Модели могут служить основой для проведения экспериментов с меньшей затратой средств и в более короткие сроки, чем при исследовании изменений на реальных системах. Социологические модели должны отражать всю информационную систему с обратной связью, а не отдельные изолированные ее элементы. Наши эмпирические знания дают богатый материал, позволяющий создавать динамические модели.
Модели получили широкое признание как средство изучения сложных явлений. Они заменяют реальное оборудование или целую систему. Ценность моделей заключается в том, что они гораздо эффективнее способствуют более глубокому пониманию неясных характеристик поведения системы, чем если бы это делалось путем наблюдения за реальной системой. Модель может давать необходимую информацию при меньшей затрате средств, чем представляемая ею реальная система. Создается возможность более быстрого приобретения знаний в условиях, не наблюдаемых в реальной действительности.
3. 1. Классификация моделей
Модели можно классифицировать по-разному. Вариант группировки моделей, представляющий интерес для нашего исследования, приведен на рис. 3–1.
#pic31.png
Рис. 3–1. Классификация моделей.
Материальные или абстрактные. Прежде всего можно выделить модели материальные и абстрактные.
Материальные модели наиболее доступны для понимания. Обычно это копии исследуемых предметов, часто — уменьшенные.
Статические материальные модели, например архитектурные, помогают наглядно представить размещение элементов на плоскости и пространственные соотношения. Примером динамических материальных моделей служит аэродинамическая труба, применяемая для изучения аэродинамических характеристик проектируемых летательных аппаратов.
Абстрактные модели состоят не из материальных элементов, а из символов, и применяются они гораздо чаще, чем материальные, но они не всегда считаются моделями. Используемая символика может иметь форму письменной речи или мыслительного процесса С помощью мысленного представления или словесного описания может быть построена модель фирмы и ее деятельности.
Хозяйственные руководители постоянно имеют дело с такими мысленными и словесными моделями фирмы. (Это мысленное представление о фирме, и оно не обязательно точное.)
Модели призваны заменить в нашем представлении реальную систему.
Математическая модель является особой разновидностью абстрактных моделей. Она выражается языком математических символов и, как другие абстрактные модели, является описанием представляемой системы. Математические модели широко применяются, но воспринимаются они труднее, чем материальные, и не столь часто встречаются в повседневной практике, как словесные модели.
Уравнения, описывающие напряжения в конструкции, представляют собой статическую математическую модель балок и опор. Уравнения движения планет вокруг солнца являются динамической математической моделью солнечной системы.
Математическая модель представляет собой более четкое описание, чем большинство словесных моделей. При построении математических моделей мы начинаем со словесных и уточняем их до тех пор, пока нам не удастся перевести их на язык математики. Сам по себе перевод не труден. При переходе от словесных утверждений к математическим трудности возникают в том случае, когда исходная словесная модель является неточным описанием и ее недостатки обнаруживаются при попытке преобразования в математическую форму.
Преимущество математической модели в сравнении со словесной или материальной заключается в том, что с ней легче оперировать, ее логическая структура более определенна, на ее основе легче проследить путь от предположений до вытекающих из них следствий.
Статические или динамические. Модели могут отражать ситуации, меняющиеся или не меняющиеся во времени. Статическая модель описывает взаимосвязи, не подверженные изменениям. В динамической модели рассматриваются отношения, изменяющиеся во времени.
Линейные или нелинейные. Системы, отображаемые в моделях, могут быть линейными и нелинейными; соответственно классифицируются и модели.
В линейной системе внешние воздействия просто суммируются. При линейной трактовке предприятия удвоение числа поступающих заказов вызвало бы в любой последующий момент времени в десять раз большие изменения, чем увеличение объема заказов на 10 %. В такой модели предприятия не учитываются ограничения производственной мощности; производительность труда не должна снижаться даже в том случае, если возникнет избыток рабочей силы по сравнению с наличным оборудованием, а осуществление крупных изменений мощности предприятия требует не больше времени, чем незначительные изменения такого рода. Рабочая сила, оборудование и материалы — каждый из этих элементов оказывал бы свое влияние на производство совершенно независимо от состояния двух других; в частности, наличия двух элементов — рабочей силы и оборудования — было бы достаточно для выпуска продукции даже при полном отсутствии материалов. Линейные модели приемлемы во многих работах в области физики, но они не в состоянии отразить существенные характеристики промышленных и социальных процессов.
При помощи линейных моделей гораздо проще достигнуть конкретного математического решения, чем при помощи нелинейных. За незначительным исключением математический анализ не дает общих решений для нелинейных систем. Поэтому когда для приближенного отражения нелинейных по существу явлений используются линейные модели, то нелинейные характеристики этих явлений утрачиваются.
Как только мы отказываемся от попытки найти общее решение, которое описывало бы в едином комплексе все возможные характеристики поведения системы, сразу же исчезает различие в сложности исследования линейных и нелинейных систем. Методы моделирования, дающие частное решение для каждой отдельной совокупности условий, одинаково применимы для анализа как линейных, так и нелинейных систем.
Устойчивые и неустойчивые. Динамические модели, в которых условия меняются во времени, могут быть разделены на устойчивые и неустойчивые, точно так же, как и реальные системы, которые они отражают, можно охарактеризовать как устойчивые или неустойчивые.
Устойчивой является такая система, которая, будучи выведена из своего исходного состояния, стремится вернуться к нему. Она может колебаться некоторое время около исходной точки, подобно обычному маятнику, приведенному в движение, но возмущения в ней со временем затухают и исчезают.
В неустойчивой системе, находящейся первоначально в состоянии покоя, возникшее возмущение усиливается, вызывая увеличение значений соответствующих переменных или их колебания с возрастающей амплитудой. В нелинейной системе, которая при обычных условиях неустойчива, могут возникнуть колебания, возрастающие до тех пор, пока их не ограничит появление нелинейных по форме воздействий (недостаток рабочей силы, производственной мощности или же материальных ресурсов). Продолжающиеся колебания в этих условиях можно рассматривать как достигшие устойчивой амплитуды изменений от максимума до некоторого минимума. Очевидно, что в экономических системах максимальные уровни деловой активности ограничены ресурсами, а минимальные — нулевым ее значением.
Есть основания полагать, что производственно-сбытовые и экономические системы, представляющие для нас наибольший интерес, часто относятся к тому типу, в котором, как в неустойчивых системах, малые возмущения усиливаются до тех пор, пока не натолкнутся на нелинейные (по форме) ограничивающие факторы.
С устойчивым или меняющимся режимом. Модели (и системы) могут далее различаться в зависимости от того, является ли их поведение по своему характеру установившимся или изменчивым.
Модель с изменчивым режимом является цикличной, так что ее поведение в некоторый период времени носит тот же характер, что и в любой другой. С известной точки зрения модель неувеличивающейся национальной экономики, которая обнаруживает циклический характер деловой активности, можно считать колеблющейся в устойчивом режиме, несмотря на то что ни одна отдельно взятая последовательность событий никогда не повторяется совершенно одинаково. Точно так же при выяснении некоторых вопросов можно считать (как это делается в настоящее время с автомашинами), что длительный период эффективной эксплуатации определенного вида изделий можно представить в форме динамической модели с устойчивым режимом. В системах, относящихся к управлению хозяйственными организациями, устойчивый режим поведения представляет собой особый частный случай. (Система, рассматриваемая в главе 2, является динамической моделью с устойчивым режимом.)
Модели с меняющимся режимом отражают такие системы, которые с течением времени изменяют свой характер. Системе, обнаруживающей признаки роста, свойственны черты неустойчивости поведения. Изменчивые реакции представляют собой однократные, неповторяющиеся явления. Многие важные проблемы управления (например, рост фирмы, строительство нового предприятия, расширение рынка) изменчивы по своему характеру.
Открытые или замкнутые. В дополнение к классификации, показанной на рис. 3–1, модели могут быть «открытыми» и «замкнутыми». Но различие между ними не столь четкое, как можно было бы судить по названиям. Модели могут быть «открытыми» в разной степени.
Замкнутой динамической моделью является модель, которая функционирует вне связи с внешними (экзогенными) переменными. В замкнутой модели изменения значений, переменных во времени. определяется внутренним взаимодействием самих переменных. Замкнутая модель может выявить интересное и поучительное поведение системы без ввода переменной извне.
Информационные системы с обратной связью по существу являются замкнутыми системами. Это самонастраивающиеся системы, и наиболее интересные их характеристики вытекают из внутренней структуры и взаимодействий, а не в порядке реакций, которые лишь отражают ввод информации извне.
Интересующие нас модели могут приводиться в действие как замкнутые системы. При этом первостепенный интерес представляют внутренние динамические взаимодействия. Мы не всегда будем отдавать предпочтение изучению строго замкнутых моделей. Часто бывает целесообразно в порядке эксперимента ввести данные извне, чтобы возбудить внутренние реакции системы. Импульсы, скачки, гармонические колебания и помехи (случайные возмущения) обычно вводятся при такого рода экспериментах. Эти внешние (экзогенные) вводы имеют смысл только при условии, если мы готовы допустить, что внешние вводы совершенно независимы от результирующей реакции внутри системы.
Модели промышленных систем. Большинство математических моделей, которые встречаются в литературе по управлению и экономике, принадлежит к одной из двух групп, отмеченных кружками на рис. 3–1. Почти все они устойчивые, линейные, с постоянным режимом. Одни — статические, другие — динамические. Такие модели при анализе экономических систем не были особо эффективными. Модели ситуаций, складывающихся в промышленном производстве и изучаемых методами исследования операций, нередко возмещали с избытком затраты на анализ, но и они не решали важнейших проблем хозяйственного руководства. Чтобы модель можно было использовать для исследования практических вопросов хозяйственного руководства и экономических проблем первостепенной важности, нужно, чтобы она включала все разновидности, перечисленные в схеме на рис. 3–1. Управление крупными фирмами имеет дело с изменчивостью условий роста и с устойчивостью нормальных колебаний хозяйственной активности и неопределенностью ее результатов.
Устойчивые промышленные системы могут иметь место в отраслях, производящих предметы широкого потребления. Неустойчивые системы, ограниченные только входящими в них нелинейными функциями, имеют, очевидно, место в производстве оборудования и предметов длительного пользования, и, пожалуй, также в отношении американской экономической системы в целом. Чтобы создать действительно эффективную модель промышленного предприятия, в нее следует включить нелинейные функции в виде ограничений производственной мощности, дефицита рабочей силы и ограниченности кредита, а также учесть зависимость решений от комплексного взаимодействия между переменными.
Поскольку время и связанные с ним изменения составляют главную заботу хозяйственного руководителя, эффективная модель должна быть динамической и способной создавать собственную эволюцию во времени.
Таким образом, речь идет о таких математических моделях, которые могут применяться для отражения последовательного во времени действия динамических систем линейных и нелинейных, устойчивых и неустойчивых, с постоянным или меняющимся режимом. Модель должна быть пригодна для воспроизведения того, что мы называем организационными формами, методами управления, а также тех явных и скрытых факторов, которые определяют характер развития системы во времени. Эти модели слишком сложны (десятки, сотни и тысячи переменных) для аналитического решения. Ведь современная математика может аналитическими методами решать лишь самые простые задачи из области нелинейных систем. Между тем модели, рассматриваемые в данной работе, применяются для имитации определенного порядка действий, являющегося результатом определенного комплекса исходных условий в сочетании с известной комбинацией помех и иных вводов в систему. Это экспериментальный, эмпирический подход в поиске правильного понимания проблемы и, следовательно, лучших результатов, однако без гарантии нахождения «оптимальных» решений того или иного вопроса.
В науке об управлении и в экономической литературе термином «математическая модель» обычно обозначаются любые математические взаимосвязи между вводом и выводом применительно к какой-либо части системы. В терминологии, принятой для технических целей, эту реакцию на выводе части системы в ответ на один или несколько вводов называют обычно «передаточной» функцией.
Данная функция определяет, каким образом условия на вводе передаются на вывод. В данном контексте простое математическое выражение, описывающее воздействие какого-либо звена системы на другие, непосредственно к нему примыкающие, мы не будем называть «моделью», а будем передавать его одним из синонимов: «передаточная функция», «функциональная связь», «уравнение решения» или «уравнение темпа». В противоположность этому «модель» будет означать систему, состоящую из комплекса взаимодействующих «уравнений решения».
3. 2. Модели в естественных науках, технике и общественных науках
Математические модели, применяемые в общественных науках, часто сравнивают с несложными моделями из области физических наук и биологии. Это может дать повод к заблуждению.
Созданные модели солнечной системы, атома, ньютоновских законов движения, а также наследственности намного проще, чем модели, которые могут оказаться эффективными при анализе промышленных предприятий и экономических систем.
Для естественнонаучных систем чаще всего применяется анализ, основанный на допущении об их линейности. Большинство естественнонаучных систем, для которых удалось создать удачные модели, содержали в себе значительно меньше помех (неопределенности) по сравнению с нашими социальными системами. В естественных науках модели строятся на основе объяснения явлений, которые поддаются наблюдению, но обычно не подвержены изменениям. Методы установления статистических закономерностей, успешно применяемые в биологии при определении влияния косвенных причин на изменение наследственности, не обязательно окажутся эффективными при изучении социальных систем, где имеет место обратное воздействие следствия на причину.
Подход к источникам и задачам естественнонаучного и социологического моделирования был одинаков, и это нанесло ущерб развитию моделирования общественных систем.
Модели в технической и военной областях настолько отличаются от моделей естественнонаучных систем, что вполне можно говорить Об их принципиальном отличии. Они создаются разными путями и служат различным целям.
Модели, применяемые в технике и военном деле, гораздо ближе к моделям в области общественных наук, чем модели систем биологических и естественнонаучных. Управление и экономика, подобно технике, имеют дело с комплексными системами гораздо более высокого порядка, чем отдельные элементарные явления, которые зачастую являются объектом моделирования в естественных науках. В отличие от обычных естественнонаучных систем технические системы по своей сложности приближаются к общественным. Как технические, так и социальные системы имеют непрерывную градацию факторов (от несомненно важных к неопределенным и далее — к совершенно незначительным) по степени их влияния на каждое отдельное действие и решение. В отличие от этого естественнонаучные системы характеризуются резким разрывом между немногими важнейшими факторами, которые включаются в состав модели, и теми почти совершенно несущественными факторами, которыми пренебрегают. Для социальных систем особенно характерна замкнутость контура (обратные информационные связи), которая имеет место и во многих технических системах, но не свойственна большинству моделей в основных естественных науках. В моделях социальных систем, как и в технических (в отличие от простых естественнонаучных моделей), нас должны интересовать неустановившиеся, нециклические, неповторяющиеся явления.
Динамические модели оказались необходимыми при проектировании физических систем. Они применяются в авиационной технике, в проектировании управляющих систем для военных целей и при изучении сетей связи. Они включают людей и технику, поэтому они приобретают аспект социальных систем. Современную передовую технику невозможно было бы создать без знаний, полученных на основе математического моделирования.
О влиянии математических моделей на решения в области экономики и управления предприятиями этого сказать нельзя. Хотя моделирование в экономических исследованиях применяется уже давно, оно не пользуется общим признанием в качестве инструмента, помогающего хозяйственному руководству предприятия или целой страны.
Многие из неудач в построении экономических моделей могут быть объяснены ошибочными методами и попытками решить невыполнимые задачи. Нам необходим новый подход к построению и применению моделей социальных систем.
Цели. Вышеназванный контраст в отношении эффективности динамических моделей в технике и в экономике может быть частично объяснен характером использования средств построения моделей. Особенности применения моделей в этих областях вытекают, по-видимому, из различий в подходе к их конечным целям. В технике модели используются для проектирования новых систем, в экономике же они обычно применяются для объяснения систем уже существующих. Но оказывается, что в моделях, созданных исключительно для объяснения, ставились столь ограниченные задачи, что эти модели оказывались непригодными не только для проектирования, но даже для объяснения моделируемых явлений.
Основа модели. Модели технических систем строятся на основе данных об отдельных составных частях этих систем. Проектирование модели системы в восходящем порядке, отправляясь от строго определенных и наблюдаемых ее элементов, — эффективный метод, многократно и успешно применявшийся в прошлом.
В экономике модели нередко создавались в обратном порядке, исходя из суммарных результатов действия всей системы. Даже если ставить чисто теоретические задачи, нет никаких оснований полагать, будто такой обратный процесс построения модели (отправляясь от поведения системы в целом и переходя к характеристике отдельных ее частей) может дать положительные результаты в применении к усложненным системам с большим количеством помех, которые встречаются в экономике и управлении предприятиями.
Попытка воспроизвести существующую экономическую систему приводит к созданию моделей, представляющих собой результат статистической обработки данных о прошлом поведении системы в течение изученных периодов времени. Весьма маловероятно, что внутренние причинные механизмы сложной нелинейной информационной системы с обратной связью могут быть объяснены на основе ряда внешних наблюдений за обычными действиями данной системы. В противоположность этому использование моделей для проектирования физических систем переносит центр тяжести на модели систем, еще не существующих, но могущих быть созданными на основе уже наблюдаемых результатов. Модель самолета, испытываемая в динамической трубе, не строится для того только, чтобы воспроизвести наблюдавшееся ранее поведение уже известного типа летательного аппарата; она не создается также, чтобы воспроизвести некоторое подобие среднего арифметического всех сконструированных ранее самолетов. Она строится для каждой части отдельно с тем, чтобы так отразить испытываемый новый самолет, чтобы можно было с помощью модели изучить взаимодействие всех частей и летные качества самолета как единого целого.
Создавая модель системы, мы должны меньше полагаться на статистические и формальные данные, а полней использовать обширный запас описательной информации.
Оценка модели. Проверка адекватности модели также различна в зависимости от того, применяется ли она в технике или в экономике. В технической и военной областях модель оценивается ее способностью отражать такие динамические характеристики систем, как усиление, ширина поля допуска и чувствительность к меняющимся условиям. В экономике модели часто оценивались в зависимости от того, насколько с их помощью можно было предсказать специфическое состояние системы в некоторый будущий момент времени, и модели обычно не выдерживали испытаний на точность прогноза.
При создании моделей нам следовало бы меньше уделять внимания предсказанию определенных действий в будущем и больше — углублению понимания характеристик, внутренне присущих системе. Существуют, как нам кажется, серьезные причины, не позволяющие использовать модели для прогноза специфического состояния системы на достаточно длительное время, чтобы это могло иметь практическое значение. Но если это так, то точность прогноза специфической последовательности действий не является целесообразным моментом в испытании моделей.
Вместо этого модель следовало бы оценивать по ее способности воспроизводить или предсказывать характеристики поведения системы — устойчивость, колебания, рост, средний период колебаний, общие взаимосвязи переменных, изменяющихся во времени, и тенденцию к усилению или ослаблению возмущений, вызванных внешними причинами.
Подобие моделей и систем. В технике математические модели в большей мере соответствуют отражаемым реальным системам в отношении деталей структуры и действий, чем в классических экономических моделях. Барьер непонимания, отделяющий математические модели общественных наук от руководящего персонала промышленных предприятий и государственных учреждений, был почти непреодолимым. Это обстоятельство усугубляется тем, что модели социальных систем в отличие от моделей физических систем описываются в терминах, не принятых в данной области. Расхождения в терминологии могут возникнуть из различия исходных точек зрения. Администратор имеет дело с отдельными частями своей организации, совершенно аналогично тому, как инженер — с деталями своего самолета; при этом администратор не пользуется абстрактными коэффициентами, которые нельзя приурочить к конкретным источникам в реальной системе. Проектировщик же модели, выявляющий взаимосвязи путем статистического анализа, может оперировать своими коэффициентами как абстрактными эмпирическими результатами, которые не совпадают с определенными признаками реальной системы.
В последующих главах мы попытаемся придать каждой переменной и каждой константе конкретный смысл, соответствующий повседневной практике управления. Поскольку каждая константа по своему существу будет иметь физический или логический смысл, можно будет судить о ее соответствии реальности.
3. 3. Модели для контрольных опытов
Математические модели позволяют ставить контрольные опыты. Таким путем можно проверять результаты различных допущений и влияния внешних факторов. В отличие от реальной системы модель позволяет наблюдать результаты изменения одного фактора при неизменности всех прочих.
Такое экспериментирование создает возможность более глубокого рассмотрения характеристик моделируемой системы. Используя модель сложной системы, можно больше узнать о внутренних взаимодействиях, чем при манипулировании реальной системой. Ведь по своему содержанию модель дает возможность более полно выявить организационную структуру системы, ее образ действий, ее чувствительность к различным событиям. А в формальном отношении это позволяет наблюдать влияние гораздо более широкого круга обстоятельств, чем это возможно в реальной жизни.
На модели можно производить наблюдения таких переменных, которые не поддаются учету в реальной системе. Адекватная модель должна включать любые «неуловимые» факторы, которые, по нашему убеждению, существенно влияют на поведение системы. Неуловимые в реальной действительности факторы и наши допущения о них в модели становятся осязаемыми и поддаются наблюдению. Таким путем мы получаем возможность проследить последствия наших допущений.
3. 4. Механизация модели
Динамическая математическая модель дает описание возникновения действий, которые должны сменять друг друга в известной последовательности. Чтобы модель была эффективной, ее следует механизировать, а для этого нужно установить определенный способ выполнения необходимых действий.
Действия, предусмотренные в модели, могли бы выполняться группой людей, олицетворяющих отдельные части имитируемой реальной системы. Их решения и действия приводили бы к определенным результатам, которые в свою очередь являлись бы отправными данными для последующих решений и действий. Такая имитация с привлечением группы людей использовалась при изучении реальных систем. Это хороший способ показа основных принципов действия системы учащимся в аудитории. Но при исследовании больших систем он обременителен и является дорогостоящим.
Для выполнения тех же операций вместо группы людей можно использовать цифровую вычислительную машину. Затраты составят меньше тысячной доли стоимости тех же вычислительных операций, выполняемых группой людей. Такого рода задача наиболее подходит к уникальным характеристикам цифровой электронной машины.
3. 5. Область применения моделей
В недавние годы стало возможным создавать динамические модели поведения предприятий, достаточно полно отражающие взаимодействие между производством, сбытом, рекламой, исследовательскими работами, капиталовложениями и потребительским спросом. При такой постановке вопроса в модель могут быть включены как материальные, так и психологические факторы.
В наши дни техника построения моделей и стоимость вычислений уже не ограничивают круг систем, доступных для изучения. Теперь прогресс будет определяться темпами расширения и уточнения наших знаний о промышленных предприятиях.
Непосредственная задача сейчас состоит в том, чтобы обратиться к нашей литературе и науке об «описательном управлении» и «описательной экономике» и формализовать наши представления об отдельных составных частях той и другой. Это даст возможность улучшить наше понимание взаимодействия частей. При исследовании построения динамических моделей в данной работе не делается никакого различия между фирмами, предприятиями и экономикой в целом, ибо различия в подходе или произвольные разграничения между микроэкономикой и макроэкономикой, на наш взгляд, неправильны. Такими принципами мы руководствуемся во всех случаях. Одинаковые теоретические соображения будут определять в нашем анализе и способы агрегирования показателей. Возможности совершенствования наших знаний в обоих случаях имеют те же ограничения в отношении выполнимости задач. Поэтому соображения, излагаемые в данной книге, в одинаковой степени применимы для всех хозяйственных единиц — от динамического поведения отдельной фирмы до мировой экономики.
3. 6. Задачи применения математических моделей
Математическая модель промышленного предприятия должна способствовать пониманию последнего. Она должна также быть полезным руководящим началом для правильных суждений и интуитивных решений. Она должна помогать в установлении желательного образа действий. Использование модели предполагает, что
— мы располагаем известным знанием частных характеристик системы;
— эти известные и предполагаемые факты в их взаимодействии влияют на характер развития системы;
— наша способность интуитивно представлять взаимодействие частей менее надежна, чем наши знания о каждой из них;
— построив модель и наблюдая на ней взаимодействие различных факторов, мы сможем лучше понять анализируемую систему.
Эти допущения составляют ту же основу, на которой мы строим модели планировок и оборудования. Модель фирмы будет оправдана постольку, поскольку она позволит улучшить управление фирмой. Это не значит, что результаты должны быть совершенными, чтобы модель оказалась эффективной. Модель может принести пользу при определении степени чувствительности производственной системы к изменениям ее образа действий или структуры. Она может помочь в определении относительной ценности информации, отличающейся по своему характеру, точности и своевременности. Она может показать, насколько система усиливает или ослабляет возмущения, вызванные воздействием окружающей среды. Это инструмент выявления уязвимости системы под воздействием колебаний, чрезмерного расширения или спада. Модель может указать способ действия, который позволит улучшить ее характеристики. Одним словом, математические модели должны служить орудием «организации предприятия», то есть проектирования таких промышленных организаций, которые наилучшим образом отвечают своему назначению.
Из вышеприведенных соображений следует, что эффективная модель реальной системы должна выражать сущность системы, она должна показывать, каким образом изменения образа действий или структуры системы приводят к улучшению или ухудшению ее поведения. На модель возлагается задача выявления различных видов внешних возмущений, к которым система чувствительна. Она должна служить руководством в деле повышения эффективности управления.
Однако необходимо особо подчеркнуть, что предсказание определенных событий в определенный будущий момент времени не входит в задачу модели. Часто ошибочно полагают, что эффективная динамическая модель должна предсказывать конкретное состояние системы в какой-то будущий момент времени. Это может быть желательным, но при оценке эффективности моделей не следует исходить из их способности предсказывать будущие конкретные действия. Такая позиция будет более благоразумной, поскольку имеются достаточные основания считать, что такие предсказания не будут достигнуты в пределах обозримого будущего.
3. 7. Источники информации для построения модели
Многие не признают потенциальной пользы моделей деятельности предприятий, основываясь на том, что у нас нет достаточных данных для моделирования. Они уверены, что первым шагом должен быть широкий сбор статистических сведений. Верно же как раз обратное.
Мы обычно приступаем к делу, уже будучи вооружены достаточной описательной информацией, чтобы начать строить весьма эффективную модель. Нужно начинать именно с моделирования. И одним из первых применений модели должно быть установление того, какие фактические данные следует собирать. Бесспорно, что сбор сведений — операция весьма трудоемкая и, вместе с тем, ценность этих данных гораздо ниже затрат на их получение. В то же время наиболее существенная и легкодоступная информация обычно не выявляется и не используется.
Конторская работа по собиранию цифрового материала едва ли пригодна для выявления новых понятий и неизвестных ранее, но важных переменных. Широкий сбор данных сам по себе не может дать представление об общем характере изучаемых переменных. Более того, некоторые наиболее важные источники информации, необходимые для построения динамической модели, вообще не существуют в обычном смысле слова, то есть в виде статистических таблиц.
Каково относительное значение различных переменных? Насколько точной должна быть необходимая информация? Какими будут последствия использования ошибочных данных? На эти вопросы следует ответить прежде, чем затрачивать большие средства и много времени на сбор данных.
Фактически мы постоянно пользуемся моделями фирм и экономических систем на базе данных, имеющихся под рукой. Словесное отображение или описание есть модель; наше мысленное представление о том, как функционирует организация, — тоже модель. Словесная модель и математическая модель очень близки друг к другу. Обе являются абстрактными описаниями реальных систем. Математическая модель более упорядоченна, ибо для нее характерно стремление к устранению неясностей и противоречий, которые могут быть в словесном описании. Математическая модель более «точна». Под точностью подразумевается «конкретность», «четкость», «отсутствие расплывчатости». Математическая модель не обязательно более «правильна», чем словесная, если под правильностью понимать степень соответствия реальному положению вещей. Математическая модель могла бы «точно» представлять наше словесное описание и все же быть совершенно «неправильной».
Ценность математической модели во многом связана с ее «точностью», а не с ее «правильностью». Само построение математической модели заставляет нас быть точными. Оно требует конкретного определения того, что именно мы имеем в виду. Построение модели не связано тем или иным образом с правильностью того, что точно установлено.
Распространенное мнение, будто математическая модель не может быть построена до тех пор, пока не будут полностью известны каждая константа и функциональная зависимость, представляется недоразумением. Оно часто ведет к пренебрежению весьма важными факторами (большинством «неуловимых» влияний, определяющих выбор решения) на том основании, что они не учтены или не поддаются учету. Пренебрежение такими переменными равносильно сведению их влияния на выбор решения к нулю, что является заведомо ошибочным.
При отборе данных и оценке их достоверности надо исходить из особенностей уже обсуждавшихся объектов и целей моделирования.
Если единственно полезной и приемлемой моделью является та, которая полностью объясняет реальную систему и предсказывает ее конкретное состояние в будущем, тогда недостаточно обеспечить точность модели, а нужно, чтобы она была правильной. При отсутствии такой правильности моделирование становится малоэффективным.
Если же задача состоит в том, чтобы углубить понимание изучаемой системы, модель может быть эффективной и в том случае, если она отражает только то, что мы считаем сущностью изучаемой системы. Такая модель придает точность нашему мышлению; неопределенность подлежит устранению в процессе построения математической модели; мы получаем возможность решить вопрос об относительной важности различных факторов и обнаружить несоответствия в наших исходных положениях. Нередко оказывается, что наши допущения, касающиеся отдельных компонентов системы, не могут привести к ожидаемым последствиям. Наша словесная модель, будучи преобразована в точную математическую форму, может оказаться не соответствующей качественной природе реального мира. Мы можем убедиться, что никакой правдоподобной комбинацией допущений нельзя оправдать наших излюбленных предрассудков. На каждой такой ошибке мы учимся.
Таким образом, мы пользуемся моделью так же, как инженер или военный стратег. Каково было бы положение, если бы реальная система соответствовала нашим отправным допущениям? Какой была бы предполагаемая система, если бы мы создавали ее согласно модели? Какие изменения в модели могли бы приблизить ее к характеристикам той существующей системы, которую она призвана отразить? Такие вопросы можно задать по отношению к замкнутой модели (или стремящейся к замкнутой), они особенно важны в том случае, когда речь идет о системе столь сложной, что правильные ответы не могут быть получены путем ее простого рассмотрения.
Модель прежде всего должна иметь структуру, то есть определенный порядок внутренних взаимосвязей. Допущения относительно структуры должны быть сделаны раньше, чем мы начнем собирать данные о реальной системе. Имея структуру, соответствующую нашим описательным знаниям о системе, мы можем сделать следующий шаг и придать коэффициентам реальные числовые значения, поскольку коэффициенты должны отражать строго определенные характеристики реальной системы. Затем можно приступать к изменениям модели и реальной системы, чтобы ликвидировать их несоответствия и приблизить к желательному уровню эффективности.
Такова позиция руководителя по отношению к словесному описанию, которое он использует в качестве модели управляемой им. фирмы. Он стремится уяснить, какое значение имеют для него наблюдаемые факторы, пытается связать отдельные формы поведения и характеристики системы с вытекающими из них следствиями, пробует дать оценку результатам изменения тех частей системы, которые находятся под его управлением.
На определенной ступени деталировки модели для ее приближения к реальной или предполагаемой системе можно использовать саму модель для изучения значения различных допущений, на которых она построена. Для каждого числового значения, по необходимости принятого нами произвольно, существуют известные пределы, между которыми лежит истинное значение величины. Часто приходится наблюдать случаи, когда модель сравнительно нечувствительна к изменениям значений в этих пределах; при этом, по-видимому, нецелесообразно уточнять принятую приблизительную оценку.
С другой стороны, общее качественное поведение системы может в значительной мере зависеть от принятых нами численных значений. В этих случаях надо помнить, что принятые допущения представляют некоторый риск При выявлении чувствительности модели к ошибкам в численных значениях коэффициентов нужно выбирать между:
— измерением соответствующих величин с достаточной точностью;
— регулированием установленной величины в требуемых пределах;
— перестройкой системы и модели, чтобы сделать влияние величины менее существенным.
Математическая модель должна основываться на самой достоверной информации, какая только может быть получена в данный момент, но построение модели не следует откладывать до тех пор, пока будут точно измерены все связанные с ней параметры. Так можно ждать бесконечно. Величины следует устанавливать там, где это необходимо, с тем чтобы можно было продвигаться вперед в изучении многих вопросов, а тем временем будет осуществляться сбор данных. Заметим, что достаточная информация имеется в описательных сведениях, накопленных практиками в области управления и экономики, которые могут помочь создателю модели в его первоначальных усилиях. По мере исследования он убедится, что гораздо большую опасность представляет недооценка важных переменных и невнимание к ним, чем недостаток информации, когда он уже выявлен и определен. Специалист, хорошо знающий решающие моменты в динамике системы, может выявить гораздо более полезную информацию, чем получаемая обычно в отчетных данных.
Эти замечания не преследуют цели свести на нет целесообразность использования доступных сведений или проведения измерений, которые представляются оправданными; они лишь подвергают сомнению общепринятое мнение, будто учет фактических данных является первым и самым главным шагом в построении модели. Известное изречение, что «мы понимаем по-настоящему только в той мере, в которой можем измерить», остается полностью в силе. Но, прежде чем измерять, мы должны четко обозначить свой объект, определить его размерность, а чтобы действовать эффективно, нужно иметь известную цель познания. Даже при проведении фундаментальных исследований, в которых поиск информации считается самоцелью, мы все же располагаем ограниченными ресурсами, а потому исследователь должен быть убежден, что его поиск обещает с высокой степенью вероятности дать важные результаты.
Такое отношение к данным, составляющим основу построения модели, некоторыми будет сочтено поверхностным и неприемлемым. Но другим это покажется трезвым и правильным подходом к решению трудной проблемы.
Одно из важных применений модели состоит в исследовании поведения системы вне нормальных исторических границ ее функционирования. Эти границы лежат вне области любых данных, которые могли бы быть накоплены за предыдущий период. При определении реакции отдельных частей системы на новые явления многое зависит от нашего понимания внутреннего характера этих частей. К счастью, это обычно возможно. В самом деле, мы можем с большей уверенностью судить о крайних ограничивающих обстоятельствах, определяющих поведение человека, его вероятные решения, а также технологический характер продукции или уровень запасов, чем о том, каковы «нормальные» границы поведения системы в целом. Эти частные ограничительные условия входят в состав наших описательных знаний. Включение же возможных границ всех функциональных взаимоотношений в состав модели позволяет изучить действие системы в более широких пределах. Оно улучшает также отражение моделью нормальных границ, поскольку включение установленных экстремальных значений помогает ограничить и определить многие характеристики системы в нормальных границах ее действия.
Модели, построенные указанном выше способом — исходя из характеристик отдельных составных элементов с включением и оценкой значений всех факторов, которые являются достаточно важными по данным нашего описательного знакомства с системой, — могут дать полезные результаты. Они легко доступны для руководителя-практика, так как основаны на источниках и терминологии, которые знакомы ему из его личного опыта.