллюстрировал это свойство на примере, очень похожем на наш собор из спичек. Он рисовал два скелета собаки, один из них обычный, в той пропорции, которая необходима для поддержания ее веса, а второй — необходимый для некой воображаемой «суперсобаки», которая в десять или, может быть, в тысячу раз больше обычной. Получилось нечто громадное и внушительное с совершенно другими пропорциями. Не известно, привели ли Галилея эти соображения к заключению о том, что законы природы должны иметь определенный масштаб; ясно лишь одно, что он был настолько потрясен своим открытием, что счел его столь же важным, как и открытие законов движения. Именно поэтому Галилей опубликовал оба эти закона в одном и том же томе под заглавием «О двух Новых Науках».

Другой хорошо известный пример несимметрии законов — это вращение. В системе, вращающейся с постоянной угловой скоростью, законы физики будут выглядеть совсем иначе, чем в покоящейся. Если мы произведем какой-то опыт, а затем погрузим всю аппаратуру в космический корабль и заставим его вращаться в межпланетном пространстве с постоянной угловой скоростью, то аппаратура из-за наличия центробежных и кориолисовых сил уже не будет работать так, как раньше. В сущности, ведь о вращении Земли мы узнаем, наблюдая лишь за поведением маятника (так называемого «маятника Фуко»). Нам вовсе не нужно для этого «выглядывать наружу», т. е. смотреть на звезды, например.

Следующей в нашем списке стоит очень интересная симметрия. Это обращение времени. На первый взгляд кажется, что оно неверно, что физические законы не могут быть обращены. Ведь всем ясно, что в нашем обычном масштабе явления необратимы.

«Скользит по бумаге перо, За строчкой написанной — новая строчка...»

Насколько нам сейчас известно, причиной этой необратимости является огромное число частиц, принимающих участие в обычных процессах. Но если бы мы видели отдельные молекулы, то не могли бы сказать, работает ли вся машина вперед или назад. Поясним, что мы имеем в виду: построим такой прибор, в котором нам известно, что делает каждый из атомов (мы можем наблюдать за всеми их проделками). Построим теперь второй, точно такой же прибор, но запустим его в обратную сторону, т. е. установим его в конечном положении, а все скорости изменим на противоположные. После этого мы увидим в точности то же самое движение, но только все будет происходить в обратной последовательности. Возьмем другой пример. Предположим, что мы засняли на киноленту какой-то процесс, происходящий с веществом, и запустили пленку задом наперед. Тогда ни один из физиков не мог бы сказать: «Это противоречит физическим законам, происходит что-то не то». Если деталей не видно, то все становится совершенно ясно. Например, когда на тротуар падает яйцо и разбивается вдребезги, то вы сразу скажете: «Этот процесс необратим; если мы заснимем его на кинопленку и прокрутим ее наоборот, то яйцо само соберется в скорлупу, которая тут же склеится обратно, а это бессмыслица!» Но если мы видим отдельные атомы, то все кажется нам полностью обратимым. Открыть эту симметрию было, конечно, гораздо труднее, чем другие, но все-таки то, что фундаментальные законы физики, управляющие атомами и молекулами, обратимы во времени, по-видимому, верно.

 

§ 3.

Симметрия и законы сохранения

Даже на этом уровне симметрии физических законов очень увлекательны, но оказывается, что они куда более интересны и удивительны при переходе к квантовой механике. Факт, причину которого я не могу вам объяснить с вашим запасом знаний, но который до сих пор потрясает большинство физиков своей глубиной и красотой, состоит в следующем: в квантовой механике каждой из симметрии соответствует закон сохранения — существует вполне определенная связь между законами сохранения и симметриями физических законов. Сейчас мы можем только это констатировать, не пытаясь вдаваться в объяснения.

Оказывается, например, что симметрия законов физики по отношению к переносу в пространстве вместе с принципами квантовой механики означает сохранение импульса.

То, что законы симметричны при перемещении во времени, означает в квантовой механике сохранение энергии.

Неизменность (инвариантность) при повороте на фиксированный угол в пространстве соответствует сохранению момента количества движения. Среди наиболее мудрейших и удивительнейших вещей в физике эти связи — одни из самых интересных и красивых.

В квантовой механике, кроме того, возникают некоторые симметрии, которые, к несчастью, не имеют классического аналога; их нельзя описать методами классической физики. Вот одна из них. Если ψ — это амплитуда некоторого процесса или чего-то другого, то, как мы знаем, квадрат ее абсолютной величины будет вероятностью этого процесса. Пусть теперь некто сделал свои вычисления, используя не ψ, а ψ', которая отличается от ψ только по фазе [т. е. прежняя ψ умножается на ехр(iΔ), где Δ — какая-то постоянная], тогда квадрат абсолютной величины ψ', который тоже будет вероятностью события, равен квадрату абсолютной величины ψ:

(52.1)

Следовательно, физические законы не изменяются от того, что мы сдвигаем фазу волновой функции на некоторую произвольную постоянную. Это еще одна симметрия. Природа физических законов такова, что сдвиг квантовомеханической фазы не изменяет их. В начале этого параграфа мы говорили, что в квантовой механике каждой симметрии соответствует закон сохранения. И вот оказывается, что закон сохранения, связанный с квантовомеханической фазой, не что иное, как закон сохранения электрического заряда. Словом, это удивительнейшая вещь!

 

§ 4.

Зеркальное отражение

Перейдем к следующему вопросу, который будет занимать нас до конца главы,— это симметрия при отражении в пространстве. Проблема заключается в следующем: симметричны ли физические законы при отражении? Можно ее сформулировать и по-другому. Предположим, что мы построили некое устройство, например часы с множеством колесиков, стрелок и пр. Они идут, внутри у них есть устройство для заводки. Посмотрим теперь на часы в зеркало. Дело не в том, как они выглядят в зеркале. Нет, давайте построим другие часы, в точности такие же, как те первые, отраженные в зеркале. Там, где у первых часов находится винт с правой резьбой, мы поставим винт с левой резьбой, там, где на циферблате стоит цифра «XII», мы на циферблате вторых часов нарисуем «IIX», каждая спиральная пружина закручена в одну сторону у первых часов и в противоположную у зеркально отраженных. Когда все будет закончено, получатся двое часов, каждые из которых будут точным зеркальным отражением других, хотя заметьте, что и те и другие настоящие физические материальные объекты. Возникает вопрос: а что, если и те и другие часы запущены при одинаковых условиях, если пружины их закручены одинаково туго, будут ли они идти и тикать, как точное зеркальное отражение? (Это чисто физический, а вовсе не философский вопрос.) Наша интуиция и наше знание физических законов подсказывают, что будут.

Мы подозреваем, что по крайней мере в этом случае отражение будет одной из симметрии физических законов, т. е. если заменить «право» на «лево», а все остальное оставить тем же самым, то никакой разницы при этом мы обнаружить не сможем. Предположим на минуту, что все это верно. Тогда никакими физическими явлениями невозможно различить, где «право», а где «лево», точно так же, как, скажем, никаким физическим опытом невозможно найти абсолютной скорости движения. Таким образом, с помощью каких-то опытов невозможно абсолютно определить, что мы понимаем под «правым», как противоположностью «левого», поскольку все физические законы должны быть симметричны.

Разумеется, мир наш не должен быть симметричным. Если, например, взять то, что мы называем «географией», то здесь вполне можно определить, где правая сторона. Пусть мы находимся в Нью-Орлеане и смотрим в сторону Чикаго. Тогда Флорида будет от нас справа (конечно, если мы стоим ногами на Земле!). Так что в географии можно определить, где «право» и где «лево». В любой системе реальное положение не должно иметь ту симметрию, о которой идет речь, вопрос в том — симметричны ли законы? Другими словами, противоречит ли физическим законам наличие подобного Земле шара с «левосторонней поверхностью» и человеком, подобным нам, смотрящим в сторону города, подобного Чикаго, с места, подобного Нью-Орлеану, но со всем остальным, перевернутым наоборот, так что Флорида у него будет уже с другой стороны? Ясно, что такая ситуация не кажется невозможной, физическим законам не противоречит такая замена всего левого на правое.

Еще одно обстоятельство: наше определение «правой» стороны не должно зависеть от истории. Иначе было бы очень просто отличить «левое» от «правого» — пойти в магазин запчастей и наугад взять какой-нибудь болт. Вообще говоря, у нас в руках не обязательно окажется «правый болт», но все же более вероятно, что он будет именно правым, а не левым. Но это вопрос истории, или условностей, или общего положения вещей, а не фундаментальных законов. Ведь кто-то может начать выпускать болты с левой резьбой.

Таким образом, нам нужно поискать какие-то другие явления, где бы «правое» входило более фундаментальным образом. Рассмотрим следующую возможность. Известно, что поляризованный свет, пропущенный через сахарный раствор, поворачивает свою плоскость поляризации. Как мы видели в гл. 33 (вып. 3), плоскость поляризации при определенной концентрации сахара поворачивается направо. Казалось бы, мы нашли способ определения «правой стороны», потому что, растворив в воде некоторое количество сахара, мы можем повернуть плоскость поляризации вправо. Но сахар получается из живых организмов, а если мы сделаем его искусственно, то обнаружим, что он не поворачивает плоскости поляризации. Если в этот искусственный сахар, который не поворачивает плоскости поляризации, напустить бактерий (они съедают некоторое количество сахара) и затем отфильтровать их, то обнаружится, что, хотя сахар остался (почти половина первоначального количества), и он поворачивает плоскость поляризации, но теперь уже в другую сторону! Этот факт кажется очень обескураживающим, однако его можно легко объяснить.

Приведем другой пример. Одно из веществ, общее для всех живых существ, основа жизни — это белки (протеин). Белок состоит из цепочек аминокислот. На фиг. 52.1 показана модель аминокислоты, выделенной из белка.

Фиг. 52.1. Модели молекул аланина. Слева — L-аланин; справа — D-аланин.

Эта кислота названа аланином, и на фиг. 52.1 (слева) показано расположение атомов в молекуле аланина, выделенного из белка живых существ. Если же мы попытаемся создать аланин из двуокиси углерода, этана и аммиака (что в самом деле можно сделать — это не столь уже сложная молекула), то обнаружим, что получились не только такие молекулы, но и другие, подобные показанной на фиг. 52.1 (справа), причем в равных количествах! Первые молекулы, те, которые произошли от живых существ, называются L-аланином. Другие же, одинаковые с ним химически в том смысле, что состоят из тех же атомов с теми же связями между ними, образуют «правосторонние» молекулы, которые в отличие от «левосторонних» молекул L-аланина называются D-аланином. Интересно, что если мы будем приготовлять аланин в лаборатории из простых газов, то получится смесь обоих сортов в равных количествах. Жизнь, однако, использует только L-аланин. (Но не без исключения, конечно: то там, то здесь в живых существах встречается и D-аланин, однако эти случаи очень редки. Во все белки входит исключительно L-аланин.) Если мы приготовим оба сорта и будем этой смесью кормить животных, которые любят «есть» его (т. е. усваивают аланин), то окажется, что они не смогут использовать D-аланин, а «съедят» только L-аланин. В результате получится то же, что и с нашим сахаром; после того как бактерии «съедят» тот сахар, который им нравится, остается только «ненастоящий» сорт! (Левосторонний сахар тоже сладкий, а все же не такой, как настоящий, правосторонний!)

Итак, похоже, что явления жизни позволяют отличить «правую» сторону от «левой», поскольку две молекулы химически отличны одна от другой. И все-таки — нет, не могут! Пока мы занимались физическими измерениями, подобными определению энергий или скоростей химических реакций и т. д., эти два сорта вели себя совершенно одинаковым образом, если, разумеется, все остальное тоже было зеркально отражено. Одни молекулы поворачивают свет направо, а другие, проходя то же количество раствора,— налево на точно ту же величину. Таким образом, с точки зрения физики можно использовать любую из этих двух аминокислот. Насколько мы понимаем основу вещей сегодня, уже в уравнение Шредингера заложено, что две молекулы должны вести себя в точности одинаковым образом, хотя там, где у одной правая сторона, у другой — левая. Но в природе тем не менее все устроено только одним способом!

Как полагают, причина этого состоит в следующем. Представьте себе, например, что в один прекрасный момент возникли такие условия, что все белки у каких-то существ содержали только левосторонние аминокислоты. Это привело к тому, что все на свете «перекосилось», «перекосились» все вещества в живых клетках, «перекосились» все ферменты— все стало несимметричным. Когда пищеварительные ферменты пытались сменять химию своей пищи с одного сорта на другой, то один сорт пищи «подходил» им, а другой — нет (совсем как золушкин башмачок, с тем исключением, что мы меряем его на «левую ногу»). Насколько нам известно сейчас, в принципе возможно создать такую лягушку, у которой, например, каждая молекула окажется «перевернутой», т. е. создать точное зеркальное отражение настоящей лягушки, так сказать, «левостороннюю» лягушку. Некоторое время эта «левосторонняя лягушка» чувствовала бы себя вполне нормально, но не смогла бы найти себе пищи: если бы она проглотила муху, то ее ферменты не способны были бы переварить ее. Ведь муха-то настоящая, с правосторонней аминокислотой (разумеется, если мы не разведем специально для нашей лягушки «левосторонних мух»). Итак, насколько нам сегодня известно, химические и жизненные процессы, если бы мы все «перевернули», протекали бы точно так же, как и сейчас.

Если жизнь — полностью физико-химическое явление, то факт «закрученности» всех белков только в одном направлении можно понять лишь с той точки зрения, что с самого начала совершенно случайно победил какой-то один сорт молекул. Где-то однажды органическая молекула как-то «перекосилась», и правая сторона оказалась выделенной; какой-то случай в истории создал одностороннюю ситуацию, и с тех пор «перекос» разрастался все шире и шире. Но, возникнув однажды, ситуация, которую мы наблюдаем сейчас, будет продолжаться вечно: все ферменты переваривают и приготовляют только «правосторонние» вещества. Когда в листья растений входит углекислый газ, водяной пар и другие вещества, то ферменты, приготовляющие из них сахар, делают его правосторонним, ибо они сами правосторонние. Если бы в более позднее время возник какой-то новый сорт вирусов или каких-то других живых существ, то они смогли бы выжить только, если оказались бы способны питаться уже существующими органическими веществами. А, стало быть, и сами они должны быть того же сорта.

Для правосторонних молекул не существует закона сохранения их числа. Жизнь может только увеличивать его. Предположение, таким образом, состоит в том, что жизненные явления говорят нам не об отсутствии симметрии физических законов, а, наоборот, об универсальности природы и общности начала всех живых созданий на Земле в описанном выше смысле.

 

§ 5. Полярный и аксиальный векторы

Пойдем дальше. Вы видели, что в физике имеется масса примеров применимости правила правой и левой руки. В самом деле, когда мы изучали векторный анализ, то узнали о правиле правой руки, которым необходимо пользоваться, чтобы получить правильный момент количества движения и момент силы, магнитное поле и т. п. Например, сила, действующая на заряд в магнитном поле, равна F=qv×B. Но представьте себе такое положение: пусть мы знаем F, v и В. Как ив этого узнать, где у нас правая сторона? Если вернуться назад и посмотреть, откуда произошли векторы, то увидим, что правило правой руки — просто соглашение, своего рода трюк. В самом начале такие величины, как угловая скорость и момент количества движения и другие, подобные им, в действительности вообще не были настоящими векторами! Все они каким-то образом связаны с определенными плоскостями, и только благодаря тому, что наше пространство трехмерно, эти величины можно связать с направлением, перпендикулярным данной плоскости. Мы же из двух возможных направлений выбрали правое.

Представьте себе, что какой-то озорной чертик, решив подшутить над физиками, пробрался во все лаборатории и всюду заменил слово «правое» на «левое». И в результате, где было написано правило правой руки, мы вынуждены были бы пользоваться правилом левой руки. Ну что ж, физики бы просто не заметили этого, ибо ни к какому изменению в физических законах это бы не привело, разумеется, если физические законы симметричны.

Покажем это на примере. Вы знаете, что существуют два сорта векторов. Имеются обыкновенные, «настоящие» векторы, подобные, например, отрезку расстояния Δr в пространстве. Пусть в нашей аппаратуре что-то находится «здесь», а нечто другое — «там», тогда те же самые «что-то» будут присутствовать и в зеркально отраженной аппаратуре. Если мы в обоих случаях проведем векторы от «сюда» до «туда», то один вектор будет отражением другого (фиг. 52.2), причем направление стрелки вектора точно, как и все пространство, «выворачивается наизнанку».

Фиг. 52.2. Отрезок в пространстве и его зеркальное отражение.

Такие векторы мы называем полярными.

Но второй сорт векторов, связанных с вращением, имеет совсем другую природу. Представьте себе нечто вращающееся в трехмерном пространстве (фиг. 52.3).

Фиг. 52.3. Вращающееся колесо и его зеркальное отражение. Заметьте, что направление «вектора» угловой скорости не изменяется.

Если посмотреть на это в зеркало, то вращение будет происходить так, как показано на рисунке, т. е. как зеркальное изображение первоначального вращения. Условимся теперь представлять зеркальное вращение с помощью того же самого правила. В результате мы получим «вектор», который в отличие от полярного вектора не изменяется при отражении и оказывается перевернутым по отношению к полярному вектору и геометрии всего пространства. Такой вектор мы называем аксиальным.

Если физический закон симметрии относительно отражения правилен, то уравнения должны быть устроены так, чтобы при изменении знака каждого аксиального вектора и каждого векторного произведения (что соответствует отражению) ничего не произошло. Например, когда мы пишем формулу для момента количества движения L=r×p, то здесь все в порядке, потому что при переходе в левую систему координат мы изменяем знак L, а знак р и r не изменяется. Кроме того, изменится и векторное произведение, поскольку мы должны правило правой руки заменить правилом левой руки. Возьмем другой пример.

Известно, что сила, действующая на заряд в магнитном поле, равна F=qv×В, но если мы от правой системы перейдем к левой, то, поскольку, как известно, F и v — полярные векторы, изменение знака из-за наличия векторного произведения должно компенсироваться изменением знака В, а это означает, что В должен быть аксиальным вектором. Другими словами, при таком отражении В должен переходить в —В. Таким образом, если мы изменяем левые координаты на правые, то одновременно нужно северный полюс магнита изменить на южный.

Давайте посмотрим на примере, как это все получается. Пусть у нас имеются два магнита, похожих на изображенные на фиг. 52.4.

Фиг. 52.4. Электромагнит и его зеркальное отражение.

Один из магнитов выглядит в точности так, как зеркальное отражение другого, т. е. витки его накручены в другую сторону, и все, что происходит внутри катушки, должно быть в точности обращено в другую сторону; ток течет, как это показано на рисунке. Теперь из законов магнетизма (которые вы хотя еще и не знаете официально, но, по-видимому, помните из школьного курса) получается, что магнитное поле направлено так, как это показано на рисунке. Там, где у первого магнита южный полюс, у другого магнита будет северный, ибо у него ток течет в другую сторону, а магнитное поле перевернуто. Таким образом, выходит, что при переходе от правой системы к левой мы действительно должны заменить северный полюс на южный!

Но северный и южный полюсы — это просто договоренность, и замена их еще ничего не означает. Давайте посмотрим на само явление. Предположим, что электрон движется от нас через магнитное поле перпендикулярно к плоскости страницы. Тогда, если воспользоваться формулой для силы v×В (не забудьте, что электрон отрицательный!), мы получим, что в соответствии с этим физическим законом электрон должен отклоняться в указанном направлении. Таким образом, явление заключается вот в чем. Если в катушке в определенном направлении течет ток, то электрон как-то отклоняется. Это и есть физика, и неважно, как мы будем называть все по дороге.

А теперь проделаем тот же опыт с зеркально отраженным магнитом: пошлем электрон в соответствующем направлении. Теперь на него будет действовать обратная сила. Вычислив ее по тем же правилам, мы получим правильный результат: соответствующее движение будет зеркальным отражением предыдущего!

 

§ 6. Какая же рука правая?

Дело в том, что существует один интересный факт: в любом явлении правило правой руки всегда встречается два или вообще четное число раз, и в результате любое явление всегда выглядит симметричным. Короче говоря, раз мы не можем отличить северный полюс от южного, то не можем отличить и правую сторону от левой. Может показаться, что определить, где находится северный полюс магнита, очень просто. Северным концом магнитной стрелки компаса будет тот, который указывает на север. Но это опять локальное свойство, связанное с географией Земли, все равно, что указание, в какой стороне находится Чикаго, и поэтому не идет в счет. Если вы видели стрелку компаса, то, вероятно, заметили, что ее северный конец окрашен в какое-то подобие синего цвета. Но это уже дело рук человека, который окрасил стрелку. Так что все это — условные критерии.

Вот если бы магнит обладал тем свойством, что, посмотрев на него внимательно, мы бы обнаружили на его северном полюсе растущую бороду, которой нет на южном, и это было бы общим правилом, т. е. если бы существовал какой-то единый способ, позволяющий отличить северный полюс магнита от южного, то это было бы концом симметрии при отражении.

Чтобы яснее представить себе всю проблему в целом, вообразите, что вы разговариваете по радио с каким-то существом, находящимся очень далеко от вас. Мы не можем послать ему какого-нибудь образца, чтобы он его увидел; вот если бы мы, к примеру, могли послать пучок света, то мы послали бы свет, поляризованный по кругу в правую сторону, и сказали бы: «Обрати внимание на направление вращения поляризации этого света, мы называем его правым». Но мы не можем послать ему ничего подобного, а можем только говорить с ним. Наш собеседник находится очень, очень далеко, в каком-нибудь неизвестном мире, и не может видеть того, что видим мы. Мы не можем сказать: «Взгляни на Большую Медведицу. Смотри, как расположены ее звезды. Под правой стороной мы понимаем...» Мы можем только говорить с ним по радио.

Предположим, нам захотелось рассказать ему о себе. Ну, лучше всего начать с чисел: «Тик, тик — два, тик, тик, тик — три...», так что постепенно он выучит эти два слова, а потом больше. Спустя некоторое время вы настолько познакомитесь с ним, что он вас спросит: «Послушай, приятель, а как ты выглядишь?» Вы начнете описывать себя и первым делом скажете: «Мой рост один метр 75». «Подожди,— скажет он,— что такое метр?» Можно ли объяснить ему, что такое метр? Конечно, можно! Вы скажете: «Тебе известен диаметр атома водорода, так вот, мой рост составляет 17 000 000 000 диаметров атома водорода!» Это возможно, ибо физические законы не инвариантны относительно изменения масштаба, а поэтому мы можем определить абсолютную длину. Итак, мы определили размер нашего тела; можно описать и общую форму тела: рассказать, что у нас есть конечности с пятью отростками на концах и т. д., и так без особых трудностей он из нашего описания поймет, как мы выглядим. Он даже может вылепить нашу модель и, поглядев на нее, сказать: «Э-э, да ты, приятель, совсем, недурен. Но вот что у тебя внутри?» И мы начнем описывать ему наши внутренние органы, дойдем до сердца, тщательно опишем его форму и скажем: «Помести его в левую сторону груди». «Куда, куда? В левую сторону? А что это такое?» — удивится он. И вот как же описать ему, в какой стороне находится сердце, если он не может видеть то, что видим мы, и никогда не получал от нас ничего, что позволило бы ему понять, где же собственно левая сторона. Можно ли это сделать?

 

§ 7.

Четность не сохраняется

!

Оказывается, что законы тяготения, законы электричества и магнетизма, законы ядерных сил — все подчиняется принципу симметрии при отражении, так что ни эти законы, ни все, что получено из них, не может помочь нам. Однако в природе было обнаружено явление, которое может происходить со многими частицами, и называется оно бета-распадом, или слабым распадом. Один из видов слабого распада, связанный с частицей, открытой в 1954 г., задал физикам трудную головоломку. Есть такая заряженная частица, которая распадается на три π-мезона, как это схематически показано на фиг. 52.5.

Фиг. 52.5. Схематические диаграммы распадов τ- и θ-мезонов.

Частицу эту временно назвали τ-мезоном. На том же рисунке показана и другая частица, которая распадается на два π-мезона. По закону сохранения заряда один должен быть нейтральным. Эта частица была названа θ-мезоном. Итак, у нас есть τ-мезон, распадающийся на три π-мезона, и есть θ-мезон, распадающийся на два π-мезона. Вскоре, однако, обнаружилось, что массы τ и θ почти равны друг другу, точнее, в пределах экспериментальных ошибок они просто равны. Кроме того, где бы они ни появлялись, они всегда рождаются в одной и той же пропорции, скажем 14% τ-частиц и 86% θ-частиц.

Кто подогадливей, тот сразу поймет, что здесь мы имеем дело с одной и той же частицей, т. е. что рождаются не две частицы, а всего лишь одна, которая может распадаться двумя различными способами. Поэтому мы получали один и тот же процент рождения (ведь это же просто процент, отражающий способы, которыми она распадается).

Однако квантовая механика из принципа симметрии при отражении позволяет доказать (сейчас я, к сожалению, не могу объяснить вам, как это делается), что совершенно невозможно, чтобы оба эти способа распада принадлежали одной частице: одна частица никак не может распадаться двумя различными способами. Закон сохранения, соответствующий принципу симметрии при отражении, не имеет аналога в классической физике, и этот специфический закон сохранения в квантовой механике был назван законом сохранения четности. Таким образом, вследствие закона сохранения четности, или, точнее, из симметрии квантовомеханических уравнений слабого распада относительно отражения, получалось, что одна и та же частица не может распасться обоими способами, так что здесь мы встречаемся с каким-то удивительным совпадением в массах, временах жизни и т. д. Но чем больше изучалось это явление, тем более удивительным становились совпадения и постепенно росло подозрение в несправедливости фундаментального закона симметрии природы относительно отражения.

Это кажущееся нарушение побудило физиков Ли и Янга предложить поставить другие эксперименты и проверить, будет ли закон сохранения четности выполняться в других родственных распадах. Первый такой эксперимент выполнила By в Колумбийском университете. Заключался он в следующем. Оказывается, что у кобальта, который является хорошим магнетиком, существует изотоп, распадающийся с испусканием электронов. Поместим его в очень сильное магнитное поле при очень низкой температуре, так чтобы тепловые колебания не слишком сильно сбивали атомные «магнитики», тогда все они «выстроятся» вдоль магнитного поля. Таким образом, все атомы кобальта «выстраиваются» в этом сильном поле одинаковым образом. Потом они распадаются, испускают электроны, и вот оказалось, что когда атомы «выстраиваются» в магнитном поле с направленным вверх вектором В, то большинство электронов летит вниз.

Тому, кто не очень «на ты» с миром физики, это замечание мало что говорит, однако тот, кого волнуют тайны природы, увидит, что это наиболее удивительное открытие нашего времени. Если поместить атомы кобальта в очень сильное магнитное поле, то вылетевшие электроны более охотно летят вниз, чем вверх. Поэтому если бы мы отразили этот опыт в зеркале так, чтобы атомы кобальта были «выстроены» наоборот, т. е. вверх, то они бы испускали свои электроны вверх, а не вниз, и симметрия исчезла бы.

Теперь мы знаем, что южный полюс магнита это тот, от которого летят β-распадные электроны; таким образом, физически возможно отличить северный полюс от южного.

После этого было сделано множество других экспериментов: распад π-мезона на μ и v, распад μ-мезона на электрон и два нейтрино, распад Λ-частицы на протон и π-мезон, распад Σ-частицы и много других распадов. И почти во всех тех случаях, где этого можно было ожидать, обнаружено отсутствие принципа зеркальной симметрии! Фундаментальный закон физики — закон симметрии при отражении — оказался на этом уровне несправедливым.

Короче говоря, теперь мы уже могли бы объяснить нашему приятелю из космоса, где у нас расположено сердце.«Послушай,— сказали бы мы ему,— сделай себе магнит, намотай на него проволоку и пусти по ней ток. Затем возьми кусок кобальта, охлади его до низкой температуры. Расположи все устройство так, чтобы испущенные электроны летели от ног к голове, тогда направление тока в катушке скажет тебе, какую сторону мы называем правой, а какую — левой: ток входит с правой стороны и выходит с левой». Итак, с помощью эксперимента такого рода можно определить, где правая, а где левая сторона.

Было предсказано множество других свойств. Оказалось, например, что спин, т. е. угловой момент, или момент количества движения ядра кобальта, до распада равен пяти единицам ℏ, а после распада — четырем. Половину этого момента количества движения уносит электрон, а половину — нейтрино. Нетрудно теперь сообразить, что момент количества движения, уносимый электроном, должен быть направлен по линии его движения, как и момент количества движения нейтрино. Казалось, что электрон вертится справа налево; это тоже было проверено. Сделано это было прямо здесь в КАЛТЕХ'е. Бем и Вапстра, поставившие эксперимент, обнаружили, что электрон действительно крутится налево. (Были и другие эксперименты, дававшие противоположный ответ, но они оказались неверными!)

Следующей задачей было нахождение правила нарушения закона сохранения четности. Есть ли какое-нибудь правило, говорящее нам, насколько велико должно быть это нарушение? Оно оказалось следующим: нарушение происходит только в очень медленных реакциях, названных слабыми распадами, и если уж оно произошло, то частицы, уносящие спин, такие, как электрон или нейтрино, вылетают, преимущественно вращаясь налево. Это как бы «правило перекоса», оно связывает полярный вектор скорости и аксиальный вектор момента количества движения и говорит, что моменту количества движения более присуще направление против вектора скорости, нежели по нему. Таково правило, но мы еще не очень понимаем всех его «почему» и «поэтому». Почему справедливо именно это правило, в чем его фундаментальная причина и как оно связано с другими явлениями? Сейчас мы настолько потрясены самим фактом несимметрии мира, что до сих пор еще не можем оправиться и понять, как же оно отразится на всех остальных правилах. Тем не менее проблема эта интересная, животрепещущая и, увы, до сих пор не решенная. Поэтому сейчас самое время обсудить некоторые вопросы, связанные с этим правилом.

 

§ 8.

Антивещество

Когда исчезает одна из симметрии, то первым делом нужно немедленно обратиться к списку известных или предположенных симметрии и посмотреть, не может ли еще нарушиться какая-то из них. Мы не упомянули одну операцию из нашего списка, а к ней наш вопрос относится в первую очередь — это отношение между веществом и антивеществом. Дирак предсказал, что в дополнение к электронам в мире должны существовать другие частицы, называемые позитронами (открытые Андерсоном в КАЛТЕХ'е), и они тесно связаны с электронами. Все свойства этих двух частиц подчиняются определенным правилам соответствия: энергии их равны, массы равны, заряды противоположны, но самое важное, столкнувшись, они могут уничтожить друг друга (аннигилировать), превратив всю свою массу в энергию, например γ- излучение. Позитрон называется античастицей электрона, и эти свойства являются основными свойствами частицы и ее античастицы. Из рассуждений Дирака было ясно, что у всех остальных частиц тоже должны быть соответствующие античастицы. Например, наряду с протоном должен существовать и антипротон, который сейчас обозначается символом р. У него должен быть отрицательный электрический заряд, та же, что и у протона, масса и т. д. Однако наиболее важным свойством является то, что протон и антипротон, столкнувшись, могут уничтожить друг друга. Я особенно подчеркиваю это потому, что люди обычно удивляются, когда говоришь, что наряду с нейтроном существует и антинейтрон; они говорят: «Как антинейтрон может иметь противоположный заряд, ведь он нейтральный?» Приставка «анти» означает не просто противоположный заряд, частица характеризуется целым набором свойств, многие из которых становятся противоположными. Антинейтрон можно отличить от нейтрона следующим способом: если поместить рядом два нейтрона, они так и останутся двумя нейтронами, но если мы поместим рядом нейтрон и антинейтрон, то они уничтожат друг друга, причем выделят большое количество энергии в виде разных π-мезонов, γ-квантов и т. п.

Далее, если у нас есть антипротоны, антинейтроны и позитроны, то из них в принципе можно составить антиатомы. Это еще не сделано, но в принципе вполне возможно. В атоме водорода, например, в центре расположен протон, вокруг которого крутится электрон. Вообразите теперь, что мы сделали антипротон и запустили вокруг него позитрон. Будет ли он крутиться? Ну прежде всего антипротон заряжен отрицательно, а позитрон — положительно, так что они будут притягиваться друг к другу с соответствующей силой, а поскольку массы у них одинаковы с протоном и электроном, то одинаково будет и все остальное. В этом состоит один из принципов симметрии в физике: уравнения, по-видимому, говорят нам, что если сделать одни часы из вещества, а другие, точно такие же, из антивещества, то они будут идти совершенно одинаково. (Разумеется, если мы поместим эти часы рядом, то они уничтожат друг друга, но это уже совсем другое дело.)

Тогда немедленно возникает вопрос. Можно сделать двое часов из вещества, причем одни «правосторонние», а другие «левосторонние». Можно, скажем, сделать не простые часы, а часы с кобальтом, магнитами и детекторами, регистрирующими β-распадные электроны и считающими их. Всякий раз, когда регистрируется электрон, секундная стрелка слегка подвигается. Но тогда зеркально отраженные часы, в которые приходит меньше электронов, не будут идти с той же скоростью. Итак, теперь нам ясно, что возможно построить такую пару часов, что правосторонние не будут согласовываться с левосторонними. Давайте сделаем часы из вещества и назовем их стандартными, или правосторонними, и сделаем еще часы тоже из вещества и назовем их левосторонними. Мы только что установили, что эти двое часов, вообще говоря, не будут идти одинаковым образом, а до этого выдающегося открытия в физике считалось, что будут. Далее мы, кроме того, полагали, что вещество и антивещество эквивалентны, т. е. если бы мы сделали часы из антивещества, такие же правосторонние, той же самой формы, то они шли бы точно так же, как и правосторонние часы из вещества, а если бы мы сделали такие же левосторонние часы, то и они тоже ходили бы точно таким же образом. Другими словами, первоначально мы полагали, что все четверо таких часов должны работать совершенно одинаково. Но теперь мы знаем, что правосторонние и левосторонние часы из вещества не одинаковы. А следовательно, право- или левосторонние часы из антивещества тоже, по-видимому, не одинаковы.

Теперь возникает очевидный вопрос: есть ли пара часов, которые идут одинаково? Иначе говоря, ведет ли себя правостороннее вещество так же, как правостороннее антивещество? Или же правостороннее вещество ведет себя так же, как левостороннее антивещество? Эксперименты с β-распадом, но не с электронным, а с позитронным β-распадом, указывают, что эта связь такова: «правое» вещество ведет себя точно так же, как «левое» антивещество.

Итак, в конечном счете право-левая симметрия все же реабилитирована! Если мы изготовим левосторонние часы, но изготовим их из материала совершенно другого рода — из антивещества, а не из вещества, то они будут идти точно таким же образом. В итоге произошло вот что: вместо двух независимых правил в нашем списке симметрии мы получили одно новое комбинированное правило, гласящее, что правостороннее вещество симметрично с левосторонним антивеществом.

Таким образом, если наш приятель из космоса сделан из антивещества и мы даем ему указания, как сделать нашу «правостороннюю» модель, то он, разумеется, сделает все наоборот. Что произошло бы, если бы после долгих переговоров мы научились другу друга строить космические корабли и договорились бы о встрече где-то в космическом пространстве, на полпути между ним и нами? Разумеется, мы бы предварительно рассказали друг другу о своих обычаях и прочем, и вот наконец вы спешите навстречу, чтобы пожать ему руку. Но будьте внимательны. Если он протянет вам левую руку — берегитесь!

 

§ 9.

Нарушенная симметрия

А что нам делать с законами, которые только приблизительно симметричны? Самое удивительное здесь то, что в широкой области важнейших явлений—ядерные силы, электромагнитные явления и даже некоторые слабые взаимодействия типа гравитации, словом, все законы в широчайшей области физики оказываются симметричными. Но, с другой стороны, вдруг всплывает какое-то слабенькое явление и говорит: «Нет, не все на свете симметрично!» Но как могло случиться, что природа почти симметрична, а не абсолютно симметрична? Что нам с ней делать? Прежде всего давайте все-таки посмотрим, нет ли каких-то других примеров подобного рода? Да, такие примеры есть и даже не один. Например, ядерные части сил между протоном и протоном, между протоном и нейтроном или нейтроном и нейтроном в точности равны друг другу. Это некая новая симметрия — симметрия ядерных сил: в ядерных взаимодействиях протон и нейтрон вполне могут заменять друг друга. Но она, очевидно, не всеобщая симметрия, ибо между двумя нейтронами не существует электрического отталкивания, как между двумя протонами. Поэтому мы не можем всегда заменять протона нейтроном, это, вообще говоря, неверно, хотя и является хорошим приближением. Почему хорошим? Да потому, что ядерные силы гораздо больше электрических. Так что это тоже «почти симметрия». Итак, подобные примеры все же есть и в других областях.

Нас всегда тянет рассматривать симметрию как некоего рода совершенство. Это напоминает старую идею греков о совершенстве кругов. Им было даже страшно представить, что планетные орбиты не круги, а только почти круги. Но между кругом и почти кругом разница немалая, а если говорить об образе мыслей, то это изменение просто огромно. Совершенство и симметрия круга исчезают как только чуть-чуть исказить его. Деформируйте немного круг, и это будет концом его симметрии и совершенства. Спрашивается, почему же орбиты только почти круги? Это куда более трудный вопрос. Истинное движение планет, вообще говоря, должно происходить по эллипсам, но в течение веков благодаря приливным силам они превратились в почти окружности. Но везде ли есть подобная проблема? Если бы пути планет были действительно кругами, то проблема не требовала бы пространных объяснений — они просты. Но поскольку эти пути только почти круговые, то объяснить нужно очень многое. Результат же превращается в большую динамическую проблему, и теперь нам нужно объяснить, привлекая приливные силы или что-то еще, почему они приблизительно симметричны.

Итак, наша цель понять, откуда взялась симметрия. Почему природа столь близка к симметрии? По этому вопросу ни у кого нет никакой разумной мысли. Единственное, что я могу предложить вам,— это старое японское предание. В японском городе Никко есть ворота, которые японцы называют самыми красивыми воротами страны. Они были построены в период большого влияния китайского искусства. Это необычайно сложные ворота, со множеством фронтонов, изумительной резьбой и большим количеством колонн, на основании которых вырезаны драконьи головы, божества и т. п. Но, приглядевшись, можно заметить, что в сложном и искусном рисунке на одной из колонн некоторые из его мелких деталей вырезаны вверх ногами. В остальном рисунок полностью симметричен. Спрашивается, для чего это было нужно? Как говорит предание, это было сделано для того, чтобы боги не заподозрили человека в совершенстве. Ошибка была сделана намеренно, дабы не вызвать зависти и гнева богов.

Мы можем, вообще говоря, подхватить эту мысль и сказать, что истинное объяснение приблизительной симметрии мира состоит в следующем: боги сотворили свои законы только приближенно симметричными, чтобы мы не завидовали их совершенству!