Изнутри атом представляет собой нечто странное. Если, например, вы встанете на протон и посмотрите оттуда во внутриатомное пространство, то увидите лишь пустоту. Электроны будут слишком малы, чтобы их разглядеть, даже если окажутся на расстоянии вытянутой руки, но даже и это будет происходить слишком редко. Протон в диаметре равен примерно 10–15 м, то есть 0,000 000 000 000 001 метра, и по сравнению с электроном он просто квантовый колосс. Если вы стоите «на протоне» у побережья Англии, на белых скалах Дувра, то расплывчатые пределы атома расположатся где-то на фермах северной Франции. Атомы обширны и пусты, поэтому ваша полноразмерная версия тоже обширна и пуста. Простейший атом – это водород, состоящий из одного протона и одного электрона. Поскольку электрон исчезающе мал, может показаться, что область его движения безгранична, но это не так. Он прикреплен к протону взаимным электромагнитным притяжением, и именно размер и форма этой просторной тюрьмы определяют характерный штрихкод из цветов радуги, тщательно зафиксированный в Handbuch der Spectroscopie нашим старым приятелем и частым гостем профессором Кайзером.
Сейчас мы можем применить накопленные знания для решения вопроса, который ставил в тупик Резерфорда, Бора и других ученых в первые десятилетия XX века: что именно происходит внутри атома? Если помните, проблема состояла в том, что Резерфорд выяснил сходство атома в некоторых отношениях с миниатюрной Солнечной системой: Солнце как твердое ядро в центре, и электроны как планеты, вращающиеся по удаленным орбитам. Резерфорд знал, что эта модель не может быть верной, потому что электроны на орбитах вокруг ядра должны постоянно испускать свет. Результат должен быть для атома катастрофическим, потому что, если электрон постоянно испускает свет, он должен терять энергию и закручиваться по спирали в направлении неизбежного столкновения с протоном. Конечно, этого не происходит. Атомы довольно стабильны, поэтому в нарисованной картине что-то не так. Но что?
Эта глава очень важна для всей книги, потому что здесь мы впервые попытаемся с помощью нашей теории объяснить явления реального мира. Весь наш труд до этого момента носил теоретический характер: мы разрабатывали особый «формализм» – способы представления квантовой частицы. Принцип неопределенности Гейзенберга и уравнение де Бройля стали венцом наших усилий, но в целом мы вели себя достаточно скромно, рассматривая Вселенную как состоящую из одной-единственной частицы. Теперь пора показать, как квантовая теория влияет на наш повседневный мир. Структура атомов – вещь исключительно реальная и осязаемая. Вы состоите из атомов: их строение – это ваше строение, их стабильность – ваша стабильность. Можно без особого преувеличения сказать, что понимание структуры атомов – одно из непременных условий понимания Вселенной в целом.
В атоме водорода электрон заперт в области, окружающей протон. Начнем с того, что представим, будто этот электрон заперт в своего рода ящике, что, впрочем, не так далеко от истины. Мы займемся исследованием того, до какой степени физика электрона, запертого в маленьком ящике, отражает ключевые особенности реального атома. Мы продолжим использовать то, что усвоили из предыдущей главы по поводу волновых свойств квантовых частиц: когда дело доходит до описания атомов, волновая картина действительно все упрощает, и мы можем добиться серьезного прогресса, не особенно беспокоясь по поводу уменьшения, добавления и смещения часов и их стрелок. Однако нужно все время держать в уме, что волны – это удобное приближение к тому, что происходит «под покровом». Так как структура, разработанная нами для квантовых частиц, очень близка к той, что описывает водяные волны, звуковые или волны гитарной струны, рассмотрим сначала поведение этих знакомых нам материальных волн в условиях определенного рода ограничений.
В целом следует сказать, что волны – сложные объекты. Представьте, что вы прыгаете в бассейн, полный воды. Вода немедленно начнет расплескиваться, и, кажется, не получится описать происходящее какими-то простыми методами. Однако за этой сложностью таится скрытая простота. Ключевым фактором будет ограниченность воды бассейном, то есть все волны в нем заперты. Это порождает феномен, известный под названием стоячей волны. Стоячие волны скрыты от нас в том беспорядке, который мы видим после своего прыжка в бассейн, но есть способ заставить воду «осциллировать» – двигаться в форме регулярных, повторяющихся колебаний стоячих волн. Рис. 6.1 показывает, как выглядит водная поверхность после того, как подвергнется одному такому колебанию. Максимумы и минимумы восходят и нисходят, но самое важное – то, что они восходят и нисходят строго в одном и том же месте. Есть и другие стоячие волны, в том числе такая, где вода в центре цистерны ритмически поднимается и опускается. Эти особые волны мы обычно не видим, потому что их трудно создать, но смысл в том, что абсолютно любое возмущение воды – даже вызванное нашим не самым элегантным нырком и последующей отчаянной молотьбой руками – может быть представлено в виде некоего сочетания различных стоячих волн. Мы уже встречались с таким типом поведения – это прямое обобщение идей Фурье, с которыми мы познакомились в прошлой главе.
Рис. 6.1. Шесть последовательных срезов стоячей волны в цистерне с водой. Ось времени направлена от верхнего левого к нижнему правому снимку
Там мы видели, что любой волновой пакет может состоять из сочетания волн определенной длины. Эти особые волны, отражающие состояние частицы с определенным импульсом, – синусоиды. В случае с запертыми водяными волнами можно сделать обобщение, что любое возмущение воды всегда можно описать с помощью какого-то сочетания стоячих волн. Позже в этой главе мы увидим, что стоячие волны имеют в квантовой теории важную интерпретацию: собственно говоря, в них содержится ключ к пониманию строения атома. Держа это в уме, рассмотрим стоячие волны более пристально.
На рис. 6.2 показан еще один пример стоячих волн в природе – три из множества возможных стоячих волн на гитарной струне. Когда мы трогаем гитарную струну, мы слышим звук, который определяется стоячей волной наибольшей длины – первой из трех, показанных на рисунке. И в физике, и в музыке это известно под названием низшей гармоники, или основного тона. Волны другой длины обычно тоже присутствуют и называются обертонами, или высшими гармониками.
Рис. 6.2. Три волны наибольшей длины, которые могут возникнуть при переборе гитарной струны. Самая длинная волна (сверху) соответствует нижней гармонике (основному тону), а остальные – высшим гармоникам (обертонам)
Две другие волны на рисунке – это два обертона с наибольшими длинами волн.
Гитара – отличный пример: довольно легко понять, почему гитарная струна может вибрировать только на этих конкретных волнах. Дело в том, что она фиксирована на обоих концах: с одной стороны – кобылкой, а с другой – пальцами, прижимающими струну к грифу. Это значит, что в двух этих точках струна не может двигаться, что и определяет разрешенные длины волны. Если вы играете на гитаре, вы инстинктивно понимаете такую физику: перебирая пальцами по грифу по направлению к кобылке, вы уменьшаете длину струны, тем самым заставляя ее колебаться с меньшей длиной волны, что соответствует более высоким нотам.
Нижняя гармоника – это волна, которая имеет всего две стационарные точки, или «узла»; во всех остальных точках она движется. Как видно на рисунке, длина волны звука равна двойной длине струны. Следующая, меньшая длина волны уже равняется длине струны, потому что мы можем видеть еще один узел в центре. Затем можно получить волну с длиной в ⅔ длины струны и т. д.
В целом, как и в случае с водой, запертой в бассейне, струна будет вибрировать в каком-то сочетании различных возможных стоячих волн, в зависимости от того, как именно тронута струна. Конкретную форму струны всегда можно получить, сложив стоячие волны, соответствующие каждой из имеющихся гармоник.
Гармоники и их относительные размеры дают характерный тон звука. У разных гитар будет разное распределение гармоник, поэтому и звучать они будут по-разному, но среднее до (чистая гармоника) на одной гитаре практически совпадает со средним до на другой.
Для гитары форма стоячих волн очень проста: это чистые синусоиды, и их длина фиксирована длиной струны. Для случая с бассейном стоячие волны более сложные, что показано на рис. 6.1, но общая идея такая же.
Возможно, вас интересует, почему эти конкретные волны называются стоячими. Дело в том, что они не меняют своей формы. Если мы сделаем два снимка гитарной струны, колеблющейся в форме стоячей волны, то эти две фотографии будут отличаться только общим размером волны. Пики будут всегда находиться в одних и тех же местах, как и узлы, которые фиксируются концами струны или, в случае с бассейном, его бортиками.
С математической точки зрения можно сказать, что волны на двух фотографиях отличаются только общим множителем. Этот множитель периодически колеблется со временем и отражает ритмические колебания струны. То же самое верно и для бассейна на рис. 6.1, где каждая фотография отличается от остальных общим множителем. Например, последняя фотография может быть получена из первой посредством умножения высоты волны в каждой точке на −1.
Иными словами, волны, каким-то образом ограниченные, всегда можно выразить в виде суммы стоячих волн (то есть тех, которые не меняют своей формы), и, как мы уже сказали, есть довольно серьезные причины посвятить им столько времени. Главная из них – стоячие волны квантованы. Это совершенно очевидно для стоячих волн на гитарной струне: длина основного тона в два раза превышает длину струны, а следующая по длине возможная волна равняется длине струны. Между этими двумя волнами стоячей волны с какой-либо промежуточной длиной быть не может, так что можно сказать, что разрешенные длины волн на гитарной струне квантованы.
Таким образом, с помощью стоячих волн проявляется следующее: «запирая» волны, мы что-то квантуем. В случае с гитарной струной это, очевидно, длина волны. В случае с электроном внутри ящика квантовые волны, соответствующие электрону, тоже будут заперты, и по аналогии можно ожидать, что в ящике будут присутствовать лишь волны с определенным, конкретным набором длин волн, а, следовательно, нечто вновь будет квантовано. Другие волны просто не могут существовать, как гитарная струна не может одновременно звучать всеми нотами в октаве. И общее состояние электрона, как и звук гитары, описывается смешением стоячих волн. Эти квантовые стоячие волны начинают выглядеть очень интересно. Заинтригованы? Приступаем к анализу.
Чтобы продвинуться в своих исследованиях, мы должны уточнить форму ящика, в который помещаем наш электрон. Для простоты предположим, что электрон может свободно двигаться в области размером L, но ему полностью запрещено выходить за пределы этой области. Необязательно уточнять, каким образом мы собираемся запретить электрону это делать, но, если наша модель претендует на то, чтобы быть упрощенной моделью атома, нужно представить, что за это отвечает притяжение положительно заряженного ядра. На научном жаргоне это имеет название «прямоугольная потенциальная яма». Мы зарисовали эту ситуацию на рис. 6.3, и причины для такого названия представляются очевидными. Идея заключения частицы в потенциальной яме очень важна, мы обратимся к ней еще не раз, поэтому полезно убедиться, что мы точно понимаем, о чем идет речь. Как на самом деле можно улавливать частицы?
Рис. 6.3. Электрон, пойманный в прямоугольную потенциальную яму
Вопрос довольно сложный: чтобы добраться до его сути, нужно выяснить, как частицы взаимодействуют друг с другом, о чем пойдет речь в главе 10. Тем не менее мы можем добиться прогресса в рассуждениях, если не будем задавать слишком много вопросов.
Способность «не задавать слишком много вопросов» – необходимый для физика навык, потому что для получения хоть каких-то ответов где-то надо провести черту, так как ни одна система объектов не может быть полностью изолированной. Кажется разумным, что при желании понять, как работает микроволновая печь, не стоит интересоваться движением вокруг нее.
Все это движение окажет незначительное влияние на работу микроволновки. Оно вызовет колебания воздуха и земли, которые повлекут за собой небольшие сотрясения и самой печи. Могут появиться какие-то бродячие магнитные поля, которые повлияют на работу электроники, как бы хорошо она ни была защищена от подобных воздействий. Игнорируя такие вещи, легко допустить ошибку, так как можно упустить из виду действительно важные детали. Если так и произойдет, мы получим неверный ответ и будем вынуждены пересмотреть предположения. Это очень важный момент, напрямую связанный с научным успехом: все предположения в конце концов подтверждаются или опровергаются экспериментально. Арбитром является природа, а не человеческая интуиция. Поэтому наша стратегия – игнорировать подробности функционирования механизма удержания электрона и моделировать нечто под названием «потенциал». Слово «потенциал» на самом деле обозначает «воздействие на частицу какой-то физической или иной силы, которую я не очень хочу подробно объяснять». Мы, впрочем, позже подробно опишем методы взаимодействия частиц, а пока будем употреблять термин «потенциал». Если это звучит несколько бесцеремонно, рассмотрите пример, иллюстрирующий использование потенциалов в физике.
На рис. 6.4 изображен мяч, лежащий в долине. Если ударить по мячу, он может подняться, но лишь до определенного предела, после чего снова упадет. Это отличный пример частицы, пойманной потенциалом. В этом случае гравитационное поле Земли создает потенциал, а крутой холм порождает крутой потенциал. Нужно понимать, что мы можем вычислить подробности передвижения мяча по долине, не зная деталей того, как долина взаимодействует с мячом, потому что для этого пришлось бы знать еще и теорию квантовой электродинамики. Если окажется, что детали внутриатомного взаимодействия между атомами в долине и атомами в мяче слишком сильно воздействуют на движение мяча, наши предсказания окажутся неверными. На самом деле внутриатомные взаимодействия важны, потому что из них возникает трение, но моделировать ситуацию можно и без обращения к диаграммам Фейнмана. Однако мы уклонились от темы.
Рис. 6.4. Мяч лежит в долине. Высота над уровнем моря прямо пропорциональна потенциалу, воздействию которого подвергается движущаяся частица
Этот пример очень важен, потому что в прямом смысле демонстрирует форму потенциала.
Однако идея имеет более общее содержание и работает в том числе и для потенциалов, созданных не гравитацией и не впадинами на земной поверхности. Примером служит электрон, оказавшийся в прямоугольной яме. В отличие от случая с мячом в долине, высота стенок ящика не может быть точной высотой чего бы то ни было; скорее, можно говорить, что она соответствует скорости, с которой должен двигаться электрон, чтобы выбраться из ямы. В случае с долиной аналогом этого будет быстрое движение мяча, при котором он взлетит выше стен и выскочит из ямы. Если электрон движется достаточно медленно, точная высота потенциала не имеет особого значения, и можно уверенно предположить, что движение электрона ограничено внутренней частью ямы.
Теперь сосредоточимся на электроне, замкнутом в ящике, который описывается прямоугольной потенциальной ямой. Поскольку он не может вырваться из ящика, квантовые волны должны упасть до нуля у его стенок. Три возможные квантовые волны с наибольшими длинами будут полностью аналогичны волнам, созданным гитарной струной и показанным на рис. 6.2: самая длинная волна будет иметь двойной размер по сравнению с ящиком, то есть 2L; следующая по длине волна будет равна размеру ящика – L; а следующая – 2L / 3. В общем случае мы можем описать электронные волны формулой 2L / n, где n = 1, 2, 3, 4 и т. д.
Таким образом, для нашего прямоугольного ящика электронные волны будут иметь точно такую же форму, что и волны на гитарной струне: это будут волны-синусоиды с четко определенным набором разрешенных длин. Теперь можно двинуться вперед, призвав на помощь уравнение де Бройля из предыдущей главы и связав длину этих волн-синусоид с импульсом электрона: p = h / λ. В этом случае стоячие волны описывают электрон, которому разрешено иметь лишь определенные импульсы, заданные формулой p = nh / (2L), где все, что нам остается, – подставить разрешенные длины волны в уравнение де Бройля.
Получается, что импульс нашего электрона в прямоугольной яме квантуется. Это уже большое достижение. Однако надо быть осторожными: потенциал на рис. 6.3 – специфический случай, для других потенциалов стоячие волны обычно не синусоидальные. На рис. 6.5 показана фотография стоячих волн, созданных барабаном. Кожа барабана усыпана песком, который собирается в узлах стоячей волны. Так как кайма вибрирующего барабана круглая, а не прямоугольная, стоячие волны уже не будут синусоидами. Это значит, что в более реалистичной ситуации, когда электрон пойман протоном, стоячие волны тоже не будут синусоидами. В свою очередь, это подразумевает, что связь между длиной волны и импульсом утеряна. И как в этом случае интерпретировать стоячие волны? Что если у пойманных частиц квантуется не импульс?
Рис. 6.5. Вибрирующий барабан покрыт песком. Песок собирается в узлах стоячих волн
Мы можем найти ответ, если заметим, что в прямоугольной потенциальной яме квантуется не только импульс электрона, но и его энергия. Это простое наблюдение, кажется, не содержит никакой новой важной информации, поскольку энергия и импульс прямо связаны друг с другом, а именно энергия E = p² / 2m, где p – импульс удерживаемого электрона, а m – его масса. Но это наблюдение не такое уж бесполезное, как можно подумать, потому что для потенциалов не столь простых, как прямоугольная яма, каждая стоячая волна всегда соотносится с частицей определенной энергии.
Важное различие между энергией и импульсом появляется потому, что уравнение E = p² / 2m верно, только если потенциал одинаков по всей области вероятного пребывания частицы и позволяет ей двигаться свободно, как по мраморной столешнице или, что больше относится к делу, как электрону в прямоугольной яме. В общем случае энергия частицы не будет сводиться к E = p² / 2m; это будет сумма кинетической и потенциальной энергий частицы. Так разрушается прямая связь между энергией частицы и ее импульсом.
Можно еще раз проиллюстрировать это положение с помощью мяча в долине с рис. 6.4. Начнем с мяча, который счастливо покоится на дне. С ним ничего не происходит. Чтобы заставить мяч катиться вверх по склону, его нужно ударить, то есть добавить ему энергии. В мгновение, следующее за ударом, вся его энергия будет кинетической. По мере подъема мяча по склону он будет замедляться, пока на какой-то высоте не остановится, после чего будет снова падать. В момент остановки он не будет обладать кинетической энергией, но ведь энергия не исчезла по волшебству. На самом деле вся кинетическая энергия превратилась в потенциальную, которая равняется mgh, где g – ускорение свободного падения у поверхности Земли, а h – высота мяча над земной поверхностью. Когда мяч начинает падать, эта накопленная потенциальная энергия при наборе скорости постепенно снова превращается в кинетическую. Итак, пока мяч перелетает с одного конца долины в другой, общая энергия остается постоянной, но периодически перетекает из кинетической в потенциальную. Разумеется, импульс мяча постоянно меняется, но суммарная энергия остается неизменной (предположим, что трения, замедляющего скорость мяча, не существует. Если бы мы включили его в нашу картину, общая энергия тоже осталась бы неизменной, но нужно было бы добавить в качестве ее составляющей энергию, идущую на трение).
Сейчас мы попытаемся исследовать связь между стоячими волнами и частицами определенной энергии иным способом, не обращаясь к особому случаю прямоугольной ямы. Воспользуемся на сей раз маленькими квантовыми циферблатами.
В первую очередь заметьте: если электрон в какой-то момент времени описывается стоячей волной, то он будет описываться той же стоячей волной и в любой следующий момент. Под «той же» мы подразумеваем неизменность формы волны, как в случае со стоячей водяной волной на рис. 6.1. Мы, конечно, не имеем в виду, что волна вообще не меняется: изменяется ее высота, но не положение пиков и узлов.
Это позволяет нам установить, как должно выглядеть описание стоячей волны в терминах квантовых циферблатов, и оно показано на рис. 6.6 для случая стоячей волны основного тона. Размеры циферблатов вдоль волны отражают положение пиков и узлов, а все стрелки часов движутся с одинаковой скоростью. Надеемся, вы понимаете, почему мы изобразили именно такую группу циферблатов. Узлы должны всегда быть узлами, а пики – пиками, и они все должны оставаться на одном месте. Это значит, что циферблаты вблизи узлов должны всегда быть очень маленькими, а циферблаты, соответствующие пикам, должны всегда иметь самые длинные стрелки. Таким образом, единственное, что мы вольны делать, – так это поместить циферблаты по своему усмотрению и заставить их стрелки вращаться синхронно. Если следовать методологии предыдущих глав, мы должны были бы начать с конфигурации циферблатов, показанной в верхнем ряду рис. 6.6, и использовать правила уменьшения и поворота стрелок, чтобы получить три нижних ряда позже. Это упражнение со скачущими циферблатами – слишком сильный скачок прочь от темы книги, но его можно выполнить, и тут есть неплохой поворот, поскольку, чтобы выполнить упражнение правильно, нужно учесть тот факт, что частица «отскакивает от стенок ящика», прежде чем двинуться в своем направлении. Кстати, поскольку циферблаты в центре больше, мы можем непосредственно заключить, что электрон, который описывается этим набором циферблатов, скорее окажется в центре ящика, чем по краям.
Рис. 6.6. Четыре снимка стоячей волны в последовательные моменты времени. Стрелки на рисунке соответствуют стрелкам часов, а пунктирная линия – проекции «двенадцатичасового» направления. Все стрелки движутся в унисон
Итак, мы выяснили, что удерживаемый электрон описывается набором циферблатов, все стрелки которых вращаются с одинаковой скоростью. Физики, впрочем, обычно так не говорят, а уж музыканты и подавно; те и другие говорят, что стоячие волны – это волны определенной частоты. Высокочастотные волны соответствуют часам, стрелки которых вращаются быстрее, чем стрелки часов низкочастотных волн. Это понятно, потому что если стрелка часов вращается быстрее, то уменьшается время падения волны с максимума до минимума и обратного подъема (представленного полным оборотом стрелки). Если говорить о водяных волнах, то высокочастотные стоячие волны поднимаются и опускаются быстрее, чем низкочастотные. В музыке говорят, что среднее до имеет частоту 262 Гц, то есть гитарная струна ежесекундно колеблется 262 раза. Нота ля выше среднего до, она имеет частоту 440 Гц, то есть колеблется быстрее (это общепринятый стандарт настройки в большинстве оркестров и для музыкальных инструментов во всем мире). Как мы уже отметили, однако, лишь для чистых синусоид верно, что волны определенной частоты имеют и определенную длину волны. В общем же случае частота – фундаментальная величина, которая описывает стоячие волны, но это определение, кажется, ничего не определяет. Вот вопрос на миллион долларов: что такое электрон определенной частоты? Напомним, что состояния электрона нам интересны, потому что они квантованы, и еще потому, что электрон в одном подобном состоянии остается таким все время (пока нечто не войдет в область потенциала, воздействуя на этот электрон).
Последнее предложение намекает, что мы должны понять значение частоты. В этой главе мы уже встречались с законом сохранения энергии, и это один из самых несомненных законов физики. Сохранение энергии означает, что если электрон в атоме водорода (или в прямоугольной яме) обладает определенной энергией, то эта энергия не может измениться, пока «что-то не произойдет». Иными словами, электрон не может спонтанно изменить свою энергию без какой-либо причины. Кажется, что это не очень интересно, но сравните это со случаем, когда известно, что электрон находится в определенной точке. Как мы все хорошо знаем, он теперь будет перемещаться по всей Вселенной в долю секунды, переводя бесконечное число циферблатов. Но поведение циферблатов для стоячей волны будет иным. Структура циферблатов сохранит свою форму, и все стрелки будут счастливо вращаться, пока что-либо не нарушит их хода. Неизменная природа стоячих волн, таким образом, делает их очевидным кандидатом на описание электрона с определенной энергией.
Сделав шаг, связывающий частоту стоячей волны с энергией частицы, теперь мы можем использовать наше представление о гитарных струнах и предположить, что более высокие частоты должны соответствовать большим энергиям. Дело в том, что высокая частота подразумевает меньшую длину волны (поскольку короткие струны вибрируют быстрее), и мы, изучив конкретный случай прямоугольной потенциальной ямы, можем ожидать, что более короткая длина волны соответствует частице с большей энергией – по уравнению де Бройля. Таким образом, можно сделать важный вывод, который необходимо запомнить: стоячие волны описывают частицы с определенной энергией, и чем больше энергия, тем быстрее идут стрелки часов.
Резюмируем: если электрон удерживается потенциалом, то его энергия квантуется. На физическом жаргоне это звучит так: удерживаемый электрон может существовать только на определенных «энергетических уровнях». Минимально возможная энергия электрона соответствует его описанию только одной стоячей волной «основного тона», и этот энергетический уровень обычно называют основным состоянием. Энергетические уровни, соответствующие стоячим волнам с более высокими частотами, носят название возбужденных состояний.
Представим электрон с определенной энергией, удерживаемый в прямоугольной потенциальной яме. Мы говорим, что он «находится на определенном энергетическом уровне» и его квантовая волна связана с единственным значением n. Выражение «находится на определенном энергетическом уровне» отражает тот факт, что электрон в отсутствие любых внешних влияний не делает ничего. Обобщим: электрон можно описать сразу многими стоячими волнами, как звук гитары состоит из многих гармоник. Это значит, что в общем случае электрон не имеет конкретной энергии.
Важно, что при измерении энергии электрона всегда будет получаться величина, равная той, которая связана с одной из составляющих стоячих волн. Чтобы вычислить вероятность нахождения электрона с конкретной энергией, мы должны взять циферблаты, связанные с конкретной составляющей общей волновой функции, возвести их в квадрат и сложить. От получившегося числа и зависит вероятность нахождения электрона в этом конкретном энергетическом состоянии. Сумму всех таких вероятностей (одна для каждой составляющей стоячей волны) должна в итоге получиться равной единице, и это лучшая иллюстрация того, что энергия частицы всегда будет соответствовать конкретной стоячей волне.
Сразу скажем, что электрон может одновременно иметь несколько различных энергий, и это утверждение ничуть не менее странное, чем то, что он имеет множество положений. Конечно, дочитав книгу до этого момента, стресс вы вряд ли испытаете, но для нашего повседневного восприятия это все равно шок. Заметьте, что есть критически важная разница между удерживаемой квантовой частицей и стоячими волнами в бассейне или на гитарной струне. Идея квантования волны на гитарной струне вовсе не странна, потому что волна, которая, собственно, описывает вибрирующую струну, одновременно состоит из многих разных стоячих волн, и все они физически составляют общую энергию волны. Так как смешивать их можно любым образом, действительная энергия вибрирующей струны может принимать вообще любое значение. Однако для электрона, запертого внутри атома, относительный вклад каждой стоячей волны описывает вероятность того, что электрон будет обнаружен с некой конкретной энергией.
Важная разница в том, что водяные волны – это волны водяных молекул, а электронные волны – это определенно не волны электронов.
Все это показывает, что энергия электрона внутри атома квантуется. Это значит, что электрон просто не может иметь энергию, значение которой будет располагаться между определенными разрешенными величинами: примерно как если бы мы сказали, что машина может ехать со скоростью 10 или 40 км/ч, но не с какой-то скоростью между этими двумя величинами. И это фантастически странное умозаключение непосредственно объясняет, почему атомы не испускают свет постоянно, что сопровождалось бы спиральным движением электрона к ядру. Дело в том, что электрон не может постоянно, по чуть-чуть излучать энергию. Единственный способ, которым он может испускать энергию, – потерять ее сразу и полностью.
То, что мы уже усвоили, можно применить к наблюдаемым свойствам атомов, а именно к уникальному цвету их излучения. На рис. 6.7 показан видимый свет, испускаемый простейшим атомом – водородом. Свет состоит из пяти отчетливых цветов: ярко-красная линия соответствует свету с длиной волны 656 нм, светло-голубая – длине волны 486 нм, а три остальные фиолетовые затухают в ультрафиолетовой части спектра. Эта серия цветных линий известна как серия Бальмера (в честь швейцарского физика и математика Иоганна Бальмера, который в 1885 году предложил формулу для ее описания).
Рис. 6.7. Водородная серия Бальмера: вот что видно, когда свет, испускаемый газообразным водородом, проходит через спектроскоп
Бальмер понятия не имел, почему его формула верна, потому что квантовая теория еще не была открыта: он просто выразил регулярность серии удобной математической формулой. Но мы можем пойти дальше и показать, что все дело в разрешенных квантовых волнах внутри атома водорода.
Мы знаем, что свет можно представить в виде потока фотонов, каждый из которых обладает энергией E = hc / λ, где λ – длина световой волны. Таким образом, то, что атомы испускают свет лишь определенного цвета, означает, что они испускают фотоны с четко определенной энергией. Мы выяснили также, что электрон, «заключенный в атоме», может обладать лишь определенной конкретной энергией. Это небольшой шаг на пути к объяснению давней загадки цвета излучения атомов: разные цвета соответствуют испусканию фотонов, при котором электроны «перепрыгивают» с одного разрешенного энергетического уровня на другой. Эта идея подразумевает, что наблюдаемая энергия фотона всегда должна соответствовать разнице между парой разрешенных значений энергии электрона. Такой способ описания физических явлений отлично иллюстрирует ценность выражения состояния электрона в терминах разрешенных значений его энергии. Если вместо этого мы бы предпочли говорить о разрешенных значениях импульса электрона, то квантовая природа этих явлений не была бы столь очевидной и нам не удалось бы с такой легкостью заключить, что атом может испускать и поглощать излучение только с определенными длинами волны.
Модель атома как частицы в ящике недостаточно точна для того, чтобы позволить нам вычислить значения энергии электрона в реальном атоме, необходимые для проверки всей нашей идеи. Но можно провести достаточно точные вычисления, если мы лучше смоделируем потенциал вблизи протона, который и удерживает электрон. Достаточно сказать, что эти вычисления без тени сомнения подтверждают: здесь-то и кроется причина появления загадочных спектральных линий.
Наверное, вы заметили, что мы пока не объяснили, почему электрон, испуская фотон, теряет энергию. Для целей, обсуждающихся в этой главе, такое объяснение не требуется. Но что-то должно побудить электрон покинуть святилище стоячей волны, и это «что-то» будет темой главы 10. Сейчас же просто скажем: чтобы объяснить наблюдаемые спектры светового излучения, испускаемого атомами, необходимо предположить, что свет испускается, когда электрон перескакивает с одного энергетического уровня на другой, с меньшей энергией. Разрешенные энергетические уровни определяются формой удерживающего ящика и варьируются от атома к атому, потому что разные атомы служат разной средой, внутри которой заключены их электроны.
До настоящего времени мы сполна использовали возможности для объяснения положения дел с помощью очень простой картины атома, но вообще-то не так уж верно считать, что электроны свободно передвигаются внутри какого-то ящика, который их ограничивает. Они передвигаются вблизи множества протонов и других электронов, и для лучшего понимания природы атомов мы должны определить, как более точно описать эту среду.
Атомный ящик
Вооружившись понятием потенциала, можно более точно описать атомы. Начнем с простейшего из всех – атома водорода. Он состоит всего из двух частиц – электрона и протона. Протон почти в 2000 раз тяжелее электрона, так что мы можем предположить, что он почти ничего не делает и просто покоится на месте, создавая потенциал, удерживающий электрон.
Протон обладает положительным электрическим зарядом, а электрон – равным ему отрицательным зарядом. Кстати, причина, по которой электрические заряды протона и электрона в точности равны и противоположны друг другу, – это одна из величайших загадок физики. Вероятно, есть очень веская причина, которая связана с некоей пока еще не открытой теорией субатомных частиц, но на момент написания этой книги никто не может сказать этого с уверенностью.
Рис. 6.8. Потенциальная яма Кулона вокруг протона. Яма глубже всего там, где находится сам протон
Что мы действительно знаем, так это то, что противоположные заряды притягиваются и протон перетягивает электрон к себе, поэтому, с точки зрения доквантовой физики, он может притянуть к себе электроны на сколь угодно малое расстояние. Насколько оно мало, зависит от конкретной природы протона: он твердый шарик или какое-то облако? Но этот вопрос не имеет физического смысла, потому что, как мы уже видели, существует минимальный энергетический уровень, на котором может находиться электрон и который определяется (грубо говоря) квантовой волной самой большой длины, которая способна поместиться в потенциал, созданный протоном. Этот созданный протоном потенциал мы изобразили на рис. 6.8. Глубокая «яма» функционирует так же, как уже известная нам прямоугольная потенциальная яма, только ее форма уже не столь проста. Она носит название потенциала Кулона, потому что подчиняется закону, описывающему взаимодействие двух электрических зарядов, который впервые вывел Шарль Огюстен де Кулон в 1783 году.
Проблема, однако, остается той же самой: мы должны выяснить, какие квантовые волны могут соответствовать этому потенциалу, что и определит разрешенные энергетические уровни атома водорода. Будучи бесхитростными, мы могли бы сказать, что это делается посредством «решения волнового уравнения Шрёдингера для потенциальной ямы Кулона», что служит способом применения правила перевода циферблатов. Детали этого процесса чисто технические, даже для таких простых объектов, как атом водорода. К счастью, мы не узнаем здесь почти ничего нового по сравнению с тем, что уже усвоили, так что перейдем прямо к ответу. Рис. 6.9 показывает некоторые получающиеся стоячие волны для электрона в атоме водорода. Это картина распределения вероятностей нахождения электрона в какой-либо точке. В более светлых областях такая вероятность выше. Конечно, реальный атом водорода трехмерный, и эти рисунки соответствуют разрезам в центре атома. Рисунок слева вверху – это волновая функция основного состояния, показывающая, что электрон в этом случае обычно находится на расстоянии примерно 1 × 10–10 м от протона. Энергия стоячих волн нарастает от левого верхнего к правому нижнему рисунку. Масштаб тоже изменяется в восемь раз от левого верхнего к правому нижнему рисунку, так что светлая область, покрывающая большую часть левого верхнего рисунка, имеет примерно тот же размер, что и маленькие яркие точки в центре двух правых рисунков. Это значит, что электрон, скорее всего, будет располагаться дальше от протона, когда он находится на более высоких энергетических уровнях (а следовательно, слабее с ним связан). Ясно, что эти волны совсем не синусоиды, то есть не соотносятся с состояниями определенного импульса. Но, как мы изо всех сил стараемся подчеркнуть, они соответствуют состояниям определенной энергии.
Рис. 6.9. Четыре квантовые волны с самой низкой энергией, описывающие электрон в атоме водорода. В светлых областях электрон может находиться с наибольшей вероятностью. Протон в центре. Рисунки вверху справа и внизу слева увеличены в 4 раза по сравнению с первым, а рисунок внизу справа – в 8 раз. Первый рисунок соответствует размеру примерно 3 × 10–10 м в диаметре
Отчетливая форма стоячих волн появляется благодаря форме ямы, однако некоторые детали следует обсудить более подробно. Самая очевидная особенность воронки вокруг протона заключается в ее сферической симметричности, то есть со всех сторон она выглядит одинаково. Чтобы представить это, возьмите баскетбольный мяч без каких-либо отметок на нем: это идеальная сфера, которая выглядит одинаково, как ее ни вращай. Возможно, мы можем думать об электроне внутри атома водорода как о запертом внутри микроскопического баскетбольного мяча? Это определенно более удачно, чем говорить о том, что электрон попался в квадратную яму, но, как ни удивительно, тут есть некое сходство. Рис. 6.10 показывает слева две стоячие волны с самой низкой энергией, которые могут возникнуть внутри баскетбольного мяча. Мы снова разрезали мяч, и давление воздуха внутри него повышается от черного к белому. Справа даны две возможные стоячие волны электрона в атоме водорода.
Рис. 6.10. Две простейшие стоячие звуковые волны внутри баскетбольного мяча (слева) в сравнении с соответствующими электронными волнами в атоме водорода (справа). Они очень похожи. Верхний рисунок атома водорода – это увеличенное изображение центральной части левой нижней картинки с рис. 6.9
Рисунки не идентичны, но очень похожи. И снова не будет столь уж глупо предположить, что электрон внутри атома водорода находится внутри чего-то, похожего на микроскопический баскетбольный мяч. Этот рисунок демонстрирует волновое поведение квантовых частиц, и мы надеемся, что он до некоторой степени срывает покровы таинственности с данного предмета: понимание поведения электрона в атоме водорода не более сложно, чем понимание того, как колеблется воздух внутри баскетбольного мяча.
Прежде чем оставить в покое атом водорода, мы хотели бы еще немного поговорить о потенциале, создаваемом протоном, и о том, как электрон перепрыгивает с более высокого энергетического уровня на более низкий, испуская при этом фотон.
Мы избежали разговоров о том, как взаимодействуют друг с другом протон и электрон, введя идею потенциала. Это упрощение позволило понять квантование энергии запертых частиц. Но если мы всерьез хотим понять, что происходит, нужно попытаться объяснить механизм «запирания» частиц. Когда частица движется в рассматриваемом нами ящике, можно представить непроницаемую стенку, предположительно состоящую из атомов, так что частица не может пройти сквозь нее из-за взаимодействия с этими атомами. Правильное понимание «непроницаемости» приходит через понимание того, как частицы взаимодействуют друг с другом. Мы говорили, что протон в атоме водорода создает потенциал, в котором движется электрон, и этот потенциал захватывает электрон аналогично тому, как частица удерживается в ящике. Это приводит к более глубокой проблеме, потому что электрон, очевидно, взаимодействует с протоном, и именно это предопределяет «запирание» электрона.
В главе 10 мы увидим, что же необходимо добавить к уже сформулированным квантовым правилам. Эти добавки будут касаться взаимодействия частиц. Пока наши правила очень просты: частицы двигаются, перенося с собой воображаемые часы, стрелки которых переводятся назад точно определенным образом в зависимости от расстояния, на которое перемещаются частицы. Все прыжки частиц разрешены, так что частица может переместиться из точки А в точку В по бесконечному количеству различных траекторий. Каждая траектория приносит в точку В собственный квантовый циферблат, и мы должны сложить их все, чтобы получился единый общий циферблат, который позволит нам определить вероятность нахождения частицы в точке В. Добавление взаимодействий в эту картину оказывается на удивление простым делом. Мы дополняем правила перемещения частиц новым правилом, которое гласит, что частица может испускать или поглощать другую частицу. Если до взаимодействия была одна частица, то после него их может оказаться две; если до взаимодействия частиц было две, после него может остаться только одна. Конечно, если мы собираемся вырабатывать математические формулы для этого, мы обязаны уточнить, какие именно частицы будут сливаться или распадаться и что произойдет после взаимодействия с теми циферблатами, которые несет с собой каждая частица. Это станет темой главы 10, но предпосылки очевидны и так. Если есть правило, по которому электрон в ходе взаимодействия испускает фотон, то существует вероятность того, что электрон в атоме водорода может испустить фотон, потерять энергию и опуститься на более низкий энергетический уровень. Он может также поглотить фотон, приобрести энергию и подняться на более высокий энергетический уровень.
Существование спектральных линий подтверждает, что именно так все и происходит, но далеко не с равной вероятностью, а именно: электрон может испускать фотон и лишаться энергии в любое время, но единственный способ получения энергии и перехода на более высокий энергетический уровень заключается в существовании фотона (или какого-то иного источника энергии), который мог бы с ним столкнуться. В газообразном водороде таких фотонов обычно мало, а расстояние между ними велико. Атом в возбужденном состоянии имеет гораздо больше шансов на испускание фотона, чем на его поглощение. Общий эффект состоит в том, что атомы водорода стремятся выходить из возбужденного состояния (релаксировать), под чем мы понимаем победу испускания над поглощением. Со временем атом возвращается к основному состоянию n = 1. Это правило не может быть общим, поскольку можно постоянно возбуждать атомы, обеспечив контролируемую подкачку энергии. На этом основана технология лазера, ныне используемая повсеместно. Главная идея лазера состоит в закачивании энергии в атомы, приводящем к их возбуждению, и сборе фотонов, испускаемых при потере электронами энергии. Эти фотоны очень полезны для чтения данных высокой четкости, записанных на поверхности CD или DVD: влияние квантовой механики на нашу жизнь весьма многообразно.
В этой главе мы сумели объяснить происхождение спектральных линий, используя простую идею квантованных энергетических уровней. Кажется, нам удалось выработать правильный взгляд на атомы. Но все же кое-что не совсем так. Не хватает последнего кусочка головоломки, без которого невозможно объяснить структуру более тяжелых атомов, чем водород. Если говорить более прозаично, нам также не удастся объяснить, почему мы, собственно, не проваливаемся сквозь землю, что создает проблемы для нашей замечательной теории природы. Объяснение, которое мы ищем, кроется в работах австрийского физика Вольфганга Паули.