Уравнения темпов, описанные в главах 5 и 6, выражают правила, которые регламентируют функционирование системы. Это функционирование представлено в форме серий решений, определяющих и регулирующих темпы потоков в системе. В основу построения модели кладется отчетливая формулировка образа действий (правил), которые обеспечивают принятие решений с учетом всех условий, подлежащих отражению в данной системе. Процесс принятия решений состоит из трех этапов: установление комплекса показателей, V/' определяющих желаемые условия, учет существующих условий и выработка корректирующих действий, имеющих целью приблизить существующие условия к желаемым.
Искаженная и запоздалая информация о существующих условиях влияет на оценку как желаемых, так и наблюдаемых условий. Из-за такой информации корректирующее воздействие, в свою очередь, также может оказаться запоздалым или искаженным системой еще перед тем, как оно сможет повлиять на существующие и отображаемые условия. Вопрос о существе правил, связанных с выработкой решений, широко освещен в литературе по социальным вопросам, литература по управлению не составляет исключения. Для разработки базовой схемы правил управления накоплены необходимые знания.
Управление представляет собой процесс преобразования информации в действия. Этот процесс мы называем принятием решений. Принятие решений в свою очередь зависит от различных явно выраженных или неявных правил поведения.
Термин «правило» в том смысле, в каком он употребляется в данном контексте, означает порядок принятия текущих решений. Решения же — суть действия, предпринятые в тот или иной момент времени в результате применения установленных правил в определенных условиях, преобладающих в данный момент.
Если управление представляет собой процесс преобразования информации в действия, то ясно, что успех управления прежде всего зависит от того, какая информация отобрана и как выполнено ее преобразование. В этом заключается различие между хорошим и плохим управлением. Каждый человек располагает большим количеством источников информации. Но каждый из нас отбирает и использует лишь небольшую часть информации; при этом мы используем ее не полностью, а иногда и ошибочно.
Хозяйственный руководитель сам создает основу собственного успеха, принимая решение о том, какие источники информации он будет учитывать, а какие можно игнорировать. После того как он отберет определенные виды информации и ее источники, отдавая им предпочтение, успех будет зависеть от того, как он сумеет использовать эту информацию. Насколько быстро или медленно сумеет он превратить ее в действие? Какова относительная ценность различных источников информации в свете целей, которые он собирается достичь? Каким образом достигаются эти цели на основе имеющейся у него информации?
В этой книге управляющий рассматривается как преобразователь информации. Он является лицом, к которому стекается информация и от которого исходят потоки решений, регулирующих действия, осуществляемые внутри организации. Многое в поведении людей может быть правильно оценено, если рассматривать его как преобразование информации в физическое действие. Однако вознаграждение управляющего зависит не от того, какие он предпринял физические усилия. Прежде всего он является лицом, регулирующим информацию на управляемом им участке организации. Он получает входящие потоки информации и комбинирует их в потоки административных указаний.
Когда мы рассматриваем управляющего в этом аспекте, сразу становится ясным, почему нас интересуют вопросы о принятии решений и о потоке информации. Промышленная организация представляет собой комплекс, в котором соединены сети каналов информации. Эти каналы начинаются в тех пунктах, где производится контроль реальных процессов, таких, как наем рабочей силы, капитальное строительство и производство товаров.
Каждому пункту деятельности системы соответствует определенный локальный пункт принятия решений, основанных на данных, которые исходят из источников информации как в различных частях организации, так и в окружающей среде.
На рис. 9–1 показан поток решений в про-, стейшей схеме информационной системы с обратной связью. Информация вводится в пункт, где принимаются решения, которые управляют действием, являющимся источником новой информации. В каждом из элементов схемы имеют место запаздывания. Действительно, информация о действиях не может поступать немедленно, решения не отвечают мгновенно на поступившую информацию, а для выполнения действий, предписываемых потоком решений, требуется время. Равным образом в каждом из элементов схемы могут иметь место усиления, понимаемые здесь в позитивном, негативном или нелинейном смысле. Иными словами, вывод из элемента может быть больше или меньше, чем это можно предположить, исходя из ввода. Кроме того, в выводе могут быть искажения или шумы. Усиления, затухания и искажения в любой точке системы могут сделать ее более чувствительной к одним видам возмущений по сравнению с другими.
#pic91.png
Рис. 9–1. Решения и информация с обратной связью.
Само собой разумеется, что схема промышленной системы неизмеримо сложнее простой схемы информационной системы с обратной связью, изображенной на рис. 9–1. Она состоит из многих звеньев и взаимосвязанных систем, схема которых подобна изображенной на рис. 9–2. Решения принимаются во многих пунктах системы. Каждое ответное действие порождает информацию, которая может быть использована во многих, но не во всех пунктах, где принимаются решения. Эта конструкция из многоступенчатых взаимосвязанных звеньев информации с обратной связью в целом изображает промышленную систему. Внутри фирмы пункты принятия решений простираются от экспедиции и складов до дирекции или правления. В национальной экономике США они простираются от частных решений потребителей относительно покупки автомобилей до размера учетного процента, устанавливаемого Федеральным резервным управлением.
#pic92.png
Рис. 9–2. Многоступенчатая система принятия решений.
9. 1. Сущность процесса принятия решений
Мы переходим к детальному анализу процесса принятия решений, посредством которых информация преобразуется в действие. Рис. 9–3 показывает структуру системы вокруг пункта принятия решений. Решение основывается на состоянии системы, которое здесь представлено совокупностью различных уровней. Некоторые уровни отражают состояние системы в данный момент, другие — наши представления о том, что происходит в системе. Это могут быть уровни товаро-материальных запасов, численности служащих, среднего числа продаж за последний месяц, выполнения плана научно-исследовательских работ на данное число, перспективы экономической активности и т. д. Все эти данные являются вводами в пункт принятия решений. Вывод из пункта принятия решений регулирует темп изменения уровней в системе. Термин «решение» употребляется здесь в очень широком смысле. Он может относиться к выполнению заказов за счет имеющихся запасов, размещению заказов для пополнения запасов, санкционированию реконструкции предприятия, найму научно-исследовательских работников, утверждению расходов на рекламу и т. д.
#pic93.png
Рис. 9–3. Принятие решений в структуре системы.
Для рассматриваемой структуры системы чрезвычайно важным является направление линий, характеризующих взаимозависимости между ее элементами, которые изображены на рис. 9–3. Уровни являются вводами в поток решений. Решения регулируют темпы потоков между уровнями. Темпы потоков приводят к изменениям уровней. Однако темпы потоков сами по себе не являются вводами к решениям. Темп потока в данный момент вообще не поддается измерению, остается неизвестным и не может оказывать влияния на принятие решений в данный конкретный момент.
Определенное лицо в промышленной организации может нести главную ответственность за регулирование темпа какого-то одного потока, например за размещение заказов в целях поддержания уровня товаро-материальных запасов. С другой стороны, определенное лицо может объединить несколько отдельных пунктов принятия решений, регулирующих несколько не связанных между собой темпов потоков. Если это так, то нам следует рассматривать эти потоки изолированно, как находящиеся в различных частях сети информации или других сетях данной системы.
Определенный интерес представляет развернутая структура процесса принятия решений, изображенная на рис. 9–4. Решения в основном предполагают три момента. Во-первых, выработка представления о желаемом положении вещей. Каким, по нашему мнению, должно быть положение системы? К чему мы стремимся? В чем заключаются цели и задачи данного пункта принятия решений? Во-вторых, имеется наблюдаемое фактическое состояние. Иными словами, имеющаяся в нашем распоряжении информация приводит нас к определенным заключениям, и мы верим, что они отражают состояние системы в данное время. В зависимости от используемых потоков информации, от величины задержек и искажений в этой информации учтенное фактическое состояние может в большей или меньшей степени отклоняться от действительного положения вещей в настоящее время. Третьей частью процесса принятия решений является выработка образа действий, которые будут предприняты в соответствии с любыми обнаруженными расхождениями между существующим и желаемым состояниями.
#pic94.png
Рис. 9–4. Процесс принятия решений.
Вообще чем больше расхождение, тем сильнее ответное действие, хотя весь этот процесс выявления желаемых условий, определения действительного состояния и выработки на этой основе линии поведения является в высшей степени нелинейным и полным помех. Незначительные расхождения между отображенным и желательным состояниями системы могут представляться не имеющими значения и приводить лишь к незначительным действиям. Возрастающее расхождение может привести ко все более решительным попыткам скорректировать действительное состояние в направлении желаемого. Однако определенный уровень расхождений может остаться и в том случае, когда был использован максимум возможных корректирующих действий, и тогда дальнейшее увеличение разрыва между желаемым и действительным состояниями системы в этом пункте перестает вызывать соответствующие изменения в темпе потоков.
Процесс принятия решений представлен здесь как непрерывный процесс, осуществляемый в механизме для преобразования непрерывно изменяющихся потоков информации в сигналы, которые регулируют темпы потоков в системе. Пункты принятия решений непрерывно реагируют на импульсы, поступающие из внешней среды, что свидетельствует о возможности учитывать новые обстоятельства по мере возникновения последних. Это значит, что система постоянно приспосабливается к изменяющемуся положению вещей, что она постоянно избирает золотую середину, определяя интенсивность воздействия, и что она неизменно стремится к достижению желаемых целей. Интенсивность действий в системе всегда характеризует разрыв между целями и наблюдаемым положением системы.
Следует отметить, что мы рассматриваем процесс принятия решений весьма приближенно, не углубляясь в самый механизм человеческого мышления. Мы даже недостаточно вникаем в существо каждого отдельного решения в том смысле, как мы его себе представляем. Мы не настолько подробно его обсуждаем, чтобы интересоваться, создается ли решение одним лицом или действиями группы лиц. Вместе с тем мы не настолько отвлекаемся от конкретных условий, чтобы игнорировать пункт принятия решения и его место в моделируемой системе. Для наших целей важное значение имеют правильная степень обобщения и соблюдение надлежащей перспективы. Мы не психологи, анализирующие переживания человека и мотивы его действий. Мы также и не биофизики, которых интересует физическое и логическое строение мозга. Но вместе с тем мы. и не держатели акций, которые настолько далеки от предприятия, что не имеют представления ни о его внутренней структуре, ни о социальных явлениях, ни о пунктах принятия решений.
Наша точка зрения — это, скорее всего, точка зрения управляющего, то есть руководящего лица, выполняющего определенные обязанности. Такой администратор достаточно осведомлен о путях достижения желаемых целей. Он находится в таком положении, которое позволяет наблюдать и, вероятно, также обеспечивать источники информации, необходимые его подчиненным для составления более или менее ясного представления о фактическом положении вещей. Он в общих чертах знает те правила, которыми его подчиненный, принимающий решения, будет руководствоваться в зависимости от различных обстоятельств.
9. 2. Правила
Рассмотрим теперь то, что мы называем «правилами». Термин «правило» употребляется в широком смысле для определения того порядка, согласно которому в результате процесса принятия решений информация преобразуется в действия. Правила устанавливают, какие действия последуют в результате определенных вводов информации, или, иначе говоря, каков характер взаимосвязи между источниками информации и потоком ответных решений.
Прежде всего уточним наше понимание термина «правило». Позднее мы займемся вопросом о том, существуют ли вообще такие правила и можно ли определить их форму.
Правила, как уже говорилось, это — основные принципы, определяющие зависимость между источниками информации и ответными потоками решений. В литературе их часто определяют как образ действий, которым руководствуются при принятии решений. В области физических систем, в особенности в области следящих систем, термину «правило» соответствует термин «функция преобразования»; эта функция показывает, в какой зависимости находится вывод из того или иного элемента от потока вводов; она не обязательно должна указывать определенные физические пути преобразования. Мы будем удовлетворены, если функция преобразования в конкретных условиях подскажет нам достаточно верно, какими должны быть ответные действия на настоящие и прошлые потоки вводов.
Значительная часть литературы в области экономики посвящена тому, что мы здесь называем правилами. В промышленных организациях некоторые виды правил носят весьма формализованный характер. Они сведены к составлению инструкций для тех, кто принимает решения в системе. Но правила руководства в значительной степени складываются из неформальных элементов, которые оказывают тем не менее значительное влияние на положение вещей. Они зависят от привычек, подчиненности, общественного давления, укоренившихся понятий о том, к чему следует стремиться, от значения влиятельных центров внутри организации и от личной заинтересованности.
Отвлеченное понятие принятия решений в своем развитии прошло через три разные стадии. На низшей стадии — это случайные, не обдуманные действия, которые не зависят от вводов и не имеют под собой никакой основы. На второй стадии мы встречаемся с иррациональными интуитивными реакциями, которые по существу являются результатом получаемых потоков информации, однако те, кто действует, не отдают себе отчета в том, как складываются и на чем основываются их решения. Можно предположить, что эта стадия представлена «мышлением» и решениями низших животных. Для их решений и действий есть основания и причины, но очевидно, что они не знают об этих основаниях и их логической структуре. Для третьей стадии характерна осведомленность о формальных основаниях решений; здесь мы отдаем себе отчет, почему принимается то или иное решение и какова будет реакция других лиц на определенные изменения в окружающей их обстановке.
Основанное на определенных правилах представление об основаниях для принятия решения, которое я называю политикой руководства, разумеется, известно со времени появления письменности. Важнейшее отличие человека от животных определяется тем, что человек отдает себе отчет, почему он действует так или иначе. История и литература уделяют много внимания основаниям (или политике), которые заставляют человека, принимающего решение, разумно реагировать на окружающую обстановку, реагировать именно так, как этого можно было ожидать. Когда мы говорим, в чем состоит разумная и ожидаемая реакция, то, по существу, мы таким образом описываем правила, на основе которых информация превращается в определенные действия.
9. 3. Выявление руководящих правил
Нам предстоит теперь решить, располагаем ли мы возможностью достаточно точно выявить сущность руководящих правил, чтобы можно было их использовать для лучшего понимания поведения промышленных и экономических систем, в состав которых мы сами входим. Известно, что по этому вопросу существуют две точки зрения. Большая часть литературных источников по вопросам принятия решений указывает на значительные трудности и тонкости, связанные с этой проблемой. Нередко, когда поднимается вопрос о природе процесса принятия решений в человеческом обществе, мы слышим ответ ученых, что изучению этой проблемы еще не положено даже начало. Однако историки, писатели, администраторы, а также любой из нас в повседневной жизни оказываются более смелыми. Мы все рассуждаем о том, «почему такой-то действовал определенным образом». В ходе этих рассуждений мы обсуждаем политику, которой он руководствовался. Мы судим о том, каким образом он реагировал или как ему следовало реагировать на ту информацию, которая имелась в его распоряжении.
Двойственность нашего отношения к процессу принятия решений может быть проиллюстрирована двумя встречами, которые у меня были недавно с двумя моими сослуживцами. Один решительно утверждал, что действия Федерального резервного управления совершенно невозможно изобразить в виде схематической модели, представляющей поведение национальной экономической системы. При этом в качестве основного аргумента он выдвигал то обстоятельство, что мы не знаем процесса принятия соответствующих решений, которые отличаются слишком большими тонкостями. Эти решения субъективны, интуитивны, и мы ничего не знаем о правилах, которыми руководствуются при их принятии. Второй случай имел место на устном экзамене на степень доктора. Один из экзаменаторов предложил соискателю, как будто это было в порядке вещей, описать те факторы, на основе которых Федеральное резервное управление регулирует в различных направлениях политику в области учетного процента и в области свободного рынка. Иными словами, предполагалось, что кандидат на докторскую степень в области экономики знает сущность тех правил, которые определяют поток решений Федерального резервного управления. Разумеется, в ответе могло содержаться достаточно лишних слов, он мог быть не вполне точным и отличаться многословием. Однако предполагалось, что общие понятия о руководящих правилах управления известны экзаменующемуся.
Противоречивость мнений относительно процесса принятия решений весьма сходна с тем, что мы наблюдаем в представлении о процессе, связанном с изобретательством. В любых рассуждениях о том, каким образом рождаются новые идеи, как возникают изобретения и, достигаются результаты в научных исследованиях, существует очень много спорного и мало единства во взглядах. Однако господствует почти полное единодушие в признании того факта, что вероятность достижения успеха определяется квалификацией и опытом исследователя, размерами ассигнований, характером мотивов и степенью заинтересованности в получении результата. Этот общий взгляд относительно сущности функции преобразования, которая сочетает вводы в виде финансов и людских ресурсов и обеспечивает выработку на этой основе научных выводов, является базой для решений конгресса и для определения величины ассигнований на нужды военного ведомства.
Короче говоря, вся цивилизация исходит не только из предположения, что действия человека имеют под собой определенную основу, но также из убеждения, что нам многое известно относительно особой сущности и пределов действия правил руководства. Нам, в частности, достаточно хорошо известно, как воздействуют результаты изменений положения в системе на принятие решений. Периодическая литература по вопросам управления, как, например, «Бизнес уик», «Уолл-стрит джорнэл» и «Форбс», заполнена рассуждениями относительно решений, связанных с управлением. Много опубликованных в печати материалов посвящено обсуждению воздействия существующего положения вещей и о том влиянии, которое оно оказывает на лиц, принимающих решения. Как нам кажется, многие считают, что между автоматическими решениями, которые являются абсолютно формальными, и другими решениями-в области управления существует глубокий разрыв. Такие люди не хотят признавать самой возможности существования формальных правил, которые позволяют описать основные принципы управления. В подходе многих администраторов к этому вопросу, связанному с пониманием формальной основы процесса принятия решений, существует интересное противоречие. Любой администратор в силу необходимости признает существование области автоматических решений, поскольку такие решения широко распространены. Большинство администраторов склонны утверждать, что область принятия решений, основанных на интуитивном суждении, столь тонка, что ее невозможно представить хотя бы приблизительно с помощью формальных правил принятия решений. Однако эти же самые администраторы, если перед ними будет стоять задача принять решение, которое они считают выходящим за пределы интуитивного суждения, вынуждены будут обратиться к формальным правилам принятия решений. Я имею в виду всю область прогнозов относительно продаж, состояния рынка и экономики, основанных на статистическом анализе прошлых данных, или на установившейся практике коммерческой части, предположения которой базируются на учетных и бухгалтерских данных. Прогнозы — это в значительной степени процесс принятия решений. Он заключается в сборе прошлой и имеющейся в данный момент информации для ее превращения в такие результаты, которые указывают направления дальнейшей деятельности. Я не утверждаю, что такого рода прогнозы в большинстве своем являются рациональными и действительно верными, но я лишь обращаю внимание на противоречия в подходе к рассматриваемому вопросу. Бывают и такие администраторы, которые даже при принятии простейших решений пользуются формальными методами. За неимением лучшего, они полагаются на определенные статистические расчеты формального характера даже тогда, когда надо принять особенно точные и трудные решения. И тем не менее они считают, что в основе всего лежит область суждений, которая недоступна формальным правилам принятия решений.
Как мне представляется, в настоящее время накоплено достаточно примеров, свидетельствующих о том, что данная область не является темными джунглями, как ее часто представляли. Люди еще не могут достаточно точно рассчитать динамику поведения сложных систем. Число переменных величин, которые можно правильно совместить, весьма ограниченно. Нельзя полагаться на интуитивные суждения даже искусного исследователя, чтобы представить, каким будет динамическое поведение простой информационной системы с обратной связью, состоящей из пяти или шести переменных величин. Это относится и к тем случаям, когда абсолютно известны вся структура и все параметры системы. Словесная и мнемоническая модели, которые мы способны представить себе, чтобы объяснить динамику поведения промышленных и экономических систем, могут быть эффективно осмыслены, если они по своей сложности не выходят за пределы дифференциального уравнения четвертого или пятого порядка. Мы полагаем, что можем охватить значительно большее число переменных, но я сомневаюсь в том, что они могут быть правильно взаимосвязаны в группах, которые одновременно состоят более чем из пяти или шести переменных. Разум человека не является достаточно могущественным и утонченным для того, чтобы полностью решить проблему, связанную с динамикой информационной системы с обратной связью.
Наука управления до сих пор не достигла сколько-нибудь заметных результатов в формировании и использовании правил, связанных с принятием решений. Трудности, которые встречались в прошлом, можно объединить в три группы.
Во-первых, речь идет о перспективе или дальности предвидения, о котором говорилось раньше. Ученые в области общественных наук пытались рассматривать отдельную личность, придавая особое значение психологии и мотивам индивидуальных действий. Многие попытки лабораторных экспериментов предпринимались с небольшими группами людей, объединенных в искусственной обстановке на короткие периоды времени. При этом не учитывалось влияние социальных условий, предыдущего опыта, стремление соблюдать общепринятый порядок или старание этих людей вести себя таким образом, как этого, по их мнению, хотел бы руководитель. При изучении отдельной личности, особенно наблюдаемой в течение короткого промежутка времени в искусственной обстановке, пытаются подчеркнуть то обстоятельство, что решения не носят постоянного характера, не повторяются, не связаны и являются изолированными.
Другая крайность заключается в том, что экономисты рассматривали предприятие слишком поверхностно. Нередко они, рассматривая рынок, до крайности преувеличивали его роль независимо от того, располагали ли они для этого достаточной информацией. Они видели в лице владельца предприятия человека, который стремится к максимальному увеличению прибыли, не задумываясь над тем, располагает ли он источниками информации и возможностями производить расчеты для определения этого максимума. При столь поверхностном рассмотрении переоценивается значение решений на уровне высшего руководства по сравнению с решениями, принимаемыми на низшем и среднем уровне управления. На самом деле, распоряжения высшего руководителя не изменяют предубеждений, привычек и основанных на личных интересах целей тех лиц, которые принимают решения на среднем уровне. Так, например, в периодической прессе широко освещалась тщетность усилий сменявших друг друга министров обороны, которые предпринимали попытки изменить направление и образ действий военного ведомства. На самом деле такие изменения могут произойти только в результате длительного, медленно развивающегося процесса. Нас вводят в заблуждение различные сенсации, связанные с «переворотами». К действительным изменениям традиционных методов и принципов деятельности организации может привести лишь борьба за право произвести полную смену высшего руководства и увольнение половины среднего звена аппарата управления. Но столь радикальные меры хирургического порядка не являются широко распространенными.
Для того чтобы понять информационную систему с обратной связью предприятия или фирмы, чрезвычайно важно рассматривать индивидуума не изолированно от окружения и не как стоящего вне системы. Только наблюдая людей или группы людей в рабочей обстановке, можно уловить истинную сущность их действий.
Во-вторых, я считаю, что большой урон пониманию процесса принятия решений нанесло представление о нем как о более тонком и требующем большего искусства, чем это есть на самом деле. Слишком сильное впечатление произвело на нас то обстоятельство, что вычислительные машины с наиболее высокой скоростью вычислений пока еще не могут играть в шахматы так же хорошо, как люди. Но этот пример не типичен. Человеку доступна полная и точная информация. Человек вполне успешно справляется с проблемой визуального наблюдения пространственных взаимоотношений, в то время как современные машины делают это плохо. Бывают и другие случаи, вроде описанных в главе второй хронологических изменений. В этих случаях счетная машина в течение пяти минут может определить последствия определенной политики, тогда как целая группа людей могла бы в течение года спорить относительно того, что явится следствием этой политики, и при этом не пришла бы ни к какому окончательному решению.
Я убежден, что человек, принимающий решения в динамической информационной системе с обратной связью, использует значительно меньший объем информации по сравнению с тем, который имеется в его распоряжении. Более того, имеющаяся в его распоряжении информация значительно меньше по объему, чем это обычно предполагают. Как правило, его действия, с учетом любого данного потока решений, почти полностью обусловлены менее чем десятью вводами информации. То, что он делает с этими немногими источниками информации, будет скорее всего довольно стереотипным. Некоторые из этих источников используются для создания концепции желаемых целей, другие служат для формирования представления о действительном положении вещей. Из сопоставления желаемого и действительного вытекают достаточно простые и кажущиеся логичными действия. Однако то, что представляется очевидным, может быть не лучшим. Наибольшие улучшения в динамику промышленной системы могут быть внесены, если действовать в тех направлениях, которые в силу традиций и сложившихся обычаев в области управления считаются абсолютно неправильными. Наши познания в области динамики сложных информационных систем с обратной связью столь несовершенны, что часто нельзя доверять интуитивным суждениям о вероятности положительного либо отрицательного эффекта того или иного изменения образа действий.
Третья сложность, с которой сталкивались многие, пытаясь разобраться в правилах принятия решений, является результатом того, что опускается одна из ступеней последовательного абстрагирования, связанного с процессом принятия решений. Ранее мы исходили из предположения, что действия на низшем уровне процесса принятия решений являются случайными и иррациональными. Для второго уровня характерны разумные и рациональные действия, однако здесь еще не ясно, какие руководящие правила лежат в основе этих действий. На третьем уровне, с тех пор как существует писаная история, человек уже имеет по крайней мере словесную описательную модель рациональных правил, создающих поток индивидуальных решений. Это важнейший участок на пути к формулированию точных количественных решений, определяемых политикой. На этом этапе развития процесса принятия решений для лучшего понимания лежащих в их основе правил используется искусство и интуитивные суждения человека. Искусство и интуиция на этом новом этапе более не применяются к индивидуальным, изолированным решениям, а используются при определении правил, управляющих потоком индивидуальных решений. На этом этапе методы абстрагирования еще только начинают применяться: здесь уже можно отметить многочисленные удачные примеры, хотя согласие в вопросе о методе пока еще отсутствует. На данной стадии абстрагирования отсутствует описательная литература по вопросу о том, из чего складывается искусство, связанное с определением правил принятия решений. Несмотря на пробелы в этом искусстве, естественные для первого этапа абстрагирования, многие экономисты пытались перескочить на следующий этап абстрагирования. Они пытались использовать статистические методы для того, чтобы вывести из количественных данных о системе правила, регулирующие принятие решений. Это уже другой уровень абстрагирования, когда интуитивное мастерство и суждения применяются для установления строгих правил, с помощью которых определяется формальная политика принятия решений. Я считаю, что мы не готовы для перехода к следующему этапу абстрагирования. Этого нельзя будет сделать до тех пор, пока мы не добьемся признанного успеха в мастерстве, искусстве суждений и использовании интуиции при формулировании правил принятия решений. После того как мы хорошо разберемся в этом процессе, станет возможным превращение анализа деятельности организации в систему твердо установленных правил. Предшествующий опыт свидетельствует о том, что в каждый данный момент следует применять один из уровней абстрагирования. В каждый данный момент мастерство и искусство суждений служат установлению правил, с помощью которых низший уровень может быть автоматизирован.
В качестве примера можно привести развитие программирования на вычислительных машинах. Десять лет тому назад был составлен специальный код для машины с целью решения одной определенной задачи. Следующей стадией абстрагирования было составление программы, состоящей из логических инструкций, сообщающих машине, как создать свою собственную программу для формулирования специальной проблемы. Абстрагирование в программировании в настоящее время углубляется. На новом этапе разрабатываются концепции, которые позволяют вычислительной машине сформулировать специфическое изложение проблемы, которое другая программа вычислительной машины в свою очередь изложит на языке машины. С философской точки зрения это эквивалентно описанной выше последовательности формальных правил, связанных с принятием решений.
Чтобы приступить к рассмотрению динамических характеристик общественной системы, нам необходимо представить по крайней мере, базовую структуру принятия решений. Для этого необходимо иметь возможность уяснить хотя бы приближенно руководящие правила в каждом значительном пункте принятия решений в системе. Такое понимание правил может быть достигнуто, если мы:
— имеем правильное представление о сущности решений и о значении правил, описывающих процесс их принятия;
— располагаем правильной структурой, связывающей состояние системы с правилами, решениями и действиями;
— отдаем себе отчет в том, что процесс может быть искажен и что мы не добьемся (и в этом не будет необходимости) большой точности отображения процесса принятия решения;
— полностью используем значительный опыт и описательную информацию, которая, по всей вероятности, содержит 98 % существенной информации в области принятия решений. Остальные 2 % мы получим из формальных статистических и цифровых данных. Мы отдаем себе отчет, что формальное математическое изложение правил не" имеет в виду абсолютной точности того или иного пути. Мы можем дать формальное математическое изложение любого положения, которое поддается словесному описанию. Недостаточная точность описания не является препятствием для количественного определения наших представлений относительно правил принятия решений. Обычный взгляд, что мы якобы не в состоянии количественно определить правила принятия решений, поскольку не располагаем достаточно точным описанием, смешивает два абсолютно различных соображения. Мы можем математически определить наши представления, не принимая пока во внимание точность получаемых количественных результатов, а уже потом решить вопрос о том, какая точность является достаточной.
Мне кажется, я достаточно убедительно продемонстрировал наши возможности. У нас есть выдающиеся примеры соответствующих достижений в понимании системы управления в армии за последнее десятилетие. У нас есть предварительные примеры такого же подхода к промышленным системам.
Действительные, эффективные функции решений в фирме или экономической системе выходят далеко за пределы формальных правил, изложенных в обязательных нормативных документах и законах. «Эффективные правила» — это остов для нахождения решений, они определяются окружающей обстановкой, источниками информации, которые действительно доступны, мерами поощрения и вознаграждения, которые влияют на людей в каждом пункте принятия решений, порядком обеспечения питанием, жилищем и предметами роскоши, нравами, господствующими в обществе, и унаследованными от прошлого предрассудками и привычками. Если рассматривать решения в этих ограниченных рамках, то мы увидим, что они вовсе не являются действиями, которые нельзя предугадать, как это иногда предполагают. Даже если иметь в виду какого-либо индивидуума, можно допустить определенную степень постоянства характера его реакций на различные события; мы можем осмысленно обсуждать вероятное влияние на него различных воздействий. С еще большей степенью уверенности могут быть оценены вероятные, в среднем ответные действия на изменения в окружающей обстановке для группы людей, находящихся в аналогичных условиях.
Динамическая модель используется главным образом для изучения влияния правил принятия решений на поведение системы. Все решения в модели возникают под полным контролем этих правил. Руководящие правила представляют собой основу для регулирования потоков во всех пунктах действующей системы. Мы должны провести глубокое исследование этой основы для того, чтобы уяснить, каким образом вырабатываются решения при различных возникающих обстоятельствах. Концепция правил, управляющих решениями, выходит далеко за пределы решения человека-администратора. Модель должна также давать «решения», которые носят физический характер: например, сколько невыполненных заказов может быть исполнено исходя из наличных запасов?
9. 4. Явные и неявные решения
Иногда полезно мысленно разделить функции решения на две категории в зависимости от того, являются ли они обычными, сознательными, «свободными» решениями человека или же такими, которые неизбежно вытекают из физического состояния системы; разделяющая эти категории граница будет не очень точной. Мы здесь определяем явные решения, как сознательные решения людей, составляющие часть процесса управления или экономического процесса. К явным решениям относятся все решения административного характера, решения о закупках, а также решения, связанные с различными психологическими факторами. Неявные решения являются неизбежным результатом состояния системы. К их числу обычно относятся: 1) возможность выполнить заказы, зависящая от имеющихся в данный момент запасов продукции; 2) уровень выхода из системы транспортировки, зависящий от уровней вводов, количества товаров в пути, длительности транспортировки и т. п., и 3) налоги на прибыли.
При анализе фабричного производства хорошо видно различие между явными и неявными решениями. Существующий уровень производства обыкновенно является результатом неявного решения, которое определяет уровень производства в зависимости от численности рабочей силы, наличия оборудования и материалов, поскольку невозможно произвольно определить уровень производства и постоянно его поддерживать. Неявному решению сопутствуют явные решения о дополнительном найме рабочей силы и о заказе оборудования и материалов. Будут ли люди действительно наняты в результате явных решений, зависит от действия неявных решений внутри «физического» состояния системы, к которой относятся такие факторы, как наличие незанятых рабочих, предлагаемая заработная плата и т. д. Появятся ли в результате заказов материалы и оборудование, зависит тоже от ряда условий.
Явные и неявные решения не обязательно различать в зависимости от того, как ими оперируют в модели; но следует иметь в виду имеющиеся между ними различия, так как что помогает выявить важные этапы в потоках информации и ответных решениях и действиях. Учет как явных, так и неявных решений создает возможность иметь дело в модели не только с действительным положением вещей, но и с желаемым. Определенные условия вызывают желание изменений; это желание взаимодействует с состоянием системы и ее ресурсами для определения того, что должно произойти.
Введение понятий как явных, так и неявных решений избавляет нас от необходимости иметь дело с системой совместных уравнений, которая возникает в некоторых моделях, например в случае, когда решения, связанные с производством, должны быть постоянно равны решениям, связанным с потреблением, и т. д. Такие решения в действительности принимаются изолированно и независимо одно от другого, а сочетаются они в конце концов через посредство запасов товаро-материальных ценностей, цен и различных потоков информации. Явные решения желать или пытаться осуществить что-либо являются результатом информации, доступной лицу, принимающему решения. Неявные решения, создающие действия, учитывают как действительное состояние системы, так и желаемое.
9. 5. Вводы в функции решений
При формулировании функций решений (уравнений темпов) необходимо следить за тем, чтобы решения исходили из переменных, действительно находящихся в пункте принятия решений. Как правило, информация, доступная для принятия явных решений, не идентична исходным переменным, которые она выражает. Информация может быть запоздалой, смешанной и некачественной. Здесь вновь может возникнуть различие между явными и неявными решениями. Явные решения обычно базируются на информации (которая может быть в ряде случаев искаженной) относительно исходных переменных. Наиболее простые неявные решения регулируют обычные потоки, которые зависят от действительного состояния системы и вследствие этого от действительной величины переменных в модели.
Различие между действительной величиной переменной и информацией относительно переменной может быть проиллюстрировано на примере товаро-материальных запасов. Возможность поставить отдельный предмет из наличных запасов, зависящая от того, есть ли этот предмет в наличии, обычно может рассматриваться как неявное решение, регулируемое истинным состоянием запасов в данный момент. Это истинное состояние запасов является одной из переменных величин в модели. Функция принятия явных решений, которая регулирует заказы материалов для пополнения запасов, зависит от информации относительно их наличия, а эта информация может быть запоздалой и неточной. Для характеристики того, что представляется нам запасами, в некоторые модели целесообразно включить отдельную переменную величину. Иногда имеют дело с понятием «желаемое состояние запасов», которое часто отличается от обоих предшествующих понятий; в таком случае оно должно стать третьей переменной величиной, относящейся к тем же товаро-материальным запасам.
В качестве второго примера рассмотрим модель экономической системы, которая должна постоянно воспроизводить уровень валового национального продукта; очевидно, что этот уровень не может быть дан в качестве ввода, к любому явному решению (например, при планировании расширения предприятия). Информация о действительном положении вещей в данный момент будет неизбежно запаздывать и содержать некоторую долю ошибок и неточностей. Для того чтобы имеющаяся информация соответствовала действительному положению, она должна быть запоздалой; при этом она будет содержать какую-то долю ошибок и неточностей, даже если до запаздывания она отражала действительные величины переменных.
Модель, подобно действительному миру, нередко должна воспроизводить как «истинные» величины переменных, так и связанные с ними переменные, выражающие те величины, которые в процессе принятия решений лишь принимаются во внимание или учитываются.
9. 6. Определение формы функций решения
Модель, которая может воссоздать правильную динамическую систему поведения, требует формальных выражений, показывающих, как принимаются решения. Поток информации непрерывно превращается в решения и действия. Никакие ссылки на то, что мы недостаточно хорошо разбираемся в процессе принятия решений, не могут освободить нас от нахождения критерия, которым следует руководствоваться при принятии решения. Пренебрежение к принятию решений означает отрицание их существования — эта ошибка гораздо более значительная, чем любая ошибка, связанная с оценкой процесса.
Могут ли функции решений быть настолько точно определены, чтобы быть полезными? Вообще представляется, что могут. Вдумчивые наблюдения, обмен мнениями с лицами, принимающими решения, изучение имеющихся данных, исследование отдельных примеров решений и действий — все это может пролить свет на основные факторы, влияющие на принятие решений. Определение факторов, влияющих на решения, осуществляется в четыре этапа. Прежде всего мы устанавливаем, какие факторы достаточно значительны, чтобы их учитывать. После этого мы для каждого из факторов определяем, в каком направлении он влияет, какова значимость его влияния и какие нелинейности должны быть учтены. Рассмотрим подробно эти четыре этапа.
Факторы, подлежащие учету. При формулировании отдельной функции решения в модели прежде всего необходимо составить перечень тех факторов, которые оказывают важное влияние на решение. Ответ часто бывает неясным. В отношении фактора, который сначала представляется наиболее значительным, в дальнейшем может оказаться, что он слабо влияет на поведение модели или на действительную систему. В то же время фактор, на который в повседневной практике управления обычно не обращают внимания, может оказаться решающим в отношении важнейших черт всей системы в целом.
При выборе факторов, влияющих на решение, необходимо учитывать, оказывают ли они воздействие на характеристики информационной системы с обратной связью. Очень немногие лица имеют правильное интуитивное суждение относительно таких систем. Работа с моделями систем помогает развитию правильного суждения и интуиции. Лучшим способом определить влияние того или иного фактора на функцию решения в модели является наблюдение действия модели при наличии этого фактора и без него; при этом сама модель может быть использована для определения того, что она должна содержать.
Нельзя руководствоваться только степенью прямого влияния рассматриваемого фактора на решение. Следует принимать во внимание также степень обратной связи, которая характеризует влияние решения на фактор, вводимый в решение, а также временные характеристики обратной связи. Относительно слабые воздействия на решение могут быть важными в условиях «позитивной обратной связи», когда переменный фактор оказывает влияние на решение, а решение воздействует на вводимый фактор, усугубляя его влияние на дальнейшие изменения решения. Это можно наблюдать во многих случаях. Например, покупатели в ответ на возрастающие задержки в поставке товаров начинают покупать их впрок; возросший из-за этого уровень заказов увеличивает отставание с их выполнением, в результате чего задержки в поставке товаров еще более возрастают.
Направление эффекта. То направление, по которому изменения в определенном факторе влияют на решения, обычно вызывает мало сомнений. Однако следует быть бдительным для того, чтобы правильно представить себе и отрицательные и положительные последствия, которые часто возникают в результате влияния одного и того же фактора. Например, краткосрочное и долгосрочное влияния определенного, фактора на решение иногда действуют в противоположных направлениях. И если учитывать только длительные воздействия, то это может оказать серьезное влияние на динамическое поведение модели.
Несколько примеров иллюстрируют виды факторов, которые могут вызывать краткосрочный эффект (часто не принимаемый во внимание) в противоположном направлении, чем при их длительном воздействии, которое обычно принимается во внимание.
Обычно предполагается, что более высокие цены стимулируют больший выпуск продукции, однако для коротких сроков это иногда бывает не так. Первым шагом, предпринимаемым для увеличения производства мяса, является сокращение поставок скота на рынок с целью создания племенного стада, и таким образом объем продаж сокращается на два или три года; связанное с этим повышение цен означает возрастание стоимости живого «товарного» запаса, что в свою очередь вызывает увеличение периода откорма и также снижает уровень продажи мяса на период в несколько месяцев. В некоторых отраслях горной промышленности рост цен делает экономически целесообразным производство руды низших сортов; имеющееся оборудование с определенной производительностью в этом случае применяется для переработки худшего сырья; в результате уровень производства может снизиться, пока не будут введены в действие малодоходные рудники, которые раньше бездействовали. При расширении научно-исследовательских работ может возникнуть необходимость в найме большого числа людей; однако первоначальный эффект от этого может привести к снижению темпа работ, пока вновь принятые люди не будут обучены и втянуты в производственный процесс. В национальном хозяйстве, основанном на полной занятости, повышение спроса на товары может вызвать отвлечение рабочей силы от производства товаров ради привлечения их к строительству предприятий и производству оборудования; первый шаг к достижению долгосрочной загрузки производства первоначально сокращает производство (разумеется, это воздействие может быть уравновешено другими факторами, например более продолжительной рабочей неделей).
Сила воздействия функций решения. Динамическое поведение информационной системы с обратной связью определяется тем, каким образом изменения в одной переменной приводят к изменениям в другой. Анализ этого вопроса может привести к предположению о высокой чувствительности системы к точности параметров в функциях решений, однако обычно это не так.
Если модель сконструирована правильно и она выражает действительную структуру социальной системы с обратной связью, то она будет обладать такой же способностью самокорректировки, как в реальных жизненных ситуациях. В предлагаемой формулировке модели все параметры, которые должны быть определены для функций решения, испытывают такое воздействие величин уровней, которое приводит к установлению темпов потоков, предусмотренных решениями. Эти уровни в свою очередь корректируются ответными решениями. Неточный параметр функции решения может потребовать соответствующей корректировки уровней в модели, пока не будет достигнуто правильное соотношение темпов потоков. Приведем некоторые примеры для иллюстрации этой внутренней корректировки. При определении параметра, характеризующего запаздывание в погашении счетов дебиторов, можно избрать слишком большую величину; это приведет к тому, что уровень счетов дебиторов слегка возрастет, но темп погашения будет все же связан с тем темпом, в котором берутся новые обязательства. Принятие в модели слишком низкого уровня спроса покупателей на автомобили приведет к снижению их товарного запаса и к постепенному сокращению автомобильных перевозок до тех пор, пока уровень спроса на автомобили не повысится. Изменение в уровне запаса готовых автомобилей поможет уравновесить функцию решения неточного уровня покупок; при этом динамика изменения темпа покупок в количественном отношении останется правильной, если иметь в виду другие переменные величины модели.
Мы должны больше беспокоиться о том, что говорит модель относительно факторов, которые вызовут изменения в темпах и уровнях, чем о точности в определении средней величины темпов и уровней.
Если модель правильно сконструирована, то, как это ни удивительно на нее часто не. оказывают влияния изменения, которые могут иметь место в большинстве параметров — иногда даже изменения в каждом из них. Чувствительность к избранным величинам параметров в модели должна быть не больше, чем чувствительность реальной системы к соответствующим факторам. Представляется очёвидным, что наша действительная промышленно-экономическая активность не должна быть слишком чувствительной к основным параметрам этой активности и что эти параметры изменяются не быстро. Это должно быть так, потому что важнейшие характеристики наших организаций остаются неизменными в течение длительного времени. Процветающая фирма стремится остаться такой на длительный период. Успех ее основывается на ее структуре и политике (включая важнейшие аспекты руководства). Национальная экономика США продемонстрировала удивительно подобные повторяющиеся экономические циклы на протяжении своей истории, несмотря на значительные изменения в технологии, в структуре денежного обращения, в быстроте коммуникаций и транспортировки, в соотношении значения промышленности и сельского хозяйства и в активности правительства.
Нелинейные функции решения. Нелинейные модели упоминались в разделе 3.1. Нелинейность модели проявляется в функциях решений, регулирующих темпы потоков. Линейная зависимость — это такая зависимость, в которой вводимые факторы комбинируются путем простого сложения или вычитания для определения результата. Предположим, что темп R зависит от переменных факторов X, У и Z, как, например, в следующей линейной функции:
Здесь переменные X, Y и Z оказывают воздействие на R каждая в отдельности. В частности, переменные Y и Z не определяют влияния переменной X на результат R. Далее, любое влияние на R пропорционально соответствующей переменной ввода, независимо от абсолютной величины, которую она может иметь. Линейные решения недостаточны для описания тех зависимостей, с которыми нам приходится иметь здесь дело.
Напротив, нелинейная функция решения может принимать самые разнообразные формы, как в следующем примере:
Здесь мы видим два источника нелинейности. В отношении члена аХ 2 надо заметить, что он отражается на результате (R) не пропорционально изменениям X. При изменении X от 0 до 1 результат увеличивается на величину а; с изменением X от 1 до 2 он возрастает на утроенную величину а. В члене b(Y)(Z) влияние Y и Z зависит от величины каждого из них. Чем больше Z, тем значительней эффект от данного изменения Y; если один из них равен 0, то влияние другого тоже равно 0 независимо от его величины.
Для правильного описания поведения фирмы существенное значение имеют нелинейности этих двух типов. Поясним это примерами. Первая форма нелинейности имела место, когда влияние фактора, воздействующего на решение, не было просто пропорционально этому фактору. Например, имеющийся в наличии запас товаров для продажи воздействует на темп поставки товаров. Если запасы низки, то недостаток товаров ограничивает возможности поставки; в пределах «нормальных» запасов товаро-материальных ценностей изменения этих запасов окажут очень незначительное влияние на уровень поставки. Можно предположить, что большинство факторов, вводимых в функции решения, будут нелинейными и их влияние будет увеличиваться или уменьшаться с изменением пределов переменных.
Второй источник нелинейности в функциях решения возникает тогда, когда решение зависит не порознь от двух или большего числа вводимых переменных, а является результатом произведения или иной взаимозависимости этих переменных. В предшествующем примере поставка товаров не является независимым и изолированным ответом на запасы товаров и на объем полученных, но невыполненных заказов на эти товары. Мы не можем просто сложить эти две изолированные величины. Если нет заказов, то размеры запасов не имеют значения и не предопределяют поставку; если нет запасов, за счет которых может быть произведена поставка, то заказы не вызовут поставку.
Эти два вида нелинейности часто встречаются вместе. Рассмотрим зависимость темпов производства от имеющегося уровня- численности рабочих и необходимого для производства оборудования. На рис. 9–5 показано, как темп производства может повышаться с увеличением численности работающих на предприятии. Сначала, когда каждый вновь нанятый рабочий может воспользоваться любым необходимым оборудованием, производительность человеко-часа высока и кривая всего производства, круто поднимается вверх. После того, как достигается максимальная производительность оборудования, увеличение выпуска продукции на каждого рабочего снижается. Дальнейший рост числа работающих в конце концов приводит к максимально возможному темпу производства при данном оборудовании. Если и дальше увеличивать число рабочих, то это вызовет простои, беспорядок и потерю в темпе производства. Мы видим, что при данном количестве оборудования темп производства не пропорционален численности рабочих и представляет собой нелинейную функцию. Так как влияние любого данного изменения численности рабочих на темп производства зависит от количества оборудования, то эти два ввода воздействуют друг на друга. При недостаточном числе рабочих колебание количества оборудования от К до 2К не имеет значения. При большем числе рабочих влияние дополнительной рабочей силы все больше и больше зависит от того, будет ли введено дополнительное оборудование.
#pic95.png
Рис. 9–5. Темп производства как функция численности рабочих и количества оборудования.
Линейные приближения к этим нелинейным отношениям обычно не дают удовлетворительного результата. Нормальные операции проводятся в достаточно широких границах, так что их нелинейность имеет первостепенное значение. Очень часто достижение какой-либо границы становится сигналом для ввода того или иного уравновешивающего действия (в приведенном выше примере снижение производительности человеко-часа в результате избытка рабочей силы является одним из вводов к решению заказать дополнительное оборудование).
Модели, которые мы формулируем, должны быть действенными в широких границах изменения переменных. Это желательно в силу нескольких причин. Мы захотим исследовать широкие пределы изменения различных условий; мы можем не знать заранее, какие значения примут различные переменные; мы захотим, наконец, чтобы модель была полезной за пределами границ, которые можно встретить в реальной системе, потому что разработка новых систем предполагает деятельность вне рамок прежней практики.
При построении модели следует использовать всю информацию, имеющую отношение к той системе, которая должна быть представлена. К совершенно необходимой информации относятся наши знания о том, чего следует ожидать при крайних условиях деятельности. Очень часто мы знаем больше о крайних лимитирующих условиях, чем о нормальных пределах деятельности. Очень часто мы знаем, какой степени кривизны должна достигнуть линия, связывающая две переменные, если переменная ввода достигнет нуля или какой-нибудь абсурдно большой величины. Выбирая функциональные зависимости с учетом всего, что мы знаем, мы увеличиваем шансы получить модель, которая будет действовать надлежащим образом.
Приближенное изображение функции ломаными линиями представляет очевидную опасность для правильного изображения производных переменных величин (их крутизны, скорости изменения крутизны и т. д.). Большая часть действующих ограничивающих условий оказывает свое влияние постепенно по мере приближения к границе. В этом случае приближенное изображение функции с помощью линейных отрезков, которые после очередного «излома» внезапно останавливают изменение функции, является неправильным и часто влечет за собой серьезные последствия, так как в точке «излома» все производные функции в высшей степени ошибочны.
Правильно изображенные функциональные зависимости, как уже говорилось, облегчают внутреннюю самокорректировку, когда в модели имеются уравновешивающие друг друга величины. Реальное поведение системы легче отобразить в нелинейной модели, чем в линейной, потому что, предполагая нелинейность модели, мы быстрее обнаруживаем те факторы, от которых зависит поведение действительной системы.
9. 7. Помехи в функциях решения
Функции решения в модели обязательно включают только наиболее важные факторы из числа тех, которые оказывают влияние на решения. Помимо этих факторов, действуют многие менее значительные, которые неизбежно опускаются. Эти исключенные из рассмотрения факторы можно объединить в две абсолютно различные категории.
В первую категорию опускаемых факторов входят незначительные воздействия тех переменных, которые являются частью системы и рассматриваемой модели. Эти исключения по существу представляют собой игнорирование в модели некоторых линий обратной связи между переменными. Часто это происходит в целях необходимого упрощения; связанные с этим опасности мы рассматривали в разделе 9.6. Отказ от рассмотрения переменной из функции решения внутри модели представляет собой исключение ввода, который может быть взаимосвязан во времени с решениями, определяемыми функцией решения. Мы ничем не можем восполнить этот вид исключения выбранной наугад переменной, которая в действительности влияет на процесс принятия решения.
Другая группа исключенных из рассмотрения факторов носит совершенно иной характер. Это такие факторы, которые не испытывают на себе воздействия других переменных величин модели. Их источник лежит вне реальной системы, которая отображается в модели, или не зависит от нее. В качестве примера можно взять неопределенное влияние погоды: имеется в виду не только ее очевидное влияние на сельское хозяйство, но также ее воздействие на величину продаж во время пасхи, на продажу спортивного снаряжения и на повседневную деятельность универсальных магазинов. К случайным воздействиям можно также отнести местные национальные или международные политические новости, которые могут быть не вполне свободными от влияния коммерческих дел и от состояния экономики, но на которые часто без достаточных оснований смотрят как на обстоятельства, не поддающиеся учету. Сюда включаются и такие факторы, как отпуска агентов по снабжению, болезнь управляющего и их влияние на бесперебойное течение дела. Этот поток «помех» случайного характера, который не может быть предусмотрен заранее, оказывает свое воздействие во всех пунктах принятия решений в действующей социальной системе. Мы можем приближенно учесть это воздействие путем включения вариаций, связанных с «помехами», в функции решения модели.
Теоретическое изучение вводов, связанных с — помехами, и их расчет составляют сложную задачу, которая должна быть разобрана в другом месте. Практический вопрос о том, какие из связанных с помехами характеристик подлежат включению в модель, следует решать, как и вопрос о многих других вводах, прежде всего на основе тех знаний относительно отображаемой системы, которыми мы располагаем.
Вводы в функции решения, которые отражают влияние помех, могут быть использованы для изображения влияния вышеупомянутой второй группы исключенных из рассмотрения факторов, когда они не связаны с моделируемой системой. Помехи не могут восполнить исключение первой группы факторов, которое упрощает структуру информационной системы с обратной связью за счет потери части информации.