Темпы потоков в промышленных и экономических системах обычно нерегулярны. Решения, порождающие эти потоки, принимаются под влиянием множества локальных событий. Нерегулярность потоков обусловливается разнообразными причинами: различиями в поведении людей, нарушением будничного ритма в предвыходные дни, угрозой забастовок, погодой, праздниками, ошибками, возникающими при сборе и обработке данных, использованием неопределенных и непостоянных принципов при выборе решений, зависимостью цен на товары от величины партии поставки, что стимулирует увеличение размера заказов, затратами на запуск и характером технологического процесса, когда поточное производство заменяется партионным, различием в продолжительности отчетных периодов (например, отдельных месяцев), событиями внутренней и внешнеполитической жизни, влияющими на настроение народа, практикой соблюдения заранее установленной частоты усреднения информации и принятия решений.

С другой стороны, многие действия руководства, зависящие от нерегулярных потоков, должны быть ограничены таким образом, чтобы реагировать только на сглаженную информацию. Нельзя допускать, чтобы темпы производства на заводе так же резко изменялись, как потоки ежедневно поступающих заказов.

Запасы возрастают и сокращаются медленно. Руководитель обычно весьма критически настроен в отношении мер, предпринимаемых другими лицами, и в то же время он пытается выявить как можно раньше любое длительное изменение, которое требует от него определенных действий.

Действия, направленные на выявление основных и существенных изменений в потоках информации и имеющие целью исключить такие колебания, которые большой роли не играют, принято называть выравниванием или усреднением. Выравнивание поступающей информации в известной степени имеет место в каждой точке системы, где принимаются решения.

Следует различать два метода выравнивания данных. Наиболее очевидный, но редко применяемый метод сводится к формальной числовой обработке информации для получения средних величин. Другой метод, более часто используемый, хотя и менее точный, представляет собой интуитивное выравнивание, основанное на ожидании и наблюдении в процессе принятия решений.

Наличие в системе формального математического процесса выравнивания легко обнаружить. Это практика, основанная на установившихся руководящих правилах. Еженедельные, месячные, квартальные и годовые отчеты о сбыте, производстве и затратах содержат величины, усредненные в пределах указанных промежутков времени. Эти формальные процессы выравнивания можно найти во многих каналах потоков информации.

Кроме того, дальнейшее выравнивание обычно вводится в систему в точках принятия решения. Мы могли бы рассматривать это как «психологическое выравнивание». Действительно, очень редко предпринимаются немедленные и энергичные действия в ответ на изменение поступившей информации, даже если это изменение является результатом числовой обработки первичных данных. Тенденция задерживать принятие решения до тех пор, пока изменение в поступившей информации не станет явным и пока другие многочисленные факторы не будут указывать на изменения в том же направлении, является выравниванием, обусловленным либо рассудительностью, либо проволочками, либо нерешительностью.

Процессы выравнивания представляют собой основу для правильной трактовки динамики системы. Выравнивание позволяет исключить кратковременные шумы и помехи. Но процесс выравнивания неизбежно вводит запаздывания в информационные каналы и в сферу принятия решений. Выравнивание изменяет чувствительность системы к колебаниям данных с различной периодичностью. Это — свойство выравнивания. Следовательно, процесс выравнивания искажает либо в лучшую, либо в худшую сторону информационные потоки в системе.

Выравнивание всегда является компромиссным процессом. Здесь всегда существует дилемма: или в большей степени выравнять информацию, чтобы уменьшить вредный шум/ или выравнять ее в меньшей степени, но зато сократить время запаздывания информации. Процесс выравнивания характеризуется двумя показателями: уменьшением кратковременных, но значительных по величине колебаний и возникновением запаздывания во времени. Они будут проанализированы после рассмотрения двух общепринятых способов выравнивания.

Проблема выравнивания сама по себе является сложной и большой проблемой. Здесь мы рассмотрим только наиболее простые положения.

Выравнивание представляет собой процесс рассмотрения ряда данных за прошедший интервал времени с целью выявления основного, определяющего их содержания, характеризующего значение рассматриваемой величины в текущий момент времени. Методы выравнивания могут изменяться в широких пределах в зависимости от того значения, которое мы придаем данным за различные периоды времени в прошлом. Здесь мы рассмотрим два метода выравнивания: метод равномерного выравнивания и метод экспоненциального выравнивания. При равномерном выравнивании каждой величине временного ряда придается одинаковая значимость. «Средняя величина продаж в течение последних 8 недель» является средней арифметической. Продажи за 8 недель складываются вместе (одинаковая значимость), и общую сумму делят на 8. Средняя величина могла бы определяться следующим образом:

Средняя арифметическая = ,

где

S1 — соответствует последней неделе;

S2 — предшествующей ей, более ранней неделе и т. д.

Средние арифметические величины обычно используются в тех областях, где располагают официальными статистическими средними данными. Недельные, месячные и годовые уровни, характеризующие функционирование системы, являются средними величинами в том смысле, что в них придают одинаковый вес всем данным, включенным в рассматриваемый интервал. Так как эти средние величины подсчитываются через большие интервалы времени, равные периоду усреднения, то их следует рассматривать как прерывистые или отдельные величины.

Другим известным методом выравнивания, рассматриваемым ниже, является экспоненциальное выравнивание. В этом случае данным придают прогрессивно уменьшающееся значение по мере того, как эти данные относятся ко все более ранним интервалам времени. Значимость данных за прошедшие промежутки времени устанавливают по экспоненциальному закону, то есть значимость каждой предшествующей величины уменьшается в одно и то же число раз. Например, экспоненциальная средняя при постоянной времени усреднения в 8 недель применительно к полным недельным продажам может быть вычислена следующим образом:

,

где

S1 — величина продаж за последнюю целую неделю,

S2 — за предшествующую ей, более раннюю неделю и т. д.

В общем случае при постоянной времени выравнивания в Т недель экспоненциальная средняя величина будет определяться следующим образом:

.

Следует отметить, что принципиально каждая прошлая величина оказывает свое влияние на значение средней величины. Однако практически коэффициенты, определяющие значимость последних членов, становятся настолько малыми, что влияние этих членов оказывается несущественным, и ими можно пренебречь. Сумма коэффициентов ряда

,

при непрерывном увеличении числа его членов стремится к величине Т. Следовательно, при постоянном уровне продаж в каждом прошлом периоде средняя величина стремится, как и следовало ожидать, к той же самой величине.

При экспоненциальном выравнивании наибольший вес придается самым недавним величинам, и убывающие по прогрессии значения — наиболее устаревшей информации. Этот процесс ближе к интуитивному методу нахождения средних величин, чем процесс определения равномерной средней величины. Эта форма выравнивания достаточно удобна для отображения реальных условий и влияний в модели системы.

Экспоненциальная средняя имеет практическое преимущество по сравнению со средней арифметической величиной при использовании вычислительных машин. Экспоненциальную среднюю величину гораздо легче рассчитать, чем среднюю арифметическую. Средняя экспоненциальная величина в момент времени, равный единице, согласно ранее изложенному, равна

,

где величины 5 представляют собой прогрессивно устаревающие значения переменной (например, продаж), которая усредняется. Индексы обозначают время в прошлом. В последующий интервал, когда время равно 0,

.

Эта величина равна сумме нового члена и ранее определенной средней величины А1, умноженной на соответствующий экспоненциальный коэффициент; следовательно,

.

Каждое новое значение средней может быть рассчитано на основе значения средней за предшествующий период и нового значения переменной, которая выравнивается. Ранним, предшествующим значением средней величины можно затем пренебречь, и в дальнейшем следует иметь дело только с одним числовым значением средней, а не с длинным рядом более ранних данных. Последняя форма аналогична использованной в уравнении 13-8, где мы установили, что интервал между решениями не обязательно должен быть таким же, как единица времени, использованная для определения постоянной времени усреднения Т. Суммарная коррекция прежней средней величины для каждого интервала решения будет равна вышеприведенной величине, умноженной на продолжительность интервала решения. Экспоненциальная средняя, обобщенная для любого интервала решения, принимает форму:

#f_b1.png ,
B-1, L

где

А — среднее значение величины S (те же единицы измерения, что и S);

DT— интервал решения (единицы времени);

Т — постоянная времени экспоненциального выравнивания (единицы времени);

S — переменная величина, которая подвергается выравниванию (в соответствующих единицах измерения).

Схематически экспоненциальное выравнивание показано на рис. B–1. В начале вычислений, в момент времени К, известно старое значение средней величины A.J. Выравниваемая величина обозначена S.JK. Разность (S.JK — A.J), входящая в уравнение В-1 и обозначенная х, будучи умноженной на 1/T, дает необходимую коррекцию для каждой целой единицы времени; умножая затем эту величину на DT, мы определим коррекцию на данном интервале решения у.

#picb_1.png

Рис. В-1. Экспоненциальное выравнивание.

Теперь мы остановимся на рассмотрении запаздываний в потоках информации, которые возникают в результате ее усреднения. Сопоставим уравнение В-1 с обычной парой уравнений, используемых для отображения экспоненциального запаздывания первого порядка.

#picb_2.png

Рис. В-2. Экспоненциальное выравнивание первого порядка и запаздывание.

Допустим, что S в уравнении В-1 является вводом в запаздывание, выход из которого обозначен индексом W (см. рис. B–2). Уравнения экспоненциального запаздывания первого порядка могут быть представлены в следующем виде:

#f_b2.png ,
B-2, L

#f_b3.png ,
B-3, R

где

L — уровень в запаздывании (единицы S, умноженные на время);

S — входящий поток информации (в своих единицах измерения);

W — исходящий поток из запаздывания (те же единицы, что и S);

Т — постоянная времени экспоненциального выравнивания (единицы времени).

Уравнение В-3 может быть записано для более раннего периода:

.

Подставив это значение в уравнение В-2, получим

.

Если мы теперь предположим, что L.K = (T)(A.K), то после простых преобразований получим уравнение

,

которое идентично уравнению В-1. Следовательно, уравнение экспоненциального выравнивания и уравнение запаздывания первого порядка эквивалентны.

Экспоненциальное выравнивание первого порядка вызывает запаздывание в потоках информации той же величины и формы, что и экспоненциальное запаздывание первого порядка. Постоянная времени выравнивания эквивалентна постоянной запаздывания, которая рассматривалась в главе 8.

Запаздывание, создаваемое выравниванием, может быть представлено графически. На рис. В-3 представлено равномерное усреднение.

#picb_3.png

Рис. B-3. Запаздывание, обусловленное равномерным усреднением.

Действительные значения рассматриваемой переменной показаны равномерно увеличивающимися. В любой момент времени средняя величина равна значению действительной величины в середине периода усреднения; другими словами, средняя величина равна действительной с запаздыванием в 1/2 интервала усреднения.

#picb_4.png

Рис. В-4. Запаздывание, обусловленное экспоненциальным усреднением.

На рис. В-4 показано запаздывание при экспоненциальном выравнивании для случая равномерно возрастающей переменной. Как видно из графиков, запаздывание должно быть равным постоянной времени T; это можно легко доказать, рассмотрев подобные треугольники:

#fb_11.png ,

#fb_12.png ,

где у является изменением среднего значения величины, изображенной на рисунке, и равно правой части уравнения B–1, которое так же отражает изменение значения средней величины. Поэтому величина Т, отображающая на рисунке запаздывание в получении среднего значения по сравнению с действительным, обязательно должна быть равна по величине постоянной времени в уравнении B–1.

Постоянное запаздывание, обусловленное экспоненциальным выравниванием, как это показано на рис. В-4, имеет место только в случае линейно изменяющихся входных данных. При нелинейных потоках информации запаздывание, связанное с выравниванием, будет определяться более сложно. Можно показать, что для синусоидально изменяющихся входных данных запаздывание никогда не превышает четверти периода колебания на входе.

При выравнивании поток информации искажается как по амплитуде, так и во времени. Характер искажений зависит от величины изменений, которые вносятся во входную информацию, от используемого типа выравнивания и объема выравнивания, который определяется видом и степенью нежелательных возмущений, существующих в информации. Почти все потоки информации выравниваются либо посредством формальных математических приемов, либо под воздействием психологических суждений, либо с использованием того и другого методов выравнивания, прежде чем они лягут в основу принимаемых решений. Запаздывания и усиления, обусловленные процессом выравнивания, как мы видели в части III, существенно влияют на динамическое поведение системы.

Даже в тех случаях, когда модель проигрывается при отсутствии помех (как это изображено на большинстве рисунков в части III), процессы выравнивания должны быть отражены в модели. Выравнивание, обусловленное присутствием помех, неизбежно проявляется как фильтр, искажающий желаемую информацию. Эти искажения должны быть отражены даже при отсутствии помех, если мы хотим, чтобы система была правильно отображена в модели.