Многоликий солитон

Филиппов Александр Тихонович

ЧАСТЬ 1

ИСТОРИЯ СОЛИТОНА

 

 

Первая официально зарегистрированная встреча человека с солитоном произошла 150 лет назад, в августе 1834 г., вблизи Эдинбурга. Встреча эта была, на первый взгляд, случайной. Человек не готовился к ней специально, и от него требовались особые качества, чтобы он смог увидеть необычное в явлении, с которым сталкивались и другие, но не замечали в нем ничего удивительного. Джон Скотт Рассел (1808—1882) был сполна наделен именно такими качествами. Он не только оставил нам научно точное и яркое, не лишенное поэтичности описание своей встречи с солитоном *), но и посвятил многие годы жизни исследованию этого поразившего его воображение явления.

*) Он назвал его волной трансляции (переноса) или большой уединенной волной (great solitary wave). От слова solitary и был позже произведен термин «солитон» .

Современники Рассела не разделяли его энтузиазма, и уединенная волна не стала популярной. С 1845 по 1965 гг. было опубликовано не более двух десятков научных работ, непосредственно связанных с солитонами. За это время, правда, были открыты и частично изучены близкие родственники солитона, однако универсальность солитонных явлений не была понята, а об открытии Рассела почти не вспоминали.

В последние двадцать лет началась новая жизнь солитона, который оказался поистине многоликим и вездесущим. Ежегодно публикуются тысячи научных работ о солитонах в физике, математике, гидромеханике, астрофизике, метеорологии, океанографии, биологии. Собираются научные конференции, специально посвященные солитонам, о них пишутся книги, все большее число ученых включается в увлекательную охоту за солитонами. Короче, уединенная волна вышла из уединения в большую жизнь.

Как и почему произошел этот удивительный поворот в судьбе солитона, который не мог предвидеть даже влюбленный в солитон Рассел, читатель узнает, если у него хватит терпения дочитать эту книгу до конца. А пока попытаемся мысленно перенестись в 1834 г., чтобы представить себе научную атмосферу той эпохи. Это поможет нам лучше понять отношение современников Рассела к его идеям и дальнейшую судьбу солитона. Наша экскурсия в прошлое будет, по необходимости, очень беглой, мы познакомимся, главным образом, с теми событиями и идеями, которые прямо или косвенно оказались связанными с солитоном.

 

Глава 1

150 ЛЕТ НАЗАД

 

Итак, первая половина прошлого века, время не только наполеоновских войн, социальных сдвигов и революций, но и научных открытий, значение которых раскрывалось постепенно, спустя десятилетия. Тогда об этих открытиях знали немногие, и лишь единицы могли предвидеть их великую роль в будущем человечества. Мы теперь знаем о судьбе этих открытий и не сумеем в полной мере оценить трудности их восприятия современниками. Но давайте все же попробуем напрячь воображение и память и попытаемся пробиться через пласты времени.

1834 год… Еще нет телефона, радио, телевидения, автомобилей, самолетов, ракет, спутников, ЭВМ, ядерной энергетики и многого другого. Всего пять лет назад построена первая железная дорога, и только что начали строить пароходы. Основной вид энергии, используемой людьми, энергия нагретого пара.

Однако уже зреют идеи, которые в конце концов приведут к созданию технических чудес ХХ в. На все это уйдет еще почти сто лет. Между тем наука пока сосредоточена в университетах. Еще не пришло время узкой специализации, и физика еще не выделилась в отдельную науку. В университетах читают курсы «натурфилософии» (т. е. естествознания), первый физический институт будет создан только в 1850 г. В то далекое время фундаментальные открытия в физике можно сделать совсем простыми средствами, достаточно иметь гениальное воображение, наблюдательность и золотые руки.

Одно из удивительнейших открытий прошлого века было сделано с помощью проволочки, через которую пропускался электрический ток, и простого компаса. Нельзя сказать, что это открытие было совершенно случайным. Старший современник Рассела Ханс Кристиан Эрстед (1777—1851) был буквально одержим идеей о связи между различными явлениями природы, в том числе между теплотой, звуком, электричеством, магнетизмом *). В 1820 г. во время лекции, посвященной поискам связей магнетизма с «гальванизмом» и электричеством, Эрстед заметил, что при пропускании тока через провод, параллельный стрелке компаса, стрелка отклоняется. Это наблюдение вызвало огромный интерес в образованном обществе, а в науке породило лавину открытий, начатую Андре Мари Ампером (1775—1836).

*) Тесную связь между электрическими и магнитными явлениями первым подметил еще в конце ХVII в. петербургский академик Франц Эпинус.

В знаменитой серии работ 1820—1825 гг. Ампер заложил основы единой теории электричества и магнетизма и назвал ее электродинамикой. Затем последовали великие открытия гениального самоучки Майкла Фарадея (1791—1867), сделанные им в основном в 30—40-х годах,— от наблюдения электромагнитной индукции в 1831 г. до формирования к 1852 г. понятия электромагнитного поля. Свои поражавшие воображение современников опыты Фарадей тоже ставил, используя самые простые средства.

В 1853 г. Герман Гельмгольц, о котором будет идти речь далее, напишет: «Мне удалось познакомиться с Фарадеем, действительно первым физиком Англии и Европы… Он прост, любезен и непритязателен, как ребенок; такого располагающего к себе человека я еще не встречал… Он был всегда предупредителен, показал мне все, что стоило посмотреть. Но осматривать пришлось немного, так как ему для его великих открытий служат старые кусочки дерева, проволоки и железа».

В это время электрон еще неизвестен. Хотя подозрения о существовании элементарного электрического заряда появились у Фарадея уже в 1834 г. в связи с открытием законов электролиза, научно установленным фактом его существование стало лишь в конце столетия, а сам термин «электрон» будет введен только в 1891 г.

Полная математическая теория электромагнетизма еще не создана. Ее творцу Джеймсу Кларку Максвеллу в 1834 г. было всего три года от роду, и он подрастает в том же самом городе Эдинбурге, где читает лекции по натурфилософии герой нашего рассказа. В это время физика, которая еще не разделилась на теоретическую и экспериментальную, только начинает математизироваться. Так, Фарадей в своих работах не применял даже элементарной алгебры. Хотя Максвелл и скажет позже, что он придерживается «не только идей, но и математических методов Фарадея», это утверждение можно понять лишь в том смысле, что идеи Фарадея Максвелл сумел перевести на язык современной ему математики. В «Трактате об электричестве и магнетизме» он писал:

«Может быть, для науки было счастливым обстоятельством то, что Фарадей не был собственно математиком, хотя он был в совершенстве знаком с понятиями пространства, времени и силы. Поэтому у него не было соблазна углубляться в интересные, но чисто математические исследования, которых потребовали бы его открытия, если бы они были представлены в математической форме… Таким образом, он имел возможность идти своим путем и согласовывать свои идеи с полученными фактами, пользуясь естественным, не техническим языком… Приступив к изучению труда Фарадея, я установил, что его метод понимания явлений был также математическим, хотя и не представленным в форме обычных математических символов. Я также нашел, что этот метод можно выразить в обычной математической форме и таким образом сравнить с методами профессиональных математиков».

Если вы спросите меня, назовут ли нынешний век железным веком или веком пара и электричества, я отвечу, не задумываясь, что наш век будет назы- ваться веком механического мировоззрения… Л. Больцман

В то же время механика систем точек и твердых тел, как и механика движений жидкостей (гидродинамика), были уже существенно математизированы, т. е. они в значительной степени стали математическими науками. Задачи механики систем точек были полностью сведены к теории обыкновенных дифференциальных уравнений (уравнения Ньютона 1687 г., более общие уравнения Лагранжа 1788 г.), а задачи гидромеханики к теории так называемых дифференциальных уравнений с частными производными (уравнения Эйлера 1755 г., уравнения Навье 1823 г.). Это не значит, что все задачи были решены. Наоборот, в этих науках были впоследствии сделаны глубокие и важные открытия, поток которых не иссякает и в наши дни. Просто механика и гидромеханика достигли того уровня зрелости, когда их основные физические принципы были отчетливо сформулированы и переведены на язык математики.

Естественно, что эти глубоко разработанные науки служили основой для построения теорий новых физических явлений. Понять явление для ученого прошлого века значило объяснить его на языке законов механики. Образцом последовательного построения научной теории считалась небесная механика. Итоги ее развития были подведены Пьером Симоном Лапласом (1749—1827) в монументальном пятитомном «Трактате о небесной механике», вышедшем в свет в первой четверти века. Эта работа, в которой были собраны и обобщены достижения гигантов ХVIII в. Бернулли, Эйлера, Д'Аламбера, Лагранжа и самого Лапласа, оказала глубокое влияние на формирование «механического миропонимания» в ХIХ в.

Заметим, что в том же 1834 г. в стройную картину классической механики Ньютона и Лагранжа был добавлен завершающий мазок — знаменитый ирландский математик Уильям Роуэн Гамильтон (1805—1865) придал уравнениям механики так называемый канонический вид (согласно словарю С. И. Ожегова «канонический» означает «принятый за образец, твердо установленный, соответствующий канону») и открыл аналогию между оптикой и механикой. Каноническим уравнениям Гамильтона суждено было сыграть выдающуюся роль в конце века при создании статистической механики, а оптико-механическая аналогия, установившая связь между распространением волн и движением частиц, была использована в 20-е годы нашего века творцами квантовой теории. Идеи Гамильтона, который первым глубоко проанализировал понятие волн и частиц и связи между ними, сыграли немалую роль и в теории солитонов.

Развитие механики и гидромеханики, так же как и теории деформаций упругих тел (теории упругости), подстегивалось потребностями развивающейся техники. Дж. К. Максвелл много занимался также и теорией упругости, теорией устойчивости движения с приложениями к работе регуляторов, строительной механикой. Более того, разрабатывая свою электромагнитную теорию, он постоянно прибегал к наглядным моделям: «…я сохраняю надежду при внимательном изучении свойств упругих тел и вязких жидкостей найти такой метод, который позволил бы дать и для электрического состояния некоторый механический образ… (ср. с работой: Уильям Томсон «О механичееком представлении электрических, магнитных и гальванических сил», 1847 г.)».

Другой знаменитый шотландский физик Уильям Томсон (1824—1907), впоследствии получивший за научные заслуги титул лорда Кельвина, вообще считал, что все явления природы необходимо сводить к механическим движениям и объяснять их на языке законов механики. Взгляды Томсона оказали сильное влияние на Максвелла, особенно в его молодые годы. Удивительно, что Томсон, близко знавший и ценивший Максвелла, одним из последних признал его электромагнитную теорию. Это произошло только после знаменитых опытов Петра Николаевича Лебедева по измерению светового давления (1899 г.): «Я всю жизнь воевал с Максвеллом… Лебедев заставил меня сдаться…»

 

Начало теории волн

Хотя основные уравнения, описывающие движения жидкости, в 30-е годы ХIХ в. были уже получены, математическая теория волн на воде только начала создаваться. Простейшая теория волн на поверхности воды была дана Ньютоном в его «Математических началах натуральной философии», впервые изданных в 1687 г. Сто лет спустя знаменитый французский математик Жозеф Луи Лагранж (1736—1813) назвал этот труд «величайшим произведением человеческого ума». К сожалению, эта теория была основана на неправильном допущении, что частицы воды в волне просто колеблются вверх вниз. Несмотря на то, что Ньютон не дал правильного описания волн на воде, он верно поставил задачу, и его простая модель вызвала к жизни другие исследования. Впервые правильный подход к поверхностным волнам был найден Лагранжем. Он понял, как можно построить теорию волн на воде в двух простых случаях — для волн с малой амплитудой («мелкие волны») и для волн в сосудах, глубина которых мала по сравнению с длиной волны («мелкая вода»). Лагранж не занимался детальной разработкой теории волн, так как его увлекали другие, более общие математические проблемы.

Много ли есть людей, которые, любуясь игрой волн на поверхности ручейка, думают, как найти уравнения, по которым можно было бы вычислить форму любого волнового гребня? Л. Больцман

Вскоре было найдено точное и удивительно простое решение уравнений, описывающих волны на воде. Это первое, и одно из немногих точных, решение уравнений гидромеханики получил в 1802 г. чешский ученый, профессор математики в Праге Франтишек Йозеф Герстнер (1756—1832)*).

*) Иногда Ф. Й. Герстнера путают с его сыном, Ф. А. Герстнером, несколько лет жившим в России. Под его руководством в 18З6—18З7 гг. была построена первая в России железная дорога (из Петербурга в Царское Село).

В волне Герстнера (рис. 1.1), которая может образоваться только на «глубокой воде», когда длина волны много меньше глубины сосуда, частицы жидкости движутся по окружностям.

Волна Герстнера — первая изученная волна несинусоидальной формы. Из того, что частицы жидкости движутся по окружностям, можно заключить, что поверхность воды имеет форму циклоиды (от греч. «киклос» — круг и «эйдос» — форма), т. е. кривой, которую описывает какая-нибудь точка колеса, катящегося по ровной дороге. Иногда эту кривую называют трохоидой (от греч. «трохос» — колесо), а волны Герстнера трохоидальными *). Только для очень мелких волн, когда высота волн становится много меньше их длины, циклоида становится похожей на синусоиду, и волна Герстнера превращается в синусоидальную. Хотя при этом частицы воды и мало отклоняются от своих положений равновесия, движутся они все равно по окружностям, а не качаются вверх-вниз, как полагал Ньютон. Надо заметить, что Ньютон ясно сознавал ошибочность такого допущения, но счел возможным воспользоваться им для грубой приближенной оценки скорости распространения волны: «Все происходит таким образом при предположении, что частицы воды поднимаются и опускаются по отвесным прямым линиям, но их движение вверх и вниз на самом деле происходит не по прямой, а вернее по кругу, поэтому я утверждаю, что время дается этим положениям лишь приближенно». Здесь «время» — период колебаний Т в каждой точке; скорость волны υ = λ/Т, где λ — длина волны. Ньютон показал, что скорость волны на воде пропорциональна . В дальнейшем мы увидим, что это правильный результат, и найдем коэффициент пропорциональности, который был известен Ньютону лишь приближенно.

*) Мы будем называть циклоидами кривые, описываемые точками, лежащими на ободе колеса, а трохоидами кривые, описываемые точками между ободом и осью.

 

Братья Веберы изучают волны

Открытие Герстнера не прошло незамеченным. Надо сказать, что он сам продолжал интересоваться волнами и свою теорию применял для практических расчетов плотин и дамб. Вскоре было положено начало и лабораторному исследованию волн на воде. Это сделали молодые братья Веберы.

Старший брат Эрнст Вебер (1795—1878) сделал впоследствии важные открытия в анатомии и физиологии, в особенности в физиологии нервной системы. Вильгельм Вебер (1804—1891) стал знаменитым физиком и многолетним сотрудником «контроля математиков» К. Гaуссa в исследованиях по физике. По предложению и при содействии Гаусса он основал в Геттингенском университете первую в мире физическую, лабораторию (1831 г.). Более всего известны его работы по электричеству и магнетизму, а также электромагнитная теория Вебера, которая была позднее вытеснена теорией Максвелла. Он одним из первых (1846 г.) ввел представление об отдельных частичках электрического вещества «электрических массах» и предложил первую модель атома, в которой атом уподоблялся планетарной модели Солнечной системы. Вебер также разработал основанную на идее Фарадея теорию элементарных магнитиков в веществе и изобрел несколько физических приборов, которые для своего времени были весьма совершенными.

Эрнст, Вильгельм и младший их брат Эдуард Веберы серьезно заинтересовались волнами. Они были настоящими экспериментаторами, и простые наблюдения над волнами, которые можно видеть «на каждом шагу», их не могли удовлетворить. Поэтому они сделали простой прибор (лоток Веберов), который с разными усовершенствованиями до сих пор используется для опытов с волнами на воде. Построив длинный ящик со стеклянной боковой стенкой и нехитрые приспособления для возбуждения волн, они провели обширные наблюдения различных волн, в том числе и волн Герстнера, теорию которого они таким образом проверили на опыте. Результаты этих наблюдений они опубликовали в 1825 г. в книге под названием «Учение о волнах, основанное на опытах». Это было первое экспериментальное исследование, в котором систематически изучались волны разной формы, скорость их распространения, соотношения между длиной и высотой волны и т. д. Способы наблюдения были очень простые, остроумные и довольно эффективные. Например, для определения формы поверхности волны они опускали в ванну матовую стеклянную пластину. Когда волна доходит до середины пластины, ее быстро выдергивают; при этом передняя часть волны совершенно правильно отпечатывается на пластине. Чтобы наблюдать пути колеблющихся в волне частиц, они заполняли лоток мутной водой из реки Заале и наблюдали движения невооруженным глазом или с помощью слабого микроскопа. Таким способом они определили не только форму, но и размеры траекторий частиц. Так, они обнаружили, что траектории вблизи поверхности близки к окружностям, а при приближении к дну сплющиваются в эллипсы; вблизи самого дна частицы движутся горизонтально. Веберы открыли много интересных свойств волны на воде и других жидкостях. 

 

О пользе теории волн

Независимо от этого происходила разработка идей Лагранжа, связанная в основном с именами французских математиков Огюстена Луи Коши (1789—1857) и Симона Дени Пуассона (1781—1840). В этой работе принял участие и наш соотечественник Михаил Васильевич Остроградский (1801—1862). Эти знаменитые ученые много сделали для науки, их имена носят многочисленные уравнения, теоремы и формулы. Менее известны их работы по математической теории волн малой амплитуды на поверхности воды. Теорию таких волн можно применять к некоторым штормовым волнам на море, к движению судов, к волнам на отмелях и вблизи волноломов и т. д. Ценность математической теории таких волн для инженерной практики очевидна. Но в то же время математические методы, разработанные для решения этих практических задач, были позже применены и к решению совсем других, далеких от гидромеханики проблем. Мы еще не раз встретимся с подобными примерами «всеядности» математики и практической пользы от решения математических задач, на первый взгляд относящихся к «чистой» («бесполезной») математике.

Здесь автору трудно удержаться от небольшого отступления, посвященного одному эпизоду, связанному с появлением единственной работы Остроградского по теории волн. Эта математическая работа не только принесла отдаленную пользу науке и технике, но и оказала непосредственное и важное влияние на судьбу ее автора, что случается не так уж часто. Вот как излагает этот эпизод выдающийся русский кораблестроитель, математик и инженер, академик Алексей Николаевич Крылов (1863—1945). «В 1815 г. Парижская академия наук поставила теорию волн темою для «Большого приза по математике». В конкурсе приняли участие Коши и Пуассон. Премирован был обширный (около 300 стр.) мемуар Коши, мемуар Пуассона заслужил почетный отзыв… В это же время (1822 г.) М. В. Остроградский, задолжавший вследствие задержки в высылке (из дома) денег содержателю гостиницы, был им посажен в Клиши (долговая тюрьма в Париже). Здесь он написал «Теорию волн в сосуде цилиндрической формы» И послал свой мемуар Коши, который не только одобрил эту работу и представил ее Парижской академии наук для напечатания в ее трудах, но и, не будучи богатым, выкупил Остроградского из долговой тюрьмы и рекомендовал его на должность учителя математики в один из лицеев в Париже. Ряд математических работ Остроградского обратил на него внимание С.-Петербургской академии наук, и в 1828 г. он был избран в ее адъюнкты, а затем и в ординарные академики, имея лишь аттестат студента Харьковского университета, уволенного, не окончив курс».

Добавим к этому, что Остроградский родился в небогатой семье украинских дворян, в 16 лет он поступил на физико-математический факультет Харьковского университета по воле отца, вопреки собственным желаниям (он хотел стать военным), но очень скоро проявились его выдающиеся способности к математике. В 1820 г. он с отличием сдал экзамены на кандидата, однако министр народного просвещения и духовных дел князь А. Н. Голицын не только отказал ему в присуждении степени кандидата, но и лишил ранее выданного диплома об окончании университета. Основанием послужили обвинения его в «безбожии и вольнодумстве», в том, что он «не посещал не только лекции философии, но и богопознания и христианского учения». В результате Остроградский уехал в Париж, где усердно посещал лекции Лапласа, Коши, Пуассона, Фурье, Ампера и других выдающихся ученых. Впоследствии Остроградский стал член-корреспондентом Парижской академии наук, членом Туринской, Римской и Американской академий и т. д. В 1828 г. Остроградский вернулся в Россию, в Петербург, где по личному повелению Николая I был взят под секретный надзор полиции *). Это обстоятельство не помешало, однако, карьере Остроградского, постепенно занявшего весьма высокое положение.

*) Император Николай I вообще относился к ученым с недоверием, считая всех их, не без оснований, вольнодумцами.

Работа о волнах, упомянутая А. Н. Крыловым, была опубликована в трудах Парижской академии наук в 1826 г. Она посвящена волнам малой амплитуды, т. е. задаче, над которой работали Коши и Пуассон. Больше к исследованию волн Остроградский не возвращался. Помимо чисто математических работ известны его исследования по Гамильтоновой механике, одна из первых работ по изучению влияния нелинейной силы трения на движение снарядов в воздухе (эта задача была поставлена еще Эйлером). Остроградский был одним из первых, кто осознал необходимость изучения нелинейных колебаний и нашел остроумный способ приближенного учета малых нелинейностей в колебаниях маятника (задача Пуассона). К сожалению, многие свои научные начинания он не довел до конца — слишком много сил приходилось отдавать педагогической работе, прокладывающей дорогу новым поколениям ученых. Уже за одно это мы должны быть благодарны ему, как и другим российским ученым начала прошлого века, упорным трудом создавшим фундамент будущего развития науки в нашей стране.

Вернемся, однако, к нашему разговору о пользе волн. Можно привести замечательный пример применения идей теории волн к совсем другому кругу явлений. Речь идет о гипотезе Фарадея о волновом характере процесса распространения электрических и магнитных взаимодействий. Фарадей уже при жизни стал знаменитым ученым, о нем и о его работах написаны многие исследования и популярные книги. Однако мало кто и сегодня знает, что Фарадей серьезно интересовался волнами на воде. Не владея математическими методами, известными Коши, Пуассону и Остроградскому, он очень ясно и глубоко понимал основные идеи теории волн на воде. Размышляя о распространении электрического и магнитного полей в пространстве, он попытался представить себе этот процесс по аналогии с распространением волн на воде. Эта аналогия, видимо, и привела его к гипотезе о конечности скорости распространения электрических и магнитных взаимодействий и о волновом характере этого процесса. 12 марта 1832 г. он записал эти мысли в специальном письме: «Новые воззрения, подлежащие в настоящее время хранению в запечатанном конверте в архивах Королевского общества». Мысли, изложенные в письме, далеко опережали свое время, по сути дела здесь впервые сформулирована идея об электромагнитных волнах. Это письмо было погребено в архивах Королевского общества, его обнаружили лишь в 1938 г. Видимо, и сам Фарадей забыл о нем (у него постепенно развилось тяжелое заболевание, связанное с потерей памяти). Основные идеи письма он изложил позже в работе 1846 г.

Разумеется, сегодня невозможно точно восстановить ход мыслей Фарадея. Но его размышления и опыты над волнами на воде незадолго до составления этого замечательного письма отражены в опубликованной им в 1831 г. работе. Она посвящена исследованию мелкой ряби на поверхности воды, т. е. так называемым «капиллярным» волнам *) (подробнее о них будет рассказано в гл. 5). Для их исследования он придумал остроумный и, как всегда, очень простой приборчик. Впоследствии метод Фарадея использовал Рассел, наблюдавший другие малозаметные, но красивые и интересные явления с капиллярными волнами. Опыты Фарадея и Рассела описаны в § 354—356 книги Рэлея (Джон Уильям Стрэтт, 1842—1919) «Теория звука», которая была впервые издана в 1877 г., но до сих пор не устарела, и может доставить огромное удовольствие читателю (есть русский перевод). Рэлей не только много сделал для теории колебаний и волн, но и одним из первых признал и оценил уединенную волну. 

*) Эти волны связаны с силами поверхностного натяжения воды. Те же самые силы вызывают подъем воды в тончайших, толщиной с волос, трубочках (латинское слово сaрillus и означает волос).

 

О главных событиях эпохи

Между тем нам пора заканчивать несколько затянувшуюся историческую экскурсию, хотя картина науки той поры получилась, пожалуй, слишком однобокой. Чтобы как-то исправить это, совсем кратко напомним о событиях тех лет, которые историки науки справедливо считают наиболее важными. Как уже говорилось, все основные законы и уравнения механики были сформулированы в 1834 г. в том самом виде, в котором мы ими пользуемся и сегодня. К середине века были написаны и стали подробно изучаться основные уравнения, описывающие движения жидкостей и упругих тел (гидродинамика и теория упругости). Как мы видели, волны в жидкостях и в упругих телах интересовали многих ученых. Физиков, однако, гораздо сильнее увлекали в это время световые волны. 

В первой четверти века, в основном благодаря таланту и энергии Томаса Юнга (1773—1829), Огюстена Жана Френеля (1788—1827) и Доминика Франсуа Aрaго (1786—1853), победила волновая теория света. Победа не была легкой, ибо среди многочисленных противников волновой теории были такие крупные ученые, как Лаплас и Пуассон. Критический опыт, окончательно утвердивший волновую теорию, был сделан Aрaго на заседании комиссии Парижской академии наук, обсуждавшей представленную на конкурс работу Френеля о дифракции света. В докладе комиссии об этом рассказано так: «Один из членов нашей комиссии, месье Пуассон, вывел из сообщенных автором интегралов тот удивительный результат, что центр тени от крупного непрозрачного экрана должен быть таким же освещенным, как и в том случае, если бы экран не существовал… Это следствие было проверено прямым опытом и наблюдение полностью подтвердило данные вычисления».

Это произошло в 1819 г., а в следующем году сенсацию вызвало уже упоминавшееся открытие Эрстеда. Публикация Эрстедом работы «Опыты, относящиеся к действию электрического конфликта на магнитную стрелку», породила лавину опытов по электромагнетизму. Общепризнано, что наибольший вклад в эту работу внес Ампер. Работа Эрстеда была опубликована в Копенгагене в конце июля, в начале сентября Aрaго объявляет об этом открытии в Париже, а в октябре появляется всем известный закон Био—Савара—Лапласа. С конца сентября Ампер выступает почти еженедельно (!) с сообщениями о новых результатах. Итоги этой дофарадеевской эпохи в электромагнетизме подведены в книге Ампера «Теория электродинамических явлений, выведенная исключительно из опыта».

Заметьте, как быстро распространялись в то время известия о событиях, которые вызывали всеобщий интерес, хотя средства связи были менее совершенные, чем сегодня (идея телеграфной связи была высказана Ампером в 1829 г., и только в 1844 г. в Северной Америке начала работать первая коммерческая телеграфная линия). Быстро стали широко известными и результаты опытов Фарадея. Этого, однако, нельзя сказать о распространении теоретических идей Фарадея, объяснявших его опыты (понятие о силовых линиях, электротоническом состоянии, т. е. об электромагнитном поле).

Первым всю глубину идей Фарадея оценил Максвелл, который и сумел найти для них подходящий математический язык. Но это произошло уже в середине века. Читатель может спросить, почему же столь по-разному воспринимались идеи Фарадея и Ампера. Дело, видимо, в том, что электродинамика Ампера уже созрела, «носилась в воздухе». Нисколько не умаляя великих заслуг Ампера, который первым придал этим идеям точную математическую форму, нужно все же подчеркнуть, что идеи Фарадея были гораздо более глубокими и революционными. Они не «носились в воздухе», а были рождены творческой мощью мысли и фантазии их автора. Затрудняло их восприятие то, что они не были облечены в математические одежды. Не появись Максвелл идеи Фарадея, возможно, были бы надолго забыты.

Третье важнейшее направление в физике первой половины прошлого века — начало развития учения о теплоте. Первые шаги теории тепловых явлений, естественно, были связаны с работой паровых машин, а общие теоретические идеи формировались трудно и проникали в науку медленно. Замечательная работа Сади Карно (1796—1832) «Размышления о движущей силе огня и о машинах, способных развивать эту силу», опубликованная в 1824 г., прошла совершенно незамеченной. О ней вспомнили лишь благодаря появившейся в 1834 г. работе Клапейрона, но создание современной теории теплоты (термодинамики) дело уже второй половины века.

С интересующими нас вопросами тесно связаны две работы. Одна из них — знаменитая книга выдающегося математика, физика и египтолога *) Жана Батиста Жозефа Фурье (1768—1830) «Аналитическая теория теплоты» (1822 г.), посвященная решению задачи о распространении тепла; в ней был детально разработан и применен к решению физических задач метод разложения функций на синусоидальные составляющие (разложение Фурье). От этой работы обычно отсчитывают зарождение математической физики как самостоятельной науки. Ее значение для теории колебательных и волновых процессов огромно — в течение более чем столетия основным способом исследования волновых процессов стало разложение сложных волн на простые синусоидальные (гармонические) волны, или «гармоники» (от «гармонии» в музыке).

*) После наполеоновского похода в Египет он составил «Описание Египта» и собрал небольшую, но ценную коллекцию египетских древностей. Фурье направлял первые шаги юного Жана Франсуа Шампольона, гениального дешифровщика иероглифического письма, основоположника египтологии. Дешифровкой иероглифов увлекался не без успеха и Томас Юнг.

Другая работа — доклад двадцатишестилетнего Гельмгольца «О сохранении силы», сделанный в 1847 г. на заседании основанного им Физического общества в Берлине. Герман Людвиг Фердинанд Гельмгольц (1821—1894) по праву считается одним из величайших естествоиспытателей, а эту его работу некоторые историки науки ставят в один ряд с наиболее выдающимися трудами ученых, заложивших основы естественных наук. В ней идет речь о наиболее общей формулировке принципа сохранения энергии (тогда ее называли «силой») для механических, тепловых, электрических («гальванических») и магнитных явлений, включая и процессы в «организованном существе». Для нас особенно интересно, что здесь Гельмгольц впервые отметил колебательный характер разряда лейденской банки и написал уравнение, из которого вскоре У. Томсон вывел формулу для периода электромагнитных колебаний в колебательном контуре.

В этой небольшой работе можно разглядеть намеки на будущие замечательные исследования Гельмгольца. Даже простое перечисление его достижений в физике, гидромеханике, математике, анатомии, физиологии и психофизиологии увело бы нас очень далеко в сторону от основной темы нашего рассказа. Упомянем лишь теорию вихрей в жидкости, теорию происхождения морских волн и первое определение скорости распространения импульса в нерве. Все эти теории, как мы вскоре увидим, имеют самое непосредственное отношение к современным исследованиям солитонов. Из других его идей необходимо упомянуть впервые высказанное им в лекции, посвященной физическим воззрениям Фарадея (1881 г.), представление о существовании элементарного («наименьшего возможного») электрического заряда («электрических атомов»). На опыте электрон был обнаружен лишь шестнадцать лет спустя.

Обе описанные работы были теоретическими, они составили фундамент математической и теоретической физики. Окончательное становление этих наук связано, несомненно, с работами Максвелла, а в первой половине века чисто теоретический подход к физическим явлениям был, в общем-то, чужд большинству ученых. Физика считалась наукой чисто «опытной» и главными словами даже в названиях работ были «опыт», «основанный на опытах», «выведенные из опытов». Интересно, что сочинение Гельмгольца, которое и в наши дни можно считать образцом глубины и ясности изложения, не было принято физическим журналом как теоретическое и слишком большое по объему и было позднее выпущено в свет отдельной брошюрой. Незадолго до смерти Гельмгольц так говорил об истории создания своей самой знаменитой работы:

«Молодые люди всего охотнее берутся сразу за самые глубокие задачи, так и меня занял вопрос о загадочном существе жизненной силы... я нашел, что... теория жизненной силы... приписывает всякому живому телу свойства «вечного двигателя»... Просматривая сочинения Даниила Бернулли, Д'Аламбера и других математиков прошлого столетия... я натолкнулся на вопрос: «какие отношения должны существовать между различными силами природы, если принять, что «вечный двигатель» вообще невозможен и выполняются ли в действительности все эти соотношения...» Я намеревался только дать критическую оценку и систематику фактов в интересах физиологов. Для меня не было бы неожиданностью, если бы в конце концов сведущие люди сказали мне: «Да все это отлично известно. Чего хочет этот юный медик, распространяясь так подробно об этих вещах?» К моему удивлению, те авторитеты по физике, с которыми мне пришлось войти в соприкосновение, посмотрели на дело совершенно иначе. Они были склонны отвергать справедливость закона; среди той ревностной борьбы, какую они вели с натурфилософией Гегеля, и моя работа была сочтена за фантастическое умствование. Только математик Якоби признал связь между моими рассуждениями и мыслями математиков прошлого века, заинтересовался моим опытом и защищал меня от недоразумений».

Эти слова ярко характеризуют умонастроение и интересы многих ученых той эпохи. В таком сопротивлении научного общества новым идеям есть, конечно, закономерность и даже необходимость. Так что не будем торопиться осуждать Лапласа, не понимавшего Френеля, Вебера, не признававшего идей Фарадея, или Кельвина, противившегося признанию теории Максвелла, а лучше спросим себя, легко ли дается нам самим усвоение новых, непохожих на все, с чем мы свыклись, идей. Признаем, что некоторый консерватизм заложен в нашей человеческой природе, а значит, и в науке, которую делают люди. Говорят, что некий «здоровый консерватизм» даже необходим для развития науки, так как он препятствует распространению пустых фантазий. Однако это отнюдь не утешает, когда вспоминаешь о судьбах гениев, заглянувших в будущее, но не понятых и не признанных своей эпохой.

Твой век, дивясь тебе, пророчеств не постиг И с лестью смешивал безумные упреки. В. Брюсов

Может быть, самые яркие примеры такого конфликта с эпохой в интересующее нас время (около 1830 г.) мы видим в развитии математики. Лицо этой науки тогда определяли, вероятно, Гаусс и Коши, завершавшие вместе с другими постройку великого здания математического анализа, без которого современная наука просто немыслима. Но мы не можем забыть и о том, что в это же время, не оцененные современниками, умерли молодые Абель (1802—1829) и Галуа (1811—1832), что с 1826 по 1840 гг. публиковали свои работы по неевклидовой геометрии Лобачевский (1792—1856) и Бойяи (1802—1860), не дожившие до признания своих идей. Причины такого трагического непонимания глубоки и многообразны. Мы не можем углубляться в них, а приведем лишь еще один пример, важный для нашего рассказа.

Как мы увидим позже, судьба нашего героя, солитона, тесно связана с вычислительными машинами. Более того, история преподносит нам поразительное совпадение. В августе 1834 г., в то время, когда Рассел наблюдал уединенную волну, английский математик, экономист и инженер-изобретатель Чарльз Бэббедж (1792—1871) закончил разработку основных принципов своей «аналитической» машины, которые легли впоследствии в основу современных цифровых вычислительных машин. Идеи Бэббеджа далеко опередили свое время. Для реализации его мечты о постройке и использовании таких машин потребовалось более ста лет. В этом трудно винить современников Бэббеджа. Многие понимали необходимость вычислительных машин, но техника, наука и общество еще не созрели для осуществления его смелых проектов. Премьер-министр Англии сэр Роберт Пил, которому пришлось решать судьбу финансирования проекта, представленного Бэббеджем правительству, не был невеждой (он окончил Оксфорд первым по математике и классике). Он провел формально тщательное обсуждение проекта, но в результате пришел к выводу, что создание универсальной вычислительной машины не относится к первоочередным задачам британского правительства. Лишь в 1944 г. появились первые автоматические цифровые машины, и в английском журнале «Nature» («Природа») появилась статья под названием «Мечта Бэббеджа сбылась».

 

Наука и общество

Конечно, и успехи науки, и ее неудачи связаны с историческими условиями развития общества, на которых мы не можем задерживать внимание читателя. Не случайно именно в то время возник такой напор новых идей, что наука и общество не успевали их осваивать.

Развитие науки в разных странах шло неодинаковыми путями.

Во Франции научная жизнь объединялась и оргaнизовывалась Академией до такой степени, что работа, не замеченная и не поддержанная Академией или хотя бы известными академиками, имела мало шансов заинтересовать ученых. Зато уж работы, попавшие в поле зрения Академии, поддерживались и развивались. Это иногда вызывало протесты и возмущение со стороны молодых ученых. В статье, посвященной памяти Абеля, его друг Сеги писал: «Даже в случае Абеля и Якоби благосклонность Академии означала не признание несомненных заслуг этих молодых ученых, а скорее стремление поощрить исследование некоторых проблем, касающихся строго определенного круга вопросов, за пределами которого, по мнению Академии, не может быть прогресса науки и нельзя сделать никаких ценных открытий... Мы же скажем совсем другое: молодые ученые, не слушайте никого, кроме вашего собственного внутреннего голоса. Читайте труды гениев и размышляйте над ними, но ни когда не превращайтесь в учеников, лишенных собственного мнения... Свобода взглядов и объективность суждений — таков должен быть ваш девиз». (Пожалуй, «не слушать никого» — полемическое преувеличение, «внутренний голос» не всегда прав.)

Во множестве мелких государств, находившихся на территории будущей германской империи (лишь к 1834 г. были закрыты таможни между большинством этих государств), научная жизнь была сосредоточена в многочисленных университетах, в большинстве которых велась также исследовательская работа. Именно там в это время начали складываться школы ученых и выходило большое число научных журналов, которые постепенно стали главным средством общения между учеными, неподвластным пространству и времени. Их образцу следуют и современные научные журналы.

На Британских островах не было ни академии французского типа, пропагандировавшей признанные ею достижения, ни таких научных школ, как в Германии. Большинство английских ученых работало в одиночку *). Этим одиночкам удавалось прокладывать совершенно новые пути в науке, но их работы часто оставались совершенно неизвестными, особенно когда они не были посланы в журнал, а были лишь доложены на заседаниях Королевского общества. Жизнь и открытия эксцентричного вельможи и гениального ученого, лорда Генри Кавендиша (1731—1810), работавшего в полном одиночестве в собственной лаборатории и опубликовавшего лишь две работы (остальные, содержавшие открытия, переоткрытые другими лишь десятки лет спустя, были найдены и опубликованы Максвеллом), особенно ярко иллюстрируют эти особенности науки в Англии на рубеже ХVIII—ХIХ вв. Такие тенденции в научной работе сохранялись в Англии довольно продолжительное время. Например, уже упоминавшийся лорд Рэлей также работал как любитель, большую часть своих опытов он выполнил в своей усадьбе. Этим «любителем», помимо книги о теории звука, было написано больше четырехсот работ! Несколько лет работал в одиночестве в своем родовом гнезде и Максвелл.

*) Не нужно воспринимать это слишком буквально. Любой ученый нуждается в постоянном общении с другими учеными. В Англии центром такого общения было Королевское общество, которое также располагало немалыми средствами для финансирования научных исследований.

В результате, как писал об этом времени английский историк науки, «наибольшее число совершенных по форме и содержанию трудов, ставших классическими... принадлежит, вероятно, Франции; наибольшее количество научных работ было выполнено, вероятно, в Германии; но среди новых идей, которые на протяжении века оплодотворяли науку, наибольшая доля, вероятно, принадлежит Англии». Последнее утверждение вряд ли можно отнести к математике. Если же говорить о физике, то это суждение кажется не слишком далеким от истины. Не забудем также, что современником Рассела *) был великий Чарльз Дарвин, который родился на год позже и умер в один год с ним.

*) Большинство упоминаемых нами современников, вероятно, были знакомы друг с другом. Разумеется, члены Королевского общества встречались на заседаниях, но, кроме того, они поддерживали и личные связи. Например, известно, что Чарльз Дарвин бывал на приемах у Чарльза Бэббеджа, который со студенческих лет дружил с Джоном Гершелем, который близко знал Джона Рассела, и т. д.

В чем же причина успехов исследователей-одиночек, почему они смогли прийти к настолько неожиданным идеям, что многим другим не менее одаренным ученым они казались не просто неправильными, а даже почти безумными? Если сопоставить Фарадея и Дарвина — двух великих естествоиспытателей первой половины прошлого века, то бросается в глаза их необычайная независимость от учений, господствовавших в то время, доверие собственным зрению и разуму, великая изобретательность в постановке вопросов и стремление до конца понять то необычное, что им удалось наблюдать. Важно и то, что образованное общество не равнодушно к научным изысканиям. Если и нет понимания, то есть интерес, и вокруг первооткрывателей и новаторов обычно собирается кружок поклонников и сочувствующих. Даже у непонятого и ставшего к концу жизни мизантропом Бэббеджа были любящие и ценящие его люди, его понимал и высоко ценил Дарвин, близким его сотрудником и первым программистом его аналитической машины стала выдающийся математик, дочь Байрона, леди Ада Августа Лавлейс. Бэббеджа также ценил Фарадей и другие выдающиеся люди его времени.

Общественное значение научных исследований уже стало понятным многим образованным людям, и это иногда помогало получать ученым необходимые средства, несмотря на отсутствие централизованного финансирования науки. К концу первой половины ХVIII в. Королевское общество и ведущие университеты располагали большими средствами, чем любые ведущие научные учреждения на континенте. «...Плеяда выдающихся ученых-физиков, как Максвелл, Рэлей, Томсон... не могла бы возникнуть, если бы... в Англии в то время не существовало бы культурной научной общественности, правильно оценивающей и поддерживающей деятельность ученых» (П. Л. Капица).

 

Глава 2

БОЛЬШАЯ УЕДИНЕННАЯ ВОЛНА

ДЖОНА СКОТТА РАССЕЛА

 

Если обдумать все, что мы вспомнили или узнали о науке того времени, то становится ясно, что наблюдение и научное описание уединенной волны не столь уж случайны. Удивительно, скорее, то впечатление, которое произвела эта волна на ее первооткрывателя, посвятившего ей значительную часть своей богатой событиями жизни. Здесь судьба явления связана с судьбой человека, его открывшего, и стоит немного познакомиться с его жизнью. Открытие уединенной волны не описано в курсах истории физики, математики и механики, и имени Рассела нет в справочниках о биографиях выдающихся деятелей этих наук. Первое жизнеописание Рассела появилось лишь в 1977 г.: «Джон Скотт Рассел — великий инженер и кораблестроитель викторианской эпохи». Ее автор, английский профессор Дж. Эмерсон, испытывал немалые трудности из-за «бедности первоисточников и обескураживающе сильного стирающего влияния времени». Мы познакомимся лишь с основными событиями его жизни, связанными с историей солитона.

 

До роковой встречи

Дж. С. Рассел родился в Шотландии недалеко от Глазго в семье священника. Отец надеялся, что сын пойдет по его стопам, но очень рано обнаружилась склонность мальчика к точным наукам, и он стал изучать их в трех шотландских университетах (из существовавших тогда четырех). Он слушал лекции в университетах Эдинбурга, Глазго и Сент-Андрю (самый старый университет в Шотландии, основан в 1411 г., находится вблизи Эдинбурга) и окончил первоначальный курс наук, получив в 16 лет степень бакалавра *).

*) в Англии это низшая университетская степень, получаемая после окончания двух-трех курсов; следующая степень после окончания учебы в университете — магистр, а затем — доктор соответствующих наук.

Столь раннее начало в то время не было редкостью. Например, Томас Юнг, к 14 годам в совершенстве владевший десятью языками, в 20 лет публикует первую научную работу и в 22 года он уже доктор медицины. Гамильтон в 13 лет уже владеет тринадцатью языками, а в 16 лет читает «Небесную механику» Лапласа и находит в ней ошибку. В Шотландии вообще было принято поступать в университет в возрасте 16—17 лет, но особо одаренные дети начинали учебу и раньше. Уильям Томсон в 8 лет посещает в университете Глазго лекции своего отца, профессора математики. В десятилетнем возрасте он официально зачислен студентом университета, а в 15 лет публикует первую научную работу. В 21 год он заканчивает еще и Кембриджский университет, а в 22 года уже становится профессором физики в Глазго. Максвелл по традиции поступил в Эдинбургский университет в возрасте 16 лет, но годом раньше он уже опубликовал в трудах Эдинбургского Королевского общества свою первую научную статью об овальных кривых. В 19 лет он заканчивает Эдинбургский университет, а еще через три года — Кембриджский. Это тоже было традицией, так как образование, приобретенное в шотландских университетах, ценилось меньше, чем то, которое получали студенты в «главных» университетах Британских островов — Кембриджском и Оксфордском. В возрасте 25 лет Максвелл уже профессор Абердинского университета (четвертый шотландский университет).

Конечно, не у всех жизнь складывалась так легко. Путь в науку Рассела не был простым, но по его началу можно судить, что Джон был довольно одаренным юношей.

После окончания университета он два года работает на фабрике, затем преподает в Эдинбурском университете, и его лекции пользуются успехом у студентов. В 1832—1833 гг. он читает курс лекций по натурфилософии вместо скончавшегося профессора Лесли.

Джон Лесли (1766—1832) был известным ученым, наибольшее признание заслужили его исследования по испусканию и поглощению тепла и изобретенные им приборы. Приглашение двадцатичетырехлетнего Рассела читать лекции вместо Лесли говорит о том, что его знания и педагогические способности ценились достаточно высоко. Тем не менее на место Лесли был избран профессором сверстник Рассела Джемс Дэвид Форбс (1809—1868), который начал вести экспериментальную работу по физике и впоследствии приобрел известность исследованиями в теории теплопереноса и ледников. Профессор Форбс первым сумел оценить талант Максвелла. Он докладывал Эдинбургскому Королевскому обществу первую научную работу юноши и впоследствии предложил ему принять участие в конкурсе на вакантное место профессора физики в Абердинском университете.

Расселу, видимо, не была суждена спокойная университетская карьера. В 1838 г. он еще раз попробовал стать профессором Эдинбургского университета. На этот раз освободилась должность профессора математики, но несмотря на рекомендации самого Гамильтона, аттестовавшего Рассела как «человека талантливого, активного и изобретательного», получить ему эту должность также не удалось. Почему так сложилось, мы не знаем. Возможно, что Рассел был слишком независимым, беспокойным и увлекающимся человеком для академической карьеры. В 1857 г. Максвелл, тогда уже профессор Абердинского университета, написал о системе подбора профессоров в шотландских университетах: «...Они хотят иметь профессорами угодных им людей, заинтересованных в преподавании того, что выгодно определенному узкому кругу... Их легче подчинить влиянию родителей и местной прессы». Так или иначе, но жизнь Рассела в результате пошла по иному, более беспокойному пути.

Тем временем он изобрел паровой экипаж, и в 1834 г. была даже основана Шотландская компания паровых экипажей. Она просуществовала недолго, но благодаря работе в этой компании Рассел приобрел некоторую известность как талантливый инженер-изобретатель. Когда другая компания (Union canal Company) решила заняться навигацией паровых судов по каналу, соединяющему Эдинбург и Глазго, ему предложили исследовать возможности осуществления этого предприятия. Там и состоялось первое знакомство Рассела с уединенной волной, о котором он впервые доложил в 1838 г. Подробное описание этого наблюдения и выполненных им экспериментов было опубликовано в 1844 г. («Доклад о волнах»).

 

Встреча с уединенной волной

В то время для перевозок по каналу использовали небольшие баржи, которые тащили лошади. Для того чтобы выяснить, как нужно строить эти баржи при переходе от лошадиной тяги к паровой, Рассел проводил эксперименты с баржами различной формы, движущимися с разными скоростями. В ходе этих опытов он обнаружил явление, которое описал в «Докладе о волнах»:

«Я следил за движением баржи, которую быстро тянула по узкому каналу пара лошадей, когда баржа неожиданно остановилась; но масса воды, которую баржа привела в движение, не остановилась. Вместо этого она собралась около носа судна в состоянии бешеного движения, затем неожиданно оставила его позади, катясь вперед с огромной скоростью и принимая форму большого одиночного возвышения, т. е. округлого, гладкого и четко выраженного водяного холма, который продолжал свой путь вдоль канала, нисколько не меняя своей формы и не снижая скорости. Я последовал за ним верхом, и когда я нагнал его, он по-прежнему катился вперед со скоростью приблизительно восемь или девять миль в час, сохранив свой первоначальный профиль возвышения длиной около тридцати футов и высотой от фута до фута с половиной. Его высота постепенно уменьшалась, и после одной или двух миль погони я потерял его в изгибах канала. Так в августе 1834 г. мне впервые довелось столкнуться с необычайным и красивым явлением, которое я назвал волной трансляции; теперь это название общепринято. 

С тех пор я обнаружил, что такие волны играют важную роль почти во всех случаях, когда жидкость оказывает сопротивление движению, и пришел к убеждению, что к тому же типу относятся огромные движущиеся повышения уровня моря, которые с регулярностью обращения небесного тела входят в наши реки и катятся вдоль наших побережий.

Для подробного изучения этого явления с целью точно установить его природу и управляющие им законы я придумал другие, более удобные способы его вызвать... и применил разнообразные методы наблюдений».

Рассел установил следующие основные свойства уединенных волн.

1. Постоянство скорости и неизменность формы отдельной уединенной волны. 2. Зависимость скорости v от глубины канала h и высоты волны у0: , где g — ускорение свободного падения; при этом предполагается, что . 3. Распад достаточно большой волны на две или более уединенные волны: «Волна примет... свою обычную форму... и будет идти вперед, сохраняя объем и высоту; она освободится от лишнего вещества, которое двигалось с ней, оставит его позади, и эта оставшаяся волна будет следовать за ней, но с меньшей скоростью, так что, хотя сначала две волны были соединены в одну основную, они затем отделяются друг от друга и все больше и больше расходятся по мере продвижения» (См. рис. 2.1 — рисунок Рассела).

4. Наблюдаются только волны повышения. Рассел также однажды отметил, что «большие первичные волны трансляции проходят друг через друга без каких-либо изменений, таким же образом, как и малые колебания, производимые упавшим на поверхность воды камнем». В дальнейшем он, правда, не возвращался к этому явлению, которое так поразило ученых, вновь открывших его 130 лет спустя при совсем иных обстоятельствах.

Между прочим, повторить, казалось бы, такой простой опыт Рассела на самом деле не так-то просто. В этом убедились участники конференции «Солитон-82», съехавшиеся в Эдинбург из 24 стран на конференцию, приуроченную к столетию со дня смерти Рассела. Они попытались получить уединенную волну на том самом месте, где ее наблюдал Рассел. Канал сохранился, и по-прежнему по нему плавают лодки и баржи, многие из которых сохранили старинные формы. Все вроде бы благоприятствовало предприятию. Но то ли из-за замены лошадиных сил человеческими (энтузиасты на время стали бурлаками), то ли из-за того, что на берегу за полтораста лет выросли деревья, то ли из-за плохой погоды, то ли по какой-то другой причине, а волна из уединения не вышла. Не получился солитон!

Рассел ввел довольно тонкую классификацию волн, различая «обособленные» (уединенные) и «стадные» (групповые) типы и подразделяя их на четыре рода (обратите внимание на сходство этой классификации с зоологической). К стадным он отнес обычные ветровые волны, группы волн, которые мы теперь называем волновыми пакетами, а также капиллярные волны. Он отличал обособленные волны разного рода, выделил наиболее интересовавшую его уединенную волну в первый род и назвал ее «большой» или «первичной» волной трансляции. Все эти наблюдения и их обобщения говорят о выдающейся наблюдательности Рассела и его изобретательности в постановке опытов. В то же время он глубоко обдумывал результаты этих опытов, что привело к его новым идеям в кораблестроении. Но об этом позже, а сейчас нас интересует, как была воспринята уединенная волна другими учеными.

 

Этого не может быть!

На континенте работа Рассела, видимо, не была замечена. Однако в Англии этой работой заинтересовались Эри и Стокс. К сожалению, Гамильтон, который много знал о волнах и, в частности, первым понял, что скорость движения небольшого пакета волн (групповая скорость) может отличаться от скорости распространения самой волны, не проявил интереса к новым наблюдениям. В это время он был уже увлечен открытым им обобщением комплексных чисел — кватернионами (это система своеобразных чисел с тремя мнимыми единицами, тесно связанных с векторами в пространстве). Этому увлечению он не изменил до конца жизни.

Королевский астроном Джордж Биддел Эри (1801—1892) обладал многими талантами и быстро стал заметной фигурой в английской науке и в обществе. В 22 года Эри заканчивает Кембриджский университет, в 25 лет он — его профессор, в 27 лет — директор университетской обсерватории, а в 34 года он становится директором знаменитой Гринвичской обсерватории и остается на этом посту в течение 45 лет! Эри много сделал для науки, особенно же он способствовал использованию научных достижений в жизни общества. О его деятельности по организации первой в мире службы точного времени можно прочесть в очень интересной и богато иллюстрированной книжке «Гринвичское время» *).

*) Хауз Д. Гринвичское время: Пер. с англ. — М.: Мир, 1983.

Эри придирчиво изучил доклад Рассела и в своей работе «Приливы и волны», опубликованной в 1845 г., подверг критике его выводы об уединенной волне. Он отмечает, что формула Рассела для скорости уединенной волны не получается из теории длинных волн на мелкой воде, утверждает, что длинные волны в каналах не могут сохранять постоянную форму, и заключает: «Мы не склонны соглашаться с тем, что эта волна заслуживает эпитетов «большая» или «первичная»...» Эта работа сыграла двойственную роль в судьбе уединенной волны. С одной стороны, в ней был правильно поставлен вопрос о ее математическом описании с помощью лагранжевой теории «мелкой воды», а не «мелкой волны». С другой стороны, чересчур категорическое отрицание правильности наблюдений и выводов Рассела таким известным специалистом, как Эри, не способствовало увеличению интереса к этому явлению, а кто же хочет заниматься неинтересными проблемами!

Здесь уместно вспомнить, что за свой чрезмерно «здоровый научный консерватизм» Эри вскоре пришлось поплатиться. Как раз в 1845—1846 гг. произошли шумные события, связанные с открытием планеты Нептун. Эри одним из первых заметил нерегулярности в движении планеты Уран, но когда молодой математик Джон Адамс представил ему вычисления, из которых как будто следовало существование еще одной планеты, Эри отнесся к этому крайне скептически. Лишь после того, как Леверье независимо пришел к тем же выводам, что и Адамс, Эри дал указания о поисках новой планеты, но тем временем она уже была обнаружена немецкими астрономами. Заметим, что Леверье также не сумел убедить своих французских коллег уделить хоть немного времени проверке его предсказания. Подробности этой поучительной истории можно найти в небольшой книжке «Планета Плутон» *). Заметим, что Эри был весьма последовательным консерватором. В частности, ему принадлежит также несколько сомнительная честь быть одним из главных могильщиков машины Бэббеджа. В ответ на запрос премьер-министра он охарактеризовал проект Бэббеджа как абсолютно бесполезный.

*) Уайт А. Планета Плутон: Пер. с англ. — М.: Мир, 1983.

Джордж Габриель Стокс (1819—1903) увлекался гидродинамикой, еще будучи студентом Кембриджского университета, и написал свое первое научное сочинение, в котором исследовал движение жидкости на плоскости. Впоследствии он много занимался гидродинамикой вязкой жидкости (уравнение Навье—Стокса), теорией упругости, «чистой» математикой (его имя носит важная теорема в математическом анализе), а также различными прикладными исследованиями. Историки науки считают его одним из основателей современной гидродинамики. В своей работе «О колебательных волнах» (1847 г.) он подходит к наблюдениям Рассела с большей осторожностью чем Эри, но и его заключение гласит, что волны не могут сохранять постоянную форму даже в случае пренебрежимо малой вязкости. Иными словами, уединенная волна должна была бы распадаться и в том случае, если бы не теряла энергию на трение.

 

А все-таки она существует!

После этой уничтожающей критики об уединенной волне надолго забыли все, кроме самого Рассела. Мысли его постоянно возвращаются к ней. Приближаясь к старости, он пишет: «Это самое прекрасное и необычайное явление; день, когда я впервые увидел его, был лучшим днем моей жизни. Никому никогда не посчастливилось наблюдать его раньше или, во всяком случае, понять, что оно значит. Теперь оно известно как уединенная волна трансляции. Никто прежде и вообразить не мог, что уединенная волна возможна. Когда я описал ее сэру Джону Гершелю, он сказал: «Это просто вырезанная половина обычной волны». Но это не так, поскольку обычные волны идут отчасти выше, а отчасти ниже поверхности воды; кроме того, ее форма совсем иная. Это не половина волны, а, несомненно, вся волна целиком, с тем отличием, что волна как целое не находится попеременно то ниже, то выше поверхности, а всегда выше ее. Этого вполне достаточно, чтобы такой холм воды не стоял на месте, а двигался».

Итоги размышлений Рассела об уединенной волне были опубликованы в вышедшей уже после его смерти книге «Волны трансляции в океанах воды, воздуха и эфира», которая осталась незамеченной.

...взять хотя бы «Грейт Истерн», размеры и мощь которого, кажется, лежат за пределами человеческого воображения... М. Фарадей
Я мальчиком мечтал, читая Жюля Верна, Что тени вымысла плоть обретут для нас, Что поплывет судно громадней Грит-Истерна, Что полюс покорит упрямый Гaттерaс. В. Брюсов

Исследования различных видов волн, образующихся при движении судна, позволили Расселу обосновать новый подход к постройке кораблей, основанный на выборе таких обводов, которые позволяют судну тратить меньше энергии на создание волн. Результатом этого явилось его участие в разработке проекта и постройке крупнейшего парохода того времени «Грейт Истерн» («Великий Восточный»). Работа его над проектом началась в 1853 г., а постройка после ряда неудач и несчастий была закончена в 1854 г. Это судно в 1860 г. совершало регулярные рейсы в Индию, а в 1865—1866 гг. с него была проложена кабельная телеграфная линия через Атлантический океан. (Драматическую историю этого грандиозного предприятия увлекательно описал Стефан Цвейг: «Звездные часы человечества».)

Огромные размеры (207 м в длину и 25 м в ширину) и мощность двигателей (две паровые машины общей мощностью около 8 тыс. л. с.) поражали воображение современников.

 Корпус корабля был железный, помимо винтов он был снабжен двумя боковыми колесами и шестимачтовой парусной оснасткой. О качестве проекта специалисты говорили в конце века, что если бы потребовалось построить новый «Грейт Истерн», то пришлось бы в точности следовать системе конструирования, разработанной Расселом. Помимо этого, современники знали Рассела как выдающегося инженера-изобретателя и одного из главных основателей Института кораблестроения. Он опубликовал около пятидесяти работ, большая часть которых связана с кораблестроением, волнами, паровыми двигателями, в том числе и книгу «Современная система кораблестроения».

 

Реабилитация уединенной волны

Еще при жизни Рассела ученые молодого поколения Жозеф Валентин де Буссинеск (1842—1929) и его сверстник лорд Рэлей, учившийся, между прочим, у Стокса, сумели найти приближенное математическое описание формы и скорости уединенной волны на мелкой воде. Позже появились еще две-три математические работы об уединенной волне, а также были повторены и подтверждены опыты Рассела. Казалось, все стало ясно. Тем не менее споры о существовании уединенной волны в узком кругу специалистов не прекращались — слишком велик был авторитет Эри и Стокса.

Наибольшую ясность в эту проблему внесли голландские ученые Дидерик Иоханнес Kортевег (1848—1941) и его ученик Густав де Фриз, которые в 1895 г. нашли уравнение, наиболее точно описывающее основные эффекты, наблюдавшиеся Расселом. Обобщив метод Рэлея, они получили довольно простое уравнение для волн на мелкой воде и нашли его периодические волновые решения. Эти волны, как и волны Герстнера, имеют несинусоидальную форму и становятся приближенно синусоидальными, только если их амплитуда очень мала (рис. 2.2, а). При увеличении длины волны они приобретают вид далеко отодвинутых друг от друга горбиков (рис. 2.2, б), а при очень большой длине волны (в пределе, бесконечно большой) остается один горбик, который и соответствует уединенной волне (рис. 2.2, в).

Волны, изображенные на рис. 2.2 б, можно наблюдать на отмелях, пока их вершинка не начинает деформироваться и они не опрокидываются. Форму волн Кортевега и де Фриза нельзя описать так просто, как форму волны Герстнера, ее можно представить только с помощью так называемых эллиптических функций, открытых Абелем и изученных другими выдающимися математиками, в особенности Карлом Якоби (1804—1851), братом известного петербургского академика Бориса Семеновича Якоби (1801—1874).

Уравнение Кортевега — де Фриза называют теперь КдФ-уравнением, и ему суждено было сыграть большую роль во втором рождении солитона в наше время. Для физиков оно важно тем, что с его помощью можно описывать не только волны на мелкой воде, но и многие другие волны. Для математиков оно послужило стартовой площадкой при построении глубокой и важной математической теории. Для «собственно математиков» история солитона начинается с КдФ-уравнения. Не забудем, однако, что они в свое время не сумели разглядеть глубин, таящихся в уравнении мелкой воды, и основательно забытая работа Кортевега и де Фриза вернулась к новой жизни лишь через 70 лет в основном усилиями физиков. Авторы не подозревали, конечно, о судьбе, уготованной их уравнению. Они просто честно разобрались в том, что сделали до них другие, выяснили, кто прав, кто неправ и почему, и изложили все так, чтобы каждый, кто обратится к этой проблеме, мог бы разобраться в сути дела и в вычислениях. Короче говоря, они сделали все, что могли, но тем не менее и после этого уединенная волна... ушла в уединение дальних углов научных библиотек.

Может быть, и сами авторы не придавали большого значения своей работе. Кортевег прожил долгую жизнь и был известным ученым (почти сорок лет Кортевег занимал кафедру математики Амстердамского университета), однако о его, с нашей точки зрения, главной работе почти никто не вспоминал при его жизни, и она не упоминается в его посмертной биографии (1945 г.). Де Фриз был преподавателем гимназии, членом Голландского математического общества. После защиты диссертации, составившей основу его статьи с Кортевегом, он в 1896 и 1897 гг. опубликовал две статьи о циклонах. Больше о нем пока ничего не известно. По-видимому, де Фриз, как и Кортевег, к исследованию волн больше никогда не возвращался.

Изредка новые поколения ученых, занимавшихся проблемами гидродинамики, возвращались к обсуждению КдФ-уравнения и уединенных волн. Такие вспышки интереса наблюдались около 1925 г. и после 1945 г. В 1946 г. Михаил Алексеевич Лаврентьев (1900—1980) дал первое математически строгое доказательство существования уединенной волны. Это доказательство было очень сложным, более простое нашел американский математик Курт Фридрихе в 1954 г. Примерно в то же время были проделаны тщательные опыты с уединенными волнами, в которых использовалась киносъемка. Эти достижения оставались известными лишь узкому кругу специалистов.

 

Изоляция уединенной волны

То, что уединенные волны оказались на каких-то чердаках огромного здания науки, на самом деле можно понять. Действительно, чем волны на воде отличаются от хорошо изученных световых волн, радиоволн или волн, с помощью которых описывают квантовые явления? Все эти волны можно складывать — вспомним принцип Гюйгенса или объяснение интерференции и дифракции волн. При наложении двух волн возникает волна, форма которой определяется простым алгебраическим (или векторным) сложением двух исходных волн. С этим свойством световых волн, в сущности, и была связана победа волновой теории света, описанная выше. Это свойство волн лежит в основе радиосвязи и телевидения, а в квантовой теории возможность складывать волны заложена в фундамент всей теории. На математическом языке все это вытекает из линейности описывающих эти волны уравнений. К одному решению можно добавить другое и получить новое решение. Если увеличить или уменьшить амплитуду некоторого решения (умножить ее на число), то также получим новое решение.

Для волн в жидкости это неверно, складывать можно лишь волны очень малой амплитуды. Но если мы попытаемся сложить волны Герстнера или волны КдФ, то не получим не только новой волны Герстнера или КдФ, но и вообще волны, которая могла бы существовать. На математическом языке это означает, что уравнения гидродинамики нелинейны.

Конечно, свойство линейности звуковых, световых и радиоволн лишь приближенное. При распространении в среде волн с большой амплитудой это свойство нарушается. Например, в акустике давно было известно, что так называемые ударные волны сильно отличаются от обычных. Одним из первых это подметил Рассел. В своей книге он замечает, что звук пушечного выстрела (ударная волна) распространяется значительно быстрее, чем команда открыть огонь. Нелинейные эффекты в оптике также возможны, но их начали серьезно изучать лишь после того, как были созданы лазеры.

В общем, время от времени отдельные нелинейные взаимодействия волн в акустике, оптике и радиофизике рассматривались, однако их настоящее исследование началось лишь в середине нашего столетия. Тогда же появились «нелинейная оптика», «нелинейная акустика», «нелинейная радиофизика» и другие «нелинейные науки». «Исконно нелинейная» гидродинамика, в которой нелинейность проявляется уже в самых простых явлениях, в течение почти столетия развивалась в полной изоляции от «линейной» физики. Неудивительно, что ничего похожего на уединенную волну Рассела в других волновых явлениях никто не искал и не увидел. До тех пор, пока линейность считали одним из основных свойств волновых явлений, уединенной волне, само существование которой обусловлено нелинейностью, суждено было слыть любопытным, но экзотическим явлением, интересным лишь для специалистов по гидродинамике.

 

Волна или частица?

Роковую роль в судьбе уединенной волны сыграло также еще одно обстоятельство. Ни Рассел, ни ученые, изучавшие уединенную волну в течение последующих 120 лет, не замечали ее необыкновенного сходства с частицей. Мы уже обратили внимание на наблюдение Расселом двух уединенных волн, которые после столкновения полностью сохраняют форму и скорость движения. Правда, частицы эти довольно своеобразные — еще Рассел заметил, что «большая» частица (высокая волна) всегда движется быстрее.

Более тонкое явление, которого он не увидел, состоит в следующем. Когда высокая волна догоняет низкую, на первый взгляд кажется, что она проходит через нее и идет дальше, подобно тому как мелкие волны от брошенного камня проходят друг через друга. Если бы у Рассела был киноаппарат, он мог бы увидеть, что на самом деле в случае уединенных волн все происходит не так. Когда обе волны соприкасаются, большая замедляется и уменьшается, а малая, наоборот, ускоряется и растет. Когда малая вырастает до размера большой, а большая соответственно уменьшается, то волны отрываются друг от друга, и далее бывшая малая уходит вперед, а бывшая большая отстает. Как видно из рис. 2.3, после такого взаимодействия большая волна как бы «сдвигается» вперед, т. е. уходит немного дальше того положения, которое она занимала бы, если бы никакого взаимодействия не было, а малая, наоборот, отстает, «сдвигается» назад (положения невзаимодействующих равномерно движущихся волн изображены на рисунке штриховыми линиями).

Таким образом, волны вовсе не проходят свободно друг через друга! Они как бы сталкиваются и отталкиваются друг от друга подобно теннисным мячам.

Аналогия с теннисными мячами позволяет понять и только что описанный «сдвиг» уединенных волн при столкновении, который никак нельзя объяснить, если считать, что они свободно проходят друг через друга. Для описания столкновения двух равномерно летящих (без вращения) по одной прямой мячей удобно представить себе сначала их относительное движение (рис. 2.4). Если скорость левого мяча V1, а скорость правого V2, то точка О, расположенная посредине между их центрами O1 и O2, движется с постоянной скоростью V = ½ (V1 + V2). Точка О, конечно, представляет собой центр тяжести (точнее, центр масс) мячей, который сохраняет состояние равномерного прямолинейного движения, если на мячи не действуют внешние силы. Пока мячи не соприкасаются, точка O1 движется относительно точки О со скоростью v = ½ (v1 - v2), а O2 — со скоростью - v. В момент соприкосновения t = t0 мячи начинают сминаться, а их центр масс продолжает двигаться со скоростью V. Через небольшой промежуток времени ½ (t'0 - t0) относительное движение мячей прекращается, и они начинают отталкиваться друг от друга. Таким образом, в момент ½ (t'0 + t0) вся кинетическая энергия относительного движения перешла в потенциальную энергию сжатой резины, и «центры» мячей O1 и O2 движутся в этот момент с одинаковой скоростью V. За время ½ (t'0 - t0) мячи принимают прежнюю форму. Если пренебречь потерями энергии на разогрев мячей и энергией остаточных колебаний резины, то в момент t'0 они будут двигаться относительно центра масс О со скоростями - v и v. После удара направление относительного движения просто изменится на противоположное, так что теперь O1 движется со скоростью V - v = v2, а O2 — со скоростью V + v = v1.

Итак, мячи не просто обменялись скоростями, но и, сверх того, как ясно видно на рисунке, центр O2 теперь несколько опережает точку O'1, в которой находился бы первый мяч, если бы столкновения не было, а O1 несколько отстает от O'2. Такой сдвиг всегда происходит, если время взаимодействия мячей t'0 - t0 достаточно мало. Читатель может сам убедиться, что при достаточно большом времени взаимодействия O2, наоборот, отстанет от O'1, а O1 опередит O'2. Hемного труднее найти то значение времени взаимодействия, при котором O2 совпадает с O'1, а O1 — c O'2 (о т в е т: , R — радиус мячей). Интересно также найти O2 - O'1 = O'2 - O1 при известных значениях v1, v2, t'0 - t0 (о т в е т: ).

Эффект ускорения и отставания становится тем более заметным чем больше размер мячей и меньше их относительная скорость (здесь, конечно, предполагается, что время взаимодействия t'0 - t0 не очень сильно зависит от относительной скорости). Такую же зависимость от относительной скорости можно наблюдать и во взаимодействии уединенных волн. Конечно, она сложнее, так как уединенная волна не имеет резкой границы и отличается от мяча и в других отношениях.

Аналогию можно сделать еще более наглядной, если изображать мячи прямоугольниками, высота которых увеличивается пропорционально кинетической энергии. Тогда их столкновение будет выглядеть совсем похожим на столкновение солитонов. Позже мы познакомимся с другими уединенными волнами, форма которых не зависит от скорости и которые еще больше похожи на частицы.

Почему же все-таки так долго никто не замечал этого самого удивительного свойства уединенной волны? Понятно, что Рассел мог не увидеть этого, хотя, учитывая его необычайную наблюдательность, это тоже как-то надо объяснить. Но ведь уже в 1952 г. была проделана целая серия опытов с уединенными волнами в современном варианте лотка братьев Веберов и с использованием киносъемки. С применением современной техники наблюдение столкновения уединенных волн и обнаружение описанных только что эффектов, казалось бы, не такое трудное дело! По-видимому, объяснение этой удивительной слепоты ученых может быть только одно — все, начиная с Рассела, упорно считали уединенную волну только волной, хотя и довольно необычной.

В какой-то степени в этом повинно и название «уединенная волна», подчеркивающее волновую природу явления. Поэтому когда в 1965 г. американские ученые М. Крускал и Н. Забуски, изучая явления столкновений уединенных волн с помощью электронной вычислительной машины, ясно увидели, что уединенные волны во многом подобны частицам, они немедленно убрали слово «волна», а из «уединенной» (solitary) составили термин «солитон» (soliton), созвучный электрону, протону и другим названиям элементарных частиц *).

*) Первоначально солитон был назван «солитроном», по созвучию с электроном. Однако в последний момент стало известно о существовании некоей фирмы «Солитрон», и авторам пришлось убрать «р», чтобы не вступать с ней в тяжбу по поводу незаконного использования «торговой марки». Фирма давно прогорела, а солитон живет и здравствует!

Как «наблюдают» солитоны на вычислительных машинах в так называемых «численных экспериментах», будет рассказано позже.

 

Глава 3

РОДСТВЕННИКИ СОЛИТОНА

 

Пока уединенная волна понемногу начала выходить в свет, происходили другие события, связь которых с судьбой солитонов оставалась долгое время незамеченной. Речь идет о двух фундаментальных открытиях в далеких друг от друга областях естествознания — физиологии и гидродинамике. Хотя одно было чисто экспериментальным, а другое чисто теоретическим, сделал оба открытия один человек — Гельмгольц. Мы уже упоминали, что ему удалось измерить скорость распространения нервного импульса. В последовавших за этой основополагающей работой исследованиях была определена форма импульса и изучены многие детали механизма распространения импульсов в нервах. И только в наше время выяснилось, что нервный импульс — это своеобразная уединенная волна. Однако и сегодня еще нет окончательной, общепринятой теории явлений, происходящих в нервных волокнах живых существ при передаче по ним информации. В другой работе Гельмгольц обнаружил, что вихри в воде, описываемые уравнениями гидродинамики идеальной жидкости, должны обладать совершенно необычными свойствами, которые делают их похожими на частицы. Точнее, он обнаружил, что вихри в идеальной жидкости (т. е. несжимаемой и без трения) неразрушимы и взаимодействуют друг с другом подобно электрическим токам. Пользуясь современным языком, мы скажем, что вихри — это солитоноподобные возбуждения. 

 

Герман Гельмгольц и нервный импульс

Так началось формирование великого естествоиспытателя прошлого века, оказавшего глубокое влияние на развитие мировой науки. Его открытия в физике, математике, физиологии, психологии и медицине были широко признаны не только на его родине, в Германии, но и в Англии, Франции и в других странах, в которых начала развиваться наука. Гельмгольц счастливо сочетал в своей научной деятельности достоинства немецкой, английской и французской научных школ, а его многочисленные ученики не только прославились своими научными достижениями, но и основали собственные научные школы в разных странах. Как писал А. Г. Столетов, «Гельмгольц дорог нам не только как гениальный ученый, — он в то же время самый заслуженный из современных насадителей науки вообще и, в частности, в нашем отечестве».

Достаточно сказать, что среди учеников Гельмгольца были Генрих Герц, Петр Николаевич Лебедев и Иван Михайлович Сеченов, глубоко почитавшие своего учителя. И. М. Сеченов нарисовал такой портрет Гельмгольца: «От его спокойной фигуры веяло каким-то миром, словно он не от мира сего... он производил на меня впечатление, подобное тому, какое я испытывал, глядя на Сикстинскую мадонну в Дрездене».

Это необыкновенное впечатление, производимое личностью Гельмгольца, было результатом огромной внутренней духовной работы, которая началась уже в детстве. Эта работа не была легкой и требовала могучей воли. Приходилось преодолевать и внутренние (слабое здоровье), и внешние (материальные) препятствия. Чтобы лучше представить себе все это, познакомимся немного с биографией Гельмгольца.

Родился он 31 августа 1821 г. в Потсдаме в семье Школьного учителя. Его мать происходил а из английской семьи, переселившейся в Германию, среди ее предков были и французы. Гельмгольц горячо любил свою родину и гордился достижениями ее культуры, что не мешало ему высоко ценить и достижения других народов.

 Ему были чужды какие бы то ни было национальные предрассудки, от которых часто не были свободны даже выдающиеся ученые. Конечно, это немало способствовало тому, что к нему «тянулись» молодые энтузиасты науки из самых разных стран.

Все это, однако, пришло потом, а первые шаги были очень нелегкими. Семидесятилетний Гельмгольц вспоминал о своем детстве так: «Первые 7 лет я был болезненным мальчиком... рано обнаружился и некоторый недостаток в моем умственном складе: слабая память на вещи, не имеющие внутренней связи... мне было труднее, чем другим, запомнить вокабулы, неправильные грамматические формы, особенно обороты речи... для меня было мукой учить наизусть статьи в прозе...» Зато какую несравненную радость доставило этому мальчику первое знакомство с математикой и физикой, в которых все внутренне связано! «С величайшим усердием и радостью набросился я на изучение всех физических учебников, какие находил в библиотеке отца». Эта страсть к физике определила дальнейшую судьбу Гельмгольца. Все его достижения в физиологии нервной системы, зрения и слуха так или иначе связаны с физикой.

К чести педагогов гимназии, они вполне сумели оценить способности юноши, особенно к физике и математике. Несмотря на трудности с «вокабулами», Гельмгольц успешно закончил гимназический курс и поступил в Военно-медицинский институт в Берлине. Под влиянием выдающегося физиолога Иоганна Мюллера (1801—1858) он заинтересовался здесь гистологией и физиологией и в 1842 г. защитил диссертацию «О строении нервной системы беспозвоночных». В то время были известны нервные клетки и волокна, но как они связаны друг с другом, было неясно. Молодой Гельмгольц один из первых понял, что клетки и волокна соединены в единое целое — нейрон.

В 1843 Г. Гельмгольц был назначен военным врачом в Потсдаме. В этот период он и создал свою знаменитую работу «О сохранении силы», о которой рассказано в гл. 1. Несмотря на то, что значение этой работы было понято немногими, она принесла ее автору достаточно широкую известность, и в 1849 г. он был приглашен в Кенигсбергский университет профессором физиологии. Там он работал до 1855 г. и выполнил измерение скорости нервного импульса, о котором мы сейчас расскажем.

С этого времени Гельмгольц становится признанным ученым и отдает все силы науке. Растет и его слава. Его приглашают в Боннский университет, затем в Гейдельбергский. Признание его как физика, а не только как физиолога, пришло, когда ему одновременно предложили место профессора физики в Берлинском университете и кафедру экспериментальной физики в Кембридже. Гельмгольц не захотел покинуть Германию, и кафедру в Кембридже возглавил Максвелл. Последние годы жизни Гельмгольц, не оставляя собственные научные исследования, руководил Государственным физико-техническим институтом в Берлине. Умер он, всеми почитаемый, в родном Потсдаме 8 сентября 1894 г. За свою жизнь он успел сделать необычайно много. «Человек, вкладывающий в работу всю свою душу, всегда успевает больше...» (Максвелл).

Когда Гельмгольц в 1849 г. приступил к опытам по определению скорости распространения нервных импульсов, об их природе было известно довольно мало. Считалось, что они имеют электрическое происхождение и распространяются с огромной скоростью, недоступной прямому измерению.

Идея о том, что по нервам распространяется «животное электричество», была высказана Луиджи Гальвани еще в 1786 г. Однако после опытов Алессандро Вольта (1745—1827), убедивших всех, что никакого «животного электричества» нет, она была надолго оставлена и возродилась лишь к середине прошлого века. Особенно способствовал возрождению идей Гальвани сверстник и друг Гельмгольца, швейцарский физиолог Эмиль Дюбуа-Реймон (1818—1896), описавший свои опыты и давший им истолкование в обширном труде «Исследования по животному электричеству» (1848 г.) *). Работы Дюбуа-Реймона и других показали, что в живых организмах действительно вырабатывается электричество и что распространение нервного возбуждения связано с передачей электрических сигналов. При этом нервное волокно стали считать как бы разновидностью электрических проводов. Под влиянием Дюбуа-Реймона этими идеями заинтересовался Гельмгольц; он решил выяснить, верно ли такое убеждение. Результат поставленного им опыта оказался ошеломляющим — скорость движения импульса по нерву лягушки оказалась отнюдь не «огромной» — всего 30 м/с 100 км/ч! Это показалось настолько невероятным, что сам Иоганн Мюллер не поверил любимому ученику и отказался послать его статью в научный журнал.

*) Очень интересовался «животным электричеством» Фарадей: «Как ни удивительны электрические явления в неорганическом веществе, несравненно удивительнее электрические явления в нервной системе...».

Насколько сильным было впечатление от этого опыта, можно судить по воспоминаниям И. М. Сеченова, слушавшего в 1857 г. лекции Дюбуа-Реймона: «Особенно памятны мне его лекции о быстроте распространения возбуждения по нервам. Тут он положительно увлекся и рассказал с жаром всю историю этого открытия: сомнения Мюллера... его собственные мысли... и, наконец, решение задачи его другом Гельмгольцем».

 

Дальнейшая судьба нервного импульса

Опытами Гельмгольца наивное представление о нервном волокне как электрическом проводе было опровергнуто. Однако предложить что-то лучшее было не так-то просто. Начались долгие и трудные поиски настоящего механизма распространения импульсов по нервам, на которые ушло около ста лет. С современными представлениями мы познакомимся в последней главе, а сейчас сделаем лишь несколько замечаний о дальнейшей истории нервного импульса.

Сам Гельмгольц полагал, что при движении импульса происходит перемещение каких-то материальных частиц, но ничего более ясного предложить не сумел. В 1868 г. молодой немецкий физиолог Юлий Бернштейн сумел определить форму импульса. Она оказалась колоколообразной, примерно как у солитона Рассела. Впоследствии выяснилось, что этот «колокол» движется всегда с одной и той же скоростью и имеет приблизительно одну и ту же форму независимо от силы раздражения, породившего импульс.

В 1879 г. ученик Дюбуа-Реймона немецкий физиолог Лудимар Герман очень близко подошел к современным представлениям о математическом описании нервного импульса. Он уподобил его распространение горению бикфордова шнура. Для заданного шнура скорость и форма бегущей по нему уединенной волны горения, очевидно, постоянны (если m — количество пороха, сгорающего в единицу времени, а М — количество пороха в шнуре на единицу его длины, то скорость равна v = m/М; для бикфордова шнура обычно подбирают m и М так, что v = 1 см/с).

Позднее Герман предложил более реальную модель, уподобив нерв телефонному кабелю, в котором, однако, волны должны взаимодействовать нелинейно *). Решать подобные математические задачи в то время, однако, не умели, и даже сам Герман счел, что математическую теорию нервного импульса разработать невозможно.

*) При прохождении импульса, как и при движении пламени, расходуется энергия, которую нужно восполнять, иначе новый импульс не пройдет. Тем более не может быть и речи о сложении волн горения. Две встречные волны пламени уничтожают друг друга, чем, как известно, пользуются для тушения степных и лесных пожаров.

Примерно в то же время, в начале нашего века, Бернштейн выдвинул близкую к современной физико-химическую теорию процессов, происходящих в нервном волокне (это так называемая «мембранная гипотеза», о которой будет рассказано в последней главе). Современники отнеслись к идеям Бернштейна довольно прохладно.

В общем, история нервного импульса развертывалась примерно по такому же сценарию, как и история солитона Рассела. Раз в двадцать-тридцать лет делался заметный шаг вперед, но все происходило в узком кругу специалистов, и никто не замечал, что между нервным импульсом и уединенной волной Рассела существует глубокая связь.

 

Герман Гельмгольц и вихри

Нервный импульс мало похож на частицу. Этим он, конечно, сильно отличается от солитона Рассела. На частицы гораздо более похожи вихри, и особенно вихревые кольца, удивительные свойства которых были открыты Гельмгольцем в 1858 г. С вихрями, как и с волнами, знаком всякий. В воде они возбуждаются так же легко, как волны, достаточно провести рукой по поверхности воды в ванне или закрутить ложкой чай в стакане. Каждый видел вихри, оставляемые веслами, и кольца табачного дыма. Возможно, кому-то встречались мощные атмосферные вихри — смерчи. В общем, что такое вихрь — объяснять не надо.

Наблюдения над вихрями и размышления об их удивительных свойствах, вероятно, побудили знаменитого французского философа и математика Рене Декарта (1596—1650) положить вихревое движение в основу объяснения всего наблюдаемого мира. В «Началах философии» он нарисовал картину Вселенной, пронизанной вихрями: «...предположим, что вся материя... разделена на части... что все они стали двигаться... двумя различными способами, а именно: каждая вокруг собственного средоточия, образовав жидкое тело, каковым я полагаю небо; кроме того, некоторые двигались совместно вокруг нескольких центров...» На рисунке из этого трактата (рис. 3.1) частицы в пространстве АЕI вращаются вокруг своих осей, образуя малые вихри, а все вместе вращаются вокруг центра S и т. д. Заметим, что в виде некоего вихря, разбросавшего планеты, представлял себе Солнечную систему и Кеплер, а о вращательном («коловратном») движении мельчайших частиц вещества много размышлял Ломоносов.

Ньютон легко уловил непоследовательности и противоречия в декартовой картине мира, и она, правда, после довольно упорного сопротивления ее сторонников, была оставлена. Однако, отбросив полностью все идеи Декарта, Ньютон отбросил и важную мысль о близкодействии. У Декарта всякое возмущение передавалось в пространстве только от одного вихря к другому, и поэтому не могло быть и речи об абсолютно пустом пространстве или распространении каких бы то ни было взаимодействий с бесконечной скоростью.

Понятие о дальнодействии предопределяло, вероятно, и то, что Ньютон более склонялся к представлению о свете как потоке частиц («корпускул»). Он, правда, весьма осторожно высказывался на эти темы. Например, обсуждая распространение света в веществе, он не исключает возможности каких-то волновых, периодических процессов («приступы легкого прохождения и легкого преломления»). Более того, Ньютон дал наброски контуров компромиссной теории, соединяющей достоинства корпускулярных и волновых представлений о свете. Отвечая на критику, высказанную его знаменитым современником и соперником Робертом Гуком *), он писал в 1672 г.: «...если мы предположим, что световые лучи состоят из маленьких частиц, выбрасываемых по всем направлениям светящимся телом, то эти частицы, попадая на преломляющие или отражающие поверхности, должны возбудить в эфире колебания столь же неизбежно, как камень, брошенный в воду...». С волновыми представлениями он связывает восприятие цвета, дисперсию. Однако Ньютон видел и очень серьезные возражения против чисто волновой картины: «По моему мнению, невозможно, что волны или колебания какой-либо жидкости распространяются по прямым линиям, не загибаясь...». Гук не смог дать ответа на возражения Ньютона. Впервые решил эту проблему знаменитый голландский ученый Христиан Гюйгенс (1629—1695), показавший также, каким образом в волновой теории можно получить закон преломления.

*) Науке, вероятно, повезло, что в Лондоне в одно и то же время жили и работали Ньютон и Гук, который был самым блестящим экспериментатором своего времени и человеком глубоких и разнообразных познаний. Столетиями значение Гука в науке недооценивалось; в наше время с этой несправедливостью покончено (см., например, книгу: Боголюбов А. Н. Роберт Гук. — М.: Наука, 1984).

Тем не менее волновая теория стала общепризнанной лишь в начале XIX в. И вот тут-то проявилась главная трудность — проблема эфира. Казалось естественным представлять эфир в виде идеальной (без трения) жидкости. Однако было столь же ясно, что световые волны мало похожи на звуковые. Так случилось, что стали думать о более сложных движениях в жидкостях, и естественно возродились, хотя и в совершенно новом обличье, вихри Декарта.

В 1861—1862 гг. Максвелл опубликовал несколько работ под общим названием «О физических силовых линиях», которым можно было бы дать подзаголовок «теория молекулярных вихрей и ее применение к электрическим, магнитным и световым явлениям».

Другой великий физик, Людвиг Больцман (1844—1906), один из создателей современной кинетической теории вещества, написал впоследствии к этим работам обширный комментарий. В нем он говорит, что «...этот цикл принадлежит к наиболее интересному, что только знает история физики...»

Максвеллова вихревая модель изображена на рис. 3.2, взятом из его работы. «...АВ представляет элекрический ток... шестиугольники выше и ниже АВ — вихри, а малые окружности, разделяющие их... представляют электричество...» Когда идет ток, «колесики» на линии АВ приводят во вращение вихри, те передают вращение через другие колесики дальше. Оси вихрей направлены по силовым линиям магнитного поля, а угловая скорость вращения вихря пропорциональна напряженности магнитного поля. С помощью этой модели Максвелл сумел получить уравнения, описывающие взаимодействие магнитного поля и токов и распространение электромагнитного поля от точки к точке с конечной скоростью. Именно этот гениальный скачок мысли от грубой механической модели к тончайшей и абстрактной теории, видимо, и вызвал восхищение Больцмана, который сам очень любил строить простые модели для самых сложных физических явлений.

Максвелл, однако, не был удовлетворен достигнутым. Он неоднократно подчеркивает, что это всего лишь модель, и впоследствии пытался выводить свои уравнения другими, более абстрактными способами. Тем не менее он постоянно пользуется физическими аналогиями, стремясь к наглядному пониманию сложных электромагнитных явлений. Особенно часто он сравнивал электромагнитные процессы с вихревыми движениями жидкости. Статью Гельмгольца о вихрях он хорошо знал и часто цитировал.

Статья эта была напечатана в «Журнале чистой и прикладной математики», основанном в 1826 г. немецким инженером и математиком-любителем Августом Леопольдом Крелле. В журнале были опубликованы многие выдающиеся работы, в первых номерах журнала были напечатаны статьи Абеля, котopoгo Крелле очень ценил и поддерживал. В статье Гельмгольца была разработана математическая теория вихрей в несжимаемой, невязкой (без трения) жидкости. Движения такой жидкости, обычно называемой идеальной, описываются уравнениями, выведенными Эйлером. Стокс первым ясно разделил движения жидкости на безвихревые и вихревые и подробно исследовал безвихревые движения. Гельмгольц поставил перед собой задачу понять законы движения и взаимодействия вихрей и сразу обнаружил удивительные явления.

Чтобы понять главные результаты Гельмгольца, нужно сначала уяснить себе, что такое вихревое движение и вихри. Вихри, которые легко создать в воде движением руки, живут очень недолго, и за ними трудно наблюдать. Понаблюдаем поэтому за вихрем, который образуется в ванне, когда мы выпускаем из нее воду. Наполним ванну, подождем, чтобы движения в воде успокоились, и осторожно вынем пробку, положив на поверхность воды над отверстием несколько коротких кусочков спичек. Если образуются вихри, то мы увидим, что спички будут двигаться по-разному. Одна, расположенная в центре вихря, быстро вращается вокруг своей оси («вокруг собственного средоточия»), а остальные вращаются совместно вокруг первой. Движение далеких спичек не связано с вращением вокруг «собственного средоточия». В центре вихря движение вихревое, а там, где спички не вращаются вокруг своей оси, оно безвихревое. Через некоторое время можно увидеть, что от середины вихря протягивается тонкая ножка и образуется воронка. Пока не образовалась воронка, мы имеем возможность наблюдать одиночный вихрь. Его ось вращения Гельмгольц назвал вихревой линией. Этот и другие вихри в воде живут недолго. Если закрыть отверстие в ванне, то вихрь быстро исчезнет.

Поведение идеальной жидкости, однако, разительно отличается от наблюдаемых движений воды. Гельмгольц доказал, что вихри в идеальной жидкости не могут исчезать или возникать. В воде они возникают только за счет того, что между соседними частицами жидкости существует трение (вязкость), посредством которого вращение одной частицы передается другой (вспомните модель Максвелла!). Он также доказал, что вихревая линия не может оканчиваться внутри жидкости, т. е. она либо замкнута, либо оканчивается на поверхности или на дне и стенках. Если жидкость движется как целое, то вихрь уносится, как лодка, общим потоком. Однако если нет других вихрей, то его центр остается неподвижным относительно окружающей воды.

Очень интересно взаимодействие двух вихрей. Если вихри вращаются в одном направлении, то они движутся по окружностям вокруг общего центра О, расположенного между ними, как показано на рис. 3.3. Если они вращаются в противоположных направлениях, то центр вращения находится вне отрезка O1O2. Особенно интересен случай, когда оба вихря вращаются в противоположных направлениях, но в остальном совершенно одинаковы. Тогда оба вихря движутся по прямой, составляя как бы одно целое (скорости v1 и v2 становятся одинаковыми, и точка О уходит в бесконечность). Все частицы жидкости внутри некоторого овала движутся относительно остальной части жидкости с постоянной скоростью (рис. З.4). В системе, относительно которой этот овал покоится, жидкость обтекает его, как она обтекала бы твердое тело в форме этого овала. Это замечательное явление было подробно изучено в работе Кельвина «О вихревом движении» (1869 г.), и мы будем называть эту похожую на частицу пару вихрей овалом Кельвина. Наблюдать пару вихрей в воде не очень легко, но, проявив некоторое терпение, можно увидеть их, возбуждая вихри в ванне плавным движением перевернутого ковшика (глубоко погружать его не надо). Следить за вихрями легче всего по их теням на дне, нужно только удачное освещение сверху. Овал, конечно, увидеть не удастся, но пара вихрей выделяется достаточно четко по их совместному движению. Заметим, что на мелкой воде вихри быстро затухают, а на более глубокой воде наблюдается на самом деле не пара независимых вихрей, а две воронки одного вихря, изогнутого дугой (см. рис. З.5).

Увидеть такую структуру пары вихрей довольно трудно (попробуйте!), но кольцевые вихри наблюдать очень легко.

Кольцевые вихри (или вихревые кольца) тоже изучил Гельмгольц, он же описал простые опыты, в которых можно их наблюдать *). Самое интересное явление — взаимодействие двух колец. Если в идеальной жидкости два одинаковых вихревых кольца движутся вдоль общей оси OO' в одном и том же направлении с одинаковыми скоростями, то они начинают притягиваться (рис. 3.6, а). При этом кольцо 1 расширяется и замедляет движение, а кольцо 2 стягивается, ускоряется и проскакивает через кольцо 1 (рис. 3.6, б). Как только это произойдет, кольцо 2 начинает расширяться и замедляться, а кольцо 1 — сужаться и ускоряться. Когда их размеры и скорости сравниваются (рис. 3.6, в), вся игра повторяется (рис. 3.6, г), и так до бесконечности.

*) Подробное описание опытов Гельмгольца и их усовершенствованных вариантов см., например, в книге: Опыты в домашней лаборатории. — М.: Наука, 1980. — Библиотечка «Квант», вып. 4.

Такую картину взаимодействия колец Гельмгольц и Кельвин получили чисто теоретически, исходя из основных уравнений гидродинамики идеальной жидкости. Гораздо труднее найти таким способом, что произойдет при взаимодействии колец, движущихся в разных направлениях. Подобные задачи начали исследоваться с помощью численных расчетов на больших ЭВМ лишь совсем недавно. Эти исследования подтвердили, что вихри и кольца во многом похожи на частицы. Еще раз подчеркнем, что частицы эти довольно необычные, и механика их отличается от ньютоновской. Первый закон Ньютона для вихрей изменяется. Изолированный вихрь всегда покоится относительно среды, а овал Кельвина или кольцо Гельмгольца движутся равномерно и прямолинейно, в покое они находиться не могут. Взаимодействие двух вихрей также не похоже на взаимодействие обычных точечных частиц, но взаимодействие пар вихрей или вихревых колец можно описывать на языке механики деформируемых частиц конечного размера. Эта аналогия не хуже и не лучше, чем описанная выше аналогия уединенных волн Рассела упругим мячам.

 

«Вихревые атомы» Кельвина

То, что вихри похожи на частицы, было ясно уже Кельвину. Именно это их свойство позволило предложить любопытную модель вихревых атомов. Представим себе, что Вселенная заполнена эфиром, который во всем подобен идеальной жидкости. Если при рождении Вселенной образовалось какое-то количество вихревых колец, то они, согласно Гельмгольцу, будут сохраняться, взаимодействуя, как было описано выше. Для того чтобы объяснить существование атомов различных типов, Кельвин рассматривал замкнутые вихревые линии с разным числом узлов (рис. 3.7).

Атомы Кельвина не удалось связать с какими-либо реальными частицами, да и сам Кельвин, похоже, не пытался это сделать. Его теория была надолго забыта, а после того как из физики было изгнано понятие эфира, казалось, что любые подобные теории совершенно бессмысленны. Тем не менее почти через сто лет стали появляться модели элементарных частиц, близкие по духу к теории Кельвина, с которой их роднит представление об элементарных частицах как о солитонах. Можно сказать, что Кельвин первый попытался построить солитонную модель элементарных частиц, и в этом смысле его идея оказалась очень живучей *).

*) Наиболее интересная особенность модели Кельвина — объяснение отличий атомов друг от друга чисто топологическими различиями вихревых нитей. (Об основных топологических понятиях см. книгу: Болтянский В. Г., Ефремович В. А. Наглядная топология. — М.: Наука, 1982. — Библиотечка «Квант», вып. 21.)

В речи, посвященной 300-летию со дня рождения Декарта, замечательный русский физик Николай Алексеевич Умов (1846—1915) сказал: «Возможно, что в мире мысли, как и в материальной природе, нет произвольного зарождения, а существует только развитие, эволюция; что современная мысль возникает на неосознаваемом фоне идей, переданных нам предшествующими поколениями». История идей, связанных с солитоном, вполне подтверждает эту гипотезу.

 

Лорд Росс и вихри в космосе

В то самое время, когда создавалась теория вихрей, человеку впервые удалось увидеть вихри в космосе.

Увидел их в 1848 г. астроном-любитель Уильям Парсонс (лорд Росс, 1800—1867). Он построил самый большой в то время телескоп-рефлектор длиной около 18 м с металлическим зеркалом диаметром 182 см. Размеры этого телескопа производили огромное впечатление. Еще большее впечатление произвели результаты сделанного на нем наблюдения спиральной структуры туманности М51 в созвездии гончих Псов (рис. 3.8). В последовавших за этим открытием многолетних наблюдениях Росса и других астрономов выяснилось, что подобную структуру имеют многие туманности.

Теперь мы знаем, что туманности — это гигантские галактики, состоящие из огромного числа звезд, межзвездной пыли и газа. Большинство галактик, в том числе и наша галактика, имеют спиральную структуру и подобны гигантским вихрям. Идея о вращении туманностей и сходстве их с вихрями в воде, стекающей в отверстие, не ускользнула, конечно, от внимания первооткрывателя, но показалась ему чересчур смелой: «В настоящее время было бы бессмысленным гадать о динамическом состоянии подобных систем... Их сходство с предметами, плывущими в водовороте, разумеется, должно дать толчок воображению, хотя существование там соответствующих условий невозможно. Еще более соблазнительная гипотеза может родиться, если рассмотреть орбитальное движение в сопротивляющейся среде, но все такие догадки ведут в тупик».

На самом деле они привели не в тупик, а к увлекательной новой науке, объясняющей рождение звезд. Те, кого интересуют история открытия галактик и их структуры, с удовольствием прочтут увлекательную книгу «Открытие нашей Галактики» *), а с современным развитием вихревой космогонии можно познакомиться по более трудной книге «Происхождение галактик и звезд» **). История открытия спиральной структуры галактик очень интересна сама по себе и полна неожиданных открытий, недоразумений, тупиков — всего того, с чем мы уже встретились в истории солитона. Судьба всякой глубокой идеи в науке очень непроста, и история солитона не представляет исключения, а очень наглядно показывает, на каком извилистом пути добываются крупицы научного знания. До сих пор мы были скорее зрителями, чем участниками этой нелегкой работы. Теперь попробуем исследовать несколько тропинок, проявляя некоторую самостоятельность.

*) Уитни Ч . Открытие нашей Галактики: Пер. с англ. — М.: Мир, 1975.

**) Туревич Л. Э., Чернин, А. Д. Происхождение галактик и звезд. — М.: Наука, 1983.

 

О линейности и нелинейности

Прежде чем приступить к этой работе, еще раз обдумаем, что мы уже узнали о солитонах. В самых разных средах могут существовать и распространяться локализованные (т. е. сосредоточенные в ограниченной части пространства; от лат. locus — место) возбуждения, которые похожи на своеобразные деформируемые частицы. В научной литературе обычно употребляют для этих частиц названия «уединенная волна» или «солитон», причем солитонами обычно (особенно математики) называют уединенные волны, которые сохраняют свою индивидуальность при столкновении и описываются решениями некоторых специальных уравнений, подобных КдФ-уравнению. Мы позволим себе, как это делает большинство физиков, отклоняться от этого правила и зачастую называть солитонами всякие локализованные возбуждения, похожие на частицы (термин «солитоноподобное возбуждение» звучит слишком неуклюже, и мы его будем по возможности избегать). Это не приведет к недоразумениям, если идет речь о свойствах, общих для всех солитоноподобных возбуждений, а конкретные солитоны можно называть их индивидуальными именами.

Мы познакомились с солитонами трех типов. Они были открыты примерно в одно и то же время, но судьбы их складывались по-разному, а главное, в течение целого столетия никак не скрещивались. В большой мере это связано с тем, что для их правильного понимания необходимо было освободиться от представлений о линейности соответствующих им возбуждений. Принцип сложения возбуждений позволил разработать настолько общие и эффективные методы решения многочисленных задач физики, что многие стали сознательно или бессознательно считать его одним из основных принципов математической физики *). Отсюда возникло стремление хотя бы приближенно «линеаризовать» каждую физическую задачу, т. е. свести ее к такой, для которой в первом приближении принцип сложения выполняется. К нелинейным задачам не было никакого общего подхода, а потому и не могла возникнуть общая теория солитонов, которые по своей природе нелинейны. В некоторых счастливых случаях удавалось изучить конкретные нелинейные явления, такие, как волны Герстнера, КдФ-солитоны или простые гидродинамические вихри, но общую атмосферу это изменить не могло.

*) Как мы уже говорили, «досадным» исключением оставалась лишь гидродинамика.

Почему линейность так упрощает решение задачи? Проще всего это понять на простых примерах. Рассмотрим уравнение ах + y = 0, решения которого — это пары чисел (x, у), при подстановке которых оно обращается в тождество. Ясно, что всякое решение можно записать в виде (х0, -ax0), где x0 — произвольное число. Если изобразить решения точками на плоскости, то все решения лежат на прямой ОА, проходящей через точки О = (0, 0) и А = (1, -a). Если мы знаем только одно решение А, то, пользуясь линейностью, можно получить все решения умножением на произвольное число: х0А = (х0, -aх0). Математик скажет, что совокупность всех решений этого уравнения образует линейное одномерное многообразие. Для определения всех его точек достаточно задать одну точку, отличную от О (0, 0), например, А = (1, -a). Если — две точки этого многообразия, то точка А3 = c1A1 + с2А2 = , при любых с1 и с2 тоже принадлежит этому многообразию (т. е. точка А3 тоже лежит на прямой ОА).

Точно также можно найти все решения уравнения ах + by + z = 0, т. е. тройки чисел (x, y, z), при подстановке которых уравнение обращается в тождество. Можно убедиться, что достаточно знать два решения, например, , а все остальные получаются их линейными комбинациями, т. е. . Это пример двумерного линейного многообразия. Геометрически можно изобразить его как плоскость в трехмерном пространстве (попробуйте проверить эти утверждения и нарисовать такую плоскость).

Рассмотрим теперь более близкий к физике пример колебаний грузика на пружине. Отклонение грузика от положения равновесия x(t) подчиняется уравнению Ньютона , где а(t) — ускорение грузика в момент t, ω0 — круговая частота, ω0 = 2π/Т, а Т — период колебаний грузика. Если x 1 (t) и x 2 (t) — два решения этого уравнения, описывающие какие-то два движения, то и любая их линейная комбинация  — тоже решение (т. е. х 3 (t) — возможное движение) *). Совокупность всех решений также образует линейное многообразие.

*) Так как ускорение a(t) линейно зависит от x(t) .

Рассмотрим два движения: x 1 (t) = cos(ω0t) и x 2 (t) = sin(ω0t). Взяв , можно написать произвольную линейную комбинацию из x 1 и x 2 : . Так получается самое общее выражение для отклонений грузика при колебаниях с амплитудой х M и фазой φ. По аналогии с рассмотренными нами алгебраическими уравнениями можно сказать, что линейное многообразие возможных колебаний двумерно. Каждое колебание грузика можно представить точкой на плоскости (с 1 , с 2 ), и эти точки также образуют линейное многообразие.

Над этими простыми примерами стоит как следует подумать. Важно понять, во-первых, что любое колебание грузика можно представить в виде суммы двух линейно независимых, т. е. не выражающихся друг через друга в виде линейных комбинаций колебаний x 1 = cos(ω0t) и x 2 = sin(ω0t) (вместо этих можно взять и другие линейно независимые решения). Наоборот, пусть известны два возможных колебания x 1 (t) и x 2 (t) , отношение которых не постоянно, — такие колебания будут линейно независимыми. Тогда любое другое движение можно получить, подобрав подходящие числа с 1 и с 2  и складывая колебание  с 1 x 1 (t) с с 2 x 2 (t) . Важно, что при этом не нужно знать даже само уравнение. Достаточно иметь два независимых колебания и знать, что выполнен принцип линейности или принцип сложения колебаний.

Если линейности нет, то все выглядит гораздо сложнее. Возьмем самое простое уравнение y2 + аx2 = 0. Сразу ясно, что многообразие решений (x, у) будет иметь совершенно разный вид при разных знаках а. При а   0 оно состоит из единственной точки О = (0, 0). При а = 0 — это точки, лежащие на оси Оx, т. е. точки (x 0 , 0), где x 0 — любое число. Если же а  0, то все решения имеют вид или , или , т. е. лежат либо на прямой ОА, либо на прямой ОB (рис. 3.9).

Ясно, что в этом случае многообразие решений нелинейно. Например, сумма двух написанных решений с одним и тем же х 0 равна (2х 0 , 0), а х = 2х 0 , у = 0 не удовлетворяет нашему уравнению при .

Так обстоит дело в самом простом случае. При усложнении уравнения уже совсем не просто выяснить, имеет ли оно решения, и если имеет, то сколько и как эти решения зависят от параметров, входящих в уравнения. В нашей простой задаче единственный параметр — это число а. При а  0 есть только нулевое решение, при а = 0 решения образуют линейное многообразие, а при а  0 многообразие решений становится нелинейным. В этом примере нелинейное многообразие устроено слишком просто, но небольшое изменение уравнения (скажем, добавка к левой части слагаемого bх, где число b может быть очень малым) приводит к очень серьезным, качественным изменениям структуры множества решений (убедитесь в этом!).

Вообще, такая сильная, качественная зависимость решений от параметров, появление новых решений (или их исчезновение) — самое характерное свойство нелинейных уравнений. С простыми примерами такого проявления нелинейности в движениях тел мы сталкиваемся очень часто. Когда мы пытаемся сдвинуть с места стоящий на ровном месте автомобиль, мы постепенно увеличиваем усилие, но автомобиль не двигается, пока усилие не достигнет определенного значения. После того как автомобиль начнет двигаться, его довольно легко разогнать, прилагая меньшее усилие. Этот эффект возникает из-за нелинейности силы трения — при движении автомобиля сила трения меньше, чем в покое. Нелинейность этого типа можно назвать «пороговой» нелинейностью. При достаточно малых воздействиях (ниже «порога») система находится в одном состоянии (автомобиль не движется), при достижении порога система переходит в другое состояние, в котором воздействие можно уменьшить или даже убрать (катящийся автомобиль может двигаться некоторое время по инерции).

Пороговая нелинейность ясно видна и в механизме возбуждения нервного импульса. Малые раздражения, вообще говоря, не приводят к возбуждению импульса; он пойдет лишь при достаточно сильном раздражении. Если бы не было этой нелинейности, наша жизнь стала бы совершенно невозможной. В теории солитонов более важны нелинейности других типов. С ними мы познакомимся в следующих главах.