В последние годы Альберт Эйнштейн вел простую жизнь. Он спал допоздна в своем обшитом белой вагонкой доме на Мерсер-стрит почти в центре города Принстона, штат Нью-Джерси, где он жил со своей сестрой Майей. (Его жена Эльза умерла в 1936 году вскоре после переезда.) Каждую неделю Эйнштейн ходил в Fuld Hall — главное здание института перспективных исследований, где работал с 1933 года. С годами он стал привычной фигурой в принстонском кампусе, но даже будучи более известным, чем когда бы то ни было раньше, оставался одиноким.
Эйнштейн стал одним из первых постоянных членов нового института, учреждения для гениальных умов, основанного семьей Бамбергер и финансируемого из частных фондов. Его окружали прославленные коллеги. Например, Джон фон Нейман, математик, работавший над атомной бомбой и один из первых изобретателей современных компьютеров. Некоторое время там трудился математик Герман Вейль, протеже Давида Гильберта, одним из первых поднявший знамя теории пространства-времени Эйнштейна. Присутствовал в этом кругу и Курт Гёдель, философ и логик, своей теоремой о неполноте посеявший хаос в философии XX века. И разумеется, не обошлось без Роберта Оппенгеймера, который в 1947 году стал директором института. В коридорах Эйнштейн мог встретить почетных посетителей, создателей квантовой физики или современной математики. Но всему он предпочитал уединение собственного кабинета.
Через несколько часов Эйнштейн отправлялся домой для обеда и сна. Затем можно было пойти в кабинет, сесть в любимое кресло, обернув ноги пледом, и заняться вычислениями, написанием работ и разбором множества писем, которые прорывались в его жизнь из внешнего мира. Письма от глав государств и высокопоставленных лиц перемежались просьбами молодых ученых и восторгами поклонников. В конце дня следовал ранний ужин, затем он слушал радио и немного читал перед тем, как отправиться спать.
Для человека, достигшего такой колоссальной известности, это была необычайно спокойная жизнь. Его не забыли. Его имя было таким же известным, как имена Чарли Чаплина и Мэрилин Монро. Он состоял членом многочисленных ученых обществ, его приглашали во многие города. Его лицо красовалось на обложке журнала Time, став одним из знаковых образов новой технологической эры. Время от времени знаменитости пускались в путь, чтобы провести несколько часов в обществе этого великого человека. Ему наносили визиты Джавахарлал Неру с дочерью Индирой Ганди и премьер-министр Израиля Давид Бен-Гурион. Джульярский струнный квартет однажды прибыл, чтобы сыграть импровизированный концерт в его гостиной.
Однако несмотря на мировую известность, Эйнштейн по большей части держался замкнуто. Хотя у него было несколько молодых ассистентов, он предпочитал работать в одиночку. Его гордостью и радостью по-прежнему оставалась общая теория относительности, и время от времени он углублялся в нее, выходя за рамки решений Фридмана, Леметра и Шварц-Юильда и пытаясь найти новые, более сложные, но вместе с тем более реалистичные варианты. Общая теория относительности могла еще многое дать, но мало кто хотел тратить на нее время, предпочитая направлять усилия на развитие квантовой теории. Даже самого Эйнштейна почти на три десятилетия захватила эта более масштабная концепция. А от собственного детища он держался в стороне.
К 1950-м годам Эйнштейн сильно изменился по сравнению с тем, каким он был в 1920-е. Ранний успех в науке позволил ему путешествовать по миру, принимая королевские почести, читать публичные лекции, дискутировать с другими физиками, сначала отвергнув, а затем приняв идею расширяющейся Вселенной. Недалеко от Берлина, в Потсдаме, в его честь возвели башню Эйнштейна, в которой выводы из его теории можно было проверять наблюдениями. Его превозносили на международных встречах, на которых он высказывал свое мнение о новейших открытиях в области физики.
Он стал свидетелем нарастающих антисемитских настроений на родине и с наступлением 1930-х ощутил тяжелые последствия растущего влияния нацисткой партии и ее приверженцев. Регион его путешествий стал сужаться, угроза смерти возросла, и, несмотря на славу, Эйнштейн с опаской перемещался по Европе, выполняя свои многочисленные обязательства.
Как национальное достояние, Эйнштейн был в какой-то мере защищен от царящих вокруг безобразий, но тем не менее ему довольно рано довелось ощутить темную сторону антисемитизма. Группа ученых, известная как «Сообщество немецких естествоиспытателей за сохранение чистой науки», начала кампанию против общей теорией относительности, только недавно увидевшей свет. Сообщество разгромило принцип относительности как пример «массового заблуждения» и попыталось подготовить иск против Эйнштейна, обвинив его в плагиате. К движению был привлечен ярый противник теории относительности всемирно известный ученый Филипп Ленард.
Ленард родился в Венгрии. В 1905 году он получил Нобелевскую премию за работу, посвященную катодным лучам. Именно его эксперименты легли в основу ранней теории Эйнштейна о квантах света. До формулирования общей теории относительности отношения Ленарда с Эйнштейном были вполне учтивыми. Но против этой теории Ленард яростно возражал — она была слишком запутанной и входила в противоречие с тем, что он считал «здравым смыслом» для любого физика. Он писал опровергающие теорию относительности статьи в Jahrbuch der Radioaktivitat — том самом журнале, в котором в 1907 году Эйнштейн впервые представил идеи, послужившие основой его теории. Завязалась словесная перепалка, в которой Эйнштейн пренебрежительно назвал Ленарда дилетантом в теоретической физике и неспособным понять его идеи. Ленард обиделся и потребовал публичных извинений. Этот скандал бросил тень как на Эйнштейна, так и на Ленарда и «антирелятивистов».
К 1933 году Эйнштейну надоела Германия. После прихода нацистов к власти он решил разорвать свои связи с Берлином. Эйнштейн покинул вступающую в мрачные времена Германию, а его теорию избрало своей мишенью движение «Арийская физика». По мере возвышения нацистской партии стало проще двигать вперед дело Филиппа Ленарда, горячо поддерживаемое другим нобелевским лауреатом, физиком Йоханнесом Штарком. По мнению Ленарда и Штарка, теория Эйнштейна была частью еврейской физики, отравляющей немецкую культуру. В соответствии с грандиозными планами нацистов эту физику следовало ликвидировать.
После отъезда Эйнштейна в научных кругах Германии несколько лет велось планомерное уничтожение той физики, которая подарила миру большую часть величайших открытий начала XX века. К началу Второй мировой войны со своих университетских должностей были сняты все еврейские профессора. Покинули Германию наиболее дальновидные ученые Эрвин Шрёдингер и Макс Борн, сыгравшие важную роль в создании новой квантовой физики. Некоторые из них в конечном итоге внесли свой вклад в проекты по созданию атомной бомбы, реализуемые союзниками во время Второй мировой войны.
Йоханнес Штарк предпринял шаги, чтобы стать лидером «новой арийской физики» в понесшем значительные потери научном сообществе. Но на его пути стоял один из отцов современной квантовой теории Вернер Гейзенберг. Он не был евреем, но Штарка это не остановило. Он написал для официальной газеты СС статью, в которой клеймил Гейзенберга «белым евреем», называя его причиной упадка немецкой науки наравне с теми, кто уже был выдворен из страны. Но как ни странно, этот демарш потерпел неудачу. Гейзенберг был одноклассником рейхсфюрера СС Генриха Гиммлера, который и защитил его от дальнейшего поношения. В конечном счете Гейзенберг, к ужасу своих бежавших из гитлеровской Германии коллег, начнет работать над проектом немецкой атомной бомбы.
После отъезда Эйнштейна работа над его теорией в Германии прекратилась. Во время Веймарской республики его превозносили как национального героя, но в годы правления нацистов его имя быстро исчезло из немецкой культуры. Некоторые его идеи, приведшие к разработке теории относительности, оставались в учебниках, но в основном учебнике по физике, Lehrbuch der Physik Гримзеля, его имя даже не упоминалось. Только после войны общая теория относительности Эйнштейна снова привлекла внимание.
Идеи Эйнштейна подвергались гонениям не только в Германии. В стране, находящейся на другом конце политического спектра, в Советском Союзе, теория относительности и квантовая механика внезапно вошли в противоречие с официально принятой философией, диалектическим материализмом, интегральной частью марксизма. Эту философию, взяв за основу идеи немецких философов Фридриха Гегеля и Людвига Фейербаха, разработал в конце XIX века Карл Маркс, а затем развил Фридрих Энгельс с многочисленными последователями, в частности Владимиром Лениным. В статье от 1938 года «Диалектический и исторический материализм» Иосиф Сталин определил, объяснил и эффективно канонизировал ее как часть официальной советской идеологии. Основой всего в этой философии являлась материя, и уже из нее вытекало все остальное. Реальность определялась поведением мира материи и предшествовала любой форме мыслей и идеализации, находясь с ней в тесной связи. Как писал Карл Маркс в своем фундаментальном труде «Капитал»: «Идеальное есть не что иное, как материальное, пересаженное в человеческую голову и преобразованное в ней».
Приверженцы философии Маркса стремились все объяснить с точки зрения различных составляющих материального мира и их взаимодействия. Все в мире природы вносило свой вклад во Вселенную, находящуюся в постоянном состоянии эволюции и периодически подвергающуюся колоссальным трансформациям, возникающим в результате постепенного накопления мелких изменений. Важно то, что существование и эволюция материи рассматривались как объективная реальность, законы которой не зависят от наблюдателей и интерпретаций. Человеческие знания могли точно и подробно аппроксимировать эту объективную реальность серией сходящихся итераций, но этот процесс никогда не считался исчерпывающим и никогда не завершался.
У большинства, если не у всех, физиков в мире нет никаких проблем с материалистическим видением как таковым. Более того, они являются практикующими материалистами, хотя и не называют себя таковыми. Но те же физики посмотрели бы на философов с пренебрежением и яростно выступили бы против любых их попыток учить себя способам ведения исследований на основе «корректной методологии», выдвинутой какой-то философской школой. Однако марксизм-ленинизм являлся не просто отдельной философской концепцией, это была мощная, проникающая во все области жизни идеология, поддерживаемая советским государством. В напряженной политической атмосфере 1930-х, 1940-х и 1950-х философские дебаты об интерпретации квантовой механики или теории относительности могли привести к обвинениям в нелояльности, порой с опасными последствиями.
Следует признать, что как релятивистская физика Эйнштейна, так и распространяющиеся новые представления о квантах, с их сложностью и бесконечными, часто неясными философскими размышлениями были легкой добычей советских научных философов. В теории пространства-времени Эйнштейна также многое допускало критику. В первую очередь, это был яркий пример допущений. Ее основой послужили известные ныне мысленные эксперименты Эйнштейна, сделанные практически без участия данных из материального мира. Кроме того, теория формулировалась крайне непонятным математическим языком, набором правил и принципов, затруднявших интерпретацию, особенно людьми, которые, как многие из философов, не были профессионалами в математике. Наконец, в довершение ко всему теория Эйнштейна породила абсурдную Вселенную, имеющую начало, что слишком напоминало религиозные воззрения, с которыми в Советском Союзе велась нещадная борьба. Более того, большой вклад в данную теорию внес священник, аббат Леметр, еще один продажный иностранец из декадентского буржуазного общества. За яростным неприятие несоветского мышления был совершенно забыт тот факт, что первым концепцию расширяющейся Вселенной предложил гениальный русский и советский физик Александр Фридман. Костер дебатов годами тлел, периодически ярко вспыхивая, но было бы неоправданным упрощением представлять ситуацию как идеологическую борьбу между блестящими учеными и невежественными ортодоксальными философами. К философам присоединился ряд физиков и математиков, в том числе довольно известных, и спор усугубили групповые предпочтения и прочие не связанные с предметом обсуждения факторы.
В 1952 году влиятельный советский философ и историк науки Александр Максимов опубликовал статью «Против реакционного эйнштейнианства в физике». Хотя публикация появилась в малоизвестной советской газете «Красный флот», физики отреагировали на нее весьма активно. Ученик Фридмана и ведущий советский релятивист Владимир Фок парировал ее собственной статьей «Против невежественной критики современных физических теорий». Перед ее публикацией Фок, Лев Давыдович Ландау и другие физики обратились за поддержкой к советскому правительству. В секретном письме к близкому соратнику Сталина и куратору ядерного и термоядерного проектов Лаврентию Берии они жаловались на «неформальное положение, сложившееся в советской физике», приводя статью Максимова как пример агрессивного невежества, тормозящего прогресс советской науки. Статья была опубликована, и Фок заявил, что обладает поддержкой правительства в этом вопросе. Возмущенный Максимов пожаловался Берии, настаивая на своих взглядах, но к 1954 году преобладающим было влияние группы Фока и Ландау. Разумеется, у высшего советского руководства были более срочные дела, чем анализ тонкостей теорий Эйнштейна. Кроме того, Ландау и прочие имели на своей стороне крайне весомый аргумент: они успешно работали над проектом советской атомной бомбы, поэтому теории, на которых была основана их работа, считались корректными, невзирая на философскую интерпретацию. К середине 1950-х идеологические войны между советскими философами и физиками подошли к концу, и релятивистов оставили в покое. Одним из последних отголосков этой битвы стала записка в Центральный комитет Коммунистической партии от Евгения Лившица, который был соавтором Ландау во всемирно известном «Курсе теоретической физики», с жалобой на «идеологически некорректный» пленарный доклад, посвященный теории расширяющейся Вселенной. Записка была должным образом рассмотрена комитетом и… оставлена без последствий.
Войны марксистских философов не имели никакого отношения к политическим репрессиям 1937-1938-го и других лет, во время которых погиб ряд талантливых советских физиков, например Матвей Бронштейн, Лев Шубников, Семен Шубин и Александр Витт, в то время как остальные были арестованы, заключены в тюрьму или сосланы. И хотя казалось, что идеологические войны не влияют на развитие теории относительности в СССР, прогресс был крайне медленным из-за возросшего, как и на Западе, интереса к квантовой теории, борьбы за выживание в процессе быстрой индустриализации, героической и победоносной войны с европейским фашизмом и последующей гонки вооружений во время холодной войны.
Так как советские философы не одобряли математическую идеализацию, послужившую основой общей теории относительности, отвергли они и более позднюю работу Эйнштейна, когда после прибытия в Принстон его захватила идея создания большой объединяющей теории. Он все еще ценил свою предшествующую работу, но хотел сделать нечто более масштабное и улучшенное. Он надеялся свести общую теорию относительности к теории, объединяющей всю фундаментальную физику. Эйнштейн стремился показать, что не только гравитационные взаимодействия, но также электричество и магнетизм и даже некоторые странные эффекты, присущие квантам, могут быть представлены как геометрия пространства-времени. Но если в ситуации с общей теорией относительности физические озарения элегантно согласовывались римановой геометрией, к новой проблеме Эйнштейн решил подойти совсем другим путем. Он отказался от своей потрясающей физической интуиции в пользу математики.
Поле деятельности Эйнштейна не ограничивалась общей теорией относительности. Тридцать лет он цеплялся то за одну, то за другую гипотезу, иногда отказываясь от той или иной возможности, чтобы вернуться к ней годы спустя. Например, он пытался расширить пространство-время с четырех до пяти измерений. Это дополнительное пространственное измерение было свернутым и практически ненаблюдаемым. Его геометрия, или кривизна, играла роль электромагнитного поля, отвечая на заряд и токи в точности так, как в середине XIX века было предсказано Джеймсом Клерком Максвеллом.
Авторство идеи о пятимерной Вселенной принадлежало не Эйнштейну. Ее выдвинули двое молодых ученых: младший приват-доцент из Кенигсбергского университета Теодор Калуца и работавший под руководством Нильса Бора молодой и шедский ученый Оскар Клейн. Вместе они предложили способ практически идеально имитировать электромагнетизм при помощи пятимерного пространства-времени. Вселенные Калуцы и Клейна, на которые Эйнштейн потратил почти двадцать лет своей жизни, наполнены странной формой материи, бесконечным количеством частиц различной массы, распределенных в пространстве и искажающих остальную геометрию пространства-времени. Эйнштейн надеялся, хотя так и не смог этого доказать, что эти дополнительные поля могут быть неразрывно связаны с волновыми функциями, введенными Шрёдингером в его квантовую физику. От этих гипотез он отказался в конце 1930-х, но, что интересно, построения Калуцы-Клейна снова выйдут на сцену в 1970-х, когда в теоретической физике начнется поиск универсальной теории.
Намного больше времени Эйнштейн посвящал попыткам объединения гравитационных взаимодействий и электромагнетизма. Он ввел в геометрическую основу общей теории относительности язык, предложенный Риманом за много десятилетий до ее появления. Исходная теория при описании геометрии и динамики пространства-времени использовала десять неизвестных функций, определяемых из предложенных Эйнштейном уравнений поля. Именно такое количество связанных друг с другом неизвестных было одной из основных причин сложности работы с теорией. Но новую версию, по замыслу Эйнштейна, нужно было расширить, добавив еще шесть функций, три из которых относились к электрической части, а три к магнитной. Сложность состояла в том, чтобы объединить эти шестнадцать функций, сохранив однозначность и предсказуемость теории. В случае успеха результат привел бы к грандиозным выводам одновременно и из общей теории относительности, и из теории электромагнитных взаимодействий. Эйнштейн хотел сделать это красиво с математической точки зрения, но за десятки лет так и не смог найти нужный путь.
Эйнштейн знал, что поиск большой универсальной теории должен был стать доминирующим в физике конца XX века, но пока ему предстояло заниматься этим нереально сложным делом в одиночку. В то время как он без посторонней помощи сражался со своей новой и дьявольски сложной теорией, остальной мир с интересом следил за ним. Время от времени Эйнштейн попадал на первые страницы центральных газет. В ноябре 1928 года заголовок New York Times объявил: «Эйнштейн на пороге большого открытия», а спустя несколько месяцев появилось короткое интервью Эйнштейна с такой припиской: «Эйнштейн поражен суматохой вокруг новой теории. Держит сто журналистов в напряжении целую неделю». Этот уровень внимания и напряженного ожидания сопровождал его и следующие двадцать пять лет. В 1949 году в New York Times снова объявили: «Новая теория Эйнштейна дает ключ к тайнам Вселенной», а несколько лет спустя, в 1953-м, провозгласили: «Эйнштейн предлагает новую теорию для объединения космических законов». Несмотря на внимание популярных газет, среди коллег Эйнштейн начинал чувствовать себя в некотором роде чужаком, а его попытки унификации не находили широкого отклика.
Сбежав из Германии из-за негативного отношения к своей деятельности, Эйнштейн обнаружил, что его новая родина, Соединенные Штаты, также не проявляет к общей теории относительности особого интереса. Молодые ученые с хорошим потенциалом, способные продвинуть ее вперед, были поглощены квантовой физикой, пытаясь применять ее к фундаментальным частицам и взаимодействиям.
В некотором смысле их можно было понять. Ранее общая теория относительности уже принесла ряд успешных открытий, например она обосновала прецессию перигелия Меркурия и гравитационное отклонение света. Она привела к открытию расширяющейся Вселенной, сильно повлияв на наше мировоззрение. Но это было в прошлом. Кроме того, создалось впечатление, что теория относительности может давать только фантастические математические предсказания, такие как решения Шварцшильда или Оппенгеймера и Снайдера для коллапсирующих или сколлапсировавпшх звезд. Доказательством подобных странных решений, существовавших где-то там, в пространстве, была только сама теория. Но в реальности их никто не видел, поэтому имело смысл считать их математическим казусом. А квантовая физика поддавалась экспериментальным измерениям в лабораториях и могла служить для создания каких-то вещей. Однако было ясно, что общая теория относительности может давать и еще более странные результаты, что смог показать логик Курт Гёдель.
Путь из дома в институт Эйнштейн не всегда совершал в одиночку. Часто этого эксцентричного и неаккуратно выглядящего профессора с всклокоченными волосами и добрым взглядом сопровождала маленькая фигурка, всегда укутанная в тяжелое пальто, с глазами, скрытыми за толстыми линзами очков. Пока Эйнштейн рассеянно двигался к главному зданию института, этот человек плелся следом, спокойно выслушивая монологи Эйнштейна и отвечая ему высоким голосом. Эйнштейн наслаждался прогулками с этим странным маленьким человеком и доверял ему. Его другом стал Курт Гёдель, ученый, ответственный за пересмотр современной математики. К изумлению Эйнштейна, Гёдель смог значительно расширить общую теорию относительности.
Гёдель приехал из Вены, которая в начале столетия представляла собой интеллектуальный центр. В ее кофейнях, которые стали домом для Эрнста Маха, Людвига Больцмана, Рудольфа Карнапа, Густава Климта и целого ряда гениальных мыслителей, процветал свободный дух дискуссий. Наиболее престижным из неформальных сообществ был получивший Мировую известность «Венский кружок». Туда попадали только по приглашениям, и Гёдель оказался в числе немногих избранных.
В отличие от Эйнштейна Гёдель получал в школе отличные отметки по всем предметам, а в университете считался выдающимся студентом. Он заигрывал с физикой, но представлял, как соединить ее с математикой в одну логичную конструкцию. Он оперативно изучал разработки, которые с удивительной скоростью штамповали философы и математики в попытках создать нерушимую теорию математики, в которой не будет места нерациональности, допущениям и обходным маневрам. Именно такой план продвигал правивший в Геттингене Давид Гильберт.
Гильберт был убежден, что всю математику можно построить из набора постулатов, или аксиом. С его точки зрения, тщательно и систематически применяя правила логики, любой математический факт во Вселенной можно вывести из не более чем полудюжины аксиом. Исключений быть не должно. Проверка любого математического факта от 2 + 2 = 4 до последней теоремы Ферма должна была иметь логическое доказательство. Именно программа Гильберта являлась движущей силой математики, когда на нее обратил внимание Гёдель.
Погруженный в жизнь Вены, спокойно посещающий собрания «Венского кружка» и наблюдающий за бесконечными обсуждениями способов распространить программу Гильберта на всю природу, которые вели логики и математики, Гёдель медленно и неуклонно подбирался к собственной фундаментальной гипотезе. И в какой-то момент одним махом полностью разрушил планы Гильберта, сформулировав теорему о неполноте.
Эта теорема утверждала крайне простые вещи. Любое Математическое описание системы начинается с набора аксиом и правил. Гёдель показал, что при любом наборе первоначальных постулатов всегда останутся аспекты, которые невозможно вывести: недоказуемые неопровержимые формулы. Обнаруженную формулу можно добавить в существующий набор аксиом. Но теорема Гёделя показала наличие бесконечного количества таких недоказуемых неопровержимых формул. По мере того как вы находите все новые истины, которые невозможно доказать, и добавляете их к своим аксиомам, ваша простая и элегантная дедуктивная система раздувается до гигантских размеров, оставаясь тем не менее неполной.
Теорема Гёделя парализовала программу Гильберта и выбила из седла многих его коллег. Сам Гильберт сначала с раздражением отказался признавать результат Гёделя, но в конечном итоге он его принял и безуспешно попытался встроить в свою программу. Другие философы опубликовали ничем не обоснованную критику, от которой Гёдель дистанцировался. Английский философ Бертран Рассел так никогда и не смог нормально воспринять результаты Гёделя. Доминировавший в философских течениях первой половины XX века Людвиг Витгенштейн просто отверг теорему о неполноте как неуместную. Но Гёдель верил, что она таковой не была.
Хотя Гёдель любил Вену, в конечном счете его начало привлекать место, которое Эйнштейн называл «замечательным местечком и… церемонным поселком маленьких полубогов на ходулях». После ряда визитов в 1930-х он стал комфортно чувствовать себя в Институте перспективных исследований, водя дружбу с Эйнштейном, вступая в дискуссии с фон Нейманом и постепенно осознавая, насколько высок интеллектуальный уровень эмигрантов, нашедших приют в Принстоне. Неприятный инцидент в Вене, когда Гёделя избили, приняв за еврея, вынудил его к переезду.
Эйнштейн и Гёдель сразу поладили. Эйнштейн говорил, что он ходит на службу «только ради возможности возвращаться домой с Гёделем». Эйнштейн заботился о нем, когда Гёдель болел. Когда подавший документы на получение американского гражданства Гёдель уже готовился принять присягу, он обнаружил в американской конституции логическое несоответствие, допускавшее установление в стране диктатуры. Именно Эйнштейн помешал тогда Гёделю сорвать церемонию получения гражданства.
Одержимый математикой Гёдель любил физику и часами обсуждал с Эйнштейном теорию относительности и квантовую механику. Они оба с трудом принимали случайности в квантовой физике, но Гёдель пошел еще дальше: он предположил, что в общей теории относительности Эйнштейна имеется критический недостаток.
Гёдель набросился на уравнения Эйнштейна и подобно Фридману, Леметру и многим другим, кто брался за эту теорию ранее, попытался упростить их в поисках контролируемого решения, которое представляло бы реальную Вселенную. Наверное, вы помните, что Эйнштейн считал Вселенную наполненной различной материей — атомами, звездами, галактиками, всем чем угодно, — равномерно распределенной в пространстве. Повернувшись на произвольный угол в любой момент времени, вы увидели бы ровно ту же самую картину, лишенную характерных черт и не имеющую центра или другой приоритетной точки. Фридман и Леметр каждый по-своему последовали примеру Эйнштейна и нашли простые решения, согласно которым геометрия пространства менялась со временем. Гёдель решил слегка усложнить картину. Совсем чуть-чуть, чтобы уравнения все еще поддавались решению. Но при этом дополнение было достаточно значительным, чтобы обеспечить интересный результат. Он предположил, что вся Вселенная вращается вокруг центральной оси, как карусель, снова и снова поворачиваясь относительно времени. Пространство-время в построенной Гёделем Вселенной, как и в моделях, предложенных Фридманом и Леметром, можно было описать в терминах времени, трех пространственных координат и геометрической характеристики каждой точки пространства-времени. Но были и отличия. Например, в моделях Фридмана и Леметра присутствовал эффект красного смещения, обнаруженный Хабблом и Слайфером в реальной Вселенной. Вселенная же Гёделя была этого лишена. Очевидно, что эта модель не могла объяснить измеренное Слайфером, Хабблом и Хыомасоном расширение. Но суть дела состояла не в этом. Решение все равно было верным и моделировало одну из возможных Вселенных в общей теории относительности Эйнштейна.
Тем не менее решение Гёделя одной деталью радикально отличалось от всех ранее представлявшихся моделей. Во Вселенных Фридмана и Леметра наблюдатель мог перемещаться в пространстве, исследуя различные части пространства-времени. При этом с течением времени он старел, оставляя за плечами прошедшие годы. Там присутствовало четкое понятие о прошлом, настоящем и будущем. Во Вселенной Гёделя ничего подобного не было. В ней при достаточно быстром перемещении наблюдатель мог проскользнуть вдоль вращающегося пространства-времени и вернуться к началу собственного жизненного цикла. С достаточной точностью он мог попасть в момент, когда он был намного моложе. Другими словами, во Вселенной Гёделя разрешались путешествия во времени.
В фантастической Вселенной Гёделя можно было двигаться во времени взад и вперед, возвращаться в прошлое, исправлять ошибки юности, просить прощения у давно умерших родственников, предостерегать себя от принятия в будущем неверных решений. Но одновременно становились возможными вещи, не имеющие смысла и приводящие к некоторым парадоксам, нарушающим ход вещей. Представьте, что вы разогнались, попали в прошлое и встретили свою бабушку, когда она была еще юной девушкой, и по ужасной случайности убили ее. Будучи стертой с лица земли, она уже не сможет дать жизнь вашей матери или вашему отцу. Соответственно этим вы запрещаете и свое собственное существование, а значит, некому уже будет вернуться в прошлое, чтобы совершить там свой ужасный поступок. Тем не менее если бы вы жили во Вселенной Гёделя, ничто, кроме технологических и моральных ограничений, не препятствовало бы подобному сценарию. Результат Гёделя показал, что общая теория относительности Эйнштейна имеет решения, допускающие путешествия в прошлое и парадоксы, подобные описанному, что совсем не согласуется с нашим реальным опытом. Однако если предположить, что теория Эйнштейна правдиво отражает окружающий мир, то абсурдная Вселенная Гёделя становится физически возможной.
Свои результаты Гёдель представил в 1949 году на собрании в честь семидесятилетия Эйнштейна. Они были красиво оформлены в виде набора простых постулатов и окончательного решения. Однако все это выглядело столь фантастичным, что никто не знал, что с этим делать. Чандра, в течение двадцати лет подвергавшийся нападкам и критике Эйнштейна, написал короткую записку, в которой указал на, как ему казалось, ошибку в выводах Гёделя. Но на этот раз дотошный и аккуратный Чандра сам допустил математическую ошибку. Астроном X. П. Робертсон, стоявший вместе с Фридманом и Леметром у истоков идеи расширяющейся Вселенной, годом Позже рассмотрел все выкладки и пренебрежительно отверг Вселенную Гёделя.
А что Эйнштейн? Он воспользовался своей легендарной интуицией, сыгравшей столь большую роль во всех его великих открытиях от специальной до общей теории относительности. Разумеется, та же самая интуиция заставила его отвергать решения Фридмана и Леметра и игнорировать решение Шварцшильда. Он отреагировал на работу Гёделя, признав его модель Вселенной «важным вкладом в общую теорию относительности», но ничего не сказав о том, стоит ли «исключить ее из физического рассмотрения».
Предложенное Гёделем решение уравнений Эйнштейна кажется слишком странным для воплощения в реальном мире. До своей смерти в 1978 году Гёдель продолжал искать в астрономических данных свидетельства, которые могли бы доказать реальную физическую значимость его решения. Но в некотором смысле работа Гёделя явилась примером, продемонстрировавшим основную проблему общей теории относительности — это чисто математическая теория, приводящая к странным выводам, которые не имеют отношения к реальной Вселенной.
Когда в 1935 году Институт перспективных исследований впервые попытался пригласить на работу Оппенгеймера, в то время как его группа в Беркли только начала делать себе имя, он ответил отказом. После короткого визита он писал своему брату: «Принстон — это дом умалишенных: эгоцентричные светила, сияющие в уединенном и тщетном одиночестве. Эйнштейн совершенно сумасшедший». Он так и не смог побороть свое недоверие к поздним работам Эйнштейна.
В 1947 году Оппенгеймер, наконец, согласился возглавить институт. Это назначение не обошлось без протестов. Эйнштейн и Герман Вейль агитировали за австрийского физика Вольфганга Паули, сформулировавшего принцип запрета, краеугольный камень квантовой физики. Они давили на преподавательский состав, категорически заявляя, что «Оппенгеймер не сделал столь же фундаментального вклада в физику, как Паули с его принципом запрета». Однако организаторские способности Оппенгеймера произвели впечатление, и работа была предложена именно ему, после чего он начал менять атмосферу института. Он принес с собой энтузиазм. Статья на обложке журнала Time 1948 года сообщала: «В списке приглашенных Оппи в этом году историк Арнольд Тойнби, поэт Т. С. Элиот, философ права Макс Радин, а также литературный критик, бюрократ и руководитель авиакомпании. Ничего не известно о том, кто будет следующим: возможно, психолог, премьер-министр, композитор или художник». С уединением было покончено.
Слегка покопавшись в общей теории относительности еще во время работы в Беркли, Оппенгеймер потерял к ней интерес. Вместе со своим учеником Хартландом Снайдером он написал одну из самых важных работ в этой области, открыв сжатие пространства-времени. Со временем он все больше разочаровывался в устаревшей, как он считал, и заумной теории, отговаривая молодых ученых от работы над ней. Молодой сотрудник института Фримен Дайсон в годы руководства Оппенгеймера писал домой, что «общая теория относительности в настоящее время является наименее перспективной областью исследований». До новых экспериментов, демонстрирующих странную природу пространства и времени или возможность включить общую теорию относительности в квантовую физику, говорить о ее применении не приходилось.
Оппенгеймер был не единственным ведущим физиком, отвергающим общую теорию относительности. Набирающая Все большую популярность квантовая физика настолько затмила плод усилий Эйнштейна, что стало даже сложно публиковать статьи, посвященные данной теме. Редактором журнала Physical Review был проживающий в Америке голландский ученый Сэмюэл Гаудсмит, игравший важную роль в первые годы появления квантовой теории. Став после эмиграции в Америку редактором журнала, он решил превратить его в основной печатный орган физиков, вступив в прямую конкуренцию с европейскими изданиями. К общей теории относительности Гаудсмит относился с недоверием. Как и Оппенгеймер, он считал, что столь заумная теория с ограниченной применимостью и возможностями проверки имеет не очень большой потенциал. Он пригрозил статьей, фактически запрещающей публикацию работ по «гравитации и фундаментальной теории». И только призыв принстонского профессора Джона Арчибальда Уиллера, который начал очаровываться теорией Эйнштейна, удержал Гаудсмита от этого шага.
Между Оппенгеймером и Эйнштейном в итоге установилась хрупкая дружба, сердечная, но не задушевная, с демонстрацией благосклонности и расположения. Однажды Оппенгеймер преподнес старику сюрприз, в качестве подарка на день рождения установив на доме на Мерсер-стрит радиомачту и обеспечив Эйнштейну возможность по вечерам слушать любимую музыку. В Эйнштейне Оппенгеймер обнаружил союзника, поддержавшего его в самые черные дни. Во время работы в Беркли Оппенгеймер пережил стремительный взлет и показал чудеса стратегического управления в рамках Манхэттенского проекта. Он прочно вошел в правящую верхушку как член семерки из комиссии по атомной энергии США, наблюдающей за послевоенными атомными проектами и применением атомной энергии. Он вызывал немалое раздражение, не желая подписываться под наиболее необычными ядерными проектами, такими как ядерный самолет, способный находиться в воздухе сутками, или водородная бомба, затмевающая своей мощью бомбы, сброшенные на Хиросиму и Нагасаки. Подобными действиями Оппенгеймер нажил себе немало врагов. И во время антикоммунистической истерии, начавшейся в 1950-х в эпоху Маккарти, эти враги нанесли удар.
В 1953 году в журнале Fortune Оппенгеймер подвергся резкой критике за «настойчивые попытки поменять направление военной политики США» и был обвинен в заговоре с целью помешать разработкам водородной бомбы. В результате он лишился допуска к секретной работе и был признан угрозой национальной безопасности Соединенных Штатов. В 1954 году Оппенгеймер настоял на проведении слушаний и был частично оправдан, но вернуть допуск не удалось. Отчет по результатам слушаний исчерпывающе сообщал: «Продолжающееся поведение и связи доктора Оппенгеймера указывают на серьезное пренебрежение требованиями безопасности». Оппенгеймер утратил свое положение в кругах вашингтонской элиты.
Эйнштейн никогда не понимал, чем Оппенгеймера так привлекала власть, почему для него настолько важным было положение ведущего правительственного чиновника? Как знаменосец мирового пацифизма, Эйнштейн не мог взять в толк, почему симпатизирующий его взглядам Оппенгеймер не может громче высказывать свое неодобрение гонке вооружений. Сам Эйнштейн не удержался от телевыступления с воззванием против зла «супербомбы», что стало причиной заголовков «Эйнштейн предупреждает мир: запретить бомбу или погибнуть».
В последние, самые одинокие дни Эйнштейн снова обрел известность. Издали ситуация выглядела иронично. На одном этаже института Эйнштейн помогал рисовать пацифистские Плакаты против распространения ядерного оружия, а на другом Оппенгеймер обдумывал планы создания водородной бомбы. Однако Эйнштейн мог позволить себе подобную активность. Он был слишком известен, чтобы его затронула антикоммунистическая истерия. Поэтому если Оппенгеймеру, ключевой фигуре американского ядерного господства, после того как он был сброшен с трона и унижен слушаниями по допуску, приходилось соблюдать осторожность, чтобы его не связали с коммунистической угрозой, Эйнштейн забыл всякую осторожность. Он публично поносил слушания и писал в New York Times: «Как интеллектуальное меньшинство может бороться с этим злом? Честно говоря, я вижу только революционный путь отказа от сотрудничества в стиле Ганди». Он публично советовал всем, кого вызывали на слушания, отказаться от участия, ссылаясь на пятую поправку к конституции, дающую право не отвечать на вопросы.
Последние годы Эйнштейна были омрачены болезнью. В 1948 году ему был поставлен потенциально смертельный диагноз: аневризма брюшной аорты. С годами заболевание медленно прогрессировало, и Эйнштейн готовил себя к неизбежному. В 1955 году, достигнув возраста семидесяти шести лет, Эйнштейн понял, что слишком болен и не сможет поехать в Берн на конференцию по поводу пятидесятилетней годовщины его специальной теории относительности. В середине апреля аорта лопнула, и через несколько дней Эйнштейн скончался в больнице.
Похороны были быстрыми и неторжественными. На кремации присутствовали несколько близких друзей, прах был развеян по ветру. Сохранилось несколько фотографий с похорон, показывающих, что это было спокойное, прозаическое мероприятие. Мозг Эйнштейна сохранили для потомков в надежде, что именно там содержится ключ к его гениальности. Конференция в Берне прошла своим чередом, совместив празднование юбилея его работы с надгробными речами.
Как главу института Оппенгеймера то и дело просили высказаться по поводу жизни и работы Эйнштейна. И он это делал, превознося достижения своего коллеги. Под давлением он признавался, что не совсем одобрял поведение Эйнштейна в последние годы. Он мог без проблем сказать, что «Эйнштейн был величайшим физиком и естествоиспытателем нашего времени», но в 1948 году в статье об институте для журнала Time он дал журналисту куда менее лестный отзыв: «Сплоченным братством физиков с сожалением признается, что Эйнштейн был не маяком, но вехой; в быстро развивающейся физике он слегка отставал». В интервью журналу L'Express, спустя почти десять лет после смерти Эйнштейна, Оппенгеймер пошел еще дальше: «В конце жизни Эйнштейн был уже бесполезен».
С уходом Эйнштейна общая теория относительности пришла в упадок. Ее затмила квантовая теория, к ней пренебрежительно относились некоторые ведущие физики того времени. Для возрождения интереса требовалась свежая кровь и новые открытия.