Квантовая вселенная. Как устроено то, что мы не можем увидеть

Форшоу Джефф

Кокс Брайан

10. Взаимодействие

 

 

В первых главах мы рассказывали о законах, по которым движутся мельчайшие частицы. Они перескакивают с места на место, без стеснения исследуя пространство и метафорически перенося с собой свои микроскопические циферблаты. Добавив множество циферблатов, соответствующих разнообразным способам, которыми они могут прибыть в некую определенную точку в пространстве, мы получаем единый общий циферблат, размер которого свидетельствует о вероятности найти частицу «там». Из диких, анархических проявлений квантовых скачков появляются более известные нам свойства повседневных предметов. В каком-то смысле каждый электрон, каждый протон и каждый нейтрон, присутствующие в вашем теле, постоянно исследуют всю Вселенную, и только когда вычислена общая сумма всех этих исследований, мы оказываемся в мире, где атомы нашего тела, к счастью, стремятся находиться в относительно стабильной форме – по крайней мере, на век или больше. Но мы до сих пор никоим образом не касались природы взаимодействий между частицами. Мы ухитрились довольно далеко продвинуться, не касаясь вопроса о том, на каком языке частицы разговаривают друг с другом. Во многом помогла идея потенциала. Но что такое потенциал? Если мир состоит исключительно из частиц, то, разумеется, мы можем совсем отказаться от смутного представления, что частицы двигаются «в потенциале», созданном другими частицами, и говорить уже о том, как именно движутся частицы и как взаимодействуют.

Современный подход к фундаментальной физике, известный как квантовая теория поля, действительно устраняет это понятие, добавляя к законам движения частиц новые законы, которые объясняют, как эти частицы взаимодействуют друг с другом. Эти законы оказываются более сложными, чем те, с которыми мы уже встречались, и одно из чудес современной науки в том, что, несмотря на всю сложность и запутанность мира природы, законов этих не так уж много. Альберт Эйнштейн писал: «Вечная тайна мира – в его понятности», а то, что «он понятен, это настоящее чудо».

Начнем с формулировки законов первой открытой квантовой теории поля – квантовой электродинамики, сокращенно QED. Истоки этой теории восходят к 1920-м годам, когда Дираку с особенным успехом удалось поставить электромагнитную теорию Максвелла на квантовые рельсы. Мы уже много раз встречались в этой книге с квантами электромагнитного поля, а именно с фотонами, но в то время с новой теорией было связано много очевидных проблем, остававшихся неразрешимыми в 1920–1930-е годы. Как именно, например, электрон испускает фотон при движении между энергетическими уровнями в атоме? И что происходит с фотоном, когда он поглощается электроном, что позволяет электрону перепрыгнуть на более высокий энергетический уровень? Очевидно, что фотоны могут создаваться и разрушаться во внутриатомных процессах, и то, как это происходит, не описывается той «старомодной» квантовой теорией, с которой мы до сих пор имели дело в этой книге.

В истории науки есть несколько легендарных собраний ученых – встреч, кажется, определенно изменивших ход науки. Возможно, это немного не так, поскольку обычно участники таких встреч уже много лет работали над своими проблемами, но состоявшаяся в июне 1947 года конференция в Шелтер-Айленде, на оконечности Лонг-Айленда в Нью-Йорке, обладает вескими основаниями на то, чтобы считаться катализатором научных открытий. Уже только список участников стоит того, чтобы прочитать его вслух и с выражением, потому что он краток и тем не менее содержит имена величайших американских физиков XX века. Вот он в алфавитном порядке: Ханс Бете, Дэвид Бом, Грегори Брейт, Виктор Вайскопф, Карл Дарроу, Хендрик Крамерс, Уиллис Лэмб, Дункан Макиннес, Роберт Маршак, Джон фон Нейман, Арнольд Нордсик, Роберт Оппенгеймер, Абрахам Пайс, Лайнус Полинг, Исидор Раби, Бруно Росси, Роберт Сербер, Эдвард Теллер, Джон Уилер, Джордж Уленбек, Ричард Фейнман, Герман Фешбах, Джон ван Флек и Джулиан Швингер. Читатель уже встречал в книге некоторые из упомянутых имен, а любой студент физического факультета, вероятно, знает большинство из них. Американский писатель Дэйв Барри однажды сказал: «Если одним словом определить, почему человеческая раса не раскрыла и никогда не раскроет полностью свой потенциал, то это будет слово “собрания”». Это, безусловно, верно, но встреча в Шелтер-Айленде была исключением. Собрание началось с презентации того, что с тех пор получило название лэмбовского сдвига. Уиллис Лэмб с помощью высокоточных микроволновых методов, разработанных в ходе Второй мировой войны, обнаружил, что спектр водорода на самом деле не до конца описывается старой квантовой теорией. Существовал мельчайший сдвиг наблюдаемых энергетических уровней, который нельзя было объяснить теорией, изложенной нами в первой части книги. Этот эффект был крохотным, но стал настоящим вызовом для собравшихся теоретиков.

Тут мы оставим Шелтер-Айленд, волнующийся после речи Лэмба, и обратимся к теории, возникшей в следующие месяцы и годы. Тем самым мы раскроем происхождение лэмбовского сдвига, а сейчас, чтобы разжечь ваш аппетит, приведем довольно загадочное описание ответа: протон и электрон в атоме водорода не одни.

QED – теория, описывающая, как электрически заряженные частицы, например электроны, взаимодействуют друг с другом и с частицами света (фотонами). Она одна способна объяснить все природные явления, за исключением гравитации и ядерных феноменов. К ядерным феноменам мы обратимся позже и объясним, почему атомное ядро не распадается, хотя представляет собой множество положительно заряженных протонов и нейтронов без заряда, которые в одну секунду разлетелись бы, если бы внутри ядра не происходили какие-то процессы. Практически все остальное – и уж точно все, что вы видите и ощущаете, – объясняется на глубинных уровнях QED. Материя, свет, электричество и магнетизм – все это QED.

Начнем с толкования системы, с которой мы неоднократно уже встречались в этой книге, а именно Вселенной с одним электроном. Кружки на рисунке со «скачками циферблатов» на показывают множество возможных местонахождений электрона в какой-то момент времени. Чтобы вывести вероятность нахождения электрона в некоторой точке Х в более позднее время, как говорят наши квантовые правила, мы должны позволить электрону перескочить в точку Х из любой возможной исходной точки. Каждый скачок приносит в точку Х циферблат, мы суммируем их и получаем ответ.

Сейчас мы сделаем то, что может изначально показаться слишком сложным, но, конечно, имеет под собой серьезные основания. Придется задействовать несколько А, В и Т – иными словами, мы снова возвращаемся на поле твидовых жилетов и меловой пыли; не беспокойтесь, это ненадолго.

Когда частица из точки А в нулевое время направляется к точке В во время Т, мы можем подсчитать, как будет выглядеть циферблат в точке В, переведя стрелки в точке А назад на величину, определенную расстоянием между В и А и временным интервалом. Иными словами, можем записать, что циферблат в точке В задается C(A, 0) P(A, B, T), где C(A, 0) представляет исходный циферблат в точке А и в нулевое время, а P(A, B, T) – воплощение правила перевода и уменьшения циферблатов, связанного со скачком из А в В. Мы будем называть P(A, B, T) «пропагатором» (функцией распространения. – Прим. ред.) перемещения из точки А в точку В. Теперь, когда известно правило перемещения из точки А в точку В, мы готовы вычислить вероятность нахождения частицы в точке Х. На рис. 4.2 есть множество исходных точек, так что нам придется продвинуться в точку Х из всех этих стартовых точек и сложить все получившиеся циферблаты. В нашей кажущейся зубодробительной нотации получается циферблат C(X, T) = C(X1, 0) P(X1, X, T) + C(X2, 0) P(X2, X, T) + C(X3, 0) P(X3, X, T) +…, где X1, X2, X3 и так далее отражают все позиции частицы в нулевое время (то есть позиции кружков на ). Уточним: запись C(X3, 0) P(X3, X, T) просто значит «взять циферблат в точке Х3 и переместить ее в точку Х за время Т». Не стоит думать, что тут происходит нечто очень сложное. Все, что мы делаем, так это вкратце записываем то, что уже знаем: «взять циферблат в точке Х3 в нулевое время и рассчитать, насколько перевести стрелки и уменьшить циферблат в соответствии с путем частицы из точки Х3 в точку Х в некоторое более позднее время Т, а затем повторить процесс для всех остальных циферблатов в нулевое время и, наконец, сложить все циферблаты вместе по правилу сложения циферблатов». Уверены, вы согласитесь, что это слишком многословно, поэтому с сокращенной записью жить будет проще.

Мы имеем право считать, что пропагатор воплощает правило перевода и уменьшения циферблатов. Мы можем также считать пропагатор циферблатом. Чтобы оправдать это бессодержательное заявление, представьте, что мы с уверенностью знаем, что электрон находится в точке А во время Т = 0 и что эта ситуация описывается циферблатом размера 1, показывающем 12 часов. Мы можем изобразить перемещение с помощью второго циферблата, и его размер совпадает с величиной, на которую должен быть уменьшен исходный циферблат, а время, которое показывает второй циферблат, соответствует величине необходимого перевода часов. Если скачок электрона из точки А в точку В требует уменьшения исходного циферблата в 5 раз и перевода стрелок на 2 часа назад, то пропагатор P(A, B, T) можно представить в виде циферблата, размер которого равняется 1/5 = 0,2, а стрелки которого указывают на 10 часов (то есть переведены на 2 часа назад с 12). Циферблат в точке В получается простым «умножением» исходного циферблата в точке А на циферблат-пропагатор.

Отступление для тех, кто разбирается в комплексных величинах: как C(X1, 0) и C(X2, 0), так и P(X1, X, T), P(X2, X, T) могут быть представлены в виде комплексного числа, и они сочетаются в соответствии с математическими правилами умножения комплексных чисел.

Для тех, кто не разбирается в комплексных величинах: это неважно, потому что описание с помощью циферблатов столь же точно. Мы всего лишь представили слегка иной взгляд на правило перевода циферблатов: можно переводить стрелки и уменьшать циферблат с помощью другого циферблата.

Нам ничто не мешает выработать правило умножения циферблатов, которое будет работать: умножить размеры двух циферблатов (1 × 0,2 = 0,2) и совместить время на этих двух циферблатах таким образом, что стрелки первого циферблата будут переведены на время второго: 12 минус 10, то есть 2 часа. Кажется, что мы где-то слегка переусердствовали, и это определенно не то, что нужно, когда мы имеем дело лишь с одной частицей. Но физики ленивы, так что они не стали бы впадать во все эти сложные рассуждения, если бы это не экономило время и усилия в долгосрочной перспективе. Введенная здесь запись оказывается очень полезным способом следить за всеми переводами и уменьшениями циферблатов, когда мы подойдем к более интересному случаю с несколькими частицами – например, при рассмотрении атома водорода.

Независимо от деталей можно сказать, что в нашем методе подсчета вероятностей нахождения одинокой частицы где-то во Вселенной есть всего два ключевых момента. Во-первых, нужно указать набор исходных циферблатов, заключающих в себе информацию о том, где частица может находиться в нулевое время. Во-вторых, нужно знать пропагатор P(A, B, T), который сам выступает в роли циферблата, заключающего в себе правило перевода и уменьшения для частицы, перескакивающей из точки А в точку В. Если мы знаем, как выглядит пропагатор для любой пары исходных и конечных точек, то мы знаем все, что нужно знать, и можем с уверенностью высчитать величественно скучную динамику Вселенной, содержащей одну частицу. Впрочем, к ней нельзя относиться пренебрежительно, потому что такое простое положение дел слабо запутывается, когда в игру вступает взаимодействие частиц. Введем же его.

На рис. 10.1 графически изображены все ключевые идеи, которые мы хотим здесь обсудить. Это наше первое знакомство с диаграммами Фейнмана – средством расчета профессионального специалиста по физике частиц. Наша задача: найти вероятность обнаружения пары электронов в точках Х и Y в некоторое время Т. Сначала нам сообщается, где электроны находятся в нулевое время, то есть как выглядят исходные поля циферблатов. Это важно, потому что способность ответить на подобный вопрос эквивалентна способности узнать, «что происходит во Вселенной, содержащей два электрона». Кажется, в этом нет особого прогресса, но теперь весь мир у нас в кармане, потому что мы можем узнать, как основные строительные кирпичики природы взаимодействуют друг с другом.

Рис. 10.1. Некоторые способы распада пары электронов. Электроны начинают движение слева и всегда заканчивают его в одной и той же паре точек, X и Y, во время T. Эти графики соответствуют нескольким различным способам, которыми частицы могут достичь точек X и Y

Для упрощения мы изобразили лишь одно измерение пространства, и время движется слева направо. Это никак не скажется на наших умозаключениях. Начнем с описания первой серии графиков на рис. 10.1. Мелкие точки в T = 0 соотносятся с возможными местоположениями двух электронов в нулевое время. Для иллюстративных целей предположим, что верхний электрон может находиться в одном из трех мест, в то время как нижний – в одном из двух (в реальном мире нам пришлось бы иметь дело с электронами, которые могут находиться в бесконечном количестве мест, но если бы пришлось это зарисовать, то кончились бы чернила).

Верхний электрон перескакивает в точку A в некоторое более позднее время и одновременно делает очень интересную вещь: он испускает фотон (на рисунке представлен волнистой линией).

После этого фотон перескакивает в точку В, где поглощается другим электроном. Верхний электрон затем перескакивает из точки А в точку Х, а нижний – из точки В в точку Y. Это всего лишь один из бесконечного множества вариантов перехода исходной пары электронов в точки Х и Y. Мы можем связать циферблат со всем процессом – назовем его «циферблат 1», сокращенно С1. QED должна дать нам правила игры, позволяющие вычислить этот циферблат.

Прежде чем углубляться в детали, разберемся, как это должно происходить. На самом верхнем рисунке представлен один из мириадов способов, которыми исходная пара электронов может попасть в точки Х и Y. На других рисунках представлены иные способы. Основная идея в том, что для каждого возможного способа попадания электронов в точки Х и Y мы должны определить квантовый циферблат – уже упомянутый С1 будет лишь первым в длинной череде циферблатов. Когда все циферблаты определены, нужно сложить их и получить один «главный» циферблат. Размер этого циферблата (возведенный в квадрат) укажет на вероятность нахождения пары электронов в точках Х и Y. Итак, мы снова должны представить, что электроны движутся к точкам Х и Y не по какому-то определенному маршруту, а скорее рассеиваются всеми способами сразу. На последних нескольких рисунках можно увидеть ряд более изощренных способов рассеивания электронов. Электроны не только обмениваются фотонами – они могут испускать и снова поглощать собственные фотоны, а на последних двух рисунках вообще происходит нечто странное. На них показан сценарий, при котором кажется, что фотон испускает электрон, который «ходит по кругу», прежде чем заканчивает свой путь там же, где начал: более подробно об этом мы скажем чуть позже. Сейчас же можно просто представить ряд все более сложных диаграмм, соответствующих случаям, при которых электроны испускают и поглощают большое количество фотонов, прежде чем в итоге завершают путь в точках Х и Y. Придется рассматривать многочисленные пути, которые могут окончиться для электронов в точках Х и Y, но два правила формулируются очень четко: электроны могут только перескакивать с места на место и испускать или поглощать один фотон. Вот и все: электроны могут перескакивать или расширяться. Более подробное рассмотрение показывает, что ни один из приведенных выше рисунков не нарушает двух этих правил, потому что на них не изображено ничего более сложного, чем сочленение двух электронов и фотона. Сейчас мы должны объяснить, как определять соответствующие циферблаты – один для каждой диаграммы на рис. 10.1.

Сосредоточимся на самой верхней диаграмме и посмотрим, как определить внешний вид связанного с нею циферблата (циферблат С1). В самом начале процесса есть два электрона, и каждый из них имеет свой циферблат. Следует начать с их перемножения в соответствии с правилом умножения циферблатов. Мы получим новый единый циферблат, который обозначим буквой С. Умножение циферблатов имеет смысл, потому что нельзя забывать – циферблаты служат для обозначения вероятностей, а если имеются две независимые вероятности, то способом их сочетания будет перемножение. Например, вероятность выпадения орла на двух монетах будет равна ½ × ½ = ¼. Точно так же получающийся в результате циферблат С указывает на вероятность того, что два электрона будут находиться на исходных позициях. Остальное тоже связано с умножением циферблатов. Верхний электрон перескакивает в точку А, так что существует связанный с этим циферблат; назовем его P(1, A), то есть «частица – particle – 1 перескакивает в точку А». Тем временем нижний электрон перескакивает в точку В, и для этого тоже есть свой циферблат, который мы назовем P(2, B). Точно так же имеются еще два циферблата, соответствующие переходу электронов в конечные точки; их мы обозначим как P(A, X) и P(B, Y). Наконец, существует и циферблат, связанный с фотоном, который перескакивает из точки А в точку В. Поскольку фотон – это не электрон, правило распространения фотона должно отличаться от правила распространения электрона, так что для его циферблата нужно использовать другой символ. Обозначим циферблат, соответствующий скачку фотона, как L(A, B). Теперь мы попросту перемножаем все циферблаты, получая один «главный»: R = C P(1, A) × P(2, B) × P(A, X) × P(B, Y) × L(A, B). Мы уже близки к успеху, но нужно еще немного уменьшить циферблаты, потому что правило QED по поводу того, что происходит, когда электрон испускает или поглощает фотон, говорит о необходимости введения уменьшающего коэффициента g. На нашей диаграмме верхний электрон испускает фотон, а нижний его впитывает, так что коэффициентов становится два, и мы используем величину g². Теперь все действительно готово: конечный «циферблат 1» получается с помощью формулы C1 = g² × R.

Уменьшающий коэффициент, возможно, выглядит немного произвольно, но имеет очень важную физическую интерпретацию. Он очевидным образом связан с вероятностью испускания электроном фотона, так что отражает величину электромагнитной силы. Где-то в наших вычислениях мы должны были задать связь с реальным миром, потому что сейчас высчитываем реальные вещи. И как ньютонова гравитационная постоянная G несет в себе всю информацию о силе гравитации, так g несет всю информацию о величине электромагнитной силы.

Если бы мы проводили полные расчеты, сейчас пришлось бы обратиться к следующей диаграмме, отображающей иной способ достижения той же парой электронов тех же точек Х и Y. Вторая диаграмма очень напоминает первую: электроны начинают свой путь из тех же точек, только на этот раз верхний электрон испускает фотон в другой точке пространства и в другое время, а нижний электрон впитывает этот фотон тоже в другое время и в другой точке пространства. Все остальное происходит точно так же, и мы получаем второй циферблат – «циферблат 2», обозначаемый «С2». Мы продолжаем снова и снова повторять всю процедуру для каждого и любого возможного места испускания электрона и каждого и любого возможного места его поглощения. Мы должны также принять во внимание, что электроны могут начинать движение из нескольких различных исходных точек. Основная идея в том, что нужно учесть каждый и любой способ доставки электронов в точки Х и Y и ассоциировать все эти способы со своими циферблатами. Собрав все циферблаты, мы «просто» складываем их, получая один конечный циферблат, размер которого указывает на вероятность нахождения одного электрона в точке Х и второго – в точке Y. Теперь мы закончили, и нам предстоит выяснить, как два электрона взаимодействуют друг с другом, хотя другого выхода, кроме как подсчитывать вероятности, нет.

То, что мы описали, – это самое ядро квантовой электродинамики, другие силы природы можно описать примерно схожим образом. Мы вернемся к этому чуть позже, пока же нужно поговорить кое о чем еще.

Сначала – абзац с описанием двух небольших, но важных деталей. Во-первых, мы упростили суть дела, проигнорировав то, что у электронов есть спин и что они по этому признаку делятся на два типа. Кроме того, спин есть и у фотонов (это бозоны), которые делятся на три типа. Это немного затрудняет вычисления, потому что мы должны следить, с какими типами фотонов и электронов имеем дело на каждой стадии перехода и рассеивания. Во-вторых, если вы внимательно читали, могли заметить знаки минуса перед парой диаграмм на рис. 10.1. Они стоят там, потому что мы говорим об идентичных электронах, перескакивающих из точки Х в точку Y, а две диаграммы со знаками минуса соответствуют взаимному обмену электронов по сравнению с другими диаграммами, то есть электрон, который начал движение из верхнего поля точек, завершает его в точке Y, а второй, нижний электрон оказывается в точке Х. И как мы уже говорили в главе 7, такая смена конфигураций сочетается только после дополнительного перевода циферблата на 6 часов – отсюда и знак минуса.

Не исключено, что вы заметили и возможный недостаток в нашем плане: существует бесконечное количество диаграмм, описывающих варианты перехода частиц из точки Х в точку Y, и суммирование бесконечного количества циферблатов может оказаться, мягко говоря, изнурительным занятием. К счастью, при каждом рассеянии пары электрон – фотон в расчеты входит еще один множитель – g, что уменьшает размер итогового циферблата. Это значит, что чем сложнее диаграмма, тем меньше соответствующий циферблат и тем менее важен он для итогового циферблата. Для квантовой электродинамики величина g довольно мала (около 0,3), так что уменьшение при увеличении числа рассеяний становится намного более явным. Очень часто достаточно учесть только такие диаграммы, как первые пять на рис. 10.1, где рассеяний не более двух, что экономит множество усилий.

Такой процесс вычисления циферблатов (на научном жаргоне известный как «амплитуда») для каждой диаграммы Фейнмана, суммирование всех циферблатов и возведение полученного итогового циферблата в квадрат с целью определения вероятности протекания процесса – это хлеб с маслом современной физики частиц.

Но под поверхностью всего, что мы сказали, таится загадочная проблема, которая очень сильно беспокоит одних физиков и совершенно безразлична другим.

 

Проблема измерения в квантовой теории

При складывании циферблатов, соответствующих разным диаграммам Фейнмана, появляется эффект квантовой интерференции. Как и в случае с двухщелевым экспериментом, когда нужно было принять во внимание все возможные траектории пути частицы к экрану, мы должны учесть все вероятности перехода пары частиц из исходных положений в окончательные. Это позволяет прийти к правильному ответу, потому что становится возможной интерференция между различными диаграммами. Только в конце процесса, когда все циферблаты просуммированы и все интерференции учтены, нужно возвести в квадрат размер итогового циферблата и вычислить вероятность протекания процесса. Просто. А теперь посмотрите на рис. 10.2.

Рис. 10.2. Человеческий глаз смотрит на происходящее

Что случится, если мы попытаемся определить, что делают электроны при перескакивании в точки Х и Y? Единственный способ исследовать, что происходит, – взаимодействовать с системой по правилам игры. В квантовой электродинамике это значит, что мы должны придерживаться правила рассеивания электронов-фотонов, поскольку никаких других правил нет. Итак, попробуем взаимодействовать с одним из фотонов, который может быть испущен одним из двух электронов. Определим его с помощью личного детектора фотонов – собственных глаз. Заметьте, мы задаем теоретически иной вопрос: «Какова вероятность найти электрон в точке Х, другой электрон в точке Y, а также фотон в собственном глазу?» Мы знаем, что сделать для получения ответа: нужно сложить все циферблаты, связанные с различными диаграммами для двух электронов, которые завершаются нахождением одного электрона в точке Х, второго в точке Y и фотона «в собственном глазу». Точнее, мы должны говорить о том, как фотон с этим «моим собственным глазом» взаимодействует.

Хотя все звучит относительно просто, процесс вскоре вырывается из-под контроля. Например, фотон отрывается от электрона, находящегося в одном из атомов моего глаза; это запускает цепочку событий, которая в конечном счете ведет к моему восприятию фотона: я сознательно наблюдаю вспышку света в собственном глазу. Итак, чтобы полностью описать то, что происходит, мы должны определить положение каждой частицы моего мозга, поскольку все они реагируют на появление фотона. И тут мы вплотную подходим к так называемой проблеме измерения в квантовой теории.

До сих пор мы довольно подробно описывали методы вычисления вероятностей в квантовой физике. Под этим понимается, что квантовая теория позволяет вычислить шансы измерения некоего определенного исхода эксперимента. В этом процессе нет никаких двусмысленностей – достаточно следовать правилам игры и не отклоняться от вычисления вероятности того, что может произойти. Однако случается нечто неприятное. Представьте, что ученый проводит эксперимент, для которого возможны лишь два исхода – «да» и «нет». Итак, эксперимент состоялся, и в результате экспериментатор записал исход «да» или «нет», но уж никак не то и другое одновременно. Пока все хорошо.

Теперь представим, что позже второй экспериментатор измеряет нечто другое (что именно – не имеет значения).

Снова примем как данность, что эксперимент прост и возможных исходов два – «есть щелчок» и «нет щелчка». Правила квантовой физики диктуют: мы должны вычислить вероятность того, что второй эксперимент даст «щелчок», просуммировав циферблаты, связанные со всеми вероятностями, ведущими к такому исходу. Это может включать в себя вариант, что первый экспериментатор получает исход «да», и дополняющий его вариант с исходом «нет». Только после суммирования двух исходов мы получим правильный ответ и узнаем, какова вероятность результата «есть щелчок» во втором эксперименте. Но так ли это? Действительно ли нужно принимать в расчет необходимость поддержания связности мира даже после того, как некое измерение завершилось? Или же на самом деле после получения результата «да» или «нет» в первом эксперименте будущее зависит лишь от измерения? Например, во втором эксперименте это значит, что если первый экспериментатор получает «да», то вероятность исхода «есть щелчок» во втором эксперименте должна вычисляться не исходя из суммы вероятностей «да» и «нет», а лишь после учета вероятностей, при которых мир может развиться от «первый экспериментатор получает ответ да» до «второй эксперимент дает щелчок». Разумеется, при этом получится не тот ответ, как при суммировании обоих исходов «да» и «нет», так что, если мы стремимся к полному пониманию, нужно выяснить, как следует поступать.

Чтобы узнать, какой из методов верен, требуется определить, есть ли что-то особенное в самом процессе измерения. Изменяет ли он мир, препятствуя сложению квантовых амплитуд, или просто оказывается частью обширной сложной сети вероятностей, оставаясь всегда в одной и той же суперпозиции? Людям приятно считать, что измерение каким-то образом (получением ответа «да» или «нет», например) необратимо меняет будущее, так что, если это правда, никакое будущее измерение не может пойти одновременно путями «да» и «нет». Но совершенно непонятно, действительно ли это так, потому что, судя по всему, всегда существует вероятность найти такое будущее состояние Вселенной, к которому можно подойти обоими способами. Для таких состояний законы квантовой физики, если воспринимать их буквально, прямо-таки заставляют вычислять вероятность их проявления путем суммирования вариантов «да» и «нет». Каким бы странным это ни казалось, это не более странно, чем суммирование историй, которым мы постоянно занимались в этой книге. Все дело в том, что мы настолько серьезно относимся к этой идее, что готовы совершать соответствующие действия даже применительно к людям и их действиям. С этой точки зрения никакой «проблемы измерения» не существует. Только если мы настаиваем, что акт измерения и его результат – «да» или «нет» – реально меняет природу вещей, возникают проблемы, потому что в этом случае на нас лежит обязанность объяснить, что же запускает процесс изменений и нарушает квантовую связность.

Подход к квантовой механике, который мы обсуждаем, отвергает саму идею, что природа каждый раз, когда кто-то (или что-то) «проводит измерение», выбирает конкретную версию реальности. Он лежит в основе так называемой интерпретации множественности миров. Это очень привлекательно, потому что выступает логическим следствием серьезного восприятия законов, управляющих элементарными частицами, и распространения их на все феномены. Но последствия такого серьезного восприятия шокируют, потому что придется представить, что Вселенная – это когерентная суперпозиция любых действий, которые могут произойти, а воспринимаемый нами мир (который, как мы предполагаем, конкретная реальность) таков лишь потому, что мы ошибочно считаем, что при измерении теряется когерентность. Иными словами, мое сознательное восприятие мира объясняется тем, что крайне маловероятно, чтобы альтернативные (потенциально интерферирующие) истории могли привести к тому же самому состоянию «сейчас», а значит, квантовой интерференцией можно пренебречь.

Если измерение не разрушает квантовой связности, то в каком-то смысле вся жизнь протекает внутри одной гигантской диаграммы Фейнмана, и наше желание думать, что происходят некие определенные вещи, – следствие нашего слишком приблизительного восприятия мира. Можно предположить, что в какой-то момент будущего с нами может произойти нечто, что может быть объяснено лишь тем, что в прошлом мы произвели одновременно два противоречащих друг другу действия. Разумеется, этот эффект незначителен, так как очевидно, что «я получил работу» и «я не получил работу» – два события, оказывающие совершенно противоположное воздействие на нашу жизнь, и не так-то просто придумать сценарий, который привел бы к идентичным будущим Вселенным (помните, что мы должны складывать только те амплитуды, которые ведут к одинаковым исходам). В этом случае получение и неполучение работы не слишком интерферируют, и мы воспринимаем мир так, что одно событие произошло, а другое нет. Однако все обстоит тем менее однозначно, чем менее два альтернативных сценария противоположны, и, как мы уже видели, для взаимодействий небольшого количества частиц суммирование разных возможностей совершенно необходимо. Так как в повседневной жизни задействовано огромное количество частиц, две существенно разные конфигурации атомов в определенное время (например, ситуации получения и неполучения работы) с крайне малой вероятностью могут привести к значительным изменениям в некоем будущем сценарии. В свою очередь, это значит, что мы можем двигаться вперед, считая, что мир необратимо изменился в результате измерения, даже если на самом деле ничего подобного не произошло.

Но все это не так важно, когда дело доходит до серьезной задачи – вычисления вероятности, что нечто произойдет при постановке эксперимента. Мы знаем правила решения этой задачи и можем без каких-либо проблем их применить. Но когда-нибудь такое удачное стечение обстоятельств может измениться: сейчас экспериментальное разрешение вопроса о том, как наше прошлое может с помощью квантовой интерференции повлиять на будущее, попросту невозможно. Та степень, до которой умствования по поводу «истинной природы» мира (или миров), описываемого квантовой теорией, могут мешать научному прогрессу, отлично отражается позицией физической школы «заткнись и считай», которая последовательно отвергает любые попытки рассуждений о реальности вещей.

 

Антиматерия

Вернемся к нашему миру. На рис. 10.3 показан еще один способ расхождения двух электронов. Один из входящих перескакивает из точки А в точку Х, по дороге испуская фотон. Вроде все как всегда, но в данном случае электрон поворачивает во времени – обратно в точку Y, где поглощает еще один фотон, и направляется в будущее, в котором он может быть обнаружен в точке С. Эта диаграмма никак не противоречит правилам перехода и рассеяния, потому что электрон испускает и поглощает фотоны в точном соответствии с предписаниями теории. Это может произойти в соответствии с правилами, а стало быть, как утверждает название этой книги, действительно происходит. Но подобное поведение, судя по всему, нарушает правила здравого смысла, потому что приходится принять тот факт, что электроны движутся назад во времени. Это интересная научная фантастика, но нарушениями причинно-следственных связей Вселенную не построишь. Кроме того, таким образом квантовая теория, кажется, вступает в конфликт со специальной теорией относительности Эйнштейна.

Рис. 10.3. Антиматерия… или электрон, который движется назад во времени

Впрочем, как ни странно, подобные путешествия во времени не запрещены субатомным частицам, как в 1928 году установил Дирак. Мы можем понять, почему все не так невероятно, как кажется, если переистолковать происходящее на рис. 10.3 с точки зрения «движения вперед». Достаточно вести отсчет событий на диаграмме слева направо. Начнем со времени Т = 0, когда существует мир всего из двух электронов, находящихся в точках А и В. Мы продолжаем рассматривать мир из двух электронов до времени T1, когда нижний электрон испускает фотон; между временными точками T1 и T2 мир состоит из двух электронов и одного фотона.

Во время T2 фотон погибает и заменяется электроном (который заканчивает свой путь в точке С) и второй частицей (финиширующей в точке Х). Эту вторую частицу мы не можем назвать электроном, потому что это «электрон, который движется назад во времени». Вопрос вот в чем: как выглядит электрон, который движется назад во времени, с точки зрения наблюдателя (например, с вашей), двигающегося вперед во времени?

Для ответа на этот вопрос представим, что мы ведем видеосъемку электрона, двигающегося поблизости от какого-то магнита, как показано на рис. 10.4. Если электрон движется не слишком быстро, он будет совершать обычные круговые движения. Возможность отклонения электронов магнитом – это, как мы уже говорили, основная идея работы не только старомодных телевизоров на катодно-лучевых трубках, но и ускорителей частиц, в том числе Большого адронного коллайдера.

Рис. 10.4. Электрон, движущийся вокруг магнита

А теперь представьте, что будет, если пустить видеозапись задом наперед. Именно так «электрон, который движется назад во времени» и будет выглядеть с точки зрения наблюдателя, который «движется вперед во времени». Теперь мы видим, как «движущийся назад во времени» электрон вращается в противоположном направлении по мере того, как идет запись. С точки зрения физика видеозапись частицы, движущейся назад во времени, идентична видеозаписи частицы, движущейся вперед во времени, с тем исключением, что эта частица будет нести положительный электрический заряд. Итак, мы получили ответ на свой вопрос: электроны, движущиеся назад во времени, выглядят как «электроны с положительным зарядом».

Таким образом, если электроны действительно совершают путешествия назад во времени, мы можем ожидать, что столкнемся к некими «электронами с положительным зарядом».

Такие частицы действительно существуют и называются «позитронами». Понятие этих частиц ввел в начале 1931 года Дирак, чтобы решить проблему, вставшую при выводе квантово-механического уравнения для электрона: уравнение, судя по всему, предсказывало существование частиц с отрицательной энергией. Позднее Дирак рассказал, о чем думал в этот момент, и признался, в частности, что был твердо уверен в правильности математики: «Я смирился с тем фактом, что отрицательные энергетические состояния нельзя исключить из математической теории, и решил, что нужно просто найти для них физическое объяснение».

Всего через год Карл Андерсон, который, судя по всему, не был знаком с предсказаниями Дирака, заметил некоторые странности в работе своего экспериментального аппарата по наблюдению частиц из состава космического излучения. Он сделал следующий вывод: «Кажется необходимым призвать на помощь положительно заряженную частицу, масса которой сопоставима с массой электрона». Это еще один образец всей мощи математических рассуждений. Чтобы объяснить математическое уравнение, Дирак ввел идею новой частицы – позитрона, и уже через несколько месяцев было обнаружено, что эта частица порождается в столкновениях частиц космического излучения. Позитрон – наша первая встреча с краеугольным камнем научной фантастики: антиматерией.

Вооружившись интерпретацией путешествующих во времени электронов как позитронов, мы можем закончить работу по объяснению рис. 10.3. Нужно сказать, что, когда фотон достигает точки Y во время T2, он распадается на электрон и позитрон. Каждая из этих частиц движется вперед до времени T3, когда позитрон из точки Y достигает точки X, где сливается с исходным верхним электроном и производит второй фотон. Этот фотон распространяется до времени T4, когда он поглощается нижним электроном.

Может показаться, что все это несколько притянуто за уши: античастицы появились из нашей теории, потому что мы разрешили частицам путешествовать назад во времени. Правила перехода и рассеяния позволяют частицам перескакивать как вперед, так и назад во времени, и несмотря на то, что мы, возможно, хотели бы им это не позволить, оказывается, что мы не можем и не должны им в этом препятствовать. Более того, оказывается, что, если мы не разрешаем частицам перескакивать назад во времени, как раз тогда и нарушается закон причины и следствия. Это странно: кажется, что должно быть ровно наоборот. Однако все не случайно и намекает на лежащие в основе глубинные математические структуры. Возможно, у вас создалось впечатление, что правила перехода и рассеяния частиц установлены как-то произвольно. Можно ли установить еще какие-то правила рассеяния и подрегулировать правила перехода и изучить последствия? Но если сделать так, мы почти наверняка получим плохую теорию – например, такую, которая будет нарушать закон причины и следствия. Квантовая теория поля (QFT) – название той самой глубинной математической структуры, которая и лежит в основе правил перехода и рассеяния. Удивительно, но это единственный способ создать квантовую теорию мельчайших частиц с учетом специальной теории относительности. Вооружившись аппаратом квантовой теории поля, правила перехода и рассеяния частиц становятся незыблемыми, и мы лишаемся свободы выбора. Это очень важный результат для исследователя фундаментальных законов, потому что использование «симметрии» для устранения выбора создает впечатление, что Вселенная просто должна быть «вот такой», и это создает ощущение лучшего ее понимания. Мы использовали здесь слово «симметрия», потому что оно кажется очень подходящим: можно считать, что теории Эйнштейна накладывают симметрические ограничения на структуру пространства и времени. Иные «симметрии» еще более ограничивают правила перехода и рассеяния, и мы вкратце рассмотрим их в следующей главе.

Прежде чем закончить с квантовой электродинамикой, необходимо устранить последнее непонимание. Как вы помните, первый доклад на конференции в Шелтер-Айленде касался лэмбовского перехода – аномалии в спектре водорода, которая не объяснялась в рамках квантовой теории Гейзенберга и Шрёдингера. Через неделю после этой встречи Ганс Бете выдал первые, еще приблизительные вычисления ответа. На рис. 10.5 показан атом водорода с точки зрения квантовой электродинамики. Электромагнитное взаимодействие, связывающее протон и электрон, можно представить в виде ряда диаграмм Фейнмана возрастающей сложности, как и в случае с двумя взаимодействующими электронами на рис. 10.1. Мы изобразили две простейшие возможные диаграммы на рис. 10.5. До квантовой электродинамики расчеты энергетических уровней электрона включали в себя только верхнюю диаграмму на рисунке, которая отражает физику электрона, удерживаемого в потенциальной яме, которая создана протоном. Но мы уже выяснили, что при взаимодействии может произойти еще много всего. Вторая диаграмма на рис. 10.5 показывает кратковременную флуктуацию фотона в электрон-позитронной паре, и этот процесс тоже стоит учесть при расчете возможных энергетических уровней электрона. Эта диаграмма, как и многие другие, вносит в результат подсчетов небольшие коррективы.

Рис. 10.5. Атом водорода

Бете совершенно справедливо включил в расчеты важные результаты «однопетлевых» диаграмм, подобных изображенным на рисунке, и обнаружил, что они оказывают некоторое влияние на сдвиг энергетических уровней, а следовательно, и на видимый спектр. Его результаты соответствовали измерениям Лэмба. Иными словами, квантовая электродинамика заставляет представить атом водорода в виде невероятной какофонии субатомных частиц, порождающихся и прекращающих существование. Лэмбовский сдвиг стал первой непосредственной встречей человечества с этими эфирными квантовыми флуктуациями.

Прошло немного времени – и эстафетную палочку перехватили двое других участников встречи в Шелтер-Айленде: Ричард Фейнман и Джулиан Швингер. Через пару лет квантовая электродинамика уже развилась в ту теорию, которую мы знаем сейчас, – прототип квантовой теории поля и образец для тех теорий, которым еще предстояло появиться на свет и которые описывали сильное и слабое взаимодействия. За свои заслуги Фейнман, Швингер и японский физик Синъитиро Томонага в 1965 году получили Нобелевскую премию «За фундаментальные работы по квантовой электродинамике, имевшие глубокие последствия для физики элементарных частиц». К этим глубоким последствиям мы и переходим.