Тьюринг и соревнование человеческого мозга с компьютером

Способность мыслить и логически рассуждать всегда казалась совершенно очевидной гранью, отделяющей людей от всех остальных живых существ, поскольку именно она, несомненно, позволила человечеству «завоевать» планету (не будем затрагивать проблему долговечности и прочности такого завоевания). Похоже, что эта способность сделала нас также единственным биологическим видом, которому свойственно само ощущение историчности процессов, что и заставляет нас настойчиво искать в прошлом причины и истоки происходящих событий.

Однако в XX веке неожиданно выяснилось, что человечество не обладает монополией на процессы мышления или, по меньшей мере, не может сохранять эту монополию в близком будущем. Бурное развитие кибернетики привело к тому, что вычислительные машины значительно «поумнели» и вообще стали играть все более существенную роль в нашей жизни (отмечу, например, что в настоящее время компьютеры потребляют около 6% всей производимой в США электроэнергии). Людям давно пора задуматься о том моменте, когда способность компьютеров думать, приспосабливаться к окружению и создавать новые понятия достигнет того самого уровня, который определил дальнейшее развитие первой группы существ нового биологического вида Н. sapiens. Кстати, будем ли мы по-прежнему считать компьютеры машинами, когда искусственный интеллект будет создан на основе органических материалов?

С другой стороны, развитие ЭВМ неожиданно выявило недостаточность наших знаний относительно самого процесса мышления. Основан он просто на способности мозга производить точные расчеты (так сказать, мыслить логически) или включает в себя также некий механизм «нечеткого мышления», позволяющий воспринимать и перерабатывать явно неполную и «нечеткую» информацию, поступающую в мозг от реально существующего мира? Какое из этих свойств является более важным?

В своем стремлении постоянно выискивать и подчеркивать различия между работой мозга и компьютера мы иногда странным образом напоминаем тех европейских ученых викторианской эпохи, которые никак не могли смириться с тем, что человечество могло возникнуть не в Европе, а в Африке. Мы уже давно осознали, что ЭВМ давно обогнали нас по скорости и эффективности расчетов, и лишь иногда ворчим по поводу того, что компьютеры гудят (или, по обычному выражению, даже хрюкают) в процессе работы. Некоторые ситуации явно ставят нас в тупик. Например, должны ли мы радоваться или огорчаться, когда созданный специалистами фирмы ЮМ компьютер «БигБлю» обыгрывает (т. е. оказывается «умнее» или «разумнее») самого блестящего, гениального шахматиста-человека? За кого нам следует болеть в таком матче? Впрочем, нельзя не заметить, что в течение последних десятилетий теоретическая и практическая граница между работой мозга и компьютера становится все более незначительной и неопределенной.

В XVII веке Рене Декарт сформулировал свое знаменитое определение человеческой личности: «Я мыслю, следовательно, я существую». В настоящее время это изречение обретает новый и неожиданный смысл, поскольку в мире уже реально существуют объекты, способные мыслить гораздо лучше, чем многие люди, именно в том смысле, который и подразумевал великий французский математик и философ, но эти объекты не являются личностями. Компьютер мог бы сказать о себе: «Я мыслю, но не существую».

Машины не только изменяют нашу жизнь, но и вносят в нее новые идеи и представления. Недавно известный киноартист Том Хэнке сказал в телевизионной передаче, что у его нового фильма будет дискретная судьба, подразумевая «…либо полный провал, либо оглушительный успех,…ноль или единица, третьего не дано», и далекая от науки публика прекрасно поняла смысл фразы. Процесс, который называют компьютеризацией, дид-житализацией или цифровой революцией в информатике, сделал вычислительную математику привычной для огромных масс населения.

Еще 50 лет назад сама возможность «механического мышления» казалась шокирующей, загадочной и тревожной даже ученым, а в наши дни для миллионов людей компьютеры стали неотъемлемой частью жизни, работы и развлечения.

Первые вычислительные машины создавались для решения совершенно конкретной и довольно ограниченной задачи (обеспечение сбора, записи и переработки больших массивов информационных данных) и представляли собой весьма громоздкие и ненадежные устройства, к тому же работавшие, по современным представлениям, крайне медленно. Основой их действия был упомянутый выше актером Хэнксом принцип дискретности, в котором все сводится к нулю или единице, но откровением для ученых стал факт, что этот принцип позволяет создать простые электромеханические устройства, способные моделировать человеческое мышление в самых разнообразных областях интеллектуальной деятельности.

Эффективность и производительность работы компьютеров возрастали настолько быстро и впечатляюще, что уже через несколько лет конструкторы и пользователи ЭВМ стали задавать себе неожиданные, но очень сложные вопросы. Знаменитая фраза Декарта подразумевала, что мышление эквивалентно сознанию, и соответствовала философскому дуализму самого Декарта, основанному на четком разделении мозга и сознания. Развитие компьютерной техники заставило ученых и философов увидеть новые аспекты этой дилеммы и задуматься о новых проблемах.

Можно ли вообще говорить об искусственном интеллекте? Есть ли в мозгу человека нечто большее, чем электрохимическая связь {hardware или железо, на жаргоне компьютерщиков) между элементами? Поиск и анализ различий в работе мозга и компьютера заставил задуматься и о принципах самого вычислительного процесса в различных системах, вследствие чего афоризм Декарта стал приобретать неожиданно новые смысл и значение.

Попытки переопределить и уточнить смысл термина «сознание» всегда приводят к сложным философским и научным размышлениям. Можно ли считать, что какими-то формами сознания обладают, например, домашнее растение (за некоторыми из них люди ухаживают и даже обращаются к ним с ласковыми словами) или собака, которая возбужденно прыгает, когда вы входите в дом? Понимает собака, которую вы решительным окриком сгоняете с кресла, ваши желания и команды или просто подчиняется некоторым выученным правилам поведения? Подавляющее большинство людей уверено, что их домашние животные и человекообразные обезьяны обладают каким-то разумом и сознанием, но никто не предполагает наличия таких же свойств, например, у лягушек, золотых рыбок в аквариуме или оленей в лесу. Кроме этого, разговоры о разуме и сознании заставили ученых вновь вспомнить о проблеме так называемых зомби, т. е. существ, во всем подобных человеку, но живущих по некоторой, заранее заданной извне программе. Должны ли мы считать их мыслящими созданиями? Какая степень подражания сознательному поведению может считаться проявлением или доказательством разумности?

На все эти вопросы мы, по-видимому, никогда не получим окончательного и исчерпывающего ответа, но вот уже почти сто лет они имеют реальную значимость и стали предметом мучительных размышлений философов и кибернетиков, причем не только из-за возможности возникновения «сознания» у компьютеров, но и вследствие очевидного сходства структур и самих процессов обработки информации в столь разных объектах, как ЭВМ и мозг человека. Споры об искусственном интеллекте заходят очень далеко, вплоть до обсуждения вопроса о восприятии боли компьютерами или их способности понимать хитросплетения человеческой мысли (поймет ли когда-нибудь компьютер фразу типа «месть -это блюдо, которое становится вкуснее остывшим»?), но стоит вспомнить, что все эти проблемы возникли только после того, как первые вычислительные машины действительно продемонстрировали, что почти любая человеческая мысль может быть представлена в виде некоторой комбинации всего двух цифр, нуля и единицы.

Джей Форрестер

В начале сороковых годов, когда США «перековывали орала на мечи», выпускник знаменитого МТИ (Массачусетского технологического института) Джей Форрестер начал заниматься проблемой создания нового типа тренажеров для пилотов морской авиации. Это устройство должно было экономить массу времени для подготовки молодых летчиков и сберегать дорогостоящую авиационную технику, позволяя максимально близко имитировать условия реальных полетов и осуществлять тренировку курсантов на земле. За годы Второй мировой войны было создано целое поколение подобных моделирующих устройств (имитаторов, тренажеров и т. п.), для работы которых необходимо было научиться очень быстро решать системы из сотен математических уравнений, описывающих не только реальную обстановку, но и мгновенные действия пилота, реагирующего на конкретные изменения обстановки при сложных маневрах летательного аппарата. Такие тренажеры уже фактически представляли собой простые компьютеры, способные взять на себя подачу сигналов к электромеханическим приводам или различным автоматическим устройствам.

Форрестер не стал заниматься усовершенствованием уже существующих тренажеров, а создал для военных целей совершенно новую электронную систему, а именно компьютер под кодовым названием Whirlwind (Вихрь), характерной особенностью которого был полный отказ от привычной десятичной системы счисления. Использованная Форрестером двоичная система содержала лишь два числа (0 и 1), и этот прием, кстати, не представляет собой ничего таинственного или сложного для математиков. Строго говоря, единственное преимущество десятичной системы счисления заключается в привычном нам числе пальцев на собственных руках, но даже это обстоятельство не является существенным. Например, математики древнего Вавилона весьма успешно пользовались системой счисления, основанной на базовом числе 12, которую мы до сих пор без особых сложностей продолжаем применять для измерения времени и углов в геометрических построениях (читатель может вспомнить градусы в тригонометрии и т. п.).

Двоичная система оказалась исключительно удобной для применения в компьютерах. Собственно говоря, сама идея использования последовательности ответов типа да/нет для выражения любой человеческой мысли принадлежит английскому математику Джорджу Булю, который еще в середине XIX века сформулировал свои так называемые «законы мышления». Очень упрощенно идеи Буля сводились к тому, что любая мысль (независимо от ее сложности или глубины) может быть выражена наборами всего лишь двух категорий, а именно: «истинно» или «всё» (эту категорию можно обозначить через 1) и «ложно» или «ничто» (обозначаемое через 0).

Известный философ Людвиг Виттгенштейн, глубоко понимавший идеи Гёделя и других великих ученых XX века, в своем знаменитом «Логико-философском трактате», опубликованном в 1921 году, писал: «…то, что нельзя описать словами, должно быть преодолено молчанием», подразумевая под этим, что очень многое в мире не может быть выражено средствами человеческого языка, а может быть представлено лишь в виде некоторых картин или образов. Степень осознания или «понимания» в этом случае обусловлена совпадением создаваемых нашим мозгом картин с «отражаемыми» образами внешнего мира.

Идеи такого рода в значительной степени повлияли на знаменитого математика Джона фон Неймана, который в начале 40-х годов предложил концепцию вычислительной машины с хранимой программой {stored program computer), что стало выдающимся достижением в истории кибернетики и позволило компьютерам «отражать действительность». Фон Нейман также показал, что упомянутая выше бинарная логика может быть объединена с обычной арифметической и использована для создания так называемой оперативной памяти компьютера {internal memory), т. е. устройства, обеспечивающего хранение данных и выполнение инструкций по их обработке. Описанным выше значениям 1 и 0 бинарной логики в таких компьютерах соответствуют состояния «включено» и «выключено» простых устройств (типа электронных ламп), в результате чего система может не только сохранять информацию, но и обрабатывать ее с высокой скоростью, выдавая по требованию результаты расчета. В принципе, подход фон Неймана позволяет записать в формальном математическом виде почти любую, даже очень сложную человеческую мысль.

Переход от десятичной системы счисления к двоичной может показаться чем-то таинственным для малоподготовленного читателя, но это является, в сущности, очень простой операцией. В такой записи используются всего две цифры (0 и 1), а при переходе к следующему разряду (справа налево) необходимо умножить цифру на соответствующую степень числа 2, после чего сложить результаты. Например, число 110101 представляет собой сумму вида (1 + 0-21 +1 -22 + 0-23 + 1 -24 + 1 -25 = 1 + 0 + 4 + 0 + 16 + 32 = 53), число 10000 = 0 + 0-21 + 0-22 + 0-23 + 1 -24 = 16) и т. д. Эту форму записи легко освоить, и она оказалась исключительно удобной для работы компьютеров.

Разработанный Форрестером тренажер сначала не получил широкого признания, но начатое им усложнение аппаратуры и оборудования со временем развилось в серьезное направление техники, позволившее позднее автоматизировать системы противовоздушной обороны, организовать управление посадкой космических кораблей на Луну и Марс и т. п., не говоря уже об автоматизации обработки банковской информации, оплаты телефонных счетов и даже организации увеселительных мероприятий и вечеринок. Основные принципы управления этими разнообразными системи и процессами остались прежними, а изменилось только техническое оснащение. В наши дни производство микроэлектронных устройств стало настолько важной и неотъемлемой частью национальной экономики, что многие американцы вкладывают в акции высокотехнологических компаний свои сбережения и пенсии. Однако не стоит забывать, что все эти сверхминиатюрные чипы и устройства, в сущности, всего лишь быстрее и эффективнее перерабатывают информацию по очень старым принципам, разработанным еще в 40-х годах для первых вычислительных машин с их громоздкими, хрупкими и постоянно перегревающимися электронными лампами.

Однако технический прогресс и практическое применение вычислительных машин в различных областях не давали ответа на основополагающие вопросы, продолжавшие мучить разработчиков. Стали компьютеры действительно «умными» (как постоянно уверяют нас рекламные клипы) или мы просто сделали их более удобными, разносторонними и перестраиваемыми? Можем ли мы четко различить эти понятия? Каковы критерии разумности?

***

Огромное значение для развития компьютеров имели работы английского математика Алана Тьюринга. Во время Второй мировой войны он стал национальным героем и внес существенный вклад в победу над фашизмом, сумев создать дешифратор и «взломать» коды знаменитой немецкой шифровальной машины Энигма, что давало союзникам стратегическое преимущество в разработке военных операций. Однако не менее важным достижением Тьюринга следует считать предложенный им еще в 1936 г. проект вычислительного устройства (так называемой универсальной машины Тьюринга), на концептуальной основе которого до сих пор работают все современные цифровые компьютеры (к сожалению, он умер в 1954 г., так и не увидев свое детище воплощенным в реально действующее электронное устройство).

Среди прочих идей Тьюринга необходимо выделить знаменитую «задачу остановки», невольно заставляющую вспомнить о теоремах Гёделя. Тьюринг сумел строго доказать, что существуют вычислительные процедуры, когда невозможно предсказать момент «остановки» машины, соответствующий завершению работы заложенной в нее программы. В некоторых случаях машина в поисках решения будет продолжать вычисления бесконечно долго, но невозможно также создать контрольную программу, позволяющую проверить все остальные программы и выяснить, какая из них должна «остановиться».

Тьюринг был совершенно уверен, что проектируемые им устройства быстро станут «сообразительными», и в 1950 г. предложил мысленный эксперимент для определения «разумности» ЭВМ, получивший широкую известность и название «теста Тьюринга». В процедуре испытания (которое может быть названо «игрой в имитацию») используется компьютер, но читатель легко может представить и даже провести его, пользуясь уже привычной многим электронной почтой (e-mail). Подумайте над тем, каким образом вы, собственно, можете определить, что ваш собеседник на чате является человеком? Почему вы считаете, что полученное по электронной почте сообщение прислано человеком, а не автоматическим устройством? В сущности, мы решаем этот вопрос для себя в процессе диалога, полагая, что разумность и уместность ответных писем являются прямым свидетельством разумности собеседника и доказательством его человеческой природы. Именно такое, чисто человеческое испытание и предложил Тьюринг – машину следует считать «мыслящей», если она может адекватно отвечать на вопросы и вести заочную беседу, обманывая собеседника-человека. Иными словами, чтобы машина могла общаться с человеком, она должна научиться «думать» на уровне человека.

В этом тесте неявно подразумевается, что сознание является продуктом работы мозга, т. е. считается, что можно «скопировать сознание», смоделировав работу некоторых отделов мозга или, по крайней мере, той части нервных клеток, которая ответственна за возникновение «сознания». Пока ни одна машина не может пройти тест Тьюринга, но если это когда-нибудь произойдет, не стоит сразу считать ее «мыслящей», поскольку многие специалисты полагают, что компьютеры учатся не мыслить, а подражать человеческому сознанию благодаря соответствующей переработке информации, подобно тому, как они обучаются моделировать виртуальные события (например, ракетную бомбардировку Багдада или трансформацию человеческого лица после предполагаемой пластической операции). (К моменту публикации английского оригинала (примерно через полгода) виртуальные бомбардировки Багдада стали реальными, как бы иллюстрируя основную идею автора о неизбежности изменений. – Прим. перев)

Для доказательства этой идеи философ Джон Сирл в одной из своих книг предложил еще один забавный мысленный эксперимент (получивший название «китайской комнаты»), при котором условия теста Тьюринга в некотором смысле «выворачиваются наизнанку», т. е. испытанию подвергается не машина, а человек. Представьте, что мы пытаемся оценить «разумность» человека, запертого в изолированной камере (китайской комнате) и переговаривающегося с окружающим миром посредством записок, передаваемых через щель в двери. Он получает вопросы, написанные совершенно непонятными ему китайскими иероглифами, однако в комнате есть толстенный китайский справочник, содержащий огромное количество вопросов и достаточно пространные и убедительные ответы на них. Старательно перелистывая справочник, испытуемый каждый раз находит в нем комбинацию полученных им снаружи знаков, а затем столь же старательно копирует знаки, соответствующие ответу. Обмен такими записками может представлять собой вполне разумную и даже интересную беседу на изысканном, так называемом мандаринском диалекте китайского языка, хотя испытуемый не имеет представления или «понимания» о предмете беседы, так что он фактически ведет себя подобно автомату. Этот воображаемый диалог отличается от обычного человеческого лишь тем, что, когда испытуемый отвечает, например, на вопрос о гастрономических достоинствах утки по-пекински, у него не начинается рефлекторное выделение слюны, поскольку он не представляет предназначение и внешний вид предмета разговора. Фактически человек в этой ситуации бездумно получает, перерабатывает и выдает информацию, выполняя одну из самых стандартных функций компьютера. Другими словами, он удовлетворяет тесту Тьюринга. Невидимый нам объект (человеческая личность или компьютер?) может говорить по-китайски без всякого участия сознания или понимания, а лишь следуя набору заданных инструкций, подобно процессору компьютера. В китайской комнате человек только говорит на каком-то языке, но вовсе не «думает».(Предлагаемый Сирлом эксперимент излишне осложняется тем, что иероглифы передают не столько фонетику, сколько смысл. На практике люди, владеющие иероглификой, но говорящие на разных языках (например, японцы и китайцы или просто жители разных провинций Китая), достаточно легко общаются «письменно». Интересно, что таким способом проще говорить об абстрактных понятиях (например, о математике), чем на бытовые темы. – Прим. перев)

Несмотря на все сложности с определением сознания и разумности, мысль о возможности создания «думающей» машины всегда оставалась заветной мечтой конструкторов ЭВМ. Сенсацией 1954 года (вызвавшей большой ажиотаж не только среди специалистов, но и среди инвесторов) стало создание устройства Персептрон, фотодетекторы которого могли различать отдельные буквы, составляющие слова текста, в качестве подлежащей переработке информации. Это стало важным этапом в развитии компьютеров, однако никто не рискнет утверждать, что Персептрон научился «читать» или «понимать» текст в действительности.

Персептрон во многом не оправдал возлагавшихся на него надежд, но с него началось интенсивное развитие целого семейства компьютеров, приведшее в конечном счете к созданию многих современных устройств, умеющих не только сканировать печатный текст и читать его вслух, но и распознавать звуки, складывать из них слова и даже частично «понимать» человеческую речь. Многие достижения в этой области впечатляют, но любой из нас, кто имел дело с любой, даже самой современной программой распознавания голоса и пытался что-то надиктовать с ее помощью, мог лично убедиться в причудливости возникающих ошибок, невольно заставляющих вспомнить мысленный эксперимент Сирла с китайской комнатой. Иногда из-за забавных и странных опечаток и ошибок возникает даже ощущение, что компьютеры обладают каким-то особым чувством юмора, однако очевидно, что они действительно не понимают смысла расшифровываемой речи и печатаемых фраз. Точность регистрации и распечатки устной речи самых лучших программ сегодня достигает 80%, однако необходимо учесть, что они пока не могут различать голоса отдельных людей.

Весьма забавный подход к проблеме и исследованию искусственного интеллекта был развит в 60-х годах станфордским психиатром Кеннетом Колби, специалистом по параноидальным расстройствам психики. Одна из созданных им компьютерных моделей (программ, имитирующих поведение отдельной личности) соответствовала параноику, страдающему манией преследования, условно именуемому Пэрри. Он играет на скачках, боится мафии и постоянно переводит разговор на эту тему, примером чего может служить приводимый ниже отрывок беседы «Пэрри» с «психиатром» (реплики компьютера набраны курсивом):

Психиатр. Вы боитесь преступного мира?

Пэрри. Мафия - самые страшные гангстеры.

Психиатр. Вы связаны с ними?

Пэрри. Видите ли, они меня знают.

Психиатр. Откуда они вас знают?

Пэрри. Они следят за мной.

Психиатр. Почему?

Пэрри. Хотят сочинить что-то обо мне, чтобы меня посадили.

Психиатр. Что они имеют против вас?

Пэрри. Они хотят со мной покончить.

Психиатр. Почему?

Пэрри. У меня есть против них кое-какие улики.

И так далее. Легко заметить, что каждый ответ Пэрри «запускается» каким-то словом предыдущего вопроса, но имеет собственную, личную и не вполне нормальную направленность. Если вы регулярно ездите в нью-йоркской электричке и привыкли краем уха слышать бесконечные и бестолковые разговоры по мобильным телефонам, то вам придет в голову, что такая программа вполне способна пройти тест Тьюринга на разумность. Пока ни одна ЭВМ не способна «выдавать себя за человека» в заочном диалоге со специалистами, однако программы постоянно совершенствуются и обрастают различными реалистическими деталями, так что можно не сомневаться, что рано или поздно такая ЭВМ будет создана.

В связи с проблемой разумности ЭВМ особо следует рассмотреть длительное и постоянно приковывающее внимание общественности соревнование между человеком и компьютером на шахматной доске. Сенсационная победа компьютера ДипБлю над чемпионом мира Гарри Кас-паровым в 1997 году (счет 2:1, при трех ничьих) вовсе не означает, что этот компьютер проскочил тест Тьюринга. Машина запрограммирована на угадывание возможных ходов противника и оценку позиции (т. е. сравнение недостатков и преимуществ построений фигур). Эти расчеты или функции весьма сложны, но они остаются всего лишь расчетами, так что мы вновь имеем дело с каким-то «китайским справочником», где даны подробные инструкции относительно конкретных ответов в конкретных ситуациях. Шахматы при таком подходе перестают быть свободным соревнованием интеллектов и изобретательности, а превращаются в состязание инструкций, записанных на непонятном языке. Компьютер вновь получает способность «говорить», а вовсе не «мыслить»! Машина ДипБлю умеет очень хорошо «говорить на шахматном языке», не задумываясь о смысле происходящего. (В качестве иллюстрации сложности проблемы следует отметить, что победа компьютера над гроссмейстером действительно еще не означает «понимания» идей шахматной игры, поскольку существуют позиции (которые правильно разыгрывают даже малоквалифицированные шахматисты), «недоступные» стратегии ЭВМ. Примеры таких позиций и анализ проблемы понимания (наряду с многими другими, затрагиваемыми выше) подробно рассматриваются в книге Р. Пенроуза «Большое, малое и человеческий разум», М., «Мир», 2004. – Прим. перев)

В более простые игры, поддающиеся более строгому расчету, машины научились играть значительно раньше: например, компьютер обыграл чемпиона мира по триктраку (нарды) еще 20 лет назад. Многие другие достижения в компьютерной технике, которые часто приводятся в качестве примеров проявления искусственного интеллекта, также являются всего лишь удачно составленными наборами инструкций, т. е. «китайскими справочниками», позволяющими «говорить без понимания». Машины прекрасно говорят на простых языках кредитных карточек (т. е. считывают номера и цифры, а также легко определяют фальшивые карты), фармацевтических рецептов (считывают названия, проверяют сроки годности лекарств и даже сверяют назначения врача с медицинскими справочниками) и т. п., но все это не делает их разумными.

Судьба самого Тьюринга, человека исключительно одаренного и одновременно очень болезненного и противоречивого, оказалась крайне трагической. Он открыто объявил себя гомосексуалистом, что не только уголовно преследовалось в послевоенной Англии, но и вызывало у спецслужб сомнения в его лояльности и благонадежности, вследствие чего он провел год за тюремной решеткой и был подвергнут принудительному «органотерапевтическому» лечению, которое должно было вернуть ему нормальную сексуальную ориентацию. К несчастью, лечение было экспериментальным и включало в себе инъекции новых, непроверенных препаратов, что привело к нарушениям психики и импотенции.

Через год после курса лечения Тьюринга нашли мертвым в собственном доме, после чего официальной версией его гибели стало самоубийство (перед смертью он съел яблоко, начиненное цианистым калием), но многие его друзья намекали на убийство, организованное секретными службами собственной страны. (Необычность судьбы и дарования Тьюринга легли в основу сюжета многих кинофильмов и книг (не говоря уже о знаменитой истории захвата системы «Энигма»). В связи с упоминаемым гомосексуализмом Тьюринга интересно, что в исходных вариантах теста Тьюринга критерием «разумности» собеседника выступала способность определить пол, т. е. машина должна была научиться отличать мужчин от женщин в ходе заочной беседы, что явно усложняло задачу. – Прим. перев)

Возможно, когда-нибудь компьютеры действительно станут настолько разумными, что займутся писанием романов и драм о собственной жизни, и тогда мы поймем, о чем они действительно думают и что чувствуют. С другой стороны, понимание принципов работы ЭВМ уже сейчас позволяет нам по-новому взглянуть на многие проблемы, относящиеся к нашему собственному сознанию, так как изучение механизмов вычислительных операций в компьютерах дает нам некоторое представление о процессах мышления в мозгу человека.

Выше уже упоминалось, что философский дуализм Декарта диктовал ему разделение ума и сознания. На самом деле, эта идея является традиционной, и очень многие мыслители прошлого тоже рассматривали мозг и мышление раздельно. Средневековые ученые полагали, что в мозгу просто обитает микроскопическое человекоподобное существо, называемое гомункулюсом, которое и ответственно за возникновение новых мыслей. Эта идея кажется наивной, однако и в двадцатом веке многие философы доказывали, что сознание обусловлено не физическим состоянием мозга, а чем-то иным, возможно, даже находящимся вне мозга. Гильберт Райли издевательски называл такие идеи представлением о «призраке в машине», перефразируя известную формулу «бог из машины». (Проблема возникновения новых идей и мыслей является одной из основных в истории философии и восходит еще к Сократу, который объяснял афинянам, что мысли подсказывает ему некий «демонион», дух внутри головы. В науке эта проблема усложняется наличием явного «эффекта одновременности» возникновения новых теорий (включая самые великие), ярким примером чего являются многолетние судебные разбирательства между гениальными математиками Ньютоном и Лейбницем. -Прим. перев)

Однако, отказываясь от гомункулюсов и призраков, современным ученым остается только предполагать, что это нечто, столь решительно отличающее нас от всех остальных живых существ, должно быть основано на электрохимических структурах и функциях мозга. Именно так и считают специалисты в области нейробиологии, тем более, что в этом случае мыслительные процессы при передаче нервных импульсов могут быть полностью (или хотя бы метафорически) уподоблены механизму вычислений в компьютере, основанному на принципе да/нет (включено/выключено).

При таком подходе мозг и сознание действительно ничем не отличаются, так что человеческое сознание (или, если угодно, человеческая личность) представляет собой именно и только мозг, т. е. набор клеток (от 100 миллиардов до 1 триллиона нейронов и так называемых глиальных клеток) общим весом около полутора килограммов. В этом определении явно не хватает чего-то очень важного и очевидного, обычно именуемого душой или свободой воли, но именно этого ученые не обнаружили и обсуждают такие понятия только вне научных лабораторий. Личность – это только мозг и ничего более.

Наш мозг, подобно обычному компьютеру, умеет хранить и перерабатывать информацию в соответствии с некоторыми алгоритмами (т. е. выполнять заданные операции, преобразующие поступающий входной сигнал в соответствующий выходной сигнал), а также вырабатывать и подавать команды к действию. Каждый из нейронов мозга (напомним, что нейрон представляет собой группу или скопление клеток, число которых сравнимо с числом звезд во Вселенной) способен получать и посылать сообщения, причем они отличаются высокой специализацией, согласованностью и скоростью работы, поскольку даже самое простое движение организма типа вздоха должно регулироваться несколькими десятками нейронов.

Обычно сигнал передается от нейрона по длинным отросткам или волокнам (аксонам), а содержание сигнала определяется информацией, поступающей в нейрон от целой сети еще более тонких отростков (дендри-тов), образующих вокруг нейрона разветвленную и непрерывно растущую сеть. Дендритные структуры между соседними нейронами контактируют и соприкасаются, что и позволяет им постоянно обмениваться информацией. Нервные импульсы передаются за счет диффузии особых молекул (так называемых нейромедиаторов) через клеточные структуры, называемые синапсами. В зависимости от специфики выполняемых функций и положения в нервной системе, средний нейрон может иметь от 100 до 10 000 синапсов, обеспечивающих его связь с другими клетками мозга.

Нервные клетки создаются в соответствии с генетической информацией, заложенной в индивидуальной ДНК каждого человека, однако в одном отношении они существенно отличаются (к нашему великому сожалению) от всех остальных типов клеток организма. Дело в том, что все остальные клетки (от обычных, типа ногтей или крови, до смертельно опасных раковых) непрерывно размножаются делением, а нейроны лишены этой способности, в результате чего их число в организме непрерывно уменьшается, так что любой человек за сутки своей жизни теряет примерно 200 000 нервных клеток. Неспособность нервных клеток к делению (нейрогенезу) традиционно считалась их характерной особенностью, поскольку даже при раковых заболеваниях, механизм развития которых основан именно на размножении больных клеток, в мозговых тканях делятся только глиальные клетки, образующие побочные структуры нейронов. Однако полученные в 1998 г. данные вдруг продемонстрировали возможность возникновения даже в преклонном возрасте дополнительных нейронов, (по крайней мере, в двух отделах мозга – в ольфак-торной луковице и гиппокампусе. Позднее такая возможность была показана и для других отделов мозга, хотя остается неясной как роль образующихся нервных клеток, так и их способность создавать необходимые связи с соседними нейронами.

Ученые продолжают спорить о том, насколько опасным для человека является описанное непрерывное отмирание нервных клеток, учитывая, что их общее количество является фантастически большим (сотни миллиардов и триллионы, что можно сравнить только с числом звезд во Вселенной). Представляется очевидным, что этот процесс является весьма индивидуальным, так как каждый из нас постоянно видит стариков, сохранивших отличную память и высокие интеллектуальные способности. Генетическая предрасположенность, безусловно, играет важную роль в снижении эффективности работы мозга, однако в целом нельзя забывать, что наши знания в этой области очень ограничены и в них «зияют провалы», которые можно уподобить описанным в главе 1 «пустотам» в межзвездном пространстве.

Совершенно таинственной остается, однако, способность мозга получать и обрабатывать информацию, а также рассылать сигналы, необходимые для выполнения обычных, но весьма сложных действий в повседневной жизни. Например, в данный момент вы одновременно держите книгу, читаете и осознаете текст, бессознательно сохраняете требуемое положение в пространстве, обдумываете прочитанное и как-то реагируете на него и т. д.

Каждый из нейронов представляет собой «страстного любителя» информации, жадно поглощающего и щедро распространяющего разнообразные послания, передаваемые электрохимическими импульсами. Процесс передачи очень сложен и не до конца понятен, но очень упрощенно может быть представлен следующим механизмом. В обычном состоянии каждая нервная клетка обладает некоторым, очень слабым электрическим потенциалом, создаваемым ее собственным зарядом. Поступление сигнала от соседней клетки приводит к химической реакции в так называемом синапсе на границе клетки, что буквально на ничтожный промежуток времени (на одну миллионную долю секунды) изменяет потенциал конкретной точки. Если такие изменения происходят достаточно часто, то нейрон реагирует, пропуская сигнал дальше вдоль аксона, и электрохимическая система срабатывает!

А теперь попробуйте представить себе всю совокупность нервных реакций мозга и организма в момент, когда вы дотрагиваетесь до горячей плиты и отдергиваете руку (опытная хозяйка тут же ухватиться обожженными пальцами за мочку уха). Даже в этой, очень простой ситуации программа действий является весьма сложной, и она многократно усложняется при вождении автомобиля по оживленной автостраде в час пик, когда водитель непрерывно воспринимает информацию от массы внешних источников и почти немедленно реагирует на меняющуюся обстановку. Спасением является лишь то, что на часть информации человек реагирует бессознательно или «инстинктивно», однако в большинстве случаев наше сознание и поведение является комплексным и многогранным, т. е. требует быстрой оценки, принятия решений и нейромышечной реакции (иногда включающей речевую деятельность и т. д.). Современные компьютеры могут моделировать процесс управления самолетом с поразительной реалистичностью, но объем используемой при этом информации значительно меньше той, которая используется нашим мозгом при выполнении многих бытовых операций (например, покупки пакета молока в магазине).

Даже беглое знакомство со структурой мозга и способностью его клеток выполнять операции по принципу да/нет (включено/выключено) наводит на мысль о том, что мы имеем дело с очень сложным компьютером на основе органических материалов (сравнение можно считать просто расширенной метафорой). Это решение, кстати, вовсе не снимает и не решает вопроса о происхождении сознания, даже если мы «докапываемся» до самых глубинных механизмов зарождения мыслей и поступков. Дуализм философского подхода сохраняется, и мы обречены на размышления о том, вызывается ли чувство страха увеличением числа нейронов, накопивших информацию об опасности, или проскоком через нейронную сеть одного, но «срочного» сигнала «тревоги». Возможно, что в нашем сложном сознательном аппарате (мозг/компьютер) реализуются одновременно сразу два механизма оценки обстановки.

Предполагается, что эмоции возникают в мозгу после оценки ситуации с учетом всех событий, переживаний и реакций, которые как-то помогли «выжить» в сооответствующих обстоятельствах предыдущей жизни, а некоторые специалисты даже считают, что в этот процесс вовлекаются молекулы наследственной ДНК, где «хранятся» какие-то совершенно древние воспоминания. Уже сейчас точно известно, что некоторые отделы мозга обладают своеобразной специализацией: например, какие-то участки явно сязаны с восприятием музыки, а возбуждение определенных центров приводит к одинаковым эмоциям или реакциям у самых разных людей и т. д. Аналогично, действие психотропных препаратов вполне рационально объясняется их воздействием на электрохимическую активность клеток мозга. Невропатологи уже давно умеют бороться со многими тяжелыми психическими заболеваниями (типа маниакальных психозов и т. п.), воздействуя на определенные участки мозговой коры или возбуждая их.

Задумайтесь о том, почему вам интересно читать о всех этих примерах, относящихся к работе мозга в качестве вычислительной машины? Ответ прост, поскольку причиной вашей любознательности выступает все та же страсть человеческого мозга к получению новой информации. Электрохимические информационные сети в нашем мозгу буквально ищут новые данные, стремятся получить и обработать новую информацию, а также сравнить ее с уже имеющейся (даже если эта информация относится к бесспорным или, напротив, очевидно абсурдным утверждениям). После этого мозг сортирует информацию, т. е. что-то отбрасывает в качестве ненужного хлама, а какие-то ее части запоминает или вводит в активную программу поведения. Естественно, что вся эта картина выглядит и является сугубо материалистической.

Однако следует задуматься и о том, что если мозг эквивалентен компьютеру, то в этой картине нет места вашему собственному сознанию, вашей личности. Человек в такой модели вполне может спросить себя: обладаю ли я лично хоть каким-то самосознанием вообще? Строго говоря, никто на свете не может дать обоснованный и ясный ответ, поскольку ученые и философы продолжают ломать голову над этой загадкой. В науке о сознании возникло даже целое научно-философское направление, полагающее, что наш мозг принципиально не обладает никаким реальным механизмом для определения и понимания своей собственной роли в процессах познания, вследствие чего мы никогда не получим никакого точного ответа на вопросы существования собственного сознания и личности. Эта концепция неожиданно заставляет вспомнить о том, что в древней Греции наиболее важные сведения и знания передавались только при особых церемониях, именуемых мистериями. Возможно, что дело обстоит именно так, однако можно надеяться и на то, что в этом столетии мы станем свидетелями неожиданных открытий и прорывов в этом таинственном и притягательном направлении.

***

Вернемся к рассмотрению работы обычных ЭВМ разного типа и будем просто считать наш собственный мозг компьютером, который почему-то полагает, что он обладает некоторым автономным сознанием. Давайте задумаемся о том, что подразумевается под понятием «искусственный интеллект» в данной ситуации? В чем заключается различие? Где можно провести грань между работой мозга и компьютера?

Бросающееся в глаза отличие заключается в том, что в работе мозга используется так называемая нечеткая логика, поэтому для реального моделирования человеческого мышления в компьютеры необходимо ввести именно ее правила. Кстати, термин «нечеткая логика» не несет в себе ничего обидного, так как является строгим математическим понятием и, конечно, не подразумевает какую-то слабость или ущербность нашего мышления по сравнению с компьютерами. Скорее эта логика дает неоспоримые преимущества, поскольку позволяет работать с недостаточно точной информацией, которую мы и получаем из окружающего нас реального мира.

Например, когда на улице холодно или сыро, родители вполне резонно советуют ребенку одеться теплее. Совет прост и не требует для своей формулировки использования хитроумных построений современных информационных технологий, однако стоит вспомнить, что такой совет не может дать и сформулировать ни одна из существующих вычислительных систем мира. Дело в том, что работа ЭВМ основана на принципах классической логики (которая никак не связана с условиями человеческого существования), а совет основан именно на чисто человеческом ощущении категорий окружающего нас мира. Такие ситуации встречаются на каждом шагу, но мы привычно не замечаем возникающих трудностей и преодолеваем их. Что означает, например, широко используемое понятие «красный цвет»? В мире существует так много оттенков красного, что попытки их сколько-нибудь точного описания (например, с использованием спектральных характеристик) занимают целые тома, а объема памяти вашего персонального компьютера не хватит даже для самой сокращенной их записи, не говоря уже об анализе.

Классическая логика основана на строгих правилах, поэтому операторы ЭВМ для определения понятия «холодно» должны не только вводить в машину точное значение температуры (или интервал температур), соответствующее этому понятию, но и учитывать массу побочных обстоятельств. Машина посоветует ребенку «одеться потеплее» лишь после того, как получит совершенно точные сведения о множестве побочных эффектов, связанных с погодой и здоровьем. Другими словами, нейронные связи в мозгу человека тоже пользуются нечеткой логикой, передавая друг другу расплывчатые и неточные, но совершенно реальные понятия типа «тепло», «холодно» или «сыро». Без этого наш мозг был бы постоянно в состоянии хаоса и перегрузки. Нечеткая логика, кстати, тоже требует оценки и описания характеристик, так что вы, например, можете приписать значение 1 ситуации с заведомо низкой температурой (т. е. ситуации точного «холода») и значение 0 – точному «теплу», после чего все дробные значения в интервале [0,1] будут соответствовать различным степеням понятия «холод».

Вычислительные машины, способные работать по принципам нечеткой логики, весьма успешно развиваются вот уже более 20 лет и уже нашли практическое применение, например они могут вполне разумно (т. е. не вдаваясь в излишние подробности и не будучи скрупулезно придирчивыми) оценивать параметры и характеристики промышленной продукции. В этом они вполне успешно подражают человеку, но пока не умеют выносить собственных суждений по многим вопросам. Человек как углеводородная форма жизни умеет делать и понимать то, что еще пока недоступно нашим кремниевым собратьям по разуму.

Существует еще одна исключительно важная разница между мышлением человека и компьютера – это присущая только людям способность принимать иррациональные решения. Компьютеры начинают учиться нечеткой логике, но они совершенно не понимают механизмов алогичного поведения, свойственного многим человеческим поступкам. Компьютеру очень трудно понять, например, почему женщина за рулем автомобиля вдруг вспоминает, что полчаса назад проехала мимо продавца лотерейных билетов, после чего вдруг расстраивается, говорит сама себе: «Кто не рискует, тот никогда не выигрывает!», поворачивает машину и мчится назад, чуть не плача от сознания, что продавец мог закрыть свою лавочку. В чем смысл такого чисто человеческого поведения? Неужели женщина действительно подумала, что потеряет шанс выиграть, если не успеет купить билет? Какая часть нейронной сети производит такие расчеты? А может, в мозгу женщины сработала какая-то древняя программа «рискни, выиграй и получи удовольствие», сохранившаяся с незапамятных времен, когда ее предки-гоминиды дразнили саблезубых тигров и убивали их? Все эти рассуждения остаются совершенно недоступными компьютеру, хотя он, с другой стороны, может прекрасно провести расчеты вероятностей и понять, почему многие называют государственную лотерею «налогом на идиотов». Компьютер будет полностью прав в своих вычислениях, но покупатели лотерейных билетов тоже в чем-то правы, прислушиваясь к своему гомункулюсу, внутреннему голосу! (В последние годы одним из самых модных направлений современной нейропсихологии стало исследование так называемого «детектора ошибок», обнаруженного Н. Бехтеревой. Механизм его действия основан на существовании в мозгу особой «контрольной программы», прослеживающей поведение человека на бессознательном уровне. -Прим. перев.)

Начиная с 50-х годов одним из самых модных, интересных и загадочных направлений в кибернетике стало создание искусственного интеллекта и развитие связанной с ним так называемой когнитивной психологии или когнитивистики, науки о мышлении (от английского cognition – познание, способность к познанию). Своим рождением новая наука обязана, прежде всего, опубликованной в 1948 году книге Норберта Винера «Ки-бернетика», в которой автор утверждал принципиальное совпадение принципов работы вычислительной машины и человеческого мозга. Через несколько лет знаменитый лингвист Ноам Хомский написал книгу «Синтаксические структуры» (1953), в которой утверждалось, что в мозгу человека от рождения заложена некая «универсальная грамматика» языка, генетически передаваемая из поколения в поколение в течение веков. По мнению когнитивистов, эта грамматика и связанные с ней структуры возникли в результате длительной эволюции, и именно они обеспечивают необходимую для жизнедеятельности связь сознания с окружающим миром. Конечно, ребенок в детстве выучивает родной язык (совершенно неважно, английский или суахили), но даже это обучение становится возможным лишь благодаря некоторым фундаментальным, генетически заложенным в мозгу грамматическим концепциям и логическим структурам. Для описания детского мозга Хомский предложил красивый образ разомкнутой во многих местах электрической цепи, которая по мере взросления и развития «достраивается» и замыкается лишь несколькими возможными способами, причем электрические контакты (если продолжить метафору) формируются в соответствии с уже имеющимися от рождения в мозгу исходными представлениями о языке.

Весьма близка к идеям Хомского (их иногда называют теорией генерирующих или порождающих грамматик) модель, развитая когнитиви-стом Джеральдом Эдельманом, который тоже предполагает, что в мозгу ребенка уже существует некий паттерн (шаблон, набросок или образ) будущих нейронных связей, который затем развивается в полноценную сетевую структуру. Вид этой структуры определяется личным опытом данного человека, т. е. индивидуальную нейронную сеть (если угодно, личность или индивидуальную комбинацию связей в мозгу) создают конкретная судьба и переживания данного человека. Личности при этом уже как бы получают от рождения одинаковый «инструмент познания», на основе которого впоследствии систематизируется информация от внешнего мира и создается «карта» познания или восприятия, соответствующая жизненному опыту. При этом в мозгу формируются паттерны некоторых специфических представлений, но основные структуры мозга являются наследуемыми, хотя и способными к некоторым трансформациям.

Очень упрощая ситуацию, можно сказать, что когнитивная психология использует «компьютерную модель» мозга для описания процессов познания в мозгу живого человека. Исследования в этой области, естественно, являются междисциплинарными и относятся одновременно к лингвистике, теории искусственного интеллекта, психологии и т. д., вследствие чего когнитивисты больше всего боятся «расползания» своей науки и стараются максимально ограничить область исследуемых явлений (например, они отказываются от изучения эмоций, считая их слишком сложными и неопределенными объектами). Рассматривая человеческое сознание в качестве вычислительного процесса и оперируя символами конкретных действий и структур, когнитивистика не нуждается, естественно, ни в каких дополнительных гипотезах (например, в идее существования в мозгу какого-то гомункулюса, прячущегося в тайниках нейронной сети и т. п.). Личность в этих теориях выступает в качестве некоторой наследственной структуры из клеток мозга, модифицирующейся под воздействием жизненного опыта в соответствии с требованиями окружения и некоторыми программами.

Мозг и компьютер в когнитивной психологии являются весьма похожими символическими системами, вследствие чего изучение работы компьютера становится эффективным инструментом изучения работы мозга, а некоторые когнитивисты просто уподобляют человеческое сознание операционной системе ЭВМ. Продолжая сравнение с компьютером, можно считать, что сознание хранит информационные файлы и посылает в мозг сигналы тревоги при особых обстоятельствах (неотформатирован-ная дискета! переполнение! и т. п.). С целью лучшего понимания работы мозга, а вовсе не для имитации этой работы, исследователи долго пытались учить компьютеры самым разным человеским занятиям и навыкам, например переводу английских глаголов из одного грамматического времени в другое или моделированию движения пальцев при печатании на клавиатуре и т. п., но все эти эксперименты не приблизили их к решению главной проблемы – обнаружению того, что можно было бы назвать духом или «призраком в машине».

Сознание или мышление возникает из необходимости как-то «справиться» с познаваемым, и в этом смысле наличие «призрака в машине» (подразумевая под «призраком» именно сознание, в противоположность мозгу) не является, строго говоря, необходимым условием выживания нашего биологического вида, поскольку человек может прекрасно пользоваться «окружением», не вдаваясь в его подробное «осмысление». Например, многие физики-теоретики уверены, что почти 95% массы Вселенной относится к так называемой темной или скрытой материи, но мозг обычного человека прекрасно обходится без знаний обо всех этих сложных теориях устройства Вселенной.

Попробуйте окинуть мгновенным взглядом собственную комнату и оценить объем всей воспринимаемой информации (цвет, форма и расположение предметов, расстояния, освещенность, текстура и т. п.). Совершенно очевидно, что наш мозг получает огромное количество самой разнообразной информации даже в самом простом окружении (мебель, стопка журналов, полки книг, ряд бутылок на стойке бара и т. п.), и все это должно быть каким-то образом почти мгновенно оценено, проанализировано и учтено. Именно так работает органический компьютер в голове каждого человека, а ученый уподобляется тому телевизионному репортеру, который пристает к окружающим с дурацкими вопросами: «Что Вы думаете по этому поводу?» и «Как Вы себя при этом чувствуете?».

Наш мозг мгновенно перерабатывает без всяких дополнительных размышлений огромный объем информации с эффективностью и скоростью, совершенно недостижимой для всех известных вычислительных систем. Лучший из микропроцессоров на компьютерном рынке 2001 г. содержал около 42 миллионов транзисторов и имел производительность около 1,7 миллиарда операций в секунду, а конструкторы уже работают над созданием транзистора толщиной всего в 3 атома и шириной порядка 70-80 атомов. При таких размерах начинают проявляться квантовые эффекты, что уже позволяет начать экспериментальные исследования квантовых компьютеров, в которых в качестве транзисторов будут выступать отдельные атомы. Под воздействием высокочастотного излучения атомы могут переходить из одного состояния в другое (из низкоэнергетического в высокоэнергетическое и обратно), что позволяет реализовать на атомарном уровне упоминавшуюся ранее бинарную систему (состояния 1 и 0), необходимую для создания любой вычислительной машины. Одно из чудес квантовой механики заключается, однако, в том, что атомы могут находиться в двух состояниях как бы одновременно, что позволяет фантастически повысить быстродействие вычислительной системы (например, компьютер, составленный всего из 40 упорядоченных атомов, сможет выполнять около 10 триллионов операций в секунду). Интересно, не приведет ли такой фантастический количественный рост скорости обработки информации к соответствующему качественному скачку, т. е. к появлению нового типа устройств, которые с полным правом могут быть названы нашими братьями по разуму?

Как уже отмечалось, когнитивисты предумотрительно отказываются даже изучать человеческие эмоции и другие «смутные», нечеткие характеристики личности, однако от этой проблемы трудно избавиться и, рано или поздно, ученым придется всерьез задуматься над реальностью или иллюзорностью человеческих представлений о чувствах и самосознании. Действительно ли каждый из нас является отдельной личностью и мечтает жить счастливо и бесконечно долго в общении с теми, кого он любит? В этой идее может быть вполне спрятана биологическая «уловка», связанная с эволюцией вида в целом. Очень возможно, что почти триллион нервных клеток, образующих человеческий мозг, просто «запрограммирован» на обеспечение биологического выживания, а сложные структуры/соединения нужны мозгу лишь для создания иллюзии существования какого-то собственного Я, что и позволяет сконцентрировать или «сфокусировать» усилия, поддерживающие существование и функционирование столь сложной системы на время, необходимое для выполнения заданных биологических функций всей совокупности клеток.

Изучение механизма работы компьютеров во многом разрушило человеческие представления о возможностях и исключительности собственного мозга. Эти размышления становятся особо острыми и серьезными, когда люди начинают осознававать уязвимость своего самосознания под воздействием травм, психотропных препаратов или страшных болезней, что может привести к полному уничтожению личности и потере сознания вообще, так что, возможно, сознанием следует называть саму способность размышлять о сознании.

***

Моя мать провела последние годы в палате для пациентов с болезнью Альцгеймера, и мне довелось видеть различные формы проявления этой ужасной болезни, при которой люди постепенно теряют ощущение собственной личности. Некоторые из них постоянно спят, некоторые – непрерывно что-то поют (религиозные гимны или любовные песенки), ругаются или плачут. В палате с матерью долго лежала женщина со следами былой красоты и обаяния, на лице которой застыло выражение безмерного ужаса, так как она была убеждена, что все ее родные похоронены рядом, за окном. Единственной ее связью с миром оставалось чучело собачки, которую она непрерывно гладила дрожащими руками. Было странно осознавать, что это страшное разрушение человеческой психики обусловлено генетическим нарушением на молекулярном уровне, связанным, возможно, со сбоем режима работы всего трех генов, «перекрывающих» ничтожный промежуток в так называемом амилоидном покрытии. Возникшее нарушение беспрепятственно распространилось по всей «галактике» из сотен миллиардов нейронов и их связей, приводя к немыслимому разрушению всей сети и деятельности мозга, вплоть до способности человека узнавать самых близких. Какая ужасная судьба выпала этой женщине в гигантской лотерее жизни!

Я вижу свою мать, давно потерявшую способность что-либо воспринимать, замечаю иногда какую-то тень улыбки на ее лице (например, когда в поле ее зрения попадает ребенок) и понимаю, что какие-то связи в мозгу продолжают сохраняться. При этом я задумываюсь о том, скрыто ее самосознание где-то в глубинах мозга или оно действительно отмирает по мере разрушения участков мозга. В начальный период болезни, когда мать почувствовала первые грозные признаки беды, она стала страшно раздражительной и капризной, но позднее к ней пришла безмятежность, словно болезнь умиротворила ее и избавила от всех забот о собственной жизни и существовании. Мы думаем, что она что-то сознает. Мы верим в это.

Никого из нас не оставляет безразличным идея о том, что в сознании нет никаких гомункулюсов или призраков, и что наше самосознание (все наши мысли, тайные стремления, мечты и удовольствия) представляет собой всего лишь некую последовательность электрохимических процессов в нейронных сетях мозга. Эта идея, образно говоря, является «вызовом на дуэль» не только науки или психологии, но и человеческой личности вообще.

В следующей главе сделана попытка оценить, в какой степени психиатрия и психология (т. е. анализ скрытых страхов, подавленных эмоций и психологических травм) применимы для изучения компьютерной модели мозга. Каким образом эти скрытые и неявные факторы могут воздействовать на механизмы мозга человека в обычном, нормальном и продуктивном режиме работы?