Катастрофы в природе и обществе

Фет Абрам Ильич

Хлебопрос Р. Г.

Глава 4. Глобальная экология и взаимодействие биосферы с техносферой

 

 

Экология и экономика

Хорошо известны локальные экологические проблемы, возникающие в той или иной местности в связи с определенным производством. Но глобальные экологические проблемы, то есть проблемы, касающиеся всей поверхности Земли, вместе с атмосферой и верхним слоем земной коры – проблемы, важные для всего человечества – до последнего времени вовсе не рассматривались. Люди вели себя так, как будто "дикая" природа – это бесконечно большая в пространстве и во времени среда, способная доставить человеку все нужное для его растущей цивилизации, среда, на фоне которой эта цивилизация пренебрежимо мала. При этом люди бессознательно предполагали, будто природа обладает неограниченной способностью восстанавливать свое первоначальное равновесие, какие бы раны ей ни наносила цивилизация.

Но в действительности, как уже было сказано, еще в древности неумеренная эксплуатация пастбищ превратила в пустыню обширную область Северной Африки – Сахару, ранее бывшую цветущей саванной, а одичавшие домашние козы уничтожили покрывавшие Грецию леса. Поскольку пустыни и голые скалы встречались и до того, независимо от деятельности человека, люди не отдавали себе отчета в своей роли разрушителей природы. Лишь промышленная революция, вызвавшая изменения иного рода, не встречавшиеся до вмешательства человека, побудила людей заняться этим вопросом, но лишь с деловой точки зрения: когда в Англии в восемнадцатом веке перевели леса, доставляя древесный уголь развивавшейся металлургии, люди додумались применить для этого каменный уголь, и леса оставили в покое. Но в наше время целые области, такие, как Рур в Германии или Кузбасс в России, и даже целые страны – например, Япония – оказались под угрозой превратиться в непригодные для жизни "техногенные" пустыни. Это начало привлекать внимание общественности, и малоудачные попытки исправить ущерб постепенно привели к пониманию, что Земля со всей совокупностью населяющих ее живых организмов – все же конечная система в практическом смысле этого слова, то есть влияние технической цивилизации на эту систему уже нельзя сбрасывать со счета.

Более того, промышленный выброс в атмосферу углекислого газа, неизбежно ведущий к повышению температуры на всей планете, предполагаемая опасность промышленного разрушения озонного слоя, защищающего нас от ультрафиолетового излучения, а также ряд других, менее известных явлений подрывает представление об обратимости всех процессов, навязанных природе человеком.

Существует два подхода к глобальным экологическим проблемам. Первый подход – по существу, пессимистический – считает невозможным предвидение глобальных экологических процессов, вызванных человеческой техникой, и рекомендует задержать ее развитие. Тогда, как предполагают сторонники этой точки зрения, природа сама исцелит нанесенные ей раны. Таким образом, пессимизм в отношении возможностей человеческого разума соединяется в этом воззрении с наивным оптимизмом в отношении саморегулирующих сил природы – оптимизмом, который привел уже, как мы увидим в главе 11, к провалу важного и дорогостоящего эксперимента. Никоим образом не очевидно, что Земля вернется к своему первоначальному состоянию, даже если полностью прекратить всякую техническую деятельность. Вера в неограниченную силу Земли характерна для некоторых "зеленых", по существу обожествляющих Землю, заменяя этим свою утраченную религию.

Другой подход – его можно назвать научным – находится в самом начале своего развития. Он исходит из того, что при неизбежном дальнейшем росте промышленной цивилизации нельзя рассчитывать на спасительные "регулирующие" силы природы, а надо разрабатывать высокотехнические системы жизнеобеспечения человека. Такие системы, необходимые для космических полетов, в небольших масштабах уже существуют и рассматриваются в главе 11.

Аналогии с уже рассмотренными типами экологических катастроф (глава 1) и приемы анализа динамики, выработанные там на примере вспышек размножения, до некоторой степени применимы к анализу взаимодействия цивилизации с биосферой.

В этой главе мы рассмотрим возрастание потребления энергии и некоторые его экологические следствия, в особенности "парниковый эффект". Далее, мы оценим различные способы производства энергии с экологической точки зрения. Наконец, мы опишем рост населения Земли и тенденцию к его стабилизации, проявляющуюся в последние десятилетия.

 

Энергопотребление

"Технический прогресс", последствия которого нас интересуют, не измеряется численностью населения. В эпоху истребления мамонтов этот прогресс, состоявший в усовершенствовании методов охоты, оказался сравнительно безобидным, приведя лишь к исчезновению одного вида, после чего население Земли, по-видимому, резко упало. В наше время плотно населенные сельскохозяйственные страны только начинают вводить новую технику, а относительно менее населенные страны ее давно уже применяют. Точно так же, "прогресс" нельзя измерять количеством потребляемой пищи: поскольку физиологические потребности человека неизменны, количество нужной ему пищи вряд ли меняется, да и состав ее, в смысле содержания различных веществ, остается тем же, так что потребление пищи в общем пропорционально численности населения. Численностью населения Земли мы дальше займемся в этой главе: она стимулирует и в то же время затрудняет технический прогресс, но сама по себе с ним прямо не связана.

Главная мера технического прогресса – это потребление энергии. Энергопотреблением человечества называется полное количество энергии, производимое (и тем самым потребляемое) на Земле в течение года. При этом мы не принимаем во внимание потери энергии вследствие несовершенства технических устройств (например, при передаче тока по проводам, когда значительная часть энергии теряется в виде бесполезно выделяемого тепла). Это лишь пример расточительности в использовании энергии. Поскольку экологически вредные последствия имеет главным образом производство энергии, нас не интересует здесь, как она используется. Поэтому мы отождествляем производство энергии с ее потреблением, считая все потери нерациональным способом потребления; это позволяет нам избежать совсем уж неуклюжего термина "энергопроизводство".

Начнем с данных об энергопотреблении в течение истории, в особенности усилившемся вследствие "технической революции", то есть после 1750-го года. В древнейшие времена потребление энергии сводилось к сжиганию дерева и другой биомассы, а количество этой энергии было, по-видимому, пропорционально населению. Мы не пытались оценить энергопотребление в "эпоху костров". Далее, в "эпоху сельского хозяйства" потребление энергии – тоже в виде биомассы – пропорционально росло вместе с населением, и можно считать, что до 1700 года на голову населения приходилась примерно одинаковая энергия (см. рис.1б). Начиная с 1700-го года имеются более или менее достоверные данные о потреблении ископаемых топлив и (в дальнейшем) "первичного электричества", получаемого другими способами. В таблице 1 эти данные, выраженные в миллионах тонн эквивалентного нефтяного топлива, приведены в первом столбце. Эти данные взяты из справочников ООН [2]. Во втором столбце указаны предположительные количества энергии, полученные из биомассы, по оценкам В. Смила [3]. Эти данные по необходимости неточны, поскольку потребление дров и других топлив в крестьянских хозяйствах почти не учитывалось статистикой; указываются их средние значения, а серая полоса на рисунке 1а изображает возможный разброс. Соответствующий график мы

Табл.1

заимствуем из книги [3]. На этом графике (черная линия) применена "логарифмическая шкала", позволяющая изобразить быстро растущую функцию на небольшом пространстве: по вертикали отложены логарифмы величины энергопотребления E. Таким образом, ордината этого графика y равна lgE (десятичному логарифму E), в некотором выбранном для оси ординат масштабе. Но слева указаны соответствующие значения самой величины E. Точность этого графика не очень велика, и в течение каждых пятидесяти лет он изображается прямолинейным отрезком: y = kx + a, где коэффициенты k и a различны для разных отрезков. Крутизна этих отрезков k измеряет быстроту, с которой росло потребление энергии в соответствующие пятидесятилетия.

Рис. 1а 1б

Величина энергопотребления E = 10y = 10kx+a = 10a + 10kx. Это экспоненциальная зависимость, причем крутизна экспоненты тем выше, чем больше k. Как видно из рисунка 1а, периодами особенно быстрого роста энергопотребления были 1850 – 1900 годы (развитие техники, введение электричества) и 1950 – 2000 годы (послевоенное развитие). В промежутке 1900 – 1950 годов рост энергопотребления замедлился: было две мировых войны. На рисунке 1б, где изображен (без логарифмического масштаба) рост энергопотребления на душу населения, темп этого процесса виден особенно наглядно.

Серая полоса на рисунке 1а показывает предположительное потребление энергии биомассы. Как видно из графика, энергия от ископаемых топлив и других технических источников превзошла энергию биомассы лишь около 1900 года, но в настоящее время на долю биомассы приходится не больше 6% потребляемой энергии.

В последние десятилетия – примерно с 1970 года – рост энергопотребления замедлился. Это не видно на грубом графике рисунка 1а, но рисунок 2 (по данным Международного энергетического ежегодника [4]) ясно показывает, что экспоненциальный рост превратился в линейный. Это явление,

Рис.2

о котором еще будет речь, свидетельствует о некотором "насыщении" энергией экономически развитых стран, потребляющих бо'льшую часть энергии. Впрочем, так называемые "развивающиеся" страны, пока еще потребляющие небольшую часть мировой энергии (рис.3а), несомненно будут подражать "западному" образу жизни, что может привести к новому скачку в потреблении энергии. Рисунок 3 заимствован из [3].

На рисунке 3б изображена роль "неуглеродных" источников энергии, вызывающих теперь особый интерес, поскольку они не загрязняют атмосферу своими выбросами. К сожалению, важнейшие из них – гидроэнергия и атомная энергия – дают лишь пор одной десятой мирового потребления энергии, а остальные источники (геотермальная энергия – то есть тепло горячих подземных вод – , энергия ветра и приливов) имеют пока мало значения. Солнечная энергия вообще не изображена на этом графике, поскольку она почти не применяется для производства электрического тока, а служит лишь для отопления, нагрева воды и т.п., да и то в небольших размерах. Между тем, как мы увидим, именно солнечной энергии принадлежит будущее!

Теперь попытаемся составить себе представление о динамике энергопотребления в прошлом (хотя в прошлом не было статистики, и наши данные по необходимости приблизительны), в последние столетия, по имеющимся статистическим данным, и в будущем, о котором можно строить правдоподобные гипотезы. При этом мы будем изображать лишь качественные картины процесса, так что наши графики не претендуют на точное описание даже в те периоды, когда имеются статистические данные. В частности, мы не соблюдаем пропорций, и разные части графиков могут быть растянуты или сжаты.

Условимся измерять энергопотребление в определенный день года, как полную энергию, произведенную за истекший год; будем обозначать эту величину через К. Через год получится новое значение энергопотребления, которое мы обозначим через М. Два последовательных измерения, дающие пару чисел (К,М), напоминают "стандартное наблюдение" главы 1, и можно попытаться применить здесь ту же технику фазовых портретов. Так как потребление энергии в значительной степени характеризует достигнутый уровень производства, который, в свою очередь, определяет его будущие потребности в энергии, то можно с достаточной точностью считать M зависящим только от К (так же, как численность популяции в следующем году определяется ее численностью в текущем году). Иначе говоря, мы предполагаем, что M является некоторой функцией от К: M = F(К). Вообще говоря, эта функция – возрастающая, поскольку люди потребляют все больше энергии, во всяком случае в течение Новой истории. Но возможен и обратный процесс, когда потребление энергии падает: вероятно, так обстояло дело в начале средневековья, при общем упадке культуры, а может быть и в Англии в начале восемнадцатого века, по совсем другой причине: развитие металлургии настолько увеличило спрос на древесный уголь, что до введения каменного угля потребление энергии могло упасть. Статистика возникла недавно, и эти предположения трудно проверить.

Заметим, что динамика энергопотребления представляет серьезную трудность, отличающую ее от динамики животных популяций. Дело в том, что непрерывный рост энергопотребления не предъявляет нам повторяющихся величин, и поэтому каждая измеренная пара (К,М) наблюдается только один раз. Предсказательная сила фазовых портретов основывается как раз на повторяемости ситуаций: в случаях, рассмотренных в главе 1, как только появляется некоторое значение К, мы можем быть уверены, что в следующем году получится определенное, предсказываемое фазовым портретом значение М. Для результатов деятельности человека это не обязательно: никакой период человеческой истории даже приблизительно не повторяется. И все же можно думать, что энергетика в некоторой степени обладает собственной динамикой, если просуммировать ее потребление по всей Земле, чтобы исключить местные отклонения. Простейший фазовый портрет соответствует использованию единственного вида энергии, например, энергии сжигания дерева. Наши предки долго жгли костры, а затем топили печи, причем количество потребляемой энергии постепенно росло до точки 1 на рисунке 4, изображающем фазовый портрет энергопотребления в ту эпоху. Точка 1 – устойчивая стационарная точка, абсцисса (и ордината) которой соответствуют потреблению энергии в течение очень длительных периодов, с небольшими случайными колебаниями вокруг стационарного значения и возвращением к этому значению. Медленный рост популяции означал, конечно, подъем фазового портрета, с сохранением его формы, поскольку характер потребностей и способ получения энергии оставались неизменными. При этом абсцисса точки 1 медленно возрастала, то есть повышалось потребление энергии. Но поскольку лесные ресурсы были тогда несоизмеримо велики по сравнению с нуждами людей, экологическое равновесие могло сохраняться в течение тысячелетий.

Рис.4

С точки зрения экологии дрова – превосходное топливо, если только вырубка леса компенсируется его естественным приростом или лесопосадками. Конечно, при сжигании дров выделяется углекислый газ, с вредными свойствами которого мы еще встретимся, но если взамен срубленных деревьев вырастает столько же новых, то они поглощают ровно столько углерода, сколько его было в сожженных деревьях, и таким образом связывают его, так что содержание углекислого газа в атмосфере не возрастает. Другие вещества, выделяющиеся при сжигании дров, не опасны для человека и для природы. Таким образом, дрова были идеальным топливом, пока промышленные надобности не привели к резкому увеличению потребности в древесине. В одном случае – в Англии восемнадцатого века – мы достоверно знаем, как это произошло. В металлургии тогда применяли древесный уголь, и быстрое развитие этого производства привело к столь интенсивной вырубке леса, что дерево стало дорожать, а естественный прирост леса не мог больше восполнить нанесенный лесам ущерб. Это и было первое нарушение экологического равновесия, несомненно вызванное промышленной деятельностью человека. Впрочем, в то время людей беспокоил только недостаток древесного угля для выплавки металла, и вскоре его заменили ископаемым каменным углем, изобилие которого так сильно способствовало промышленной революции в этой стране.

Если бы не это изобретение (впрочем, сделанное китайцами за много столетий до того), фазовый портрет энергетики остался бы таким же, как на рисунке 4, то есть потребление энергии все время возвращалось бы в точку 1, и развитие металлургии остановилось бы.

Рис.5а, Рис.5б

Если предположить, что стационарное потребление дерева уже установилось, когда был введен в употребление каменный уголь, то справа от точки 1 (рис.5а) к стационарному значению древесной энергии Кд прибавляется значение угольной энергии Ку, так что полная величина потребляемой энергии К = Кд + Ку (см. рис.5а). На следующий год эта величина будет равна M = Мд + Му , где Му получается из Ку с помощью фазового портрета потребления угля, изображенного на том же рисунке, со сдвигом начала координат в точку (1,1). Мы предполагаем, что характер этого фазового портрета тот же, что и в случае дерева, но соответствующая дуга над биссектрисой намного больше, так как запасы угля намного больше, чем дерева, и потребление его до установления равновесия возрастет несравненно больше; размеры рисунка вынуждают нас исказить соотношение между дугами. Теперь очевидно, что обе дуги вместе дают зависимость величины M = Мд + Му от К = Кд + Ку, то есть фазовый график полной потребляемой энергии. Этот график получается соединением двух дуг -"древесной" и "угольной" – под углом друг к другу в точке 1.

Более вероятно, что уголь был введен еще ранее установления стационарного потребления дерева, под давлением выросшей потребности в топливе. В этом случае резкое изменение в потреблении энергии проявилось в виде угловой точки на фазовой кривой (рис.5б), но эта кривая не опустилась до биссектрисы, то есть потребление энергии возрастало непрерывно. Есть основания полагать, что в наши дни потребление угля также стабилизировалось, но рисунок 5б, изображающий совместное использование двух источников энергии (дерево и уголь), все же не соответствует действительности, поскольку уже во второй половине прошлого века приступили к эксплуатации природных углеводородов – нефти и газа. На рисунке 6 изображен правдоподобный фазовый портрет общего потребления энергии, где третья дуга соответствует нефти и газу, а четвертая – атомной энергии. Введение всех этих видов энергии произошло уже в эпоху статистики и, как мы знаем, каждый раз до стабилизации предыдущего вида энергии. Напомним еще раз, что на наших графиках передана лишь качественная сторона процессов, но количественные соотношения не соблюдены.

Рис.6

Можно представить себе, что следующую дугу составит солнечная энергия, прямое превращение которой в электрическую, пока слишком дорогое, является важнейшей задачей современной техники, или термоядерная энергия, давно обещанная физиками. Мы оставили здесь в стороне менее важные источники энергии, мало влияющие на общее энергопотребление (гидроэнергия, энергия ветра, приливов, и т.д.).

Напомним еще раз, что, в отличие от главы 1, мы рассматриваем теперь деятельность очень своеобразного вида, каким является человек. Поскольку потребление энергии – всех ее видов вместе, старых и новых – непрерывно возрастает, то величина энергопотребления, достигнутая в текущем году, не повторяется, так что мы имеем для этой величины К единственный "стандартный эксперимент" в смысле главы 1. Но если бы эта величина повторилась, вследствие какой-нибудь катастрофы, приостановившей развитие техники, то прежнее наблюдение значения M на следующий год после К вряд ли имело бы достоверную предсказательную силу. В отличие от животных, человек никогда не возвращается к однажды пережитой ситуации; если даже какая-нибудь характеристика его жизни повторяется, то человек уже другой, с другими средствами и привычками. Например, после второй мировой войны наиболее разоренные страны, такие, как Германия и Япония, вернулись к давно пройденным ими значениям энергопотребления, но дальнейшее развитие энергетики у них вовсе не повторилось. Можно думать, что для глобальной величины энергопотребления дело обстоит лучше, но, конечно, фазовые портреты имеют лишь ориентировочное значение, и предсказательную силу их не следует переоценивать. Напомним, что в начале нашего века, когда опасались истощения запасов угля, многие принимали на веру картину, подобную рисунку 5б, предусматривавшую падение энергопотребления при исчерпании угля. Но его запасов, как обнаружилось, хватит на тысячелетия, а затем были открыты более выгодные источники энергии, так что теперь мы полагаемся на график рисунка 6. Техническому прогрессу угрожает не дефицит энергии: его ограничивают экологические трудности.

Заметим все же, что фазовые портреты – даже самый богатый энергией фазовый портрет рисунка 6 – обнаруживают определенную тенденцию энергопотребления: каждая дуга такого портрета, как правило, выпукла, что означает замедление роста. Такое замедление, как и в случае популяций, объясняется ограниченностью ресурсов и условий жизни. В случае энергии, запасы ископаемых топлив могут быть еще очень велики, но добыча их стоит все дороже, что стимулирует экономное использование энергии. С другой стороны, экологические условия ограничивают рост промышленности, во всяком случае, "тяжелой" промышленности, использующей много энергии. В будущем можно предвидеть поэтому стабилизацию потребления энергии, подобно тому, как теперь стабилизируется население Земли – о чем еще будет речь. Как мы видели выше (рис.2), начиная с семидесятых годов энергопотребление растет уже по линейному закону, вместо экспоненциального закона, страшившего предыдущие поколения. Конечно, этот процесс стабилизации может быть задержан ростом потребления энергии в "развивающихся" странах.

 

Парниковый эффект

Техническая деятельность человека, и прежде всего энергетика, основанная на сжигании углеродных топлив, изменяет состав земной атмосферы. Это изменение неизбежно приводит к изменению климата, которое уже наблюдается и может быть предсказано на будущее, если наша техника будет лишь количественно умножаться, оставаясь на нынешнем уровне развития.

Атмосфера представляет в своем естественном виде смесь газов, почти неизменную по составу, если не считать водяного пара, составляющего, в зависимости от температуры, от 0 до 4% объема воздуха. Сухой воздух содержит 78,09% азота, 20,95% кислорода, 0,93% аргона, 0,036% углекислого газа и очень небольшие количества других инертных газов, водорода, озона, метана и окиси азота.

Энергетический баланс Земли . Полная энергия солнечного излучения хорошо известна. Известно также, какая часть ее задерживается земной атмосферой, рассеивающей это излучение: лишь около половины его достигает поверхности Земли. Мощность излучения, падающего на эту поверхность, точно измерена. В среднем на одного жителя Земли в наше время приходится около 50000 киловатт солнечной энергии. Для сравнения заметим, что мощность всей нашей промышленности составляет меньше одного киловатта на человека, так что опасность прямого перегрева от технической деятельности нереальна. Можно было бы подумать, что эта деятельность слишком мала по сравнению с космическими процессами, чтобы внушать серьезные опасения. Как мы увидим дальше, для таких опасений есть причины.

Земля (без атмосферы) получает излучение в широком диапазоне частот. Частота излучения ν обратно пропорциональна его длине волны λ , так что λν=c, где c – скорость света. Лучи самых высоких частот или, что то же, самые коротковолновые – это гамма-лучи, рентгеновские и ультрафиолетовые лучи. Они составляют небольшую часть солнечного излучения и в основном задерживаются верхними слоями атмосферы, в особенности слоем озона – к счастью для нас, потому что эти лучи опасны для жизни. Около половины солнечной энергии, достигающей поверхности Земли, относится к "видимому свету", то есть воспринимается нашим зрением; наибольшая интенсивность этого излучения приходится на волны длиной около 0,5 микрона, соответствующие желтому цвету (поэтому Солнце считается у астрономов "желтой звездой").

Другая половина поступающего на Землю излучения – это невидимые длинноволновые лучи, так называемое инфракрасное или тепловое излучение. Мы можем ощутить такое излучение, приблизив руку к радиатору водяного отопления.

Земля, в свою очередь, излучает в космос, но только инфракрасные лучи, длиной от 3 до 30 микронов. Видимого света Земля не излучает: она "не светится". Поскольку температура Земли (на ее излучающей поверхности) меняется очень медленно, то, по законам термодинамики, Земля должна находиться в "термодинамическом равновесии" с окружающей средой, то есть излучает столько же энергии, сколько поглощает. Так как величина падающего на Землю излучения известна, то известно и ее собственное излучение, которое мы обозначим через W.

Энергия, излучаемая телом, конечно, зависит от его температуры. Например, горячая металлическая крышка плиты излучает тем больше, чем сильнее она нагрета. Оказывается, существует важный класс тел, излучение которых вполне определенным образцом зависит от их температуры: это так называемые "абсолютно черные тела". Абсолютно черным называется тело, поглощающее все падающее на него излучение. Термин этот объясняется тем, что тела, окрашенные в черный цвет, поглощают большую часть падающего излучения. Зеркала, напротив, почти не поглощают излучения, а отражают его. Звезды и планеты, как доказано в астрофизике, с большой точностью можно считать абсолютно черными телами. Конечно, они светятся "отраженным светом", вследствие чего Луну и Землю можно видеть из космоса, но доля отраженного излучения очень мала. Для вычисления баланса энергии Землю можно считать, с большой точностью, абсолютно черным телом. Как уже было сказано, при постоянной температуре Земля излучает столько же энергии, сколько поглощает – хотя и в другом спектре излучения, только инфракрасном.

Оказывается, для любого абсолютно черного тела полная мощность его излучения W определяется температурой T его излучающей поверхности. Температура T измеряется в термодинамике по шкале Кельвина, в которой величина градуса та же, что в шкале Цельсия, но началом отсчета служит "абсолютный нуль" – наименьшая возможная в природе температура, равная -273° Цельсия. Тогда при абсолютном нуле температура Кельвина T = 0, в точке таяния льда T = 274°, в точке кипения воды T = 373°. Средняя температура земной поверхности составляет в наше время около +20°, то есть, по Кельвину, T = 300°. Для любого абсолютно черного тела полная мощность его излучения W связана с температурой его излучающей поверхности T законом Стефана – Больцмана:

W = CT4,

где C – "мировая постоянная", одна и та же для всех таких тел, значение которой нас здесь не интересует.

Этот закон, установленный опытами Стефана, был затем выведен Больцманом из основных принципов термодинамики и является одним из самых важных законов природы. Он постоянно применяется в астрофизике, и нет никаких сомнений в его применимости к Земле. (Напомним, что имеется в виду Земля без атмосферы, а не бо'льшая система, состоящая из Земли вместе с ее атмосферой). Поясним на примере, какие выводы следуют из закона Стефана – Больцмана в применении к Земле. Предположим, что Земля перешла в другое состояние, с температурой поверхности T' = T + ΔT; спрашивается, как изменится мощность ее излучения W? Или, обратно, пусть известно, насколько изменилось излучение W ; спрашивается, как изменится температура? На эти вопросы можно дать однозначный и совершенно бесспорный ответ. При температуре T' излучаемая мощность W' равна

W' = CT'4,

с тем же универсальным множителем C. Деля это соотношение на предыдущее, получаем

или, полагая T' = T + ΔT, W' = W + ΔW,

Если изменение температуры ?T мало по сравнению с T, то можно, вычислив степень справа, отбросить высшие степени малой величины ΔT/T ; тогда имеем

или

Пусть теперь известно, что излучение Земли – по любым причинам – изменилось на 1%, то есть ΔW/W = 0,01. Насколько изменится температура земной поверхности T?. Из предыдущей формулы =0,0025, и полагая T = 300°, имеем ΔT = 0,75°, так что температура Земли изменится примерно на один градус.

Парниковые газы . Инфракрасное излучение Земли уходит в космос через атмосферу. Молекулы газов, составляющих атмосферу, могут рассеивать это излучение, в конечном счете возвращая часть его обратно на Землю. Примечательным образом, главные составляющие земной атмосферы – двухатомные молекулы азота N2, кислорода O2 и одноатомные молекулы аргона Ar – не ответственны за этот процесс. Это весьма малые молекулы, по сравнению с длиной волны инфракрасного излучения, а столь малые молекулы почти не задерживают длинноволнового излучения. Если бы атмосфера состояла только из этих главных газов, то она свободно пропускала бы излучение Земли. Препятствие для этого излучения составляют большие молекулы таких газов, как углекислый газ CO2, метан CH4 и некоторые другие, о которых еще будет речь. Несмотря на небольшое содержание этих газов в атмосфере, они перехватывают (вместе с облаками) почти 90% длинноволнового излучения Земли и отсылают обратно на Землю значительную его часть. В конечном счете, после повторного отражения газовыми молекулами, большая часть излучения Земли прорывается в космос. Но все же определенная часть его задерживается "парниковыми газами", и поскольку оптические свойства всех газов известны, то можно вычислить, какую часть излучения не выпускают в космос эти газы.

Если эта часть излучения возрастает на ΔW, вследствие промышленного выброса "парниковых газов", то это добавочное излучение возвращается на Землю. Тогда полное излучение, падающее на Землю, увеличивается на ΔW, а следовательно, по закону сохранения энергии, на столько же возрастает излучение Земли. Но тогда возрастает и температура земной поверхности, и ее приращение ΔT можно вычислить по закону Стефана – Больцмана, как мы видели выше. Таким образом, если известно, как изменился состав атмосферы, то строгие методы физики позволяют вычислить вызванное этим изменение температуры.

"Парниковый эффект" – вовсе не новое явление, связанное с технической деятельностью человека; это явление существовало всегда. Можно подсчитать, что если бы вообще не было парниковых газов, то средняя температура Земли была бы не +20° C, как сейчас, а –18° C и скорее всего, при такой температуре не могла бы возникнуть жизнь. Таким образом, сам по себе "парниковый эффект" благотворен; опасно его быстрое нарастание, наблюдаемое с 1750го года – с начала "технической революции".

Важнейшим из "парниковых газов" является углекислый газ CO2, который один ответственен за 60% "парникового эффекта". Содержание CO2 в атмосфере тщательно изучено исследованием воздуха, извлеченного из глубинных слоев антарктического льда. Оказалось, что с конца последнего ледникового периода (около 10000 лет назад) до 1750-го года это содержание было почти неизменно, а после этого возрастало по отчетливому экспоненциальному закону, как это видно из рисунка 7. В начале технической революции концентрация CO2 составляла, по объему, 280 миллионных атмосферного воздуха, а теперь – 360 миллионных, то есть выросла на 30%. Тот же закон подтверждается современными измерениями, выполненными на десятках независимых обсерваторий. Например, на рисунке 8 изображен рост концентрации CO2 в течение последних десятилетий, по данным обсерватории Мауна-Лоа на Гавайских островах. Поскольку на этих островах нет никакой промышленности, эти данные должны быть близки к средним величинам, образующимся путем перемешивания во всей атмосфере Земли

Рис.7

Изменение концентрации CO2 в атмосфере начиная примерно с 1750 года по данным анализа глубинного льда ледника Siple в западной Антарктиде.

Рис.8

Рост атмосферного CO2 с 1959 по 1999 годы, по измерениям на различных станциях: 1=Лоу Доум, Антарктика; 2=Мауна Лоа, Гавайи; 3=Барроу, Аляска; данные станции Лоу Доум представляют концентрации CO2 в воздушных пузырьках ледяной коры; данные двух других станций представляют среднегодовые концентрации CO2 в воздухе близ поверхности Земли, согласно инструментальным измерениям (по Etheridge et al., 1998; Keeling and Worf, 2004). Рисунок заимствован у С.М. Семенова, 2004.

(пилообразные колебания, видные на этом рисунке, соответствуют сезонным циклам растительности в северном полушарии; такие колебания незаметны в кумулятивных данных рисунка 7). Отчетливый экспоненциальный рост содержания CO2, вытекающий из рисунка 8, полностью подтверждается данными всех других обсерваторий, собранными в отчете Всемирного центра данных о парниковых газах [5]. Результат всех этих измерений никем не оспаривается: содержание CO2 ежегодно увеличивается на 0,4%, то есть в 1,004 раза. При этой геометрической прогрессии оно достигнет в 2100-ом году 500 миллионных объема воздуха, то есть станет вдвое больше доиндустриального уровня.

Можно сопоставить этот рост с другой экспонентой – ростом потребления углеродных топлив, которое до последнего времени удваивалось каждые десять лет. Промышленность ежегодно выпускает в атмосферу около 7 миллиардов тонн углерода, в составе углекислого газа. Около половины этого количества поглощается океанской водой, фотосинтезом растений (использующих солнечный свет для выработки углеводородов из воды и углекислого газа) и разными другими процессами, например, образованием торфа. Эта доля не возрастает, и нет оснований надеяться, что она будет возрастать, так что прямое продолжение нынешней тенденции, изображенной на рисунке 8, будет означать экспоненциальный рост.

Экспоненциальное возрастание очень редко встречается в природе: оно означает "положительную обратную связь", когда возрастание некоторого фактора ведет лишь к дальнейшему его возрастанию, причем тормозящие факторы не действуют. Так бывает при различных катастрофах, вроде лесных пожаров или лавин. Напротив, в человеческой деятельности положительная обратная связь встречается сплошь и рядом. Нет сомнения в том, что оба экспоненциальных процесса – рост потребления углеродных топлив и рост содержания углекислого газа – связаны между собой, и что первый из них обусловливает второй. Механизм этой связи объяснен выше.

Другим "парниковым газом" является метан, производимый, кроме естественных источников, угольными шахтами и газовыми скважинами. Количество метана в атмосфере с начала промышленной революции удвоилось, и теперь ежегодно возрастает на 1%. Молекула метана задерживает в 60 раз больше излучения Земли, чем молекула CO2. Еще более эффективны в этом отношении молекулы окиси азота N2O – в 270 раз больше молекул CO2. Концентрация окиси азота в атмосфере возросла уже на 8%: она производится, в частности, при использовании удобрений и в различных промышленных процессах.

Особый класс атмосферных газов составляют галокарбонаты – хлорфторуглеродные соединения, не встречающиеся в природе и применяемые как фреоны в холодильниках и как составная часть пенопластов. Молекула этих соединений захватывает в тысячи раз больше инфракрасных лучей, чем молекула CO2. Об этих соединениях мы еще скажем отдельно.

Повышение температуры и изменение климата. По поводу повышения температуры, предсказываемого любыми методами, следует сделать предварительное замечание. Как известно, средняя температура земной поверхности, вычисленная по данным измерений в некотором году, меняется от года к году по случайным причинам, хотя эти изменения и невелики. Ясно, что совпадение предсказаний с наблюдениями не может быть точнее этих колебаний. Для такого сравнения следует брать усредненные температуры за время, сглаживающее эти случайные изменения. Таким способом получается равновесная температура, которая и имеется в виду в законе Стефана – Больцмана, тогда как случайные изменения от года к году отражают лишь неравновесные переходные процессы. Например, вряд ли возможно точно предсказать, какая температура будет в 2050 году, но можно предсказать среднее значение годовых температур между 2040 и 2060 годом.

Далее, надо упомянуть осложнение, связанное с водяным паром. Дело в том, что повышение температуры вследствие "парникового" действия таких газов, как CO2, вызывает усиленное испарение воды, а молекулы водяного пара производят добавочный парниковый эффект. Процессы испарения и образования облаков предсказать трудно, и связанное с ними повышение температуры можно предвидеть лишь с некоторой неточностью. Поэтому в предсказаниях повышения температуры гарантируется нижняя оценка: действительность может быть только хуже нее. Прежде всего, что уже известно о повышении температуры Земли?

Надежные данные о средней температуре земной поверхности имеются с 1860-го года. С тех пор повышение температуры было не меньше 0,3°C и не больше 0,6°C. Может показаться, что это немного. Но за 10000 лет после последнего ледникового периода температура Земли повысилась всего на 5?C; таким образом, прежняя, естественная скорость изменения температуры возросла в десять раз. Разные части Земли нагреваются неодинаково; "парниковый эффект" больше сказывается на суше, чем на море, и больше в северном полушарии, где расположена большая часть суши. Например, ежегодное число вечеров без заморозков в северо-восточной части Соединенных Штатов за последние сорок лет возросло на одиннадцать. По данным одного исследования, вегетационный период растений за последние сто лет удлинился на неделю [6]. В южной Сибири, где еще в 60-ых годах сорокаградусные морозы продолжались неделями, теперь даже тридцатиградусные морозы стали редки. Десять самых теплых лет за последние сто лет были с 1980-го года, а по некоторым наблюдениям 1990-ые годы будут еще теплее. Общее потепление Земли в течение последних ста лет не вызывает у климатологов никаких сомнений.

Перейдем к предсказаниям. Межправительственная группа по исследованию климатических изменений (Introgovernmental Panel on Climate Change), поддерживаемая ООН и состоящая примерно из 2000 ученых разных стран, предсказывает, что к 2100-му году среднегодовая температура Земли повысится не менее чем на 1°C, но, возможно, на величину до 3,5°C – если только не будет резко уменьшена выработка "парниковых газов".

Срочность необходимых мер связана с тем, что CO2 и другие "парниковые газы", однажды попав в атмосферу, могут оставаться там не меньше ста лет. Ожидается, что наибольшее возрастание температуры произойдет между 40° и 70° северной широты. Именно в этих местах произошло наибольшее потепление в 20-ом столетии. Например, при нынешнем уровне потребления углеродных топлив средняя температура июля в центре Вашингтона, составляющая теперь 30 ?C, через сто лет возрастет на 5°C [6]. Вероятно, этот последний аргумент должен особенно подействовать на правительственных чиновников, поскольку лето в американской столице и сейчас не всегда приятно.

Впрочем, повышение температуры – это еще не самое важное изменение климата. Как сказано в уже неоднократно цитированном нами обзоре [6], "термин "глобальное потепление", в некотором смысле, обманчив, потому что он создает впечатление, будто средняя температура важнее всего. Между тем, это во многих отношениях наименее важный аспект целого ряда явлений, вытекающих из глобального потепления".

Предсказать эти явления гораздо труднее, чем повышение температуры. Дело в том, что Земля – это крайне сложная система, и методы компьютерного моделирования, применяемые для изучения ее климата, гораздо менее надежны, чем физические методы. Чтобы понять разницу, представьте себе, что вы нагреваете на электрической плитке кастрюлю с супом. Тогда вы можете очень точно вычислить, сколько энергии получит кастрюля, но лишь приблизительно предскажете, какой у вас получится суп: система очень сложна, и трудно предвидеть все происходящие в ней процессы. И все же, усилия климатологов заслуживают внимания. По уже указанным причинам они предсказывают только средние характеристики климата за некоторый период, а не точные их значения в таком-то году. Компьютерные модели, которыми они пользуются, испытываются следующим образом. Берут известные данные об уже прошедшем периоде и "предсказывают", что должно произойти через 50 или 100 лет, а затем сравнивают эти "предсказания" с тем, что действительно произошло; если такие "предсказания прошедшего" подтверждаются, то модель считается пригодной, и ее применяют к исходным данным нашего времени. Действуя таким образом, они надеются учесть все существенные факторы, влияющие на климат Земли. Вот перечень предсказаний, с которым согласно большинство климатологов.

Если промышленные выбросы в атмосферу не будут резко сокращены, то уровень мирового океана, уже поднявшийся за сто лет не менее чем на 10 см, а теперь поднимающийся на 2 мм в год, к 2100-му году поднимется примерно на 50 см. Это приведет к затоплению местностей, где теперь живет 92 миллиона человек. Под водой окажется значительная часть Голландии, Бангладеша и приморских провинций Китая. Окажутся под угрозой многие морские порты, в том числе наш Петербург, расположенный почти на уровне моря. Трудно сказать, как будут таять ледники, но без сомнения они уже начали таять. Если повышение температуры "запустит" процесс таяния основных ледниковых масс – в Антарктиде и в Гренландии – то последствия будут катастрофическими: уровень океана поднимется на несколько метров. Дело в том, что равновесие земного климата очень неустойчиво: если его нарушить даже на небольшую величину, то, как можно уверенно предвидеть, новое положение равновесия будет далеко от прежнего.

Изменятся условия жизни многих животных и растений, очень точно приспособленных к своим "экологическим нишам". Хотя наиболее важные для нас виды, по-видимому, выживут, людям придется жить на Земле, не похожей на нашу. Это не значит, что люди не смогут жить в новых условиях: вероятнее всего, в течение ряда десятилетий они смогут приспособиться к этой новой Земле и выживут, если не наделают новых глупостей. Можно сказать, конечно, что так или иначе люди делают Землю непохожей на то, чем она была. Но если можно предвидеть результаты этой деятельности, то возникает вопрос – хотим ли мы таких изменений или нет? Можем ли мы взять на себя такую ответственность перед нашим потомством?

Важно понять, что засорение атмосферы углекислым газом необратимо. В течение 250 лет были выпущены в атмосферу миллиарды тонн этого газа. И его невозможно устранить: чтобы "связать" этот газ, понадобилось бы столько же энергии, сколько было получено при его "освобождении", в процессе сжигания углеродных топлив. Закон сохранения энергии нельзя обойти! "Извлечение" углекислого газа из атмосферы было бы предприятием космического масштаба, сравнимым с созданием атмосферы на Марсе или другими подобными планами, столь легко удающимися писателям-фантастам.

"Переключатели" космических процессов. То, что происходит с "парниковым эффектом", нельзя сравнить с обычными человеческими предприятиями: здесь люди поворачивают "переключатель", направляющий космический процесс. Современная техника вложила такие переключатели в руки человека, и мы должны хорошо представлять себе, к чему это может привести.

Другое крайне опасное явление цивилизации – это выбросы веществ, вовсе не встречающихся в природе. Против таких веществ природа беззащитна, точно так же, как и сам человек. Равновесие природных систем выработалось в ходе эволюции, длившейся миллионы лет. Если мы вводим в эти системы совершенно чуждые им химические соединения, искусственно созданные человеком, это может привести к катастрофическим последствиям. Серьезные опасения вызывает окружающий Землю озонный слой. В отличие от хорошо изученного "парникового эффекта", озонный слой еще мало исследован, и мнения специалистов по этому поводу расходятся. Несомненно, этот очень тонкий и хрупкий слой озона защищает поверхность Земли от ультрафиолетового излучения, опасного для жизни. Если бы не было этого слоя, то скорее всего жизни не было бы вовсе и, несомненно, человеческая жизнь была бы невозможна. До сих пор высказанные суждения не вызывают споров. Споры начинаются, когда ставится вопрос об ущербе, причиняемом озонному слою человеческой техникой, и о причинах этого ущерба. Многие – но не все – исследователи этого вопроса полагают, что озонному слою серьезно угрожают галокарбонаты, в частности, фреоны, применяемые в холодильных установках. По международному соглашению, были приняты некоторые – вероятно, избыточные – меры против выброса галокарбонатов. Многие возражают против этих мер, вызывающих практические неудобства, поскольку они основаны на "ненадежной информации". Как следует относиться к таким возражениям?

Каждый из нас вправе рисковать, когда речь идет о его собственной жизни. Но в случае озонного слоя речь идет о жизни всего человечества. Если мы запустим процесс разрушения озона, то, скорее всего, человечество от этого погибнет. Предупреждения об опасности галокарбонатов исходят не от политиков и журналистов, а от серьезных ученых. Ученые еще не вполне уверены в этой опасности, но считают ее вероятной. Все зависит от величины угрожающей опасности. Если эта опасность смертельна, то вы примете меры предосторожности даже при ее небольшой вероятности. Вспомните, какие меры предосторожности принимались, когда первые космонавты вернулись с Луны. Было очень маловероятно, что они могли там заразиться какими-нибудь вирусами, но их держали в карантине, потому что вирусы, чуждые нашей природе, могли иметь непредсказуемое действие. Когда мы начинаем манипулировать чем-то, чего никогда еще не было, то неразумно ссылаться на опыт наших предков: в таких случаях надо прислушиваться к голосу немногих, кто понимает новую опасность.

Несколько вопросов и ответов . Скажем еще несколько слов о полемике, развернувшейся вокруг "парникового эффекта". Для определенности, ограничимся важнейшим из "парниковых газов" – углекислым газом. Поскольку использование углеродных топлив – важный денежный вопрос, не приходится удивляться, что политики и журналисты не всегда говорят о нем правду. Как было уже сказано, среди специалистов расхождений очень мало, и они касаются лишь второстепенных деталей. Но случается, что неправду говорят и ученые, обычно специалисты в других областях. Не ставя под сомнение их мотивы, мы разберем сейчас некоторые наиболее распространенные возражения против имеющихся данных о техногенном нагревании Земли.

(А) Утверждают, что нагревание Земли вообще не доказано, или что причины этого нагревания не связаны с углекислым газом. Результаты тщательных измерений температуры, производившихся с 1860-го года и особенно подробных в нашем столетии, не оставляют сомнения в том, что Земля нагревается в наше время в десять раз быстрее, чем до "технической революции". Термодинамические вычисления, основанные на законе Стефана – Больцмана, доказывают, что возрастание концентрации углекислого газа неизбежно вызывает повышение температуры, и дают надежную оценку этого повышения. Наконец, экспоненциальный рост содержания CO2 – на 0,4% в год – установлен точными измерениями на многих независимых обсерваториях. Все это связывается в стройную картину. Попытки объяснить изменение температуры другими факторами не привели к цели.

(Б) Утверждают, что в прошлом атмосфера Земли содержала гораздо больше углекислого газа. Это было очень давно, когда еще не было человека. При человеке этого газа было не больше, чем теперь, по крайней мере с эпохи неолита (10000 лет назад); это доказывается измерениями на антарктическом льде. До этого могло быть несколько больше CO2; но тогда люди жили иной, первобытной жизнью, и Земля была иной. Теперь речь идет о том, чтобы сохранить Землю культурного человека, которую во многом создал он сам.

(В) Утверждают, что "одно извержение вулкана выбрасывает больше углекислого газа, чем вся промышленность за много лет". Читатель может посмотреть на рисунок 8 и убедиться в том, что величайшее в истории извержение вулкана Кракатау нисколько не отразилось на этом графике (оно было в 1884 году). Увеличение содержания CO2 на 30% с 1750-го года должно было бы, по предыдущему объяснению, сопровождаться соответствующим возрастанием глобальной вулканической активности, чему нет никаких подтверждений. За 10000 последних лет таких явлений тоже не было, поскольку они не отразились на измеренном, почти не менявшемся содержании CO2.

(Г) Утверждают, что растения способны поглотить любое количество углекислого газа, как это доказывается выращиванием их в теплицах с высоким содержанием CO2. Когда увеличивают в несколько раз концентрацию CO2 в теплице, это приводит к определенному, но вовсе не к пропорциональному росту урожайности. Отдельное растение имеет физиологически обусловленный предел производства биомассы. Содержание CO2 в атмосфере растет в геометрической прогрессии. Чтобы поглотить этот газ, биомасса всех растений должна расти в той же прогрессии, а тем самым должно так же расти их число. Но для такого числа растений на Земле нет места. В течение последних 250 лет растения не помешали росту концентрации углекислого газа, и нет оснований ожидать этого в будущем.

 

Альтернативные источники энергии

Единственным серьезным конкурентом углеродной энергии является в наше время атомная энергия. Суждение публики об атомной энергии особенно искажено из-за таких трагических событий, как применение атомной бомбы в войне против Японии и чернобыльская катастрофа, вызванная преступной безответственностью чиновников бывшего Советского Союза. Предубеждение против атомной энергии столь велико, что публика не обращает внимания на очевидные факты, которые мы сейчас напомним.

Мы не можем входить здесь в рассмотрение финансовых вопросов, но атомная энергия несомненно сравнима по стоимости с углеродной, и для многих стран предпочтительна: Франция получает от нее более 75% своей энергии. При соблюдении предосторожностей атомная энергия безопасна даже в ближайшей окрестности атомных станций. Дозы облучения от атомных станций значительно ниже фоновых доз (получаемых людьми от естественной среды), или доз, получаемых при рентгеновском обследовании. Лион получает энергию от станции, стоящей на берегу Роны в 60 километрах вверх по течению реки, и в течение десятилетий это никого не беспокоит. За сорок лет атомной энергетики за пределами Советского Союза не было ни одной аварии с человеческими жертвами. Дело в том, что отходы атомных реакторов не выпускаются в воздух, как это делают на тепловых станциях, а собираются в компактные контейнеры и изолируются. Это возможно, потому что объем этих отходов несравненно меньше и они все время остаются на виду.

Когда средства массовой информации кричат о "тысячах тонн радиоактивных отходов", не все понимают, что тысяча тонн – это куб со стороной порядка десяти метров, и что почти все отходы после переработки в высокозамкнутой системе повторно используются. Между тем, отходы топливной энергетики составляют миллиарды тонн – а это уже куб со стороной в километры, в газообразном состоянии в десятки километров – но никто из-за них не беспокоится, поскольку бо'льшая часть таких отходов глаза не мозолит, а буквально "рассеивается в дым".

Даже суммарная радиоактивность топливной энергетики куда выше суммарной радиоактивности ядерных отходов, при современных способах их захоронения. Проблема хранения радиоактивных отходов не вызывает трудностей, если речь идет о периодах в несколько сот лет. Перед занимающимися этим учеными ставят вопрос, как обеспечить их безопасность на время порядка 10000 лет. Это действует успокоительно, но необходима бдительность и нужен общественный контроль. В некотором смысле мы передаем и эту задачу будущим поколениям, но не в виде необратимого загрязнения атмосферы, а в виде доступных контролю небольших охраняемых складов, например, в сухих солевых шахтах, или на отдаленных островах.

Остается указать на менее известные, но очень важные недостатки атомной энергии. Первый из них – это трудность вывода из эксплуатации атомных станций. Некоторые из них, работающие уже сорок лет, отслужили свой срок, и опасаются, что устранение этих опасных сооружений может обойтись дороже, чем стоила вся выработанная ими энергия.

Другая проблема – это безопасность ядерного топлива. Урановые шахты требуют особых мер предосторожности, поскольку уже естественная урановая руда радиоактивна. Если эти меры достаточны для охраны здоровья шахтеров и рабочих, занятых перевозкой и переработкой руды, это может существенно удорожить ядерное топливо и отразиться на рентабельности его использования. Если же эти меры недостаточны, то в некоторых странах разработка урана может иметь роковые последствия для людей, особенно в тех частях Земли, где нет законного порядка – таких, как Африка и Россия. К сожалению, достоверные данные об этих предприятиях получить трудно.

До сих пор почти все усилия и расходы на развитие энергетики относятся лишь к углеродной и атомной энергии. Пока их вряд ли могут заменить другие, экологически чистые виды энергии; разработка их, по разным причинам, происходит медленно.

Экологически чистой является энергия сжигания дерева: как уже было сказано, при своевременной посадке и охране леса растущие деревья связывают столько же углекислого газа, сколько выделяется при сжигании древесины. К сожалению, этот источник энергии давно уже недостаточен для техники. В отличие от древесины, уголь и нефть не возобновляются. Они больше не связывают углерод при своем образовании, как это было в прошлые геологические эпохи. Если в наше время и начинается образование угля или нефти, то на это нужны миллионы лет.

Гидростанции, выгодные лишь на быстрых горных реках, и ветряные двигатели, зависящие от капризов погоды, не могут дать достаточно энергии и скорее полезны для удовлетворения местных потребностей. [Мы не касаемся здесь бессмысленного строительства гидростанций на равнинных реках, где хозяйственный и экологический ущерб не окупается полученной энергией] Будущее принадлежит солнечной энергии и, может быть, термоядерной, если физики сумеют с ней справиться.

По еще не проверенным сообщениям, солнечные батареи уже могут дать энергию, сравнимую по стоимости с атомной. Мы еще не знаем, что означает в этих сообщениях "сравнимость", но солнечные батареи не содержат вредных компонент, безопасно изготовляются и ничего не выделяют в атмосферу. До сих пор солнечная энергия применяется лишь в южных странах для бытовых целей – отопления, нагрева воды и иногда для освещения домов. Но в будущем небольшая часть какой-нибудь ныне бесполезной пустыни, покрытая похожими на зеркала солнечными батареями, сможет удовлетворить потребность в энергии большой страны – без всякого ущерба для экологии Земли. Для энергетики будущего нужны новые принципы, потому что современная техника, при всем разнообразии ее видимых достижений, находится в тупике. Отметим только три нерешенных проблемы.

1. Не решена проблема передачи энергии на расстояние. Нынешние способы явно непригодны: при передаче тока по проводам значительная часть энергии обращается в тепло и уходит в воздух, так что посылать ток на расстояние свыше двух тысяч километров уже не имеет смысла. Этим и объясняются еще более архаические способы транспортировки энергии – поезда с углем и нефтью.

2. Не решена проблема аккумуляции энергии. Имеющиеся электрические аккумуляторы – свидетельство бессилия современной науки; они лишь совершенствуют идеи прошлого века. Нет подвижных, легких двигателей, безвредных для атмосферы. Следствие этого технического тупика – такой экспонат музейной техники, как бензиновый автомобиль, тоже совершенствуемый в деталях, но по существу ничем не лучший, чем сто лет назад.

3. Не решена проблема термоядерной энергии. Возможность ее ежедневно демонстрирует Солнце: как и другие звезды, это природный термоядерный реактор, исправно действующий уже четыре с половиной миллиарда лет. Физики не умеют получать эту энергию, хотя и знают необходимые для этого условия: надо поддерживать в некотором веществе температуру в несколько десятков миллионов градусов. Остается придумать, как держать это вещество в ограниченном объеме. Они сумели только получить эту энергию в виде взрыва водородной бомбы. Вспомним для сравнения, что между теоретическим открытием ядерной энергии (Эйнштейн, 1905) и атомным реактором Ферми (1942) тоже прошло много времени, а первым применением была атомная бомба. Бомб уже с нас хватит, и мы ждем от физиков дальнейших успехов.

Не видно объективных причин рисковать глобальным равновесием атмосферы, продолжая по инерции развивать топливную энергетику, – вероятнее всего, это не лучший путь даже для сохранения нынешнего высокого технического уровня стран Запада. Наоборот, самым прямым путем к выходу из глобального экологического кризиса представляется применение новых разработок. Причиной кризиса было стремительное, и потому во многих отношениях ошибочное развитие технической цивилизации; но речь идет о сравнительно небольшом числе особенно крупных ошибок – нужно их исправить и, главное, не допускать таких ошибок впредь. Вероятно, использование ископаемых топлив было исторически неизбежно, но упорное продолжение этой практики и отказ от серьезного исследования ее альтернатив – это непростительная ошибка. Что касается панических призывов некоторых фанатиков вовсе отказаться от техники, то это означало бы отказ от всех попыток разумно вести хозяйство. Нетрудно понять, к чему это привело бы при нынешнем населении Земли.

Напротив, лишь более совершенная техника, основанная на новых принципах и во многом уже проверенная в космосе и в биосферных экспериментах на Земле, может помочь нам преодолеть экологический кризис.

 

Проблема народонаселения

Наш вид homo sapiens (что означает по-латыни "человек разумный") с биологической точки зрения очень молод: он появился около 200 тысяч лет назад в Восточной Африке и, согласно генетическим расчетам, скорее всего в результате особенной мутации у единственного индивида ("Адама" или "Евы"). Возможно, около 60 тысяч лет назад с ним произошла еще одна мутация, поскольку с этого времени, при неизменном строении тела, резко усилилась способность человека изготовлять орудия. Несомненно, человек очень долго оставался крайне малочисленным видом, чем и объясняется редкость его ископаемых остатков, столь затрудняющая исследование истории нашего вида. О численности людей в начале этой истории нет даже правдоподобных допущений, если не считать гипотез вроде популяционной вспышки в эпоху охоты на мамонтов и резкого сокращения популяции после их истребления. В таблице 2, заимствованной у Макивди и Джонса [7], приведены предположительные данные о численности населения Земли с 10000 лет до н.э. до 1900 года; эти данные проверены по другим источникам и не очень от них отличаются. Коэффициет роста, указываемый начиная с 1000 года, есть отношение последующего числа к предыдущему.

 

Исторические оценки населения Земли

Соответствующий график (рисунки 9, 10) разбит на две части, так как невозможно было вычертить его в одном масштабе.

Рис.9

Рис.10

Наконец, таблица 2 и соответствующий ей график (рис.11) опираются уже на статистические данные и достаточно достоверны. В этой таблице [8] приведены также демографические предсказания на ближайшее будущее.

 

Население Земли в середине соответствующего года: 1950 – 2050

Табл. 2

Рис.11

Самой замечательной особенностью человеческой популяции является непрерывный рост ее численности. Если в доисторические времена число людей, по-видимому, мало изменялось и до десятитысячного года до н.э. вряд ли превышало пять миллионов, то с четвертого тысячелетия до тысячного года до н.э. оно почти удваивалось за каждое тысячелетие, составляя геометрическую прогрессию. Возможно, такой рост человечества был связан с переходом к земледелию, обеспечившим людям постоянный источник питания. Другой период геометрической прогрессии связан с наступлением Нового времени, то есть с революционным развитием производства в начале "капитализма"; этот период начинается после великой чумы 1348 года (вызвавшей единственное в истории убывание населения) и длится три столетия, с 1400 до 1700 года. Между 1700 и 1900 годом можно заметить и более быстрый рост, чем геометрическая прогрессия, поскольку показатель роста постепенно увеличивается. Наконец, в ХХ веке рост населения настолько ускорился, что для него геометрическая прогрессия уже не подходит.

Можно представить себе, что такой ускоренный рост объясняется процессом развития технической цивилизации. Как нам кажется, ускорение роста после 1950 года, при умеренном росте населения в "развитых" странах, можно объяснить введением дешевых антибиотиков, резко снизивших детскую смертность в отсталых странах с высокой рождаемостью. Опасность "перенаселения" преследовала мыслителей Европы, начиная с Мальтуса, объявившего в начале девятнадцатого века свой закон, по которому живые существа размножаются в геометрической прогрессии, в то время как средства к их существованию возрастают лишь в арифметической прогрессии (то есть пропорционально времени). Поскольку очевидно, что размножение в геометрической прогрессии долго длиться не может (кроме начальных периодов использования новых ресурсов), избыточные особи должны погибать, что очень часто и происходит в животном мире. Но Мальтус больше всего имел в виду человека, и рост населения в двадцатом веке вызвал "неомальтузианские" настроения у многих социологов, подогретые прогнозами так называемого "Римского клуба". Это квазинаучное общество, щедро поддерживаемое богатыми "спонсорами", в 60 годы уверенно предсказывало дальнейший катастрофический рост населения Земли.

Но вопреки этим предсказаниям примерно с 1962 года годовой прирост населения начал снижаться и упал с 2,19% до 1,38% в 1996 году; в последние годы он снижается в среднем на 0,03% в год [8]. Теперь считают, что к 2100 году или несколько позже население Земли стабилизируется – впервые в истории нашего вида. Во всяком случае, демографический отчет Объединенных наций за 1996 год называется "Мировое население с нулевого года до стабилизации" [9]. Вероятнее всего, что в последние десятилетия начали действовать новые культурные факторы – главным образом контроль над рождаемостью в странах "третьего мира"; к сожалению, такой контроль не всегда осуществлялся добровольными мерами, а в Китае проявился в виде произвола государственной власти, нарушающего права человека.

Попытаемся теперь изобразить весь ход "популяционной истории" человека на одном рисунке – что неизбежно приводит к искажению временны'х и количественных масштабов (рис.12).

Рис.12

Разумеется, рисунок 12 не является фазовым портретом численности нашего вида: вдобавок к "невоспроизводимости" данной численности, о чем уже была речь по поводу энергии, даже точное повторение численности человечества не означало бы, что дальше все пойдет, как было. Со временем человек меняет свое поведение, приобретает новые средства, так что применение фазовых портретов к человеческой популяции для предсказания ее численности вряд ли возможно. Лишь для любопытного сравнения с другими видами можно сказать, что почти вся история homo sapiens напоминает гигантскую вспышку массового размножения; и было бы очень интересно предвидеть, на что будет похожа "стабилизация" этой вспышки.

Одна из модных в наше время "футурологических" концепций представляет себе идеальное будущее человечества "стационарным", с фазовым портретом энергопотребления вроде изображенного на рисунке 4, и с аналогичным "портретом" населения. В таком мире жило бы неизменное число людей, потребляя одно и то же количество энергии, разумеется, экологически чистой. Отказавшись, таким образом, от всякой "экспансии", в том числе от космических предприятий, люди жили бы на Земле, наслаждаясь тщательно охраняемой природой и, по-видимому, умерив свою охоту до всяких новшеств. Такое "идеальное" завершение истории кажется нам несовместимым с самой природой человека, как динамического существа: для человечества это была бы "эвтаназия", безболезненная смерть.

В действительности Земля все еще недонаселена, и некоторые страны (например, Германия) опасаются уменьшения населения. Особенно катастрофическим представляется положение в России за последние 10 лет (см. рис.13а, изображающий снижение рождаемости, и рис. 13б, изображающий уменьшение продолжительности жизни). при этом стабилизация населения происходит быстрее распространения цивилизации. Рост населения замедляется при переселении в города и при удлинении обучения детей. Во многих странах, в том числе и в России. Проблема убывания населения становится острее перенаселения. Это не значит, что уменьшается давление на среду: его усиливают "технический прогресс" и повышение качества жизни.

Рис.13а

Рис.13б

Наши потомки будут сознательно решать популяционную проблему и несомненно прибегнут к научным методам жизнеобеспечения, позволяющим во много раз увеличить производительность поверхности Земли. И вполне вероятно, что их все еще не будет слишком много, когда они смогут приступить к освоению космического пространства. Об этих вопросах мы уже кое-что знаем и расскажем вам в главе 11.

В наше время мы сталкиваемся с подлинной экологической безответственностью, прикрывающейся неомальтузианскими претензиями к "развивающимся" странам. Конечно, эти страны вошли в нашу "технологическую" эпоху с тяжелым наследием прошлого. В Индии крестьянину по традиции полагалось иметь много детей: среднее число рождавшихся в семье детей было шесть. Из них четверо умирало от эпидемических болезней, а выживало двое, что и нужно было для заботы о родителях. Эта традиция получила религиозную санкцию: должен был выжить хотя бы один сын, чтобы выполнять ритуальные церемонии после смерти отца. Такова была стабильность индийского общества, основанная на религии – и на кишечных инфекциях. Введение антибиотиков привело к тому, что все родившиеся дети могут выжить, если будет чем их кормить. Но, конечно, никакая "зеленая революция" не поможет, если в каждой семье вырастет шесть детей и, следовательно, население будет утраиваться в течение одного поколения: это было бы поистине осуществлением закона Мальтуса! Ясно, что очень скоро дети начнут умирать от голода. Значит, сознательный контроль рождаемости неизбежен – как он уже существует во многих странах. Для этого нужно ненасильственное просвещение населения.

Такие же средства нужны, чтобы внушить жителям богатых стран чувство их экологической ответственности перед человечеством. Например, Соединенные Штаты потребляют 38% используемых мировых ресурсов, производя всего 15% мировой продукции, население же их составляет 5% населения Земли. Несомненно, американцы умеют работать лучше многих других, и они пользуются плодами накопленной работы своих предков. Но в экологическом смысле выбросы американских предприятий и автомобилей составляют массу, далеко не пропорциональную их населению, и они поступают в общую для всех людей атмосферу. Как хотите, а мы все живем в "коммунальной квартире"! Что бы вы сказали, если бы ваши соседи по квартире – от которых вам некуда уйти – демонстрировали вам таким образом свое богатство? Представление о том, что Земля конечна, очень медленно проникает в сознание людей. Все мы дышим одним и тем же воздухом, и не видно способа сделать этот воздух частной собственностью, чтобы каждый сам дышал выхлопами и выбросами своих машин. То же относится к воде океана и даже к земной поверхности, с которой вода и ветер разносят ваши отходы. Вспомните, как Европа реагировала на чернобыльскую катастрофу.

Может быть, эти очевидные факты вызовут досаду у тех, кто любит своих ближних только во время богослужения, но другим они напомнят забытое представление о братстве всех людей. Подумаем еще раз об автомобилях. Чтобы изготовить автомобиль, надо переместить 200 тонн различных пород, и не везде есть строгие законы о фильтрах. Если "развивающиеся" нации в самом деле разовьются и станут богатыми нациями – почему бы им не последовать в этом примеру японцев? – и если они станут подражать стилю жизни западных народов, что очень вероятно, то все они обзаведутся автомобилями, по два или три на семью; и если вы им напомните о фильтрах, то их правители скажут, что это их внутреннее дело. Можно опасаться, что наша Земля этого не вынесет!

Как видите, экология требует размышления. Но нами правят люди, которых выбирают на четыре или пять лет. Уверены ли вы, что они склонны думать о проблемах, заведомо не относящихся к этому сроку?