Радиоастрономия
В течение тысячелетий люди пытливо исследовали Вселенную. Но изучать далекие миры Вселенной астрономам мешали атмосфера, окружающая Землю, и дневной свет. Атмосфера поглощает большую часть электромагнитных волн, приходящих из межзвездных пространств: часть невидимых ультрафиолетовых, инфракрасных и других лучей. В распоряжении астрономов оставалась только узкая полоска электромагнитных колебаний, относящаяся к видимому свету. Но и ею не всегда можно пользоваться: воздушные потоки вызывают мерцание звезд и ухудшают изображение, облачность и осадки нередко полностью срывают наблюдения. Солнечный свет препятствует наблюдению светил в дневное время.
Радио помогло астрономам создать принципиально новые средства исследования, приведшие к замечательным открытиям.
В начале второй мировой войны учеными было обнаружено, что радиолокационные станции, расположенные на восточном берегу Англии, не в состоянии обнаруживать самолеты противника в утренние часы, особенно если самолеты появляются низко над горизонтом. Обнаружить их мешали мощные радиопомехи неизвестного происхождения.
После изучения этого явления выяснилось, что источником радиопомех было Солнце. Позднее установили, что радиоизлучением обладает не только Солнце, но и Луна, а также межзвездный газ (например, водород) и некоторые туманности.
Земная атмосфера оказалась прозрачной не только для видимого света, но и для радиоволн. Она пропускает радиоволны длиной от 1 сантиметра до 15–20 метров. Так возникла новая наука — радиоастрономия.
За десять лет исследований радиоастрономы сделали уже много открытий. Наблюдая радиоизлучение Солнца, ученые установили, что оно содержит радиоволны от нескольких миллиметров до 10–15 метров и достигает наибольшей величины в годы максимума солнечной деятельности.
Большой научный интерес имеет открытие невидимого источника радиоизлучения — межзвездного газа водорода. Оно обнаружено на волне 21 сантиметр. Изучая его, ученые узнают свойства и характер движения межзвездной среды, ориентировочно определяют количество водорода в различных звездных системах.
Своими достижениями радиоастрономия в значительной степени обязана радиолокации, которая не только дала в распоряжение ученых высокочувствительные радиоприемные устройства, но и позволила с большей точностью измерить расстояния до небесных тел.
В 1946 году в Венгрии и в США с помощью радиоволн было произведено точное измерение расстояния до Луны: антенна радиолокатора, изображенная на рис. 10, послала мощный радиоимпульс на Луну.
Рис. 10. Антенна радиолокатора, с помощью которой была осуществлена радиолокация Луны.
Через 2,56 секунды этот радиосигнал, пройдя путь в 384 тысячи километров до Луны и столько же обратно, был принят чувствительным радиоприемником.
Большую роль играют радиолокационные методы исследования метеоров. Интересные наблюдения этого явления были сделаны, например, в ночь на 10 октября 1945 года во время «метеорного дождя». Радиолокаторы позволяют наблюдать метеоры как ночью, так и днем, и получать данные о скорости метеоров, орбитах метеорных потоков и т. д.
Радиоастрономические приборы — это сложные и нередко большие по размерам устройства, построенные по последнему слову радиоэлектронной техники. На рис. 11 показан один из крупнейших в мире радиотелескоп, построенный в 1956 году в Советском Союзе.
Рис. 11. Один из крупнейших в мире советский радиотелескоп.
Радиоспектроскопия
В научно-исследовательской работе широко применяется спектральный анализ. Сущность его заключается в следующем: белый свет, проходя через прозрачную стеклянную призму, разлагается на ряд составляющих цветов, образуя спектр. Этот спектр состоит из лучей красного, оранжевого, желтого и других цветов. Если на пути светового луча, кроме призмы, помещать пленки различных веществ, то в спектре появятся темные линии или полосы. Это результат поглощения веществом световых волн определенной длины. По расположению и ширине линий и полос в спектре ученые судят о составе исследуемого вещества.
Радиоспектроскопия основывается также на принципе поглощения веществом электромагнитных волн. Только она использует не световые волны, а радиоволны длиной 0,7–2 сантиметра, а в некоторых случаях и больше.
Через исследуемое вещество, например через газ, пpoпускаются радиоволны меняющейся длины. Для каждого вещества длина волны поглощения различна. Поэтому, по показанию точного измерительного прибора, отмечающего момент наибольшего поглощения радиоволн, определяют исследуемое вещество.
В настоящее время методами радиоспектроскопии исследовано несколько сот сложных веществ. При этом был определен целый ряд важных величин, например расстояния между атомами, что имеет большое значение для раскрытия химических связей веществ.
Радиоизлучение межзвездного водорода, о котором мы говорили выше, было обнаружено при помощи методов радиоспектроскопии. Были получены ценные данные о концентрации космического водорода, о его движении и о распределении в пространстве.
Радиоспектроскопические методы начинают все шире применяться для определения составов различных смесей газов. Они позволяют не только определить, из каких газов состоит смесь, но и найти процентное содержание каждого газа. Преимущество этих методов в том, что контроль можно производить непрерывно в течение всего времени химического процесса.
В связи с развитием радиоспектроскопических методов получила быстрое развитие радиоэлектроника самых малых длин волн. Были созданы генераторы радиоволн длиной в доли миллиметра. Освоение таких радиоволн дает возможность приступить к созданию радиолокаторов, на экранах которых будут видны не контуры местности, а изображение, такое же, как на экране телевизора.
Радиометеорология
Первым, кто применил радиоприбор для изучения явлений, происходящих в атмосфере, был изобретатель радио А. С. Попов. Созданный им приемник, названный грозоотметчиком, регистрировал радиоволны от грозовых разрядов, происходящих на расстоянии 30 километров. Это было началом развития и радиометеорологии, являющейся частью радиотехники.
Большое распространение в метеорологии получили радиозонды — приборы, служащие для измерения давления, температуры и влажности воздуха на разных высотах. Они поднимаются в воздух с помощью шаров, наполненных легким газом.
В радиозонде смонтирован миниатюрный радиопередатчик размером со спичечную коробку. Питается он от батареек. Вес советских радиозондов последних моделей немного более одного килограмма. По мере подъема радиозонда в воздух передатчик посылает на землю импульсы, которые регистрируются приемным устройством и преобразуются в показания приборов. Сигналы радиозонда могут быть приняты на расстоянии до 100 километров.
Радиозонды послужили базой для создания автоматических радиометеорологических станций, работающих без людей. Эти станции устанавливаются в труднодоступных и малообжитых местах и могут по году и более работать без вмешательства человека. В определенное время суток станция посылает радиоимпульсы, характер которых позволяет судить о давлении, температуре и влажности воздуха, о количестве осадков и т. д. Имеются станции, которые посылают свои импульсы в любое время по сигналу главной станции, принятому по радио.
Используются в метеорологии и радиоветромеры — приборы для автоматического измерения скорости и направления ветра. Они устанавливаются на море, вдали от берега — на плавающих буях, а также на вершинах гор. В них тоже работает радиоэлектронная аппаратура.
Все шире и шире метеорологи применяют радиолокационную аппаратуру. Радиолокационными средствами можно исследовать не только состояние атмосферы, но и изучать условия распространения радиоволн в зависимости от состояния погоды.
Оказалось, что радиоволны рассеиваются частицами воды и льда, содержащимися в атмосфере; при сантиметровых и миллиметровых волнах это может привести к нарушению связи. Изменение температуры и влажности с высотой влияет на дальность действия радиостанций, работающих на самых коротких радиоволнах. Но, с другой стороны, неоднородный состав различных слоев атмосферы может в некоторых случаях привести к устойчивому приему телевизионных программ за пределами прямой видимости. Эти явления сейчас тщательно исследуются.
Применение радиоэлектроники в метеорологии позволило получать ежедневно огромное количество данных о состоянии погоды в самых различных районах земного шара.
Для выпуска прогнозов погоды, для ее предсказывания нужно в очень короткое время систематизировать, обработать эти данные. На помощь приходят электронные вычислительные машины, которые могут в короткий срок обработать все сведения, поступающие от метеорологических станций.
Электронные вычислительные машины
Потребность облегчить труд счетных работников возникла давно. Вначале этой цели служили простые счеты, которые 4–5 тысяч лет назад применялись в Китае, а затем попали в Европу. Столетие назад появились механические арифметические машины, применяющиеся до наших дней. В начале XX века была создана логарифмическая линейка, значительно облегчившая труд инженеров и конструкторов.
Первая в мире математическая машина для решения задач высшей математики была сконструирована и построена академиком А. Н. Крыловым в Петербурге в 1912 году.
Развитие радиоэлектронной техники дало возможность создать разнообразные виды математических машин, позволяющих производить с большой точностью и за очень короткое время огромное количество математических операций.
Как же работает электронная вычислительная машина?
Ученые, приступая к решению той или иной проблемы, формулируют, выражают ее в виде сложных математических уравнений. Зная физическую сущность исследуемого процесса и владея специальными математическими методами, можно любую сложную задачу свести при ее решении к определенной последовательности четырех действий арифметики: сложения, вычитания, умножения и деления. Электронная счетная машина выполняет все эти действия исключительно быстро. При этом машина сама «запоминает» результат промежуточных действий и хранит его до тех пор, пока он не потребуется для выполнения следующей счетной операции. Программа вычислений, их последовательность определяются математиками заранее. По нескольким таким заданиям или «командам» счетная машина может сделать за короткое время десятки и даже сотни миллионов арифметических действий.
В Академии наук СССР более трех лет работает быстродействующая электронная счетная машина «БЭСМ» (рис. 12).
Рис. 12. Быстродействующая счетная машина «БЭСМ» Академии наук СССР. Слева — пульт управления машиной.
Она сконструирована Институтом точной механики и вычислительной техники. За одну секунду машина совершает в среднем 7–8 тысяч арифметических действий. Опытному вычислителю, вооруженному арифмометром, для этого понадобилось бы около четырех рабочих дней, а несколько часов работы машины равноценны работе вычислителя в течение всей его жизни.
«БЭСМ» позволила ученым решить ряд задач физики, механики, астрономии, химии. Так, например, за несколько дней были подсчитаны орбиты движения около семисот малых планет солнечной системы с учетом воздействия на них Юпитера и Сатурна.
Вычисления на этой машине ведутся с числами от одной миллиардной доли единицы до миллиарда. Результаты вычислений печатаются специальным электромеханическим устройством со скоростью 1,5 числа в секунду. Они могут быть также отпечатаны на кинопленку.
В машине «БЭСМ» 5 тысяч электронных ламп, срок службы каждой лампы превышает 10 тысяч часов. Машина обслуживается двумя инженерами и техником.
Математические машины используются сейчас для решения задач в самых различных отраслях науки и техники, например в метеорологии. Для предсказания погоды на завтрашний день необходимо произвести столько математических операций, что вычислителям потребуется работать около двух недель. Счетно-решающая электронная машина выполняет эти вычисления за два часа, и предсказание можно дать своевременно.
Современные электронные машины «способны» не только к математическим действиям. Создана, например, «читающая машина». С ее помощью человек, лишенный зрения, может читать обычные газеты, книги, журналы. Электронный луч скользит по строчкам, накапливает сигналы и включает механизм, произносящий слова. Имеется и машина — переводчик. С ее помощью можно печатать текст на одном языке и через несколько секунд получать листы, отпечатанные на другом языке. Конечно, все задания, которые выполняют «читающие» и «переводящие» машины, дает человек.
В настоящее время ученые работают над созданием еще более совершенных математических машин. Очень важно создать машину небольшого размера, поскольку большинство действующих в наши дни электронных вычислительных машин занимают десятки и даже сотни квадратных метров площади. Портативная машина может найти место в лаборатории, в конструкторском бюро, в кабинете ученого. Чтобы математическая машина получилась небольших размеров, нужны миниатюрные радиолампы и детали. Теперь это достигается внедрением в радиотехнику так называемых полупроводниковых электронных приборов, или кристаллических элементов.
В двадцатых годах наш соотечественник О. В. Лосев открыл способ усиливать радиосигналы с помощью не радиоламп, а особого полупроводникового элемента.
Новый преобразователь и усилитель электрических колебаний был назван кристадином. По своим качествам он уступал радиолампе; это и понятно: наука того времени о полупроводниках знала очень мало. Изобретение О. В. Лосева было забыто.
Вспомнили о нем в годы второй мировой войны, когда стали строить радиолокаторы, работающие на сантиметровых волнах: кристаллический преобразователь на этих волнах работал значительно лучше радиолампы! С этого времени началось чрезвычайно быстрое внедрение полупроводников в технику.
Полупроводники составляют в природе особую группу тел. В обычных условиях они плохо проводят ток и этим похожи на изоляторы. Но стоит внешним условиям измениться, и полупроводник начинает сравнительно хорошо пропускать ток, приближаясь по своим свойствам к проводникам. К полупроводникам относятся различные окислы и минералы, а также такие химические элементы, как германий, кремний, селен, теллур, бор, фосфор.
Первое свое применение в современной технике полупроводники получили как выпрямители переменного тока. Переменный ток пропускают через соединение полупроводников двух различных типов, в результате чего получают выпрямленный ток, т. е. такой ток, который протекает только в одном направлении. Раньше для этой цели применялись радиолампы.
Усложнив устройство полупроводникового элемента, удалось применить его для усиления слабых электрических сигналов. Новый прибор выполняет те же функции, что и усилительная лампа, но отличается в десятки раз меньшими размерами и тем, что не имеет нити накала.
Это значительно сокращает потребление энергии источников питания.
Первый кристаллический триод был создан в 1948 г. В настоящее время разработаны десятки типов полупроводниковых приборов.
В создании радиоэлектронной аппаратуры небольших размеров велика роль и так называемых печатных схем. Это такие радиосхемы, которые печатаются способом, близким к типографскому. На стеклянные или пластмассовые пластины наносится «рисунок», включающий в себя конденсаторы сопротивления и далее небольшие катушки индуктивности. Такой двухмерный (плоский) монтаж очень удобен в массовом производстве радиоаппаратуры и позволяет намного уменьшить ее размеры.
Внедрение этих достижений радиотехники в производство позволит не только создать портативные электронные математические машины, но и сделает возможным по-новому подойти к конструированию телевизоров, радиолокаторов, радионавигационных устройств и другой радиоаппаратуры.
Электронное оружие ученых
Известно, какое значительное место занял в научно-исследовательской работе микроскоп. Им пользуются биологи, физики, химики, минералоги. Благодаря ему удалось открыть и изучить различные виды бактерий и микробов, разгадать строение и свойства различных веществ.
Современный оптический микроскоп может дать увеличение наблюдаемого объекта в 2000 раз, а с помощью ультрафиолетовых лучей — в 3000 раз. Это предел для оптических микроскопов. Но существует также электронный микроскоп, позволяющий перешагнуть этот порог. В нем «освещение» объекта производится потоком электронов. Это дает возможность рассмотреть более мелкие детали. В электронном микроскопе увеличенное изображение исследователь видит на экране электронно-лучевой трубки, подобной тем, которые применяются в телевидении и радиолокации.
Современные электронные микроскопы дают увеличение в 30 тысяч раз, а с последующим фотоувеличением до 100–200 тысяч раз. Такое увеличение позволяет рассматривать внутреннее строение бактерий и вирусов, молекулы сложных химических соединений и т. д. Наблюдая в электронный микроскоп живые ткани, можно видеть действие различных лекарств на бактерии. Это позволяет разрабатывать эффективные средства борьбы с болезнями.
Недавно появилось сообщение о создании нового, еще более замечательного прибора — электронного проектора. Этот прибор дает увеличение в 1–2 миллиона раз и позволяет отчетливо видеть строение кристаллической решетки металлов. Если с помощью этого прибора исследуется газ, то можно достигнуть увеличения в 10 миллионов раз и рассмотреть не только молекулы, но и расположение отдельных атомов! При помощи нового прибора впервые удалось рассмотреть атомы бария.
Для наблюдения за ходом различных физических процессов, а также для работы астрономов необходимы приборы, точно отсчитывающие время. Сейчас с помощью радиоэлектронных часов, в которых используются некоторые свойства кварцевых пластинок, удается измерять время с погрешностью, не превышающей одной десятитысячной доли секунды. За 32 года подобные «кварцевые часы» «отстают» или «уходят» не больше чем на одну секунду.
Несколько лет ведутся работы и по созданию так называемых «атомных часов». В этих часах используется явление, открытое радиоспектроскопией: при прохождении электромагнитных волн через газ поглощение радиоволн происходит на строго определенной частоте. Ни изменение температуры, ни другие воздействия не могут «сбить» эти часы. За 300 лет такие часы могут уйти вперед или отстать не более чем на одну секунду!
Радиоэлектронные приборы позволили физикам измерять ничтожные изменения линейных размеров тел. Для этой цели были созданы радиомикрометры. Одна из основных деталей радиомикрометра — конденсатор колебательного контура. Его емкость, как емкость любого конденсатора, зависит от расстояния между пластинами. А от емкости, как мы уже говорили, в свою очередь, зависит частота колебательного контура. Если одну из пластин соединить с предметом, длина которого изменяется, а другую закрепить неподвижно, то по отклонению частоты контура можно судить об изменении длины.
С помощью радиомикрометра, способного реагировать на ничтожно малые изменения размеров тел, изучают явления нагревания, намагничения и другие процессы. Современные электронные микрометры могут обнаруживать смещения в одну миллиардную долю миллиметра!
Для целого ряда физических исследований очень важно производить регулирование температуры с большой точностью. А для этого нужны точные измерители температуры. Электронные схемы измерения и регулирования температуры позволяют поддерживать ее постоянство с точностью свыше одной тысячной доли градуса.
Огромную помощь оказывают электронные приборы ученым, изучающим условия работы различных машин и механизмов. Здесь важно знать, какие механические усилия испытывают те или иные детали или узлы. Чтобы измерять усилия, к деталям и узлам пристраивают чувствительные устройства — «датчики», которые под действием механических усилий вырабатывают электрические сигналы. Чем большее усилие испытывает датчик, тем большей силы импульсы вырабатывает он. Импульсы от датчиков усиливаются ламповыми усилителями и подаются на стрелочные приборы.
Развитие радиоэлектронной техники явилось базой для создания приборов, использующих не радиоволны, а неслышимые звуки — ультразвуки. В этих приборах радиоэлектронные схемы применяются для создания ультразвуковых волн.
В настоящее время с помощью ультразвуков определяют глубины морей, очищают и полируют поверхности металлических изделий, ускоряют химические реакции, затачивают резцы из сверхтвердых сплавов, режут листы металла и стекла и даже стирают белье. Большое значение имеют ультразвуковые дефектоскопы, впервые разработанные советским ученым С. Я. Соколовым. С помощью этих приборов можно в массивных металлических изделиях обнаружить мельчайшие дефекты: трещины, раковины, посторонние тела.
Наиболее ценен вклад радиоэлектроники в ядерную физику — науку, изучающую строение атомного ядра. Для исследований в этой области были созданы мощные физические установки — ускорители элементарных частиц (электронов, протонов и др.). При помощи ускорителей ученые осуществляют «стрельбу» по ядрам атомов различных веществ. Это позволяет расщеплять атомы, выделять огромную энергию, получать новые вещества.
Современный ускоритель — сложнейшее радиоэлектронное устройство. Это — огромное сооружение, весящее десятки тысяч тонн. Ускорение элементарных частиц осуществляется в большой вакуумной камере, расположенной между полюсами гигантского электромагнита. На специальные электроды от генератора подается ускоряющее переменное напряжение. Оно, как и магнитное поле электромагнита, воздействует на частицу — «подталкивает» ее, увеличивает ее скорость. Благодаря этому двойному воздействию элементарная частица начинает двигаться по спирали и, разгоняясь, постепенно удаляется от центра вращения. Наступает момент, когда электромагнит уже не в состоянии удерживать частицу, и она устремляется наружу и поражает «цель».
Сейчас в различных странах используется несколько типов ускорителей элементарных частиц. Самыми мощными из них являются синхрофазотроны. В них изменяется не только частота переменного напряжения, подаваемого на электроды, но и величина магнитного поля. Это позволяет получить частицы с энергией в миллиарды электронвольт.
Крупнейшие установки для ускорения частиц высоких энергий открывают необозримые горизонты для развития ядерной физики. Самая мощная ускорительная установка — синхрофазотрон — построена в Советском Союзе. В этой установке за 3,3 секунды частицы делают внутри камеры четыре с половиной миллиона оборотов и проходят при этом путь в миллион километров, двигаясь почти со скоростью света. На синхрофазотроне удалось придать частицам энергию в 10 миллиардов электронвольт!
Управление работой всех составных частей современных ускорителей осуществляется автоматически при помощи сложных электронных приборов.
Без применения новейших достижений радиоэлектроники трудно себе представить возможность получения атомной энергии и использования ее для нужд человечества.
Электроника в биологии и в медицине
Электрической энергией можно воздействовать на живую ткань, замедлять или ускорять интенсивность тех или иных процессов, происходящих в организме.
На рис. 13 показан снимок с экрана сложного электронного прибора — катодного осциллографа, предназначенного для исследования различных электрических процессов.
Рис. 13. Электрический ток при раздражении нерва лягушки, зарегистрированный на экране осциллографа.
Прибор зарегистрировал появление тока, возникшего при раздражении нерва лягушки, причем продолжительность этого явления составляла всего 2–3 тысячных доли секунды.
Ученые широко используют подобные приборы, исследуя жизнедеятельность различных органов и тканей животных и человека. Поскольку электрические токи, возникающие в тканях организма, очень малы, для их усиления применяют радиоусилители.
Многие медицинские учреждения нашей страны имеют кабинеты радиотерапии — так называется новая отрасль медицины, использующая токи низкой и высокой частоты и радиоволны как лечебное средство.
С помощью токов низкой частоты можно заставить мышцы человека периодически сокращаться и расслабляться. Такая электрогимнастика очень полезна при лечении некоторых видов параличей, ожирения и т. д.
Импульсы токов низкой частоты, если воздействовать ими на кору головного мозга, могут вызвать искусственный сон. Лечение искусственным сном применяется для борьбы с такими заболеваниями, как гипертония, неврозы и др.
Широко используются в медицинской практике и токи высокой частоты. Эти токи вырабатываются ламповыми генераторами, схема которых подобна схемам генераторов в передатчиках. Для лечения используются колебания от 500 тысяч до 1 миллиона колебаний в секунду. Больного помещают внутрь огромной катушки индуктивности, либо прикладывают к различным участкам тела металлические электроды. Эти электроды не что иное, как пластины конденсатора, входящего в колебательный контур.
Токи высокой частоты широко применяются при лечении ран, ожогов, язв, при головных болях. Они используются для прогревания различных внутренних органов человека, позволяя быстрее излечивать воспаление легких, плеврит и другие простудные заболевания. Положительные результаты дало применение токов высокой частоты для лечения различных заболеваний сердца и органов пищеварения.
Интересны опыты по применению в медицинской практике импульсов высокой частоты. Их создают электронные устройства, напоминающие передатчики радиолокаторов. Генераторы импульсного тока успешно применяются при оживлении мнимоумерших, для создания искусственного дыхания и во многих других случаях.
Мы уже говорили о стерилизующем свойстве токов высокой частоты, используемом для обработки загрязненных продуктов в пищевой промышленности. Это свойство начинает применяться и в медицине, Инструмент и хирургические материалы подвергают обработке токами высокой частоты. Тем самым ликвидируют опасность заражения во время операции.
В медицине применяют и самые короткие радиоволны, имеющие длину менее 10 метров. Облучение ими используется при лечении фурункулеза, флегмоны и т. д.
Трудно рассказать о всем многообразии электронных приборов, используемых в медицине и в биологии. Среди них — устройства, позволяющие определять размеры внутренних органов человека и животных; приборы, дающие возможность наблюдать на экране трубки работу сердца непосредственно у постели больного, портативные усилительные аппараты, возвращающие слух тугоухим, и т. д.