Радиоэлектроника в нашей жизни

Фомин Борис Васильевич

В последние годы развития радиотехники возникло большое число новых применений радио. Этот период, по словам видного советского радиоспециалиста академика А.И. Берга, является «началом эпохи радиоэлектроники, так как именно в эти годы началось широчайшее внедрение радиоэлектронных методов во все отрасли науки, техники и народного хозяйства»…

 

 

ВВЕДЕНИЕ

Радио… Это короткое слово уже прочно вошло в нашу жизнь, в быт.

Прошло более 60 лет со дня изобретения радио. В течение всего этого периода радиотехника ни на минуту не останавливалась в своем развитии. Вначале она развивалась главным образом по пути совершенствования радио-телеграфирования — передачи телеграфных сигналов — знаков с помощью радиоволн. Позднее получило широкое применение радиотелефонирование и радиовещание — радиоволны стали переносить на огромные расстояния разговорную речь и музыку. Затем была осуществлена передача неподвижных и подвижных изображений. Наконец, с помощью радиоволн научились определять местоположение различных объектов — кораблей, самолетов и др., — удаленных от наблюдателя на сотни километров.

В последние десять лет развития радиотехники возникло большое число новых применений радио. Этот период, по словам видного советского радиоспециалиста академика А. И. Берга, является «началом эпохи радиоэлектроники, так как именно в эти годы началось широчайшее внедрение радиоэлектронных методов во все отрасли науки, техники и народного хозяйства».

Что такое радиоэлектроника? Что означает это слово?

Термин «радиоэлектроника» объединяет собой целую группу отдельных, ставших сейчас самостоятельными отраслей знаний. Они, эти отрасли, возникли и совершенствовались постепенно по мере развития радиотехники. «К радиоэлектронике относят радиосвязь во всех ее видах, радиовещание, телевидение, радиолокацию, гидролокацию, радионавигацию, инфракрасную технику, радиоастрономию, радиометеорологию, радиоспектроскопию, радиотелемеханику, промышленную электронику, электронные математические машины, электровакуумную технику, полупроводниковую технику и т. п.» («Большая Советская Энциклопедия», т. 35, стр. 578).

Возникновение такого числа применений радио — один из показателей огромного технического прогресса в современном обществе. Сейчас трудно найти такой уголок земного шара, где не знали бы, что такое радио, и не пользовались радиоэлектронными устройствами. Более того, в настоящее время радиоэлектроника определяет темпы развития большинства прикладных наук, позволяет по-новому решать труднейшие технические и научные проблемы.

Директивы XX съезда КПСС по шестому пятилетнему плану развития народного хозяйства СССР на 1956–1960 гг. предусматривают еще большее внедрение радиоэлектроники в науку, технику и народное хозяйство нашей страны.

На основе радиоэлектронных методов за пятилетие будет осуществлена широкая механизация и автоматизация большого числа сложных производственных процессов. Значительно увеличится выпуск радиоприемников, телевизоров, радиоизмерительных приборов и радиоламп. В стране будет построено не менее 30 приборостроительных заводов, выпускающих радиоэлектронную аппаратуру. Начнут регулярные передачи не менее 75 новых телевизионных центров, будет введено в действие 10 тысяч километров радиорелейных линий.

Советские ученые и работники радиоэлектронной промышленности успешно выполняют этот замечательный план.

Выше было сказано о большом числе отраслей, составляющих радиоэлектронику. В небольшой брошюре невозможно подробно рассказать об особенностях развития и достижениях каждой отрасли. Поэтому мы вначале остановимся на общих для различных отраслей радиоэлектроники вопросах, покажем, по каким направлениям идет развитие современной радиоэлектроники, после чего расскажем о том, как достижения радиоэлектроники используются в нашей жизни.

 

РАДИОЭЛЕКТРОННЫЕ УСТРОЙСТВА

 

Генераторы и приемники радиоволн

В 1873 г. знаменитый английский ученый Максвелл опубликовал «Трактат об электричестве и магнетизме», привлекший внимание ученых всех стран. Основываясь на физических опытах Фарадея, Томсона и других ученых, Максвелл математически доказал, что любой металлический проводник, по которому течет переменный ток, излучает в пространство электромагнитные волны. Эти волны распространяются со скоростью света (300 000 километров в секунду) и имеют ту же природу, что и свет. Для электромагнитных волн имеются «непрозрачные» тела — металлы, которые поглощают и отражают эти волны. Другие тела, например непроводники электрического тока, являются для них «прозрачными» и не создают почти никакого препятствия. Максвелл утверждал, что электромагнитные волны, представляющие собой совокупность взаимосвязанных электрических и магнитных сил, обладают определенной энергией.

Многие ученые недоверчиво встретили теорию Максвелла. Лишь спустя пятнадцать лет немецкий ученый Генрих Герц у себя в лаборатории сумел получить электромагнитные волны и обнаруживать их на расстоянии до 3 метров. Однако Герц не видел возможности использования электромагнитных волн для практических целей.

Замечательный русский ученый А. С. Попов 7 мая 1895 года продемонстрировал свой первый в мире радиоприемник и высказал надежду, что «прибор при дальнейшем усовершенствовании его может быть применен к передаче сигналов на расстояние при помощи быстрых электрических колебаний». Так оно и получилось: менее чем через год, 24 марта 1896 г., А. С. Поповым и его помощником П. И. Рыбкиным была установлена радиосвязь на расстоянии 250 метров и передана первая в мире радиограмма. Радио было поставлено на службу человеку.

С тех пор прошло шестьдесят лет. За это время ученые двинули далеко вперед науку об электромагнитных колебаниях. Они доказали, что не только радиоволны, но и видимый свет, тепловые и рентгеновские лучи — есть электромагнитные колебания, отличающиеся друг от друга только длиной волны и частотой. Среди электромагнитных колебаний наибольшую длину волны имеют радиоволны— от нескольких миллиметров до многих километров.

По мере развития радиотехники совершенствовались и методы получения, или генерирования, радиоволн. Если в первых генераторах радиоволны возникали благодаря проскакиванию электрической искры в шаровом разряднике, то позднее их стали получать с помощью десятков других, более совершенных устройств.

Коротко остановимся на устройстве современных генераторов радиоволн.

Основой любого радиогенератора служит так называемый колебательный контур, состоящий из двух главных частей: проволочной катушки индуктивности и конденсатора (рис. 1).

Рис. 1. Внешний вид и схема устройства колебательного контура.

Электрический конденсатор — это две металлические пластины, разделенные слоем изолятора: слюды, бумаги или просто воздуха. Прибор этот обладает замечательной способностью: он может запасать электрическую энергию — на его пластинах могут сосредоточиваться электрические заряды — на одной положительные, на другой отрицательные. Конденсаторы отличаются друг от друга своей емкостью — способностью вмещать в себя заряды. Чем больше площадь пластин и чем ближе они расположены друг к другу, тем больше емкость конденсатора и, следовательно, тем больше энергия, которую он может запасти.

Катушка индуктивности по внешнему виду напоминает катушку ниток, но здесь на каркас намотана не хлопчатобумажная нить, а покрытый изоляцией металлический провод. Если через такую катушку пропускать электрический ток, то вокруг нее возникает сильное магнитное поле.

В колебательном контуре колеблются электроны. Чтобы колебания возникли, необходимо «подтолкнуть» электроны, сообщить им некоторое количество энергии. Это можно сделать, если на мгновение подключить к конденсатору электрическую батарею. Конденсатор зарядится: на одной из пластин будет избыток электронов, а на другой недостаток; между пластинами образуется электрическое поле, в котором и запасается полученная от батареи энергия.

Сразу же после зарядки конденсатора электроны, имевшиеся в избытке на одной из его пластин, устремляются через катушку на другую пластину. В контуре возникает электрический ток.

Хотя катушка сделана из металлической проволоки, она оказывает сильное противодействие возникшему току. Вокруг ее витков образуется магнитное поле, в котором запасается часть энергии, полученной конденсатором при зарядке. Благодаря этому в момент, когда конденсатор разрядится полностью, ток в контуре не прекратится. Он будет течь в том же направлении, но уже не под влиянием энергии конденсатора, а под влиянием энергии, запасенной катушкой. Когда же катушка отдаст свою энергию, ее магнитное поле исчезнет, конденсатор контура снова окажется заряженным, но избыток электронов в этом случае будет на той пластине, на которой вначале их недоставало.

Вновь зарядившийся конденсатор опять начинает разряжаться через катушку, и в контуре снова возникает электрический ток, но уже обратного направления.

Так в колебательном контуре возникают колебания многих миллионов электронов. Эти колебания продолжаются до тех пор, пока вся энергия, запасенная конденсатором при зарядке, не израсходуется на нагревание проводов и на другие потери.

Чтобы поддерживать колебания в этом «электрическом маятнике», необходимо восполнять потери энергии в нем, производить в такт с колебаниями «подзарядку» конденсатора. Никакое механическое устройство не справится с этой работой, так как оно не в состоянии обеспечить сотни тысяч переключений каждую секунду. Только изобретение радиолампы позволило осуществить такой генератор, в котором электрические колебания могут существовать сколь угодно длительное время.

Радиолампа — это стеклянный или металлический баллон, из которого тщательно выкачан воздух. В баллоне имеются электроды. В простейшей радиолампе их три: катод, анод и так называемая сетка (см. рис. 2).

Рис. 2. Так устроена радиолампа.

Катод представляет собой металлическую нить, изготовленную из такого материала, который при нагревании может в большом количестве испускать электроны. Анод имеет форму металлического цилиндра или пластины, на него подается положительное напряжение от анодной батареи. Под действием электрических сил электроны, вылетевшие из катода, устремляются к аноду, и через лампу начинает течь электрический ток.

Между катодом и анодом находится третий электрод — сетка. Это спираль из тонкой проволоки. Если на сетке есть электрический заряд, то она может либо увеличивать, либо уменьшать ток через лампу. В связи с этим сетку, расположенную вблизи от катода, называют управляющей: изменяя ее заряд, можно управлять током, протекающим через лампу.

Электроды лампы так подключены к колебательному контуру, что контур в такт с возникшими в нем колебаниями постоянно получает все новые и новые порции энергии, которые восполняют электрические потери.

Совместное действие электрической батареи и лампы аналогично действию пружины в часах, не позволяющей маятнику остановиться.

Частота колебаний в радиогенераторе зависит от того, какова емкость конденсатора и как велико число витков катушки индуктивности. Изменяя эти величины, можно создавать (генерировать) колебания в сотни тысяч и миллионы колебаний в секунду.

Таким образом, при помощи радиолампы и колебательного контура удается преобразовать энергию постоянного тока, заключенную в анодной батарее, в энергию переменного тока высокой частоты. Однако полученные при помощи одной лампы высокочастотные колебания тока по своей мощности очень слабы. Если этот высокочастотный ток направить в антенну передатчика, то она почти не будет излучать радиоволны.

Чтобы создать в антенне радиопередатчика мощные высокочастотные токи, производят усиление электрических колебаний. Для этой цели используются другие радиолампы, имеющие свои конструктивные особенности. Они называются в отличие от генераторных ламп усилительными.

Подавая на управляющую сетку усилительной лампы слабые электрические колебания, в анодной цепи этой лампы получают электрические колебания той же частоты. Но «размах» колебаний увеличивается в десятки раз. Если и этого оказывается недостаточно, то прибегают к помощи еще одной усилительной лампы и т. д.

На крупных радиостанциях получение мощных электромагнитных колебаний производится с помощью ламп, имеющих нередко водяное охлаждение (для отвода излишнего тепла) и достигающих по высоте человеческого роста.

Радиоволны, излучаемые антенной передатчика, обладают энергией. Достигая металлического провода приемной антенны, они отдают часть этой энергии свободным электронам, которых в металлах очень много. Подобно тому, как плавающая на воде пробка начинает колебаться, когда к ней подходят волны от брошенного камня, так и электроны повторяют все изменения электромагнитного поля. В антенне приемника возникает переменный ток, частота которого зависит от длины пришедшей радиоволны.

Окружающее пространство заполнено, множеством различных электромагнитных волн. Поэтому и в антенне радиоприемника циркулирует огромное количество разнообразных токов.

Назначение радиоприемника как раз и состоит в том, чтобы выбрать из большого числа возникающих в приемной антенне токов лишь тот ток, который создан радиоволнами какой-либо одной определенной станции.

В приемнике, как и в передатчике, важнейшей частью является колебательный контур. К нему и подключается приемная антенна. Этот контур выполняет роль «сита» — он отсеивает все высокочастотные токи, кроме одного, на частоту которого он настроен. Настройка контура изменяется поворотом рукоятки конденсатора, что позволяет принимать различные радиостанции.

После «отбора» нужной радиоволны происходит усиление выделенного сигнала. Это делается, как и в передатчике, с помощью радиоламп. По размерам эти приемно-усилительные лампы во много раз меньше мощных ламп передатчика. Усиленный до необходимой величины сигнал после некоторых преобразований заставляет звучать громкоговоритель, или приводит в действие телеграфный аппарат.

Отличие радиоэлектронных устройств от других электрических приборов заключается в том, что радиоэлектронное устройство обязательно имеет в своей схеме радиолампу или другой электронный прибор — фотоэлемент, электронно-лучевую трубку, полупроводниковый элемент и т. п.

Выше было коротко рассказано о том, как работает трехэлектродная лампа, т. е. лампа, состоящая из катода, анода и управляющей сетки. В современных радиосхемах используются и более сложные лампы, имеющие не одну, а две, три и больше сеток. Более сложные лампы обладают лучшими техническими характеристиками.

Изменение поданного на управляющую сетку лампы напряжения вызывает, как уже отмечалось, изменение величины тока, текущего через лампу. Нужно отметить важную особенность этого явления: оно происходит почти мгновенно. И в этом — огромное преимущество радиоламп. Стоит подвести на сетку большое отрицательное напряжение, ток через лампу мгновенно прекратится, если же затем подать положительное напряжение, ток снова появится.

Благодаря своей способности быстро отзываться на малейшие изменения электрического сигнала электронную лампу часто называют безынерционным реле, т. е. таким устройством, которое почти не обладает инерцией и мгновенно реагирует на малейшие изменения режима работы.

Эта особенность радиоламповых схем явилась одной из причин широкого внедрения электроники в современную технику.

 

Использование электронных приборов

За шестьдесят лет развития радиотехники создано огромное количество радиоэлектронных устройств, имеющих самое различное назначение. Ни одно крупное современное сооружение не обходится без применения электронных ламп. Например, современный тяжелый самолет имеет радиооборудование, включающее в себя около 1000 различных радиоламп и других электровакуумных приборов. На крупном морском корабле их уже насчитывается более 9 тысяч, не считая ламп во взрывателях снарядов и торпед. Электронная аппаратура современного самолета стоит почти столько же, сколько стоит сам самолет. Современные электронные математические машины имеют десятки тысяч ламп.

Если внимательно познакомиться со всем многообразием радиоэлектронных устройств, то можно отчетливо различить основные линии их использования, что соответствует основным направлениям развития радиотехники.

Все радиоэлектронные устройства по своему использованию можно разделить на три большие группы:

Первая группа — это радиоэлектронные устройства, используемые для целей радиосвязи, или передачи сигналов на расстояние без проводов.

Передача сигналов с помощью радиоволн успешно применяется в радиовещании, радиосвязи, телевидении, радиолокации, радионавигации, радиоастрономии, радиометеорологии и т. д.

Вторую группу составляют радиоэлектронные устройства, используемые для нагрева, различных веществ. Эти устройства не излучают и не принимают радиоволн, созданная ими высокочастотная энергия превращается в тепло, которое используется в различных производствах — металлургическом, деревообрабатывающем и др. Высокочастотный нагрев широко используется и в медицине как средство лечения.

К радиоэлектронным эти устройства относятся потому, что в них широко используются высокочастотные генераторы, волноводы и другие чисто «радиотехнические» элементы.

К третьей, самой большой группе радиоэлектронных устройств относятся устройства, применяемые в различных контрольных и измерительных приборах, счетных машинах, а также в установках для автоматизации производственных процессов и для управления механизмами на расстоянии.

Радиосхемы этих устройств включают электронные лампы, фотоэлементы, электронно-лучевые трубки и другие приборы. Эти схемы не возбуждают радиоволн в пространстве и не являются источником тепла. Однако в них широко используются генераторы электромагнитных колебаний, ламповые усилители, выпрямители и другие «радиотехнические» элементы. Количественно эта группа радиоэлектронных устройств наиболее многочисленна.

Конечно, такое разделение радиоэлектронных устройств на группы очень условно. Так, современные мощные радиовещательные устройства включают в себя большое число электронных схем, служащих для контроля за работой различных узлов передатчика и обеспечивающих автоматизацию их работы. Это относится и к радиолокационным станциям, к установкам для высокочастотного нагрева и к другим электронным устройствам.

 

РАДИОЭЛЕКТРОНИКА В ТЕХНИКЕ СВЯЗИ

 

Миллионы радиограмм

Невидимые нити радиолиний пересекают земной шар в самых различных направлениях. Одни из них тянутся с севера на юг и соединяют зимовки полярников с «большой землей», другие пересекают добрый десяток государств и связывают затерянные в дальних морях корабли с родиной, третьи, наоборот, очень коротки, они обеспечивают бесперебойную связь горных селений с районными центрами, расположенными в долине.

Связь по радио удобна во всех отношениях: она осуществляется с помощью электромагнитных волн и не нуждается в проводах; кроме того, она значительно дешевле других видов связи и может осуществляться как с неподвижными, так и с подвижными объектами. Имеется много и других преимуществ радиосвязи.

Как работают современные радиолинии?

Наиболее распространено радиотелеграфирование с помощью азбуки Морзе. Передающая радиостанция посылает в пространство комбинацию коротких и длинных сигналов. Телеграфный аппарат, расположенный в месте приема и подключенный к радиоприемнику, отзывается на эти сигналы и вычерчивает на бумажной ленте точки и тире. Различные сочетания точек и тире обозначают определенные буквы и слова.

Раньше передача азбуки Морзе как по проводным линиям, так и по радио производилась вручную с помощью специального телеграфного ключа. Скорость такой передачи составляла несколько десятков слов в минуту. Такая незначительная скорость позволяла принимать радиограммы на слух и сразу же записывать их.

Сейчас наряду с этим способом применяется другой — буквопечатание по проводам или по радио. Как это осуществляется? Радист передающей станции работает на клавиатуре, напоминающей клавиатуру обычной пишущей машинки. Стоит ему нажать на какой-либо клавиш, и антенна передатчика пошлет в эфир определенный сигнал. К приемнику подключен такой же аппарат, который автоматически отпечатывает текст телеграммы на ленте. После этого лента наклеивается на бланк и отправляется адресату. Перевод телеграммы с условного языка точек и тире на язык буквенного текста здесь не нужен.

На крупных радиотелеграфных станциях устанавливается еще более совершенная аппаратура. Пальцы оператора заменены автоматом, который с большей скоростью передает заранее заготовленный текст. Скорость передачи повышается во много раз.

Наряду с передачей радиограмм радио позволяет осуществлять и обычные радиотелефонные переговоры. Звуки человеческой речи, превращенные в электрические сигналы, могут переноситься радиоволнами на огромные расстояния, а в месте их приема в специальных устройствах возникают определенные электрические сигналы, которые затем преобразуются в звуковые. Телефонные трубки или громкоговоритель в точности воспроизводят все, что произносится перед микрофоном в другом городе.

В последние годы для осуществления радиосвязи все шире используют радиоволны длиной в несколько метров и даже дециметров; их называют ультракороткими.

Ультракороткие радиоволны распространяются прямолинейно, подобно лучу света. Поэтому с помощью их можно осуществлять связь, как правило, на расстояние прямой видимости. Чтобы перекрыть большие расстояния, строят промежуточные приемно-передающие станции.

Цепочка приемно-передающих радиостанций и есть радиорелейная линия связи. Оконечные станции, расположенные в разных населенных пунктах, соединяются с абонентами или с АТС, а промежуточные служат для приема сигналов и дальнейшей их передачи (ретрансляции). Расстояние между отдельными станциями составляет 40–60 километров или больше, в зависимости от рельефа местности.

Для того чтобы увеличить число телефонных разговоров, радиорелейная линия снабжается специальной аппаратурой «уплотнения», позволяющей на одном канале радиоволн передавать до 600 телефонных разговоров, а при шести каналах — 2400 телефонных разговоров и две программы телевидения. Радиорелейные линии обеспечивают надежную связь независимо от времени года, от климата и состояния погоды.

Преимущества этого вида связи явились причиной того, что за последние десятилетия радиорелейные линии получили широкое распространение. Ряд стран Западной Европы— Англия, Франция, ФРГ, Бельгия, Дания, Голландия, Швейцария — имеют единую систему радиорелейных линий протяженностью в несколько тысяч километров. Это позволяет обмениваться телевизионными программами и передавать тысячи телеграмм и телефонных разговоров.

В нашей стране тоже строятся радиорелейные линии связи. Заканчивается наладка линии Москва — Рязань. Она имеет 24 телефонных канала и позволяет передавать одну программу телевидения. Начато строительство подобных линий в Средней Азии между городами Алма-Ата, Фрунзе, Ташкент, Сталинабад.

Необходимо указать и на применение радиоэлектронной аппаратуры на обычных телефонно-телеграфных линиях связи. Некоторые из этих линий, например линия Москва — Хабаровск, достигают 7–8 тысяч километров. Благодаря тому, что провода обладают сопротивлением, электрические сигналы, пройдя такой путь, ослабевают настолько, что на другом конце линии расслышать почти ничего не удается. Поэтому прибегают к помощи специальных усилительных устройств.

Линия связи разбивается на несколько участков, и в отдельных пунктах ставятся усилители электрических колебаний. Основным элементом этих усилителей, как и в радиоприемнике, является радиолампа.

 

Радиовещание

Важным применением радио служит радиовещание. Оно играет большую роль в нашей жизни.

В нашей стране радиовещательные передачи стали проводиться раньше, чем в других странах. В первые дни Октябрьской социалистической революции Владимир Ильич Ленин по радио обращался к народу. Начало регулярных «широковещательных» передач положил концерт, передававшийся Москвой 17 сентября 1922 года. За прошедшие с того времени годы у нас были построены сотни мощных радиовещательных станций, большое количество радиоузлов, создана новая отрасль промышленности, выпускающая радиоприемники; сейчас их в нашей стране более 20 миллионов.

За тридцать пять лет развития радиовещания коренным образом изменилась радиоэлектронная аппаратура, с помощью которой оно осуществляется. Наряду с увеличением мощности существующих длинноволновых и средневолновых станций появилось большое количество коротковолновых и ультракоротковолновых станций. Имея сравнительно небольшой радиус действия, они позволяют осуществлять вещание при почти полном отсутствии радиопомех.

Большой прогресс наблюдается в радиоприемной аппаратуре. Советская промышленность наладила массовый выпуск не менее чем 30 типов радиовещательных приемников и радиол различных классов. Созданы образцы сверхминиатюрных приемников, в которых вместо ламп используются полупроводниковые элементы. Эти приемники размером с портсигар. Их питание осуществляется от миниатюрных сухих батарей. Некоторые образцы питаются от фотоэлементов под действием солнечного света или осветительной лампы мощностью 100 ватт. Такие конструкции стали возможными благодаря огромным достижениям в создании новых электро- и радиотехнических материалов и новых электронных устройств.

Партия и правительство проявляют постоянную заботу о развитии радиовещания. Благодаря этой заботе успешно выполняется задача сплошной радиофикации нашей страны. «Газета без бумаги и расстояний», как называл В. И. Ленин радио, стала теперь достоянием всех советских людей.

 

Передача фотографий на расстояние

Фототелеграфия — это передача фотографий, чертежей, документов и других изображений по проводам или с помощью радио. Осуществляется она следующим образом.

Известно, что различные предметы по-разному отражают свет. Направьте луч карманного фонаря на кусок белой жести — она заблестит. Если же вы перенесете луч на черную бумагу, то света отразится значительно меньше. Черная поверхность поглощает почти все лучи. Поэтому черные предметы нагреваются на солнце значительно сильнее, чем белые.

Способность предметов по-разному отражать световые лучи используется при передаче изображений по радио. При этом светлые и темные участки чертежа или рисунка передаются последовательно, один за другим.

На передающей станции вращается барабан с «фототекстом» — рисунком или чертежом, который нужно передать в другой город. На него от сильного источника падает тонкий пучок света. Барабан вращается и, кроме того, медленно перемещается вдоль своей оси, подставляя под луч света все новые и новые участки рисунка. От каждого участка передаваемого рисунка или чертежа часть светового пучка отражается и попадает на фотоэлемент. Здесь энергия света преобразуется в электрическую энергию.

Устройство фотоэлемента показано на рис. 3.

Рис. 3. Схема фотоэлемента.

Внутри стеклянного баллона находятся два электрода: катод, имеющий форму выгнутой металлической пластинки, прикрепленной к баллону изнутри, и кольцеобразный анод. Катод покрыт особым слоем, способным испускать электроны, если на него падает свет. При этом чем ярче падающий свет, тем больше электронов вылетает с поверхности катода. Под действием электрического поля, создаваемого электрической батареей, электроны устремляются к аноду, и в цепи начинает течь ток. Сила этого тока меняется в зависимости от количества света, отраженного от того или иного участка рисунка, так как меняется количество вылетевших с катода электронов.

Пульсирующий ток, полученный благодаря фотоэлементу, после усиления поступает в телеграфную линию или в передатчик радиостанции (рис. 4).

Рис. 4. Принцип передачи изображений по фототелеграфу.

В последнем случае он управляет силой радиосигналов, излучаемых антенной, так что они точно соответствуют чередованию светлых и темных участков на рисунке или чертеже.

На приемной станции электрические сигналы вновь превращаются в световые. Делает это другой электронный прибор — газосветная лампа. Через нее протекает принятый по телеграфной линии или по радио пульсирующий ток. Лампа эта обладает важным свойством: сила ее свечения меняется соответственно изменению силы тока. Перед лампой вращается барабан, обернутый фотобумагой. Он, как и барабан на передающей станции, не только вращается, но и смещается вдоль оси. Поэтому луч света от газосветной лампы поочередно обегает один за другим участки фотобумаги. После окончания приема фотобумага проявляется и сушится. Фотодепешу можно направлять адресату.

Фототелеграф дает большой выигрыш во времени: передача фотоснимка размером 19х29 сантиметров занимает всего 15 минут. За это время фото депеша, отправленная из Москвы, может пересечь всю страну и быть принята в каком-либо дальневосточном городе, например в Хабаровске. Путешествие ее по железной дороге заняло бы девять суток, а авиапочтой — 25–30 часов.

Особенно большие преимущества дает радиофототелеграфия. При передаче изображений по радио фототелеграммы можно передавать не только из города в город, но и с корабля на сушу, с суши на самолет и т. д.

 

Телевидение

В русских сказках нередко рассказывается о том, как герой сказки смотрит в волшебное зеркальце и видит все, что творится на белом свете. Благодаря открытию радио эта сказка превратилась в быль. Волшебное зеркальце — это экран телевизора.

В отличие от фототелеграфа, который позволяет передавать только неподвижные изображения, в телевидении передаются любые изображения — подвижные и неподвижные. При этом отпадает необходимость в фотобумаге, изображение появляется на экране телевизионной трубки — кинескопа.

Как же видят на расстоянии?

В том месте, откуда передается изображение, — на сцене театра, на трибуне стадиона и т. д. — устанавливаются телекамеры. Это — сложные радиоэлектронные устройства. Они наводятся, подобно фотоаппарату, на те предметы, изображение которых нужно передать. Световые лучи, отраженные от предметов, людей и т. д., попадают в телекамеру и превращаются в ней в электрические сигналы. Последние, после многократного усиления, поступают в передатчик и воздействуют на радиоволны, излучаемые его антенной.

Если в фототелеграфии одно изображение передается за 15 и более минут, то в телевидении оно передается 25 раз в течение каждой секунды. При этом посылается свыше 10 тысяч радиоимпульсов.

В приемной телевизионной трубке, как и в обычной радиолампе, есть катод, испускающий электроны. Электроны при помощи специальных устройств собираются в тончайший луч, который, ударяясь об экран, заставляет его светиться (экран покрыт специальным веществом, светящимся под ударами электронов). Свечение возникает только в том месте экрана, куда попал электронный луч, причем это свечение все время изменяется, если меняется сила электронного пучка.

Электронный луч в кинескопе ни на мгновение не останавливается на месте, он 25 раз в секунду обегает все точки экрана и каждую из них заставляет светиться то ярче, то слабее. На экране возникает изображение.

Человеческий глаз обладает способностью сохранять в течение некоторого времени зрительное впечатление. Это свойство давно используется в кино. На экране кинотеатра каждую секунду появляется 24 изображения, одно за другим. Каждая «фотография» лишь чуть-чуть отличается от предыдущей, в результате зритель видит на экране движущиеся фигуры. На экране телевизора принятые изображения сменяются, как мы уже говорили, 25 раз в секунду, поэтому эффект получается тот же самый, что и в кино; отличие состоит лишь в том, что киноэкран отражает световые лучи, посланные киноаппаратом, а экран телевизора сам испускает световые волны под действием ударяющихся о него электронов.

Для передачи телевизионных программ наиболее пригодны ультракороткие волны, распространяющиеся, как мы уже отмечали, прямолинейно, подобно солнечному лучу. В этом причина того, что дальность телепередач ограничивается кривизной Земли и обычно не превышает 100 километров. Вот почему телевизионные передачи смотрят пока вблизи крупных городов, имеющих телецентры.

В нашей стране передачи телевидения ведутся теперь в Москве, Ленинграде, Киеве, Свердловске, Харькове, Риге и во многих других городах. Принимаются меры к расширению радиуса действия основных телецентров. Из Москвы, например, телевизионные сигналы по кабелю передаются в г. Калинин. Для этих целей используются и радиорелейные линии, представляющие собой, как отмечалось выше, систему приемно-передающих радиостанций. Они как бы по эстафете принимают телевизионные сигналы, усиливают их и передают дальше.

В последнее время проводятся опыты по увеличению дальности телепередач до 1000–2000 километров без промежуточных приемо-передающих станций. Для этой цели создаются сложные приемные телевизионные антенны и увеличивается чувствительность телевизора, что весьма важно при приеме слабых радиосигналов.

Телевидение представляет собой сравнительно молодую отрасль радиотехники. Однако успехи, достигнутые в этой области, значительны. В наши дни обычным явлением стали телепередачи не только из специальных студий, но и из любого другого места — из театра, со стадиона и т. д. С каждым годом улучшается качество телепередач, совершенствуются телевизоры. Например, у нас уже созданы телевизоры, позволяющие получить изображение размером до одного квадратного метра; они предназначены для клубов и домов культуры. В клубах и кинотеатрах устанавливаются телевизионные экраны размером в несколько квадратных метров.

Интересно отметить появление телевизоров, управляемых ка расстоянии. Одна из иностранных фирм разработала телевизор, который управляется при помощи луча света от карманного фонарика. Телевизор имеет автоматическое устройство, состоящее из фотоэлементов, радиоламп и других деталей. Благодаря этому устройству можно лучом света от фонарика не только включать телевизор, но и переключать программы, регулировать громкость звука, яркость изображения и т. д. У нас тоже разрабатывается телевизор с дистанционным управлением, состоящим из выносного пульта и тонкого кабеля, соединяющего этот пульт с телевизором.

Достигнут известный прогресс в записи телевизионных изображений с целью повторения телепередач или обмена с другими телевизионными центрами. Один из способов записи заключается в фотографировании изображения на экране телевизора при помощи кинокамеры.

Другой способ состоит в записи изображения и звука на магнитную лепту. Для записи черно-белого изображения применяется лента шириной 3 мм. На нее наносятся две миллиметровые дорожки специального лака, способного намагничиваться под действием магнитных полей.

Электрические сигналы изображения, полученные в съемочной телекамере, усиливаются ламповыми усилителями и подаются на катушку электромагнита. Мимо катушки протягивается лента. Сигналы изображения записываются на одну из дорожек. На вторую дорожку аналогичным способом записывается звук.

В воспроизводящем устройстве, напоминающем обычный магнитофон, магнитная запись превращается в электрические сигналы. Эти сигналы усиливаются усилителем телевизора и создают на его экране изображение.

Такой способ применим и для записи цветного изображения. В этом случае применяется ферромагнитная пленка шириной 6 миллиметров с пятью дорожками: три дорожки служат для записи трех основных цветов, совокупность которых образует цветное изображение, четвертая — для записи звука и пятая — для записи специальных сигналов, необходимых для управления последовательностью смены цветов.

 

Радиолокация

Радиолокация — это определение местоположения различных объектов в воздухе, на воде и на суше с помощью радиоволн. Она смогла появиться только после того, как ученые создали ряд принципиально новых радиоэлектронных приборов, решили многие теоретические задачи, изучили поведение радиоволн самых различных длин.

Большинство современных радиолокационных установок работает по принципу радиоэхо. О том, что такое эхо, знает каждый. Оказалось, что радиоволны тоже могут отражаться. Это заметил еще А. С. Попов во время опытов на Балтийском море в 1897 году. Ученый предсказал, что, используя отражение радиоволн, можно определять местоположение кораблей.

Радиолокатор, или радар, работает прерывисто, подобно пулемету. Один за другим посылает он радиоимпульсы в каком-либо направлении. Встретив на своем пути цель, скажем, самолет, радиоволны отражаются от нее и частично возвращаются обратно. Антенна чувствительного радиоприемника воспринимает отраженный сигнал, что говорит о том, что в данном направлении находится какой-то объект.

Радиолокатор определяет не только направление, в котором находится цель, но и расстояние до нее. Ведь скорость распространения электромагнитной волны известна. Поэтому, чтобы определить расстояние до цели, достаточно знать время, необходимое для преодоления этого расстояния. Конечно, никакие механические часы не могут измерить время, составляющее миллионные доли секунды. Но это делают электронные часы. Основной деталью таких «часов» служит электронно-лучевая трубка, во многом похожая на ту, которая применяется в телевидении.

На экране радиолокатора видна светящаяся черта. Когда направленные радиоволны встречают на своем пути какой-либо объект, на светящейся линии возникает «всплеск» (рис. 5).

Рис. 5. «Радиовсплеск».

Чем дальше цель, тем он правее от начала линии. Под линией нанесена километровая масштабная шкала. По ней оператор быстро определяет расстояние до объекта.

Современные радиолокационные станции — это сложнейшие радиоэлектронные устройства, включающие в себя тысячи радиодеталей.

Радиолокация сыграла очень большую роль во второй мировой войне. С помощью радаров определялось местонахождение и количество самолетов, участвующих в нападении на тот или иной объект, обнаруживались всплывающие для атаки подводные лодки, осуществлялось руководство морскими сражениями и воздушными боями.

В ходе войны были созданы специальные «панорамные» радиолокаторы, служащие для бомбометания через облака. Экран такой станции воспроизводит, подобно карте, местность, над которой пролетает самолет. На экране отчетливо видны берега рек, города, мосты.

Были сконструированы миниатюрные радиолокационные станции для зенитных снарядов. Когда снаряд вылетал из орудийного ствола, станция начинала излучать импульсы радиоволн. Приемная часть станции, тоже расположенная в снаряде, принимала отраженные от обстреливаемого самолета волны. В тот момент, когда сила отраженных импульсов достигала максимальной величины (это значило, что снаряд находится на самом близком расстоянии от самолета), снаряд взрывался и поражал цель осколками.

Несмотря на то, что первое свое практическое применение радиолокация нашла на войне, роль ее в мирной жизни не менее велика. Радиолокационные методы исследования имеют большое значение для развития таких наук, как астрономия, метеорология, спектроскопия, геодезия и др.

Возьмем в качестве примера геодезию. Сейчас геодезисты успешно пользуются радиолокационными установками при изучении размеров и формы земной поверхности. Для получения точных данных о рельефе местности до последнего времени пользовались аэрофотосъемкой. Работа нередко затягивалась из-за плохой погоды. Применение радиолокатора позволяет проводить работы при любой погоде. Радиолокатор, работающий на волне около одного сантиметра, устанавливается на самолете и узким лучом «прощупывает» кольцевой участок местности под самолетом. На экране отчетливо виден рельеф местности. Скорость такой «съемки» достигает 750 квадратных километров в час.

Не менее велика помощь радиолокации метеорологам, предсказывающим погоду. Для предсказания погоды и всех ее изменений очень важно знать температуру и давление воздуха, а также силу и направление ветра в верхних слоях атмосферы. Чтобы получить эти данные, в воздух поднимаются аэростаты, самолеты, шары и даже артиллерийские снаряды, снабженные необходимыми приборами. Особенно интересуют метеорологов воздушные течения.

Для изучения ветра в воздух запускают резиновый шар, наполненный самым легким газом — водородом. Раньше за шаром следили с помощью специальных зрительных труб. Дальность наблюдения при этом, естественно, получалась небольшой. Сейчас для наблюдения нередко используют радиолокатор, который гораздо дольше «не выпускает» шар из виду.

С помощью радиолокаторов удается обнаружить приближение дождевого фронта. На экране в этом случае появляются яркие пятна, движущиеся в определенном направлении. Очень короткие радиоволны позволяют нащупать и облака, находящиеся на огромном расстоянии от станции; удается точно определить место образования урагана и т. д. Все эти данные имеют большое практическое значение.

О других применениях радиолокации мы еще будем рассказывать дальше.

 

РАДИО И ТРАНСПОРТ

 

Радиомаяки и пеленгаторы

В течение столетий моряки, находясь в открытом море, определяли местоположение своего корабля по небесным светилам и компасам. Но плохая погода, облачность, туман нередко были причиной того, что корабль сбивался с курса, терял ориентировку. Требовалось надежное средство, с помощью которого можно было бы определять местоположение корабля независимо от времени суток и состояния погоды. Необходимость в таком средстве особенно возросла после того, как появился воздушный транспорт. Таким надежным средством ориентировки кораблей и самолетов явилась радионавигация. В настоящее время на каждом достаточно крупном самолете или на большом морском судне имеется не один, а несколько радиоприборов, позволяющих быстро и очень точно определять, где находится движущийся корабль.

В нашей стране в 1917–1918 годах инженерами Петроградского политехнического института был разработан принцип действия радиомаяков. С конца двадцатых годов радиомаяки стали уже широко применяться как на морских, так и на воздушных трассах страны.

Радиомаяки — это наземные радиопередающие станции, снабженные специальными антеннами, излучающими радиоволны в определенных направлениях.

Посмотрим, как работают радиомаяки, которые позволяют летчику держать определенное направление (курс) полета. Такие маяки называют курсовыми.

Принцип работы курсового радиомаяка можно понять из рис. 6.

Рис. 6. Принцип работы курсового маяка.

Предположим, самолету дано задание доставить пассажиров из пункта А в пункт Б. Радиомаяк находится в пункте Б и на определенной волне излучает радиосигналы в направлении трассы. Чаще всего такими сигналами служат буквы А (по азбуке Морзе — точка — тире) и Н (тире — точка), передаваемые поочередно. Штурман самолета, включив приемник, настраивается на волну маяка. В случае, если самолет летит по трассе и находится, например, в пункте 1, оба сигнала слышны одинаково громко. Если же самолет сбился с курса и оказался в стороне от трассы, например, в пункте 2, то штурман более отчетливо услышит сигналы, соответствующие букве А. Оказавшись по другую сторону от трассы, например в пункте 3, штурман услышит отчетливее другие сигналы, соответствующие букве Н. Значит, по сигналам радиомаяка нетрудно поддерживать нужное направление полета.

Мы рассказали о самом простом и распространенном типе радиомаяков. Есть и другие, более сложные радионавигационные устройства. Они позволяют более точно определять направление полета и находить свой аэродром. Созданы приборы, позволяющие совершать «слепую» посадку самолета в условиях тумана или снегопада.

Для рыболовных судов очень важно по окончании лова найти наиболее короткий путь в порт. Для них в портах устанавливаются особые «приводные» радиомаяки. Маяки такого типа ценны тем, что для приема их сигналов и ориентировки достаточно иметь на судне небольшой радиоприемник.

Широко применяются в навигации радиопеленгаторы.

Радиопеленгатор — это приемное устройство, антенна которого может принимать радиосигналы только с какого-либо одного направления. По форме антенна пеленгатора напоминает прямоугольную рамку, поэтому такую антенну называют рамочной.

Действие рамочной антенны показано на рис. 7.

Рис. 7. Действие приемной рамки радиопеленгатора.

Стрелками дано направление, откуда приходит радиоволна передатчика, который нужно запеленговать.

Если плоскость рамки находится под прямым углом к направлению приходящей радиоволны, то в вертикальных участках рамочной антенны будут возникать электрические токи. Как видно из рисунка, эти токи, изображенные стрелками, равны по величине и направлены друг другу навстречу. Поэтому они взаимно уничтожаются, и радиосигнал не будет услышан.

Но повернем рамку так, чтобы она встала ребром в приходящей волне. Теперь радиоволна подойдет к левой стороне рамки чуть-чуть раньше, чем к правой, поэтому токи, возникшие в обеих половинках рамки, окажутся уже не одинаковы по величине и не уничтожат друг друга. В результате сигнал будет принят приемником.

Оператор, работающий на радиопеленгаторе, устанавливает рамочную антенну так, чтобы громкость принятого сигнала была наименьшей, и этим определяет направление, в котором находится передатчик пеленгатора.

Радиопеленгаторы располагаются в разных местах побережья. На запросы с кораблей их операторы сообщают по радио необходимые данные. Штурман корабля, пользуясь этими данными, проводит на карте несколько прямых линий, пересечение которых дает местоположение корабля.

На больших кораблях устанавливаются свои радиопеленгаторы. С их помощью определяется направление на береговые передатчики, расположенные в заранее известных пунктах. Это также позволяет установить место, где находится корабль.

Радиомаяки и радиопеленгаторы сыграли большую роль в налаживании бесперебойной работы морского и воздушного транспорта. Героические перелеты Чкалова, Громова, Коккинаки и других отважных летчиков были бы невозможны без четкой радионавигационной службы.

Дальние рейсы морских кораблей обслуживаются теперь целой системой радиомаяков и пеленгаторов. При этом точность, с которой определяется местоположение корабля, исключительно велика. При расстоянии в 2000 километров от берега ошибка в определении места не превышает сотни метров!

 

В морском порту и на аэродроме

В современном морском порту жизнь не прекращается ни на минуту. Один за другим к причалам подходят огромные океанские корабли, начинается выгрузка привезенных грузов. Другие корабли, наоборот, медленно отваливают от причалов, уходя в рейс. Непрерывно в разных направлениях снуют моторные лодки, катеры, глиссеры. Медленно проплывают огромные баржи.

Руководить жизнью порта — дело нелегкое. Особенно это трудно в темные туманные ночи, когда даже мощный луч прожектора оказывается бессильным пробить густую пелену тумана.

В такой сложной обстановке на помощь снова приходят радиоприборы. Их немало на диспетчерском пункте. Отсюда ведется непрерывная радиосвязь с подходящими к порту кораблями. Радиолокационная станция «кругового обзора» позволяет видеть на экране взаимное расположение движущихся кораблей. Короткие радиокоманды указывают каждому кораблю, куда ему надлежит двигаться.

Большие корабли имеют свои радиолокаторы кругового обзора. На их экранах отчетливо видны очертания берегов, бухты, встречные корабли, буи (рис. 8).

Рис. 8. Изображение на экране судовой радиолокационной станции.

Благодаря этому корабль может в любую погоду выбрать правильный путь, не рискуя столкнуться с другими судами.

Не меньшую роль играет радио и в организации бесперебойной работы аэропортов. Диспетчер аэропорта, наблюдая за экраном локационной станции, видит самолеты, направляющиеся к аэродрому. Он дает им по радио различные указания, в результате чего пропускная способность аэропорта увеличивается в несколько раз.

 

На стальных магистралях

Вы сели в вагон поезда дальнего следования. Впереди несколько дней дороги. Но вы не оторваны от окружающего мира. Радио позволит вам быть в курсе всех событий, происходящих в стране.

Сейчас почти все поезда дальнего следования радиофицированы. Они снабжены радиоустановками, позволяющими на ходу поезда принимать станции центрального и местного вещания, транслировать лекции, передавать объявления и музыку.

Но это не единственное применение радио на железнодорожном транспорте.

Крупный железнодорожный узел живет не менее бурной жизнью, чем морской порт или аэродром. В течение суток через него проходят десятки пассажирских и грузовых составов, формируются новые поезда.

Движением поездов через железнодорожный узел руководит диспетчер. Теперь существуют такие узлы и станции, где диспетчеры управляют движением паровозов и поездов, не выходя из помещения.

Перед диспетчером находится светящаяся разноцветными линиями схема всех путей и перегонов станции. На ней видно, какие пути заняты, какие свободны, где движутся поезда. Нажимая кнопки управления, диспетчер переводит стрелки, зажигает светофоры. Сотни приборов, среди которых немало радиоэлектронных, выполняют эти команды. Пропускная способность узла или станции значительно повышается, увеличивается безопасность движения поездов, намного сокращается количество обслуживающего персонала.

Широко используются радиоустановки как средство внутристанционной связи. Особенно большую помощь оказывают они на сортировочных горках — при составлении поездов. Этой работой руководит маневровый диспетчер. Он связывается по радио с машинистами паровозов и отдает им необходимые распоряжения. Машинисты тоже в любой момент могут вызвать диспетчера.

В последние годы железнодорожные радиостанции успешно используются и для связи с паровозами, находящимися в рейсе и удаленными от станции на десятки километров.

Широкое распространение на железнодорожном транспорте получил электронный «автостоп», самостоятельно останавливающий состав в том случае, если машинист по какой-либо причине не замечает красного огня на светофоре. Как он устроен?

На пути движения поезда перед светофором устанавливается специальный прибор, начинающий генерировать электромагнитные колебания сразу, как только включается красный сигнал светофора. А на паровозе есть приемное устройство, которое при сближении с генератором принимает сигнал и автоматически включает тормозную систему. Это позволяет предотвращать аварии, особенно в снежную или туманную погоду.

 

На автострадах и проселочных дорогах

По широкому асфальтированному шоссе стремительно мчатся нарядно окрашенные автобусы, сверкающие на солнце обтекаемые легковые автомобили, тяжело рокочущие грузовики, юркие мотоциклы и мотороллеры. С раннего утра до позднего вечера не прекращается этот живой поток…

Автомобили, особенно легковые, очень удобны для поездок. В случае холодной погоды можно включить отопление, в жаркую погоду — вентиляцию. Во время движения и на стоянках можно слушать радио. Многодиапазонный приемник широко распространен на легковых автомашинах. Созданы первые образцы автомашин, снабженных… телевизорами. Они позволяют принимать телевизионные программы на ходу автомобиля в радиусе нескольких десятков километров от телецентра. Антенной телевизора служит антенна обычного автомобильного приемника.

Проведены успешные опыты по установке в автомобиль… телефонного аппарата. Последний подключен к ультракоротковолновому приемо-передатчику, который и обеспечивает связь с автоматической телефонной станцией города. Во время движения машины пассажир может позвонить куда угодно и, еще находясь в пути, разрешать многие дела. Экономия времени получается огромная.

Но роль радиоэлектроники в автомобильном транспорте этим не ограничивается. Регулировщики уличного движения раньше определяли скорость машин на глазок и, естественно, часто ошибались. Сейчас создан радиолокационный измеритель скорости автомобилей.

Новый прибор размером 30х30х20 сантиметров весит всего лишь 17 килограммов. Он устанавливается на треногом штативе либо около шоссе, либо в кузове грузовика, и своей антенной ориентируется вдоль шоссе. Дальность его действия составляет 50–55 метров. Антенна прибора излучает радиоволны длиной около 13 сантиметров. Она же служит и для приема отраженных волн.

Если автомобиль, приближающийся к радиолокатору, движется с недозволенной скоростью, стрелка прибора отклонится за красную черту. Регулировщик тотчас останавливает машину. Если водитель начинает спорить, доказывая, что он ехал не быстрее, чем положено, то ему показывают бумажную ленту пишущего устройства. Это устройство тоже вмонтировано в прибор, оно автоматически отмечает скорость движения машин.

Большую помощь может оказать радиоэлектроника при управлении движением транспорта на перекрестках города. Жители крупных городов уже привыкли к тому, что при отсутствии регулировщиков уличного движения сигнал светофора переключается автоматически. Но они замечали и то, что это переключение происходит независимо от того, имеются или нет у перекрестка машины.

В Нью-Йорке на 120 перекрестках установлены более совершенные «автоматические полисмены».

Они, как и указатели скорости автомобилей, работают на принципе радиолокации. Радиолуч непрерывно «обшаривает» перекресток и «считает» приближающиеся автомашины. Светофор открывает путь в том направлении, в котором машин скопилось больше. Автомат учитывает не только число автомобилей, но и то, как долго ожидает зеленого сигнала машина, пришедшая к перекрестку первой.

Этим не исчерпывается применение электроники в автомобильном транспорте.

Проведены успешные испытания автоматической автомобильной магистрали, по которой двигались автомашины без вмешательства водителей. Все повороты совершались специальным электронным устройством, установленным на машине. Под действием сигналов, передаваемых с диспетчерского пункта, автомат поворачивает рулевое колесо в нужную сторону и выравнивает движение машины.

В заключение следует сказать о создании нового транспортного средства — «вечемобиля». Это слово произошло от слов «высокая частота», характеризующих принцип действия новой машины.

Вдоль улицы под слоем асфальта прокладываются металлические провода, по которым пропускается ток высокой частоты. Он создает над асфальтом переменное электромагнитное поле. Энергию этого поля и улавливает вечемобиль, у которого вместо двигателя внутреннего сгорания установлен специальный приемник.

Благодаря тому, что вечемобиль получает энергию без непосредственного контакта с проводами, по индукции, он свободно может разъезжать по шоссе, а при наличии аккумулятора даже сворачивает на несколько километров в сторону.

Так радиоэлектроника меняет облик автомобильного транспорта.

 

ПРОМЫШЛЕННЫЕ ПРИМЕНЕНИЯ РАДИОЭЛЕКТРОНИКИ

 

Нагрев без огня

За многие тысячелетия своей истории человек использовал самые различные способы получения тепла — от костра, на котором он готовил пищу, до современных электрических печей для разогрева многотонных металлических отливок.

Сейчас в промышленность внедрен новый источник тепла — электромагнитные волны, — обладающий целым рядом преимуществ даже перед недавним «чудом техники» — электропечью.

Электромагнитные волны нагревают тела не с помощью химических реакций, происходящих во время сжигания топлива, не благодаря разогреву металлических спиралей током, как это происходит в электрической печи, а за счет использования энергии электрического и магнитного полей, возникающих в колебательном контуре.

Разные тела по-разному ведут себя в электрическом и магнитном полях. Возьмем, например, металлы. В них, как мы уже отмечали, много свободных, не связанных с атомами электронов. Помещенное в сильное магнитное поле металлическое тело быстро нагревается, энергия магнитного поля передается свободным электронам, и в поверхностных слоях металла возникают сильные токи. Если же в магнитное поле поместить не проводник электричества, а изолятор — фарфор, дерево, стекло и т. д., то он останется холодным, так как в изоляторе почти нет свободных электронов. На изоляционные материалы большое тепловое воздействие оказывает электрическое поле конденсатора. Когда изолятор попадает в это поле, то под действием электрических сил электроны, входящие в состав атомов, увеличивают вращательное движение. Такое движение сопровождается большими потерями энергии на трение и на разогрев тела. Нагревание изолятора в электрическом поле происходит не с поверхности, а равномерно по всей глубине. Это значительно улучшает качество таких производственных операций, как, скажем, сушка различных изделий.

Вот как, например, с помощью электромагнитных волн сушатся изделия гончарного производства. Глиняная и фарфоровая посуда формуется из влажной массы. Затем ее сушат и подвергают обжигу. Сушка — это наиболее ответственная часть производства. Раньше она производилась либо на солнце, либо в специальных печах с помощью горячего воздуха. Быстро сушить было нельзя, так как изделие сохло только с поверхности и могло покоробиться или дать трещины. Большие фарфоровые вазы сушили в течение многих месяцев.

Электромагнитные волны справляются с такой работой гораздо быстрее. Изделия помещают между пластинами огромного конденсатора, имеющего форму этажерки. При включении генератора высокой частоты изделия очень быстро нагреваются; заключенная в них вода испаряется. Установка начинает потреблять меньше энергии, что служит сигналом окончания сушки. Специальный прибор автоматически выключает печь.

Почти так же производится сушка древесины. Раньше крупные брусья сушили в специальных нагревательных камерах в течение 100–500 часов. Из-за разрывов сердцевины брусья часто шли в брак. Применение электрических полей высокой частоты сократило время сушки до 3–8 часов и резко снизило брак.

Большие преимущества дает высокочастотный нагрев при сушке древесины, пропитанной специальным составом и склеенной под давлением. Деревянные изделия, полученные таким путем, обладают высокой твердостью, устойчивостью к истиранию; они легки, а по прочности не уступают металлам. Такие материалы успешно применяются для изготовления самолетных винтов, зубчатых колес, лодок, кузовов автомашин и т. д.

В пищевой промышленности высокочастотный нагрев может с успехом применяться для сушки макарон, чая, табака, а также для выпечки хлебных изделий. На предприятиях, выпускающих фруктовые компоты, овощные консервы и томаты, высокочастотные установки используются для уничтожения бактерий. Эта операция, занимающая всего несколько секунд, не вызывает потери витаминов, аромата и вкусовых качеств обрабатываемых продуктов, но полностью уничтожает болезнетворные бактерии.

Для нагрева металлических изделий используют энергию магнитного поля катушки колебательного контура.

Плавка металлов при помощи электромагнитных волн сейчас широко применяется в производстве высококачественных сплавов, когда нельзя допускать соприкосновения металла с газами и пламенем топки. Применяется этот способ и при производстве специальных магнитных, легких или тугоплавких сплавов. В зависимости от производительности высокочастотной печи частота магнитного поля колеблется от 500 тысяч до 5 миллионов колебаний в секунду (чем больше металла должна расплавлять печь, тем ниже должна быть частота).

Электромагнитные волны используются и для сварки металлов. При обычной электросварке применяется переменный ток с частотой 50 колебаний в секунду. Его пропускают через место соприкосновения свариваемых металлов, которое сильно разогревается и плавится. Если же через место сварки пропускать еще и высокочастотный ток, создаваемый небольшим переносным радиоаппаратом, то качество сварки оказывается намного лучше. Этот способ особенно оправдывает себя при сварке разнородных металлов. Электромагнитные волны позволяют также надежно сваривать большие поверхности металлов со стеклом.

 

Радиозакалка деталей

Закалка поверхности стальных изделий нужна, чтобы повысить их прочность и твердость. При этом изделие нагревается и затем быстро охлаждается в воде или в масле. Закалке подвергается любой режущий инструмент, а также ответственные детали машин, которые при работе испытывают большие нагрузки — коленчатые валы, шестерни и т. д.

У таких деталей твердой должна быть только поверхность. Внутренняя же часть должна оставаться вязкой, незакаленной, иначе деталь окажется хрупкой.

Но в обычных печах металл прогревается по всей толщине. Советский ученый В. П. Вологдин предложил производить закалку электромагнитными волнами. Он создал несколько конструкций мощных генераторов, вырабатывающих эти волны, и, помещая деталь внутрь катушки колебательного контура, производил закалку.

Мы уже говорили, что в поверхностных слоях металлического изделия, помещенного в магнитное поле, возникают быстропеременные электрические токи. Под воздействием этих токов поверхность детали сильно разогревается. Если процесс нагрева происходит очень короткое время, то тепло не успевает передаться внутренним слоям изделия, и они остаются холодными. После опускания изделия в воду или в масло поверхностный слой закалится, станет твердым, а внутренние части останутся, как и до закалки, мягкими.

На рис. 9 показана поверхностная закалка шестерни.

Рис. 9. Разрез шестерни, закаленной при помощи электромагнитных волн.

Для определения толщины закаленного слоя шестерню разрезали и разрез подвергли травлению кислотой. После этого закаленный слой приобрел более темный цвет, чем остальной металл. Такая шестерня хорошо противостоит износу и в то же время не хрупка, так как внутренние слои не закалены.

Закалка стальных изделий в магнитном поле высокой частоты имеет много и других преимуществ по сравнению с обычными методами закалки — детали не коробятся при нагреве, увеличивается производительность работы, улучшается качество изделий, отпадает необходимость в последующей очистке и шлифовке деталей и т. д. Этот метод закалки удобен для поточного производства. Значительно улучшаются условия труда рабочих.

Радиозакалка получила теперь широкое распространение на предприятиях Советского Союза и других стран.

 

Электронные приборы контролируют продукцию

Контроль готовой продукции — важная задача любого производства. Он заключается в проведении различных измерительных операций, которые в некоторых случаях занимают половину времени, расходуемого на изготовление и обработку изделия. Чтобы сократить это время, создаются автоматически действующие контрольные устройства, работающие под наблюдением контролера, но без его вмешательства.

Огромную помощь в создании точных измерительных устройств, позволяющих контролировать различные этапы производства, оказывает радиоэлектроника. В настоящее время насчитываются сотни измерительных и контрольных приборов, включающих в себя радиолампы, конденсаторы, катушки индуктивности и другие радиодетали. О некоторых из этих приборов и устройств мы расскажем далее.

Заводы электротехнической промышленности выпускают миллионы метров различных проводов. Среди них немало тонких проводов с шелковой и бумажной изоляцией. В таких проводах иногда случаются обрывы, скрытые под слоем изоляции.

Прибор, предназначенный для обнаружения скрытых обрывов, состоит из генератора радиоволн и приемника. Электромагнитные колебания, вырабатываемые генератором, поступают в приемник через воздушный конденсатор, состоящий из двух пластин. Между обкладками этого конденсатора протягивается провод, качество которого нужно контролировать. Как только в проводе попадется оборванный участок, условия прохождения радиоволн из генератора в приемник изменятся, приемник мгновенно отзовется на это, и специальное устройство автоматически выключит намоточный станок.

Так же контролируют на прокатных станах толщину ленты, выходящей из валков стана. Лента стремительно проходит между пластинами конденсатора, не касаясь их. Как только по каким-либо причинам изменится толщина ленты, меняется и емкость конденсатора. Приемник сигнализирует об этом особому устройству, управляющему положением валков стана, и нужная толщина ленты восстанавливается. На предприятиях резиновой промышленности и на бумажных фабриках такой метод применяется для контроля толщины резиновой или бумажной ленты.

Интересны радиоэлектронные устройства, определяющие качество закалки стальных изделий. Оно зависит от толщины закаленного слоя, которая у каждой детали, в зависимости от ее назначения, должна иметь вполне определенную величину. Особенно это важно для таких ответственных деталей, как железнодорожные и автомобильные оси.

При создании устройств для контроля этих деталей использовали то обстоятельство, что закаленная сталь поглощает из переменного магнитного поля гораздо больше энергии, чем незакаленная. Испытуемая деталь помещается в магнитное поле катушки индуктивности. Контрольный стрелочный прибор показывает непосредственно толщину закаленного слоя.

До внедрения такого способа приходилось в каждой партии разламывать несколько штук осей и по силе, необходимой для разрушения, судить о качестве изделия. Кроме того, что сломанные оси уже нельзя было использовать, этот способ проверки имел другой существенный недостаток: он был не вполне достоверным, так как основывался на предположении, что качество всех осей в партии одинаково.

Электронные приборы могут не только контролировать качество продукции, но и активно «вмешиваться» в производство. В цветной металлургии, например, применяются электронные металлоискатели и так называемые самородкоулавливатели.

В дробилки, предназначенные для дробления руды, нередко попадают куски металла и металлические предметы — обломки рельсов, зубила, болты и т. д. Раньше это приводило к поломкам дробильных машин. Но теперь созданы электронные устройства для обнаружения и извлечения кусков металла. Под лентой транспортера, по которому в дробильную машину подается руда, устанавливается катушка индуктивности, входящая в колебательный контур усилителя электрических колебаний. Когда к катушке приближается металлический предмет, настройка контура изменяется. Это вызывает срабатывание автоматического устройства — реле, которое включает мощный электромагнит, и последний извлекает обломок металла из руды.

По такому же принципу работают самородкоулавливатели. Они извлекают самородки золота, которые иногда попадают при промывке в отвальную породу. Электронное устройство выполняет эту задачу настолько совершенно, что «отзывается» лишь на предметы из цветного металла и не реагирует на кусочки тросов, обломки бурового и ударного инструмента и на другие железные и стальные предметы.

Подобных примеров можно привести немало. Они наглядно показывают, как глубоко проникла радиоэлектроника в современное массовое производство.

 

РАДИОЭЛЕКТРОНИКА ПОМОГАЕТ УЧЕНЫМ

 

Радиоастрономия

В течение тысячелетий люди пытливо исследовали Вселенную. Но изучать далекие миры Вселенной астрономам мешали атмосфера, окружающая Землю, и дневной свет. Атмосфера поглощает большую часть электромагнитных волн, приходящих из межзвездных пространств: часть невидимых ультрафиолетовых, инфракрасных и других лучей. В распоряжении астрономов оставалась только узкая полоска электромагнитных колебаний, относящаяся к видимому свету. Но и ею не всегда можно пользоваться: воздушные потоки вызывают мерцание звезд и ухудшают изображение, облачность и осадки нередко полностью срывают наблюдения. Солнечный свет препятствует наблюдению светил в дневное время.

Радио помогло астрономам создать принципиально новые средства исследования, приведшие к замечательным открытиям.

В начале второй мировой войны учеными было обнаружено, что радиолокационные станции, расположенные на восточном берегу Англии, не в состоянии обнаруживать самолеты противника в утренние часы, особенно если самолеты появляются низко над горизонтом. Обнаружить их мешали мощные радиопомехи неизвестного происхождения.

После изучения этого явления выяснилось, что источником радиопомех было Солнце. Позднее установили, что радиоизлучением обладает не только Солнце, но и Луна, а также межзвездный газ (например, водород) и некоторые туманности.

Земная атмосфера оказалась прозрачной не только для видимого света, но и для радиоволн. Она пропускает радиоволны длиной от 1 сантиметра до 15–20 метров. Так возникла новая наука — радиоастрономия.

За десять лет исследований радиоастрономы сделали уже много открытий. Наблюдая радиоизлучение Солнца, ученые установили, что оно содержит радиоволны от нескольких миллиметров до 10–15 метров и достигает наибольшей величины в годы максимума солнечной деятельности.

Большой научный интерес имеет открытие невидимого источника радиоизлучения — межзвездного газа водорода. Оно обнаружено на волне 21 сантиметр. Изучая его, ученые узнают свойства и характер движения межзвездной среды, ориентировочно определяют количество водорода в различных звездных системах.

Своими достижениями радиоастрономия в значительной степени обязана радиолокации, которая не только дала в распоряжение ученых высокочувствительные радиоприемные устройства, но и позволила с большей точностью измерить расстояния до небесных тел.

В 1946 году в Венгрии и в США с помощью радиоволн было произведено точное измерение расстояния до Луны: антенна радиолокатора, изображенная на рис. 10, послала мощный радиоимпульс на Луну.

Рис. 10. Антенна радиолокатора, с помощью которой была осуществлена радиолокация Луны.

Через 2,56 секунды этот радиосигнал, пройдя путь в 384 тысячи километров до Луны и столько же обратно, был принят чувствительным радиоприемником.

Большую роль играют радиолокационные методы исследования метеоров. Интересные наблюдения этого явления были сделаны, например, в ночь на 10 октября 1945 года во время «метеорного дождя». Радиолокаторы позволяют наблюдать метеоры как ночью, так и днем, и получать данные о скорости метеоров, орбитах метеорных потоков и т. д.

Радиоастрономические приборы — это сложные и нередко большие по размерам устройства, построенные по последнему слову радиоэлектронной техники. На рис. 11 показан один из крупнейших в мире радиотелескоп, построенный в 1956 году в Советском Союзе.

Рис. 11. Один из крупнейших в мире советский радиотелескоп.

 

Радиоспектроскопия

В научно-исследовательской работе широко применяется спектральный анализ. Сущность его заключается в следующем: белый свет, проходя через прозрачную стеклянную призму, разлагается на ряд составляющих цветов, образуя спектр. Этот спектр состоит из лучей красного, оранжевого, желтого и других цветов. Если на пути светового луча, кроме призмы, помещать пленки различных веществ, то в спектре появятся темные линии или полосы. Это результат поглощения веществом световых волн определенной длины. По расположению и ширине линий и полос в спектре ученые судят о составе исследуемого вещества.

Радиоспектроскопия основывается также на принципе поглощения веществом электромагнитных волн. Только она использует не световые волны, а радиоволны длиной 0,7–2 сантиметра, а в некоторых случаях и больше.

Через исследуемое вещество, например через газ, пpoпускаются радиоволны меняющейся длины. Для каждого вещества длина волны поглощения различна. Поэтому, по показанию точного измерительного прибора, отмечающего момент наибольшего поглощения радиоволн, определяют исследуемое вещество.

В настоящее время методами радиоспектроскопии исследовано несколько сот сложных веществ. При этом был определен целый ряд важных величин, например расстояния между атомами, что имеет большое значение для раскрытия химических связей веществ.

Радиоизлучение межзвездного водорода, о котором мы говорили выше, было обнаружено при помощи методов радиоспектроскопии. Были получены ценные данные о концентрации космического водорода, о его движении и о распределении в пространстве.

Радиоспектроскопические методы начинают все шире применяться для определения составов различных смесей газов. Они позволяют не только определить, из каких газов состоит смесь, но и найти процентное содержание каждого газа. Преимущество этих методов в том, что контроль можно производить непрерывно в течение всего времени химического процесса.

В связи с развитием радиоспектроскопических методов получила быстрое развитие радиоэлектроника самых малых длин волн. Были созданы генераторы радиоволн длиной в доли миллиметра. Освоение таких радиоволн дает возможность приступить к созданию радиолокаторов, на экранах которых будут видны не контуры местности, а изображение, такое же, как на экране телевизора.

 

Радиометеорология

Первым, кто применил радиоприбор для изучения явлений, происходящих в атмосфере, был изобретатель радио А. С. Попов. Созданный им приемник, названный грозоотметчиком, регистрировал радиоволны от грозовых разрядов, происходящих на расстоянии 30 километров. Это было началом развития и радиометеорологии, являющейся частью радиотехники.

Большое распространение в метеорологии получили радиозонды — приборы, служащие для измерения давления, температуры и влажности воздуха на разных высотах. Они поднимаются в воздух с помощью шаров, наполненных легким газом.

В радиозонде смонтирован миниатюрный радиопередатчик размером со спичечную коробку. Питается он от батареек. Вес советских радиозондов последних моделей немного более одного килограмма. По мере подъема радиозонда в воздух передатчик посылает на землю импульсы, которые регистрируются приемным устройством и преобразуются в показания приборов. Сигналы радиозонда могут быть приняты на расстоянии до 100 километров.

Радиозонды послужили базой для создания автоматических радиометеорологических станций, работающих без людей. Эти станции устанавливаются в труднодоступных и малообжитых местах и могут по году и более работать без вмешательства человека. В определенное время суток станция посылает радиоимпульсы, характер которых позволяет судить о давлении, температуре и влажности воздуха, о количестве осадков и т. д. Имеются станции, которые посылают свои импульсы в любое время по сигналу главной станции, принятому по радио.

Используются в метеорологии и радиоветромеры — приборы для автоматического измерения скорости и направления ветра. Они устанавливаются на море, вдали от берега — на плавающих буях, а также на вершинах гор. В них тоже работает радиоэлектронная аппаратура.

Все шире и шире метеорологи применяют радиолокационную аппаратуру. Радиолокационными средствами можно исследовать не только состояние атмосферы, но и изучать условия распространения радиоволн в зависимости от состояния погоды.

Оказалось, что радиоволны рассеиваются частицами воды и льда, содержащимися в атмосфере; при сантиметровых и миллиметровых волнах это может привести к нарушению связи. Изменение температуры и влажности с высотой влияет на дальность действия радиостанций, работающих на самых коротких радиоволнах. Но, с другой стороны, неоднородный состав различных слоев атмосферы может в некоторых случаях привести к устойчивому приему телевизионных программ за пределами прямой видимости. Эти явления сейчас тщательно исследуются.

Применение радиоэлектроники в метеорологии позволило получать ежедневно огромное количество данных о состоянии погоды в самых различных районах земного шара.

Для выпуска прогнозов погоды, для ее предсказывания нужно в очень короткое время систематизировать, обработать эти данные. На помощь приходят электронные вычислительные машины, которые могут в короткий срок обработать все сведения, поступающие от метеорологических станций.

 

Электронные вычислительные машины

Потребность облегчить труд счетных работников возникла давно. Вначале этой цели служили простые счеты, которые 4–5 тысяч лет назад применялись в Китае, а затем попали в Европу. Столетие назад появились механические арифметические машины, применяющиеся до наших дней. В начале XX века была создана логарифмическая линейка, значительно облегчившая труд инженеров и конструкторов.

Первая в мире математическая машина для решения задач высшей математики была сконструирована и построена академиком А. Н. Крыловым в Петербурге в 1912 году.

Развитие радиоэлектронной техники дало возможность создать разнообразные виды математических машин, позволяющих производить с большой точностью и за очень короткое время огромное количество математических операций.

Как же работает электронная вычислительная машина?

Ученые, приступая к решению той или иной проблемы, формулируют, выражают ее в виде сложных математических уравнений. Зная физическую сущность исследуемого процесса и владея специальными математическими методами, можно любую сложную задачу свести при ее решении к определенной последовательности четырех действий арифметики: сложения, вычитания, умножения и деления. Электронная счетная машина выполняет все эти действия исключительно быстро. При этом машина сама «запоминает» результат промежуточных действий и хранит его до тех пор, пока он не потребуется для выполнения следующей счетной операции. Программа вычислений, их последовательность определяются математиками заранее. По нескольким таким заданиям или «командам» счетная машина может сделать за короткое время десятки и даже сотни миллионов арифметических действий.

В Академии наук СССР более трех лет работает быстродействующая электронная счетная машина «БЭСМ» (рис. 12).

Рис. 12. Быстродействующая счетная машина «БЭСМ» Академии наук СССР. Слева — пульт управления машиной.

Она сконструирована Институтом точной механики и вычислительной техники. За одну секунду машина совершает в среднем 7–8 тысяч арифметических действий. Опытному вычислителю, вооруженному арифмометром, для этого понадобилось бы около четырех рабочих дней, а несколько часов работы машины равноценны работе вычислителя в течение всей его жизни.

«БЭСМ» позволила ученым решить ряд задач физики, механики, астрономии, химии. Так, например, за несколько дней были подсчитаны орбиты движения около семисот малых планет солнечной системы с учетом воздействия на них Юпитера и Сатурна.

Вычисления на этой машине ведутся с числами от одной миллиардной доли единицы до миллиарда. Результаты вычислений печатаются специальным электромеханическим устройством со скоростью 1,5 числа в секунду. Они могут быть также отпечатаны на кинопленку.

В машине «БЭСМ» 5 тысяч электронных ламп, срок службы каждой лампы превышает 10 тысяч часов. Машина обслуживается двумя инженерами и техником.

Математические машины используются сейчас для решения задач в самых различных отраслях науки и техники, например в метеорологии. Для предсказания погоды на завтрашний день необходимо произвести столько математических операций, что вычислителям потребуется работать около двух недель. Счетно-решающая электронная машина выполняет эти вычисления за два часа, и предсказание можно дать своевременно.

Современные электронные машины «способны» не только к математическим действиям. Создана, например, «читающая машина». С ее помощью человек, лишенный зрения, может читать обычные газеты, книги, журналы. Электронный луч скользит по строчкам, накапливает сигналы и включает механизм, произносящий слова. Имеется и машина — переводчик. С ее помощью можно печатать текст на одном языке и через несколько секунд получать листы, отпечатанные на другом языке. Конечно, все задания, которые выполняют «читающие» и «переводящие» машины, дает человек.

В настоящее время ученые работают над созданием еще более совершенных математических машин. Очень важно создать машину небольшого размера, поскольку большинство действующих в наши дни электронных вычислительных машин занимают десятки и даже сотни квадратных метров площади. Портативная машина может найти место в лаборатории, в конструкторском бюро, в кабинете ученого. Чтобы математическая машина получилась небольших размеров, нужны миниатюрные радиолампы и детали. Теперь это достигается внедрением в радиотехнику так называемых полупроводниковых электронных приборов, или кристаллических элементов.

В двадцатых годах наш соотечественник О. В. Лосев открыл способ усиливать радиосигналы с помощью не радиоламп, а особого полупроводникового элемента.

Новый преобразователь и усилитель электрических колебаний был назван кристадином. По своим качествам он уступал радиолампе; это и понятно: наука того времени о полупроводниках знала очень мало. Изобретение О. В. Лосева было забыто.

Вспомнили о нем в годы второй мировой войны, когда стали строить радиолокаторы, работающие на сантиметровых волнах: кристаллический преобразователь на этих волнах работал значительно лучше радиолампы! С этого времени началось чрезвычайно быстрое внедрение полупроводников в технику.

Полупроводники составляют в природе особую группу тел. В обычных условиях они плохо проводят ток и этим похожи на изоляторы. Но стоит внешним условиям измениться, и полупроводник начинает сравнительно хорошо пропускать ток, приближаясь по своим свойствам к проводникам. К полупроводникам относятся различные окислы и минералы, а также такие химические элементы, как германий, кремний, селен, теллур, бор, фосфор.

Первое свое применение в современной технике полупроводники получили как выпрямители переменного тока. Переменный ток пропускают через соединение полупроводников двух различных типов, в результате чего получают выпрямленный ток, т. е. такой ток, который протекает только в одном направлении. Раньше для этой цели применялись радиолампы.

Усложнив устройство полупроводникового элемента, удалось применить его для усиления слабых электрических сигналов. Новый прибор выполняет те же функции, что и усилительная лампа, но отличается в десятки раз меньшими размерами и тем, что не имеет нити накала.

Это значительно сокращает потребление энергии источников питания.

Первый кристаллический триод был создан в 1948 г. В настоящее время разработаны десятки типов полупроводниковых приборов.

В создании радиоэлектронной аппаратуры небольших размеров велика роль и так называемых печатных схем. Это такие радиосхемы, которые печатаются способом, близким к типографскому. На стеклянные или пластмассовые пластины наносится «рисунок», включающий в себя конденсаторы сопротивления и далее небольшие катушки индуктивности. Такой двухмерный (плоский) монтаж очень удобен в массовом производстве радиоаппаратуры и позволяет намного уменьшить ее размеры.

Внедрение этих достижений радиотехники в производство позволит не только создать портативные электронные математические машины, но и сделает возможным по-новому подойти к конструированию телевизоров, радиолокаторов, радионавигационных устройств и другой радиоаппаратуры.

 

Электронное оружие ученых

Известно, какое значительное место занял в научно-исследовательской работе микроскоп. Им пользуются биологи, физики, химики, минералоги. Благодаря ему удалось открыть и изучить различные виды бактерий и микробов, разгадать строение и свойства различных веществ.

Современный оптический микроскоп может дать увеличение наблюдаемого объекта в 2000 раз, а с помощью ультрафиолетовых лучей — в 3000 раз. Это предел для оптических микроскопов. Но существует также электронный микроскоп, позволяющий перешагнуть этот порог. В нем «освещение» объекта производится потоком электронов. Это дает возможность рассмотреть более мелкие детали. В электронном микроскопе увеличенное изображение исследователь видит на экране электронно-лучевой трубки, подобной тем, которые применяются в телевидении и радиолокации.

Современные электронные микроскопы дают увеличение в 30 тысяч раз, а с последующим фотоувеличением до 100–200 тысяч раз. Такое увеличение позволяет рассматривать внутреннее строение бактерий и вирусов, молекулы сложных химических соединений и т. д. Наблюдая в электронный микроскоп живые ткани, можно видеть действие различных лекарств на бактерии. Это позволяет разрабатывать эффективные средства борьбы с болезнями.

Недавно появилось сообщение о создании нового, еще более замечательного прибора — электронного проектора. Этот прибор дает увеличение в 1–2 миллиона раз и позволяет отчетливо видеть строение кристаллической решетки металлов. Если с помощью этого прибора исследуется газ, то можно достигнуть увеличения в 10 миллионов раз и рассмотреть не только молекулы, но и расположение отдельных атомов! При помощи нового прибора впервые удалось рассмотреть атомы бария.

Для наблюдения за ходом различных физических процессов, а также для работы астрономов необходимы приборы, точно отсчитывающие время. Сейчас с помощью радиоэлектронных часов, в которых используются некоторые свойства кварцевых пластинок, удается измерять время с погрешностью, не превышающей одной десятитысячной доли секунды. За 32 года подобные «кварцевые часы» «отстают» или «уходят» не больше чем на одну секунду.

Несколько лет ведутся работы и по созданию так называемых «атомных часов». В этих часах используется явление, открытое радиоспектроскопией: при прохождении электромагнитных волн через газ поглощение радиоволн происходит на строго определенной частоте. Ни изменение температуры, ни другие воздействия не могут «сбить» эти часы. За 300 лет такие часы могут уйти вперед или отстать не более чем на одну секунду!

Радиоэлектронные приборы позволили физикам измерять ничтожные изменения линейных размеров тел. Для этой цели были созданы радиомикрометры. Одна из основных деталей радиомикрометра — конденсатор колебательного контура. Его емкость, как емкость любого конденсатора, зависит от расстояния между пластинами. А от емкости, как мы уже говорили, в свою очередь, зависит частота колебательного контура. Если одну из пластин соединить с предметом, длина которого изменяется, а другую закрепить неподвижно, то по отклонению частоты контура можно судить об изменении длины.

С помощью радиомикрометра, способного реагировать на ничтожно малые изменения размеров тел, изучают явления нагревания, намагничения и другие процессы. Современные электронные микрометры могут обнаруживать смещения в одну миллиардную долю миллиметра!

Для целого ряда физических исследований очень важно производить регулирование температуры с большой точностью. А для этого нужны точные измерители температуры. Электронные схемы измерения и регулирования температуры позволяют поддерживать ее постоянство с точностью свыше одной тысячной доли градуса.

Огромную помощь оказывают электронные приборы ученым, изучающим условия работы различных машин и механизмов. Здесь важно знать, какие механические усилия испытывают те или иные детали или узлы. Чтобы измерять усилия, к деталям и узлам пристраивают чувствительные устройства — «датчики», которые под действием механических усилий вырабатывают электрические сигналы. Чем большее усилие испытывает датчик, тем большей силы импульсы вырабатывает он. Импульсы от датчиков усиливаются ламповыми усилителями и подаются на стрелочные приборы.

Развитие радиоэлектронной техники явилось базой для создания приборов, использующих не радиоволны, а неслышимые звуки — ультразвуки. В этих приборах радиоэлектронные схемы применяются для создания ультразвуковых волн.

В настоящее время с помощью ультразвуков определяют глубины морей, очищают и полируют поверхности металлических изделий, ускоряют химические реакции, затачивают резцы из сверхтвердых сплавов, режут листы металла и стекла и даже стирают белье. Большое значение имеют ультразвуковые дефектоскопы, впервые разработанные советским ученым С. Я. Соколовым. С помощью этих приборов можно в массивных металлических изделиях обнаружить мельчайшие дефекты: трещины, раковины, посторонние тела.

Наиболее ценен вклад радиоэлектроники в ядерную физику — науку, изучающую строение атомного ядра. Для исследований в этой области были созданы мощные физические установки — ускорители элементарных частиц (электронов, протонов и др.). При помощи ускорителей ученые осуществляют «стрельбу» по ядрам атомов различных веществ. Это позволяет расщеплять атомы, выделять огромную энергию, получать новые вещества.

Современный ускоритель — сложнейшее радиоэлектронное устройство. Это — огромное сооружение, весящее десятки тысяч тонн. Ускорение элементарных частиц осуществляется в большой вакуумной камере, расположенной между полюсами гигантского электромагнита. На специальные электроды от генератора подается ускоряющее переменное напряжение. Оно, как и магнитное поле электромагнита, воздействует на частицу — «подталкивает» ее, увеличивает ее скорость. Благодаря этому двойному воздействию элементарная частица начинает двигаться по спирали и, разгоняясь, постепенно удаляется от центра вращения. Наступает момент, когда электромагнит уже не в состоянии удерживать частицу, и она устремляется наружу и поражает «цель».

Сейчас в различных странах используется несколько типов ускорителей элементарных частиц. Самыми мощными из них являются синхрофазотроны. В них изменяется не только частота переменного напряжения, подаваемого на электроды, но и величина магнитного поля. Это позволяет получить частицы с энергией в миллиарды электронвольт.

Крупнейшие установки для ускорения частиц высоких энергий открывают необозримые горизонты для развития ядерной физики. Самая мощная ускорительная установка — синхрофазотрон — построена в Советском Союзе. В этой установке за 3,3 секунды частицы делают внутри камеры четыре с половиной миллиона оборотов и проходят при этом путь в миллион километров, двигаясь почти со скоростью света. На синхрофазотроне удалось придать частицам энергию в 10 миллиардов электронвольт!

Управление работой всех составных частей современных ускорителей осуществляется автоматически при помощи сложных электронных приборов.

Без применения новейших достижений радиоэлектроники трудно себе представить возможность получения атомной энергии и использования ее для нужд человечества.

 

Электроника в биологии и в медицине

Электрической энергией можно воздействовать на живую ткань, замедлять или ускорять интенсивность тех или иных процессов, происходящих в организме.

На рис. 13 показан снимок с экрана сложного электронного прибора — катодного осциллографа, предназначенного для исследования различных электрических процессов.

Рис. 13. Электрический ток при раздражении нерва лягушки, зарегистрированный на экране осциллографа.

Прибор зарегистрировал появление тока, возникшего при раздражении нерва лягушки, причем продолжительность этого явления составляла всего 2–3 тысячных доли секунды.

Ученые широко используют подобные приборы, исследуя жизнедеятельность различных органов и тканей животных и человека. Поскольку электрические токи, возникающие в тканях организма, очень малы, для их усиления применяют радиоусилители.

Многие медицинские учреждения нашей страны имеют кабинеты радиотерапии — так называется новая отрасль медицины, использующая токи низкой и высокой частоты и радиоволны как лечебное средство.

С помощью токов низкой частоты можно заставить мышцы человека периодически сокращаться и расслабляться. Такая электрогимнастика очень полезна при лечении некоторых видов параличей, ожирения и т. д.

Импульсы токов низкой частоты, если воздействовать ими на кору головного мозга, могут вызвать искусственный сон. Лечение искусственным сном применяется для борьбы с такими заболеваниями, как гипертония, неврозы и др.

Широко используются в медицинской практике и токи высокой частоты. Эти токи вырабатываются ламповыми генераторами, схема которых подобна схемам генераторов в передатчиках. Для лечения используются колебания от 500 тысяч до 1 миллиона колебаний в секунду. Больного помещают внутрь огромной катушки индуктивности, либо прикладывают к различным участкам тела металлические электроды. Эти электроды не что иное, как пластины конденсатора, входящего в колебательный контур.

Токи высокой частоты широко применяются при лечении ран, ожогов, язв, при головных болях. Они используются для прогревания различных внутренних органов человека, позволяя быстрее излечивать воспаление легких, плеврит и другие простудные заболевания. Положительные результаты дало применение токов высокой частоты для лечения различных заболеваний сердца и органов пищеварения.

Интересны опыты по применению в медицинской практике импульсов высокой частоты. Их создают электронные устройства, напоминающие передатчики радиолокаторов. Генераторы импульсного тока успешно применяются при оживлении мнимоумерших, для создания искусственного дыхания и во многих других случаях.

Мы уже говорили о стерилизующем свойстве токов высокой частоты, используемом для обработки загрязненных продуктов в пищевой промышленности. Это свойство начинает применяться и в медицине, Инструмент и хирургические материалы подвергают обработке токами высокой частоты. Тем самым ликвидируют опасность заражения во время операции.

В медицине применяют и самые короткие радиоволны, имеющие длину менее 10 метров. Облучение ими используется при лечении фурункулеза, флегмоны и т. д.

Трудно рассказать о всем многообразии электронных приборов, используемых в медицине и в биологии. Среди них — устройства, позволяющие определять размеры внутренних органов человека и животных; приборы, дающие возможность наблюдать на экране трубки работу сердца непосредственно у постели больного, портативные усилительные аппараты, возвращающие слух тугоухим, и т. д.

 

АВТОМАТИКА И ТЕЛЕМЕХАНИКА

 

Корабль без рулевого

Радиоэлектронные устройства с успехом применяются для управления различными механизмами на расстоянии. Опыты в этом направлении стали проводиться вскоре после изобретения радио.

Расскажем коротко, как управляются по радио корабли.

Управление движением корабля, на котором нет команды, осуществляется с берега при помощи радиосигналов передатчика. На корабле эти сигналы принимаются приемником и после усиления воздействуют на электрический привод рулевого устройства. В качестве такого привода используется либо электродвигатель, либо мощный магнит.

Когда радиостанция посылает сигналы, электропривод на управляемом корабле включается, и руль поворачивается в нужную сторону. Прекратились сигналы — руль автоматически возвращается в первоначальное положение, и корабль движется по прямой.

Управление кораблями по радио впервые было использовано в военном деле. Еще во время первой мировой войны 1914–1918 годов был проведен успешный опыт управления по радио моторной лодкой, нагруженной взрывчатыми веществами. Эта немецкая лодка управлялась с самолета, поэтому летчик легко мог выбирать ее маршрут. Войдя в порт Шербур — важную базу англо-американских войск в северной Франции, — моторная лодка налетела на набережную и разрушила ее. Это затруднило разгрузку военных транспортов. Другая такая лодка была вовремя замечена и уничтожена.

Позднее телеуправление кораблями применялось во время учебных стрельб. В качестве мишеней использовались устарелые корабли. Их движением управляли по радио.

Управление движущимися объектами по радио нашло применение и в авиации. Во время второй мировой войны самолеты, нагруженные бомбами, не имея на борту ни одного человека, поднимались в воздух и направлялись в сторону противника. По радиосигналу, принятому приемником, они пикировали на вражеский объект. Самолет, управляемый по радио, может также вернуться на свой аэродром и совершить посадку.

В настоящее время эта отрасль техники развилась настолько, что даже авиамоделисты делают управляемые по радио модели, которые могут в воздухе выполнять фигуры высшего пилотажа.

 

Электронная автоматика

В декабре 1955 года крупнейшая в мире Куйбышевская гидроэлектростанция дала первый промышленный ток. Москва, города и села Поволжья начали получать дешевую электроэнергию.

Для управления основными механизмами и вспомогательным оборудованием Куйбышевской ГЭС широко применяется автоматика и телемеханика. Включение и выключение гидроагрегатов производится автоматически. Специальные приборы показывают уровень Волги выше и ниже плотины. Если к трущимся деталям перестает поступать смазка или выходит из строя водяное охлаждение, то автоматическое устройство немедленно подает сигнал дежурному смены. Включение мощных трансформаторов, повышающих напряжение до 400 тысяч вольт, производится ка расстоянии. Современные электронные устройства позволяют дежурному объединенного диспетчерского управления из Москвы контролировать работу агрегатов гидроэлектростанции.

В нашей стране работает уже немало электростанций, которые находятся «на замке» и работают без обслуживающего персонала.

Людей заменили различные автоматически действующие электронные устройства. В случае возникновения неисправности они подают сигнал дежурному инженеру. Управление станцией производится с диспетчерского пункта. Перед диспетчером — целый ряд приборов, показывающих, как работает станция. Вся эта сложная система управления включает в себя различные электрические и электронные устройства.

На многих автомобильных, машиностроительных и других заводах, выпускающих массовую продукцию, работают десятки автоматических поточных линий и сотни станков-автоматов. Около них нет людей, они работают «самостоятельно». Небольшие электрические приборы — реле — сами производят пуск и остановку машин. Команды этим приборам подаются нажатием кнопок на пульте управления.

Можно автоматизировать работу не только отдельного станка или группы машин, по и работу всего предприятия. Уже несколько лет у нас работает первый в мире завод-автомат. Все на этом заводе делается автоматическими устройствами: производство отливок, обработка на многочисленных токарных, сверлильных и фрезерных станках, контроль каждой производственной операции, разбраковка изделий и упаковка их. Немало в нашей стране и других автоматизированных предприятий — хлебозаводов, макаронных и консервных фабрик, мясокомбинатов, табачных фабрик, химзаводов и др.

Автоматика освобождает человека от утомительных и однообразных производственных операций, экономит время рабочего, увеличивает выпуск продукции. Заменяя сотни рабочих, она позволяет использовать их на других участках производства.

Без применения автоматики и телемеханики невозможно было бы наладить современное массовое производство и развивать его.

 

РАДИОЭЛЕКТРОНИКА В СЕЛЬСКОМ ХОЗЯЙСТВЕ

 

Увеличение продуктивности хозяйства

Мы уже говорили о том, что на клетки живых организмов можно воздействовать высокочастотным электромагнитным полем. При этом в зависимости от характерна такого воздействия может быть повышена или ослаблена жизнедеятельность организма. Это и используется в сельскохозяйственном производстве.

Известно, какой огромный вред приносят вредители сельского хозяйства — амбарный клещ и амбарный долгоносик. Они уничтожают тысячи тонн семян, делают их непригодными для посева. С помощью радиоэлектронных приборов оказалось возможным вести с ними борьбу. Зараженное этими вредителями зерно пропускают через высокочастотную установку, где они погибают.

Если же изменить интенсивность и характер воздействия электромагнитных волн, то можно добиться ускорения жизненных процессов в организме. Так, успешные опыты проведены с личинками шелковичного червя. Облучение их полем высокой частоты увеличивало выработку шелка на 20–30 процентов.

Электромагнитные волны воздействуют и на клетки растений. Проведены успешные опыты по облучению электромагнитными волнами растений и семян. Облучение ускорило рост и развитие растений, позволило собрать более высокий урожай. Особенно это важно для таких культур, которые не успевают созревать до наступления холодов.

Во Всесоюзном научно-исследовательском институте удобрений, агротехники и агропочвоведения были проведены успешные опыты по использованию ультразвуков в сельском хозяйстве. Одинаковые семена огурцов были посеяны в один и тот же грунт. Но половину семян перед посадкой подвергли воздействию ультразвуком, т. е. в течение трех-пяти минут через семена пропускали ультразвуки.

Под их влиянием питательные вещества, запасенные в семени, раздробились, перешли в новую, более легко усвояемую форму. Масла превратились в раздробленные эмульсии, крахмал в растворимый декстрин. Частично расщепился белок. Все это повысило энергию прорастания семян, ускорило рост и значительно увеличило урожайность.

Наряду с обработкой семян были проведены опыты по ультразвуковому воздействию на почву. Имеющийся в почве перегной легко отдает семенам заключенные в нем питательные вещества лишь тогда, когда его частицы достаточно рыхлы. В этом случае почву легко обрабатывать, и урожай на ней получается выше. При пропускании через почву ультразвуковых колебаний пленки перегноя обволакивают частицы лесса, они легко разрыхляются, урожай повышается.

Радиоэлектронные приборы используются и в животноводстве. Наблюдая с их помощью биотоки домашних животных, специалисты судят о правильности функционирования различных органов и определяют заболевания.

 

Радио в наступлении на целину

Многие миллионы гектаров земли поднимаются теперь за несколько месяцев весенних и осенних полевых работ на востоке нашей страны, в районах целинных и залежных земель. Руководство такой работой невозможно без четкой повседневной связи.

Осуществить эту связь только с помощью телефона трудно, так как прокладка телефонных линий занимает немало времени; кроме того, тракторные бригады и отряды непрерывно передвигаются, уходят вглубь бескрайних просторов целинных земель.

Бесперебойную, круглосуточную связь с тысячами тракторных бригад можно осуществить только по радио. Теперь в колхозы и совхозы одновременно с тракторами, автомашинами, автозаправщиками и другими машинами поступают и радиостанции разных типов.

Наиболее распространена на целинных и залежных землях радиостанция «Урожай». Таких станций насчитываются уже тысячи, они имеются в каждой тракторной бригаде. Радиостанция «Урожай» обеспечивает уверенную связь в пределах 60 километров. Для связи на большие расстояния применяются станции других типов.

Преимущества радиосвязи позволили по-новому организовать полевые работы. Радио дало возможность быстро ликвидировать простои тракторов и других сельскохозяйственных машин. По радио с центральной усадьбы МТС нередко дается техническая консультация по устранению тех или иных неполадок в машинах, передаются агротехнические советы.

 

НЕМНОГО О БУДУЩЕМ

 

Передача энергии без проводов

Передача радиосигналов — это в то же время и передача энергии на большое расстояние без проводов. Однако с точки зрения экономической целесообразности такая передача невыгодна: приемник «улавливает» из окружающего пространства лишь ничтожную долю той энергии, которую излучает передающая антенна. Но нельзя ли увеличить эту долю существенным образом?

Это можно осуществить в том случае, если электромагнитные волны, излучаемые антенной передатчика, будут сконцентрированы, собраны в узкий пучок. В настоящее время уже созданы такие образцы передающих антенн, которые обеспечивают строгую направленность радиоизлучения. Эти антенны широко применяются в радиолокации, радиорелейной связи, в радионавигации.

Большое значение для передачи энергии на расстояние без проводов имеет выбор длины волны. Очевидно, для этой цели будут использованы самые короткие радиоволны. Они распространяются, как уже указывалось, прямолинейно, подобно солнечному лучу. Сейчас в этом направлении ведутся исследования с радиоволнами длиной в несколько сантиметров и даже миллиметров.

В каких случаях будет нужна передача энергии без проводов?

Например тогда, когда строить линию электропередачи экономически невыгодно или технически сложно. Предположим, нужно обеспечить электроэнергией населенный пункт, находящийся по другую сторону ущелья или на островке, отделенном от материка проливом. Портативные установки, расположенные на возвышенных местах, смогут полученную электромагнитную энергию превращать в электрический ток. Передатчики этой энергии будут устанавливаться вблизи мощных электростанций.

Рис. 14. Энергетическая станция будущего.

 

Ракетные снаряды, управляемые по радио

В ноябре 1953 года на сессии Всемирного Совета Мира президент Академии наук СССР А. Н. Несмеянов сказал: «Наука достигла такого состояния, когда реальна посылка стратоплана на Луну». Ученые многих стран настойчиво работают над осуществлением этой задачи.

До того как первые космические ракеты с людьми начнут совершать полеты за пределы земной атмосферы, неизбежен период пробных полетов автоматических ракет без людей. Эти ракеты будут управляться по радио.

Радиоволны принесут первые сведения о физических условиях, существующих на Луне, они расскажут о свойствах космического пространства. На Луну отправятся управляемые по радио космические лаборатории, снабженные телевизионными камерами. Благодаря им с Земли удастся рассмотреть рельеф лунной поверхности. Совершенные радиоэлектронные приборы измерят температуру лунной поверхности и определят другие данные, которые с помощью радиоволн будут передаваться на Землю.

Космические ракеты во время полета на Луну несколько раз будут заправляться топливом специальными ракетами-заправщиками, управляемыми с земли по радио. Радиоприборы позволят осуществить постоянный контроль за полетом ракеты от взлета до посадки.

Для получения необходимых данных о свойствах космического пространства, для проведения огромного количества научных исследований за пределами земной атмосферы ученые предлагают создать искусственные спутники Земли. Они, как и Луна, будут вращаться вокруг Земли. Первые такие спутники должны быть запущены уже в 1957 году. Без радиоэлектроники справиться с этой задачей нельзя.

Ракетные снаряды, управляемые по радио, можно использовать также для исследования стратосферы и космических лучей, фотографирования поверхности Земли с огромной высоты, переброски почты и других грузов между городами, отстоящими друг от друга на десятки тысяч километров.

Создание ракетных снарядов для космических полетов — задача очень трудная и сложная. Однако уровень развития современной радиоэлектроники и реактивной техники настолько высок, что позволяет уверенно предполагать скорое осуществление этих задач.

 

Радиоэлектронная аппаратура будущего

Развитие современной науки и техники уже позволило воплотить в жизнь самые смелые мечтания людей. Еще до открытия радио знаменитый французский романист Жюль Верн в романе «Замок в Карпатах» писал о громкоговорящем телефоне, а в романе «Остров-винт» — о передаче изображений на расстояние. Потребовалось немного более полувека настойчивых трудов ученых, чтобы оставить фантазию писателя далеко позади. Какой же станет радиоэлектронная аппаратура в будущем? Какие «поручения» людей она будет выполнять?

Откройте заднюю крышку радиоприемника и загляните внутрь. Вы увидите самые разнообразные детали: стеклянные или металлические радиолампы, трансформаторы и дроссели, конденсаторы и сопротивления. Соединенные в одну общую схему, эти детали занимают довольно значительный объем. Еще более громоздки детали передающих устройств.

Но вскоре громоздких радиоприемников и радиопередатчиков, которые мы встречаем сегодня, не будет. Их заменит портативная, безотказно действующая радиоэлектронная аппаратура.

Использование деталей, радиоламп и полупроводниковых элементов исключительно малых размеров позволит создать приемник размером не более спичечной коробки. Такой приемник сможет легко уместиться в кармане настанет такой же привычной принадлежностью, как, например, часы.

Питание радиоэлектронных устройств будет осуществляться от атомных батарей. Такие батареи могут работать непрерывно несколько лет. Первые их образцы уже созданы.

Радиопередающие устройства будущего также будут непохожи на современные. Вместо громоздких электронных генераторных ламп, катушек индуктивности, трансформаторов, дросселей появится компактный преобразователь атомной энергии в энергию электромагнитных волн.

Будет осуществлена идея видеотелефона. Разговаривая по телефону с абонентом, находящимся от вас в десятках и сотнях километров, вы сможете не только слышать его, но и видеть. Одновременно вы увидите предметы, окружающие вашего собеседника, чертежи, схемы, документы, которые он вам будет демонстрировать.

Для связи между предприятиями и учреждениями будут созданы портативные, простые в обращении телефонно-телеграфные аппараты. Они позволят осуществлять буквопечатание по проводам и облегчат переписку и обмен информацией между корреспондентами. Любой работник может соединиться по телефону с нужной организацией, сесть за этот аппарат и отпечатать текст, который сразу же окажется на столе у адресата.

Но это далеко не самые важные применения радиоэлектроники будущего. Радиоэлектронные приборы станут управлять целыми цехами, контролировать подачу материалов, следить за качеством продукции, за ходом химических реакций и т. д. Наступит эпоха невиданного по масштабам применения математических машин. Ими будут пользоваться инженеры при выборе наилучшей технологии производства, создании новых образцов продукции, при изучении новых способов обработки материалов и во многих других случаях. По воле человека, под его контролем радиоэлектронные приборы будут выполнять все самые трудоемкие операции в современном массовом производстве.

Ссылки

[1] Подробнее о том, как генерируются и принимаются радиоволны, рассказывается в брошюре «Научно-популярной библиотеки» Гостехиздата: А. Ф. Плонский, Радио.

[2] О фотоэлементах рассказывается в брошюре «Научно-популярной библиотеки» Гостехиздата: В. А. Мезенцев, Электрический глаз.

[3] Подробно о телевидении см. брошюру «Научно-популярной библиотеки» Гостехиздата: К. А. Гладков, Дальновидение.

[4] Подробнее об этом читайте в брошюре «Научно-популярной библиотеки» Гостехиздата: Ф. И. Честнов, Радиолокация.

[5] О метеорах и метеорных потоках см. брошюру «Научно-просветительной библиотеки» Гостехиздата: Е. А. Кринов, Небесные камни.

[6] О спектральном анализе рассказывается в брошюре «Научно-популярной библиотеки» Гостехиздата: С. Г. Суворов, О чем говорит луч света.

[7] Об электронном микроскопе читайте брошюры «Научно-популярной библиотеки» Гостехиздата: Ю. М. Кушнир, Окно в невидимое и С. Д. Клементьев, Электронный микроскоп.

[8] О том, как устроены такие часы, рассказывается подробнее в книжке «Научно-популярной библиотеки» Гостехиздата: А. Ф. Плонский, Пьезоэлектричество.

[9] Ультразвуками называют неслышимые звуки с частотами выше 16 000 — 20 000 колебаний в секунду.

[10] Об ультразвуках см. брошюру «Научно-популярной библиотеки» Гостехиздата: проф. Б. Б. Кудрявцев, Неслышимые звуки.

[11] Подробнее об этих приборах рассказывается в брошюрах «Научно-популярной библиотеки» Гостехиздата: К. Б. Заборенко, Радиоактивность и В. А. Лешковцев, Атомная энергия.

[12] Электронвольт — единица измерения энергии электронов. Если между катодом и анодом приложено напряжение 250 вольт, то каждый электрон в этом электрическом поле может приобрести энергию в 250 электронвольт.

[13] Читайте об этом брошюру «Научно-популярной библиотеки» Гостехиздата: С. Д. Клементьев, Управление на расстоянии.

[14] См. также брошюру «Научно-популярной библиотеки» Гостехиздата: К. В. Егоров, Автоматика и телемеханика.

[15] Подробно о космических полетах рассказывается в брошюре «Научно-популярной библиотеки» Гостехиздата: А. А. Штернфельд, Межпланетные полеты.

FB2Library.Elements.ImageItem

Содержание